linux-sg2042/sound/soc/codecs/cs53l30.c

1110 lines
33 KiB
C
Raw Normal View History

/*
* cs53l30.c -- CS53l30 ALSA Soc Audio driver
*
* Copyright 2015 Cirrus Logic, Inc.
*
* Authors: Paul Handrigan <Paul.Handrigan@cirrus.com>,
* Tim Howe <Tim.Howe@cirrus.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/of_gpio.h>
#include <linux/gpio/consumer.h>
#include <linux/regulator/consumer.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/tlv.h>
#include "cs53l30.h"
#define CS53L30_NUM_SUPPLIES 2
static const char *const cs53l30_supply_names[CS53L30_NUM_SUPPLIES] = {
"VA",
"VP",
};
struct cs53l30_private {
struct regulator_bulk_data supplies[CS53L30_NUM_SUPPLIES];
struct regmap *regmap;
struct gpio_desc *reset_gpio;
struct clk *mclk;
bool use_sdout2;
u32 mclk_rate;
};
static const struct reg_default cs53l30_reg_defaults[] = {
{ CS53L30_PWRCTL, CS53L30_PWRCTL_DEFAULT },
{ CS53L30_MCLKCTL, CS53L30_MCLKCTL_DEFAULT },
{ CS53L30_INT_SR_CTL, CS53L30_INT_SR_CTL_DEFAULT },
{ CS53L30_MICBIAS_CTL, CS53L30_MICBIAS_CTL_DEFAULT },
{ CS53L30_ASPCFG_CTL, CS53L30_ASPCFG_CTL_DEFAULT },
{ CS53L30_ASP_CTL1, CS53L30_ASP_CTL1_DEFAULT },
{ CS53L30_ASP_TDMTX_CTL1, CS53L30_ASP_TDMTX_CTLx_DEFAULT },
{ CS53L30_ASP_TDMTX_CTL2, CS53L30_ASP_TDMTX_CTLx_DEFAULT },
{ CS53L30_ASP_TDMTX_CTL3, CS53L30_ASP_TDMTX_CTLx_DEFAULT },
{ CS53L30_ASP_TDMTX_CTL4, CS53L30_ASP_TDMTX_CTLx_DEFAULT },
{ CS53L30_ASP_TDMTX_EN1, CS53L30_ASP_TDMTX_ENx_DEFAULT },
{ CS53L30_ASP_TDMTX_EN2, CS53L30_ASP_TDMTX_ENx_DEFAULT },
{ CS53L30_ASP_TDMTX_EN3, CS53L30_ASP_TDMTX_ENx_DEFAULT },
{ CS53L30_ASP_TDMTX_EN4, CS53L30_ASP_TDMTX_ENx_DEFAULT },
{ CS53L30_ASP_TDMTX_EN5, CS53L30_ASP_TDMTX_ENx_DEFAULT },
{ CS53L30_ASP_TDMTX_EN6, CS53L30_ASP_TDMTX_ENx_DEFAULT },
{ CS53L30_ASP_CTL2, CS53L30_ASP_CTL2_DEFAULT },
{ CS53L30_SFT_RAMP, CS53L30_SFT_RMP_DEFAULT },
{ CS53L30_LRCK_CTL1, CS53L30_LRCK_CTLx_DEFAULT },
{ CS53L30_LRCK_CTL2, CS53L30_LRCK_CTLx_DEFAULT },
{ CS53L30_MUTEP_CTL1, CS53L30_MUTEP_CTL1_DEFAULT },
{ CS53L30_MUTEP_CTL2, CS53L30_MUTEP_CTL2_DEFAULT },
{ CS53L30_INBIAS_CTL1, CS53L30_INBIAS_CTL1_DEFAULT },
{ CS53L30_INBIAS_CTL2, CS53L30_INBIAS_CTL2_DEFAULT },
{ CS53L30_DMIC1_STR_CTL, CS53L30_DMIC1_STR_CTL_DEFAULT },
{ CS53L30_DMIC2_STR_CTL, CS53L30_DMIC2_STR_CTL_DEFAULT },
{ CS53L30_ADCDMIC1_CTL1, CS53L30_ADCDMICx_CTL1_DEFAULT },
{ CS53L30_ADCDMIC1_CTL2, CS53L30_ADCDMIC1_CTL2_DEFAULT },
{ CS53L30_ADC1_CTL3, CS53L30_ADCx_CTL3_DEFAULT },
{ CS53L30_ADC1_NG_CTL, CS53L30_ADCx_NG_CTL_DEFAULT },
{ CS53L30_ADC1A_AFE_CTL, CS53L30_ADCxy_AFE_CTL_DEFAULT },
{ CS53L30_ADC1B_AFE_CTL, CS53L30_ADCxy_AFE_CTL_DEFAULT },
{ CS53L30_ADC1A_DIG_VOL, CS53L30_ADCxy_DIG_VOL_DEFAULT },
{ CS53L30_ADC1B_DIG_VOL, CS53L30_ADCxy_DIG_VOL_DEFAULT },
{ CS53L30_ADCDMIC2_CTL1, CS53L30_ADCDMICx_CTL1_DEFAULT },
{ CS53L30_ADCDMIC2_CTL2, CS53L30_ADCDMIC1_CTL2_DEFAULT },
{ CS53L30_ADC2_CTL3, CS53L30_ADCx_CTL3_DEFAULT },
{ CS53L30_ADC2_NG_CTL, CS53L30_ADCx_NG_CTL_DEFAULT },
{ CS53L30_ADC2A_AFE_CTL, CS53L30_ADCxy_AFE_CTL_DEFAULT },
{ CS53L30_ADC2B_AFE_CTL, CS53L30_ADCxy_AFE_CTL_DEFAULT },
{ CS53L30_ADC2A_DIG_VOL, CS53L30_ADCxy_DIG_VOL_DEFAULT },
{ CS53L30_ADC2B_DIG_VOL, CS53L30_ADCxy_DIG_VOL_DEFAULT },
{ CS53L30_INT_MASK, CS53L30_DEVICE_INT_MASK },
};
static bool cs53l30_volatile_register(struct device *dev, unsigned int reg)
{
if (reg == CS53L30_IS)
return true;
else
return false;
}
static bool cs53l30_writeable_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case CS53L30_DEVID_AB:
case CS53L30_DEVID_CD:
case CS53L30_DEVID_E:
case CS53L30_REVID:
case CS53L30_IS:
return false;
default:
return true;
}
}
static bool cs53l30_readable_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case CS53L30_DEVID_AB:
case CS53L30_DEVID_CD:
case CS53L30_DEVID_E:
case CS53L30_REVID:
case CS53L30_PWRCTL:
case CS53L30_MCLKCTL:
case CS53L30_INT_SR_CTL:
case CS53L30_MICBIAS_CTL:
case CS53L30_ASPCFG_CTL:
case CS53L30_ASP_CTL1:
case CS53L30_ASP_TDMTX_CTL1:
case CS53L30_ASP_TDMTX_CTL2:
case CS53L30_ASP_TDMTX_CTL3:
case CS53L30_ASP_TDMTX_CTL4:
case CS53L30_ASP_TDMTX_EN1:
case CS53L30_ASP_TDMTX_EN2:
case CS53L30_ASP_TDMTX_EN3:
case CS53L30_ASP_TDMTX_EN4:
case CS53L30_ASP_TDMTX_EN5:
case CS53L30_ASP_TDMTX_EN6:
case CS53L30_ASP_CTL2:
case CS53L30_SFT_RAMP:
case CS53L30_LRCK_CTL1:
case CS53L30_LRCK_CTL2:
case CS53L30_MUTEP_CTL1:
case CS53L30_MUTEP_CTL2:
case CS53L30_INBIAS_CTL1:
case CS53L30_INBIAS_CTL2:
case CS53L30_DMIC1_STR_CTL:
case CS53L30_DMIC2_STR_CTL:
case CS53L30_ADCDMIC1_CTL1:
case CS53L30_ADCDMIC1_CTL2:
case CS53L30_ADC1_CTL3:
case CS53L30_ADC1_NG_CTL:
case CS53L30_ADC1A_AFE_CTL:
case CS53L30_ADC1B_AFE_CTL:
case CS53L30_ADC1A_DIG_VOL:
case CS53L30_ADC1B_DIG_VOL:
case CS53L30_ADCDMIC2_CTL1:
case CS53L30_ADCDMIC2_CTL2:
case CS53L30_ADC2_CTL3:
case CS53L30_ADC2_NG_CTL:
case CS53L30_ADC2A_AFE_CTL:
case CS53L30_ADC2B_AFE_CTL:
case CS53L30_ADC2A_DIG_VOL:
case CS53L30_ADC2B_DIG_VOL:
case CS53L30_INT_MASK:
return true;
default:
return false;
}
}
static DECLARE_TLV_DB_SCALE(adc_boost_tlv, 0, 2000, 0);
static DECLARE_TLV_DB_SCALE(adc_ng_boost_tlv, 0, 3000, 0);
static DECLARE_TLV_DB_SCALE(pga_tlv, -600, 50, 0);
static DECLARE_TLV_DB_SCALE(dig_tlv, -9600, 100, 1);
static DECLARE_TLV_DB_SCALE(pga_preamp_tlv, 0, 10000, 0);
static const char * const input1_sel_text[] = {
"DMIC1 On AB In",
"DMIC1 On A In",
"DMIC1 On B In",
"ADC1 On AB In",
"ADC1 On A In",
"ADC1 On B In",
"DMIC1 Off ADC1 Off",
};
static unsigned int const input1_sel_values[] = {
CS53L30_CH_TYPE,
CS53L30_ADCxB_PDN | CS53L30_CH_TYPE,
CS53L30_ADCxA_PDN | CS53L30_CH_TYPE,
CS53L30_DMICx_PDN,
CS53L30_ADCxB_PDN | CS53L30_DMICx_PDN,
CS53L30_ADCxA_PDN | CS53L30_DMICx_PDN,
CS53L30_ADCxA_PDN | CS53L30_ADCxB_PDN | CS53L30_DMICx_PDN,
};
static const char * const input2_sel_text[] = {
"DMIC2 On AB In",
"DMIC2 On A In",
"DMIC2 On B In",
"ADC2 On AB In",
"ADC2 On A In",
"ADC2 On B In",
"DMIC2 Off ADC2 Off",
};
static unsigned int const input2_sel_values[] = {
0x0,
CS53L30_ADCxB_PDN,
CS53L30_ADCxA_PDN,
CS53L30_DMICx_PDN,
CS53L30_ADCxB_PDN | CS53L30_DMICx_PDN,
CS53L30_ADCxA_PDN | CS53L30_DMICx_PDN,
CS53L30_ADCxA_PDN | CS53L30_ADCxB_PDN | CS53L30_DMICx_PDN,
};
static const char * const input1_route_sel_text[] = {
"ADC1_SEL", "DMIC1_SEL",
};
static const struct soc_enum input1_route_sel_enum =
SOC_ENUM_SINGLE(CS53L30_ADCDMIC1_CTL1, CS53L30_CH_TYPE_SHIFT,
ARRAY_SIZE(input1_route_sel_text),
input1_route_sel_text);
static SOC_VALUE_ENUM_SINGLE_DECL(input1_sel_enum, CS53L30_ADCDMIC1_CTL1, 0,
CS53L30_ADCDMICx_PDN_MASK, input1_sel_text,
input1_sel_values);
static const struct snd_kcontrol_new input1_route_sel_mux =
SOC_DAPM_ENUM("Input 1 Route", input1_route_sel_enum);
static const char * const input2_route_sel_text[] = {
"ADC2_SEL", "DMIC2_SEL",
};
/* Note: CS53L30_ADCDMIC1_CTL1 CH_TYPE controls inputs 1 and 2 */
static const struct soc_enum input2_route_sel_enum =
SOC_ENUM_SINGLE(CS53L30_ADCDMIC1_CTL1, 0,
ARRAY_SIZE(input2_route_sel_text),
input2_route_sel_text);
static SOC_VALUE_ENUM_SINGLE_DECL(input2_sel_enum, CS53L30_ADCDMIC2_CTL1, 0,
CS53L30_ADCDMICx_PDN_MASK, input2_sel_text,
input2_sel_values);
static const struct snd_kcontrol_new input2_route_sel_mux =
SOC_DAPM_ENUM("Input 2 Route", input2_route_sel_enum);
/*
* TB = 6144*(MCLK(int) scaling factor)/MCLK(internal)
* TB - Time base
* NOTE: If MCLK_INT_SCALE = 0, then TB=1
*/
static const char * const cs53l30_ng_delay_text[] = {
"TB*50ms", "TB*100ms", "TB*150ms", "TB*200ms",
};
static const struct soc_enum adc1_ng_delay_enum =
SOC_ENUM_SINGLE(CS53L30_ADC1_NG_CTL, CS53L30_ADCx_NG_DELAY_SHIFT,
ARRAY_SIZE(cs53l30_ng_delay_text),
cs53l30_ng_delay_text);
static const struct soc_enum adc2_ng_delay_enum =
SOC_ENUM_SINGLE(CS53L30_ADC2_NG_CTL, CS53L30_ADCx_NG_DELAY_SHIFT,
ARRAY_SIZE(cs53l30_ng_delay_text),
cs53l30_ng_delay_text);
/* The noise gate threshold selected will depend on NG Boost */
static const char * const cs53l30_ng_thres_text[] = {
"-64dB/-34dB", "-66dB/-36dB", "-70dB/-40dB", "-73dB/-43dB",
"-76dB/-46dB", "-82dB/-52dB", "-58dB", "-64dB",
};
static const struct soc_enum adc1_ng_thres_enum =
SOC_ENUM_SINGLE(CS53L30_ADC1_NG_CTL, CS53L30_ADCx_NG_THRESH_SHIFT,
ARRAY_SIZE(cs53l30_ng_thres_text),
cs53l30_ng_thres_text);
static const struct soc_enum adc2_ng_thres_enum =
SOC_ENUM_SINGLE(CS53L30_ADC2_NG_CTL, CS53L30_ADCx_NG_THRESH_SHIFT,
ARRAY_SIZE(cs53l30_ng_thres_text),
cs53l30_ng_thres_text);
/* Corner frequencies are with an Fs of 48kHz. */
static const char * const hpf_corner_freq_text[] = {
"1.86Hz", "120Hz", "235Hz", "466Hz",
};
static const struct soc_enum adc1_hpf_enum =
SOC_ENUM_SINGLE(CS53L30_ADC1_CTL3, CS53L30_ADCx_HPF_CF_SHIFT,
ARRAY_SIZE(hpf_corner_freq_text), hpf_corner_freq_text);
static const struct soc_enum adc2_hpf_enum =
SOC_ENUM_SINGLE(CS53L30_ADC2_CTL3, CS53L30_ADCx_HPF_CF_SHIFT,
ARRAY_SIZE(hpf_corner_freq_text), hpf_corner_freq_text);
static const struct snd_kcontrol_new cs53l30_snd_controls[] = {
SOC_SINGLE("Digital Soft-Ramp Switch", CS53L30_SFT_RAMP,
CS53L30_DIGSFT_SHIFT, 1, 0),
SOC_SINGLE("ADC1 Noise Gate Ganging Switch", CS53L30_ADC1_CTL3,
CS53L30_ADCx_NG_ALL_SHIFT, 1, 0),
SOC_SINGLE("ADC2 Noise Gate Ganging Switch", CS53L30_ADC2_CTL3,
CS53L30_ADCx_NG_ALL_SHIFT, 1, 0),
SOC_SINGLE("ADC1A Noise Gate Enable Switch", CS53L30_ADC1_NG_CTL,
CS53L30_ADCxA_NG_SHIFT, 1, 0),
SOC_SINGLE("ADC1B Noise Gate Enable Switch", CS53L30_ADC1_NG_CTL,
CS53L30_ADCxB_NG_SHIFT, 1, 0),
SOC_SINGLE("ADC2A Noise Gate Enable Switch", CS53L30_ADC2_NG_CTL,
CS53L30_ADCxA_NG_SHIFT, 1, 0),
SOC_SINGLE("ADC2B Noise Gate Enable Switch", CS53L30_ADC2_NG_CTL,
CS53L30_ADCxB_NG_SHIFT, 1, 0),
SOC_SINGLE("ADC1 Notch Filter Switch", CS53L30_ADCDMIC1_CTL2,
CS53L30_ADCx_NOTCH_DIS_SHIFT, 1, 1),
SOC_SINGLE("ADC2 Notch Filter Switch", CS53L30_ADCDMIC2_CTL2,
CS53L30_ADCx_NOTCH_DIS_SHIFT, 1, 1),
SOC_SINGLE("ADC1A Invert Switch", CS53L30_ADCDMIC1_CTL2,
CS53L30_ADCxA_INV_SHIFT, 1, 0),
SOC_SINGLE("ADC1B Invert Switch", CS53L30_ADCDMIC1_CTL2,
CS53L30_ADCxB_INV_SHIFT, 1, 0),
SOC_SINGLE("ADC2A Invert Switch", CS53L30_ADCDMIC2_CTL2,
CS53L30_ADCxA_INV_SHIFT, 1, 0),
SOC_SINGLE("ADC2B Invert Switch", CS53L30_ADCDMIC2_CTL2,
CS53L30_ADCxB_INV_SHIFT, 1, 0),
SOC_SINGLE_TLV("ADC1A Digital Boost Volume", CS53L30_ADCDMIC1_CTL2,
CS53L30_ADCxA_DIG_BOOST_SHIFT, 1, 0, adc_boost_tlv),
SOC_SINGLE_TLV("ADC1B Digital Boost Volume", CS53L30_ADCDMIC1_CTL2,
CS53L30_ADCxB_DIG_BOOST_SHIFT, 1, 0, adc_boost_tlv),
SOC_SINGLE_TLV("ADC2A Digital Boost Volume", CS53L30_ADCDMIC2_CTL2,
CS53L30_ADCxA_DIG_BOOST_SHIFT, 1, 0, adc_boost_tlv),
SOC_SINGLE_TLV("ADC2B Digital Boost Volume", CS53L30_ADCDMIC2_CTL2,
CS53L30_ADCxB_DIG_BOOST_SHIFT, 1, 0, adc_boost_tlv),
SOC_SINGLE_TLV("ADC1 NG Boost Volume", CS53L30_ADC1_NG_CTL,
CS53L30_ADCx_NG_BOOST_SHIFT, 1, 0, adc_ng_boost_tlv),
SOC_SINGLE_TLV("ADC2 NG Boost Volume", CS53L30_ADC2_NG_CTL,
CS53L30_ADCx_NG_BOOST_SHIFT, 1, 0, adc_ng_boost_tlv),
SOC_DOUBLE_R_TLV("ADC1 Preamplifier Volume", CS53L30_ADC1A_AFE_CTL,
CS53L30_ADC1B_AFE_CTL, CS53L30_ADCxy_PREAMP_SHIFT,
2, 0, pga_preamp_tlv),
SOC_DOUBLE_R_TLV("ADC2 Preamplifier Volume", CS53L30_ADC2A_AFE_CTL,
CS53L30_ADC2B_AFE_CTL, CS53L30_ADCxy_PREAMP_SHIFT,
2, 0, pga_preamp_tlv),
SOC_ENUM("Input 1 Channel Select", input1_sel_enum),
SOC_ENUM("Input 2 Channel Select", input2_sel_enum),
SOC_ENUM("ADC1 HPF Select", adc1_hpf_enum),
SOC_ENUM("ADC2 HPF Select", adc2_hpf_enum),
SOC_ENUM("ADC1 NG Threshold", adc1_ng_thres_enum),
SOC_ENUM("ADC2 NG Threshold", adc2_ng_thres_enum),
SOC_ENUM("ADC1 NG Delay", adc1_ng_delay_enum),
SOC_ENUM("ADC2 NG Delay", adc2_ng_delay_enum),
SOC_SINGLE_SX_TLV("ADC1A PGA Volume",
CS53L30_ADC1A_AFE_CTL, 0, 0x34, 0x18, pga_tlv),
SOC_SINGLE_SX_TLV("ADC1B PGA Volume",
CS53L30_ADC1B_AFE_CTL, 0, 0x34, 0x18, pga_tlv),
SOC_SINGLE_SX_TLV("ADC2A PGA Volume",
CS53L30_ADC2A_AFE_CTL, 0, 0x34, 0x18, pga_tlv),
SOC_SINGLE_SX_TLV("ADC2B PGA Volume",
CS53L30_ADC2B_AFE_CTL, 0, 0x34, 0x18, pga_tlv),
SOC_SINGLE_SX_TLV("ADC1A Digital Volume",
CS53L30_ADC1A_DIG_VOL, 0, 0xA0, 0x0C, dig_tlv),
SOC_SINGLE_SX_TLV("ADC1B Digital Volume",
CS53L30_ADC1B_DIG_VOL, 0, 0xA0, 0x0C, dig_tlv),
SOC_SINGLE_SX_TLV("ADC2A Digital Volume",
CS53L30_ADC2A_DIG_VOL, 0, 0xA0, 0x0C, dig_tlv),
SOC_SINGLE_SX_TLV("ADC2B Digital Volume",
CS53L30_ADC2B_DIG_VOL, 0, 0xA0, 0x0C, dig_tlv),
};
static const struct snd_soc_dapm_widget cs53l30_dapm_widgets[] = {
SND_SOC_DAPM_INPUT("IN1_DMIC1"),
SND_SOC_DAPM_INPUT("IN2"),
SND_SOC_DAPM_INPUT("IN3_DMIC2"),
SND_SOC_DAPM_INPUT("IN4"),
SND_SOC_DAPM_SUPPLY("MIC1 Bias", CS53L30_MICBIAS_CTL,
CS53L30_MIC1_BIAS_PDN_SHIFT, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("MIC2 Bias", CS53L30_MICBIAS_CTL,
CS53L30_MIC2_BIAS_PDN_SHIFT, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("MIC3 Bias", CS53L30_MICBIAS_CTL,
CS53L30_MIC3_BIAS_PDN_SHIFT, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("MIC4 Bias", CS53L30_MICBIAS_CTL,
CS53L30_MIC4_BIAS_PDN_SHIFT, 1, NULL, 0),
SND_SOC_DAPM_AIF_OUT("ASP_SDOUT1", NULL, 0, CS53L30_ASP_CTL1,
CS53L30_ASP_SDOUTx_PDN_SHIFT, 1),
SND_SOC_DAPM_AIF_OUT("ASP_SDOUT2", NULL, 0, CS53L30_ASP_CTL2,
CS53L30_ASP_SDOUTx_PDN_SHIFT, 1),
SND_SOC_DAPM_MUX("Input Mux 1", SND_SOC_NOPM, 0, 0,
&input1_route_sel_mux),
SND_SOC_DAPM_MUX("Input Mux 2", SND_SOC_NOPM, 0, 0,
&input2_route_sel_mux),
SND_SOC_DAPM_ADC("ADC1A", NULL, CS53L30_ADCDMIC1_CTL1,
CS53L30_ADCxA_PDN_SHIFT, 1),
SND_SOC_DAPM_ADC("ADC1B", NULL, CS53L30_ADCDMIC1_CTL1,
CS53L30_ADCxB_PDN_SHIFT, 1),
SND_SOC_DAPM_ADC("ADC2A", NULL, CS53L30_ADCDMIC2_CTL1,
CS53L30_ADCxA_PDN_SHIFT, 1),
SND_SOC_DAPM_ADC("ADC2B", NULL, CS53L30_ADCDMIC2_CTL1,
CS53L30_ADCxB_PDN_SHIFT, 1),
SND_SOC_DAPM_ADC("DMIC1", NULL, CS53L30_ADCDMIC1_CTL1,
CS53L30_DMICx_PDN_SHIFT, 1),
SND_SOC_DAPM_ADC("DMIC2", NULL, CS53L30_ADCDMIC2_CTL1,
CS53L30_DMICx_PDN_SHIFT, 1),
};
static const struct snd_soc_dapm_route cs53l30_dapm_routes[] = {
/* ADC Input Paths */
{"ADC1A", NULL, "IN1_DMIC1"},
{"Input Mux 1", "ADC1_SEL", "ADC1A"},
{"ADC1B", NULL, "IN2"},
{"ADC2A", NULL, "IN3_DMIC2"},
{"Input Mux 2", "ADC2_SEL", "ADC2A"},
{"ADC2B", NULL, "IN4"},
/* MIC Bias Paths */
{"ADC1A", NULL, "MIC1 Bias"},
{"ADC1B", NULL, "MIC2 Bias"},
{"ADC2A", NULL, "MIC3 Bias"},
{"ADC2B", NULL, "MIC4 Bias"},
/* DMIC Paths */
{"DMIC1", NULL, "IN1_DMIC1"},
{"Input Mux 1", "DMIC1_SEL", "DMIC1"},
{"DMIC2", NULL, "IN3_DMIC2"},
{"Input Mux 2", "DMIC2_SEL", "DMIC2"},
};
static const struct snd_soc_dapm_route cs53l30_dapm_routes_sdout1[] = {
/* Output Paths when using SDOUT1 only */
{"ASP_SDOUT1", NULL, "ADC1A" },
{"ASP_SDOUT1", NULL, "Input Mux 1"},
{"ASP_SDOUT1", NULL, "ADC1B"},
{"ASP_SDOUT1", NULL, "ADC2A"},
{"ASP_SDOUT1", NULL, "Input Mux 2"},
{"ASP_SDOUT1", NULL, "ADC2B"},
{"Capture", NULL, "ASP_SDOUT1"},
};
static const struct snd_soc_dapm_route cs53l30_dapm_routes_sdout2[] = {
/* Output Paths when using both SDOUT1 and SDOUT2 */
{"ASP_SDOUT1", NULL, "ADC1A" },
{"ASP_SDOUT1", NULL, "Input Mux 1"},
{"ASP_SDOUT1", NULL, "ADC1B"},
{"ASP_SDOUT2", NULL, "ADC2A"},
{"ASP_SDOUT2", NULL, "Input Mux 2"},
{"ASP_SDOUT2", NULL, "ADC2B"},
{"Capture", NULL, "ASP_SDOUT1"},
{"Capture", NULL, "ASP_SDOUT2"},
};
struct cs53l30_mclk_div {
u32 mclk_rate;
u32 srate;
u8 asp_rate;
u8 internal_fs_ratio;
u8 mclk_int_scale;
};
static struct cs53l30_mclk_div cs53l30_mclk_coeffs[] = {
/* NOTE: Enable MCLK_INT_SCALE to save power. */
/* MCLK, Sample Rate, asp_rate, internal_fs_ratio, mclk_int_scale */
{5644800, 11025, 0x4, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{5644800, 22050, 0x8, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{5644800, 44100, 0xC, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6000000, 8000, 0x1, 0, CS53L30_MCLK_INT_SCALE},
{6000000, 11025, 0x2, 0, CS53L30_MCLK_INT_SCALE},
{6000000, 12000, 0x4, 0, CS53L30_MCLK_INT_SCALE},
{6000000, 16000, 0x5, 0, CS53L30_MCLK_INT_SCALE},
{6000000, 22050, 0x6, 0, CS53L30_MCLK_INT_SCALE},
{6000000, 24000, 0x8, 0, CS53L30_MCLK_INT_SCALE},
{6000000, 32000, 0x9, 0, CS53L30_MCLK_INT_SCALE},
{6000000, 44100, 0xA, 0, CS53L30_MCLK_INT_SCALE},
{6000000, 48000, 0xC, 0, CS53L30_MCLK_INT_SCALE},
{6144000, 8000, 0x1, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6144000, 11025, 0x2, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6144000, 12000, 0x4, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6144000, 16000, 0x5, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6144000, 22050, 0x6, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6144000, 24000, 0x8, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6144000, 32000, 0x9, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6144000, 44100, 0xA, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6144000, 48000, 0xC, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6400000, 8000, 0x1, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6400000, 11025, 0x2, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6400000, 12000, 0x4, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6400000, 16000, 0x5, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6400000, 22050, 0x6, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6400000, 24000, 0x8, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6400000, 32000, 0x9, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6400000, 44100, 0xA, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
{6400000, 48000, 0xC, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
};
struct cs53l30_mclkx_div {
u32 mclkx;
u8 ratio;
u8 mclkdiv;
};
static struct cs53l30_mclkx_div cs53l30_mclkx_coeffs[] = {
{5644800, 1, CS53L30_MCLK_DIV_BY_1},
{6000000, 1, CS53L30_MCLK_DIV_BY_1},
{6144000, 1, CS53L30_MCLK_DIV_BY_1},
{11289600, 2, CS53L30_MCLK_DIV_BY_2},
{12288000, 2, CS53L30_MCLK_DIV_BY_2},
{12000000, 2, CS53L30_MCLK_DIV_BY_2},
{19200000, 3, CS53L30_MCLK_DIV_BY_3},
};
static int cs53l30_get_mclkx_coeff(int mclkx)
{
int i;
for (i = 0; i < ARRAY_SIZE(cs53l30_mclkx_coeffs); i++) {
if (cs53l30_mclkx_coeffs[i].mclkx == mclkx)
return i;
}
return -EINVAL;
}
static int cs53l30_get_mclk_coeff(int mclk_rate, int srate)
{
int i;
for (i = 0; i < ARRAY_SIZE(cs53l30_mclk_coeffs); i++) {
if (cs53l30_mclk_coeffs[i].mclk_rate == mclk_rate &&
cs53l30_mclk_coeffs[i].srate == srate)
return i;
}
return -EINVAL;
}
static int cs53l30_set_sysclk(struct snd_soc_dai *dai,
int clk_id, unsigned int freq, int dir)
{
struct cs53l30_private *priv = snd_soc_codec_get_drvdata(dai->codec);
int mclkx_coeff;
u32 mclk_rate;
/* MCLKX -> MCLK */
mclkx_coeff = cs53l30_get_mclkx_coeff(freq);
if (mclkx_coeff < 0)
return mclkx_coeff;
mclk_rate = cs53l30_mclkx_coeffs[mclkx_coeff].mclkx /
cs53l30_mclkx_coeffs[mclkx_coeff].ratio;
regmap_update_bits(priv->regmap, CS53L30_MCLKCTL,
CS53L30_MCLK_DIV_MASK,
cs53l30_mclkx_coeffs[mclkx_coeff].mclkdiv);
priv->mclk_rate = mclk_rate;
return 0;
}
static int cs53l30_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct cs53l30_private *priv = snd_soc_codec_get_drvdata(dai->codec);
u8 aspcfg = 0, aspctl1 = 0;
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
aspcfg |= CS53L30_ASP_MS;
break;
case SND_SOC_DAIFMT_CBS_CFS:
break;
default:
return -EINVAL;
}
/* DAI mode */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
/* Set TDM_PDN to turn off TDM mode -- Reset default */
aspctl1 |= CS53L30_ASP_TDM_PDN;
break;
case SND_SOC_DAIFMT_DSP_A:
/* Clear TDM_PDN and SHIFT_LEFT, invert SCLK */
aspcfg |= CS53L30_ASP_SCLK_INV;
break;
default:
return -EINVAL;
}
/* Check to see if the SCLK is inverted */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_IB_NF:
case SND_SOC_DAIFMT_IB_IF:
aspcfg ^= CS53L30_ASP_SCLK_INV;
break;
default:
break;
}
regmap_update_bits(priv->regmap, CS53L30_ASPCFG_CTL,
CS53L30_ASP_MS | CS53L30_ASP_SCLK_INV, aspcfg);
regmap_update_bits(priv->regmap, CS53L30_ASP_CTL1,
CS53L30_ASP_TDM_PDN | CS53L30_SHIFT_LEFT, aspctl1);
return 0;
}
static int cs53l30_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct cs53l30_private *priv = snd_soc_codec_get_drvdata(dai->codec);
int srate = params_rate(params);
int mclk_coeff;
/* MCLK -> srate */
mclk_coeff = cs53l30_get_mclk_coeff(priv->mclk_rate, srate);
if (mclk_coeff < 0)
return -EINVAL;
regmap_update_bits(priv->regmap, CS53L30_INT_SR_CTL,
CS53L30_INTRNL_FS_RATIO_MASK,
cs53l30_mclk_coeffs[mclk_coeff].internal_fs_ratio);
regmap_update_bits(priv->regmap, CS53L30_MCLKCTL,
CS53L30_MCLK_INT_SCALE_MASK,
cs53l30_mclk_coeffs[mclk_coeff].mclk_int_scale);
regmap_update_bits(priv->regmap, CS53L30_ASPCFG_CTL,
CS53L30_ASP_RATE_MASK,
cs53l30_mclk_coeffs[mclk_coeff].asp_rate);
return 0;
}
static int cs53l30_set_bias_level(struct snd_soc_codec *codec,
enum snd_soc_bias_level level)
{
struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec);
struct cs53l30_private *priv = snd_soc_codec_get_drvdata(codec);
unsigned int reg;
int i, inter_max_check, ret;
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
if (dapm->bias_level == SND_SOC_BIAS_STANDBY)
regmap_update_bits(priv->regmap, CS53L30_PWRCTL,
CS53L30_PDN_LP_MASK, 0);
break;
case SND_SOC_BIAS_STANDBY:
if (dapm->bias_level == SND_SOC_BIAS_OFF) {
ret = clk_prepare_enable(priv->mclk);
if (ret) {
dev_err(codec->dev,
"failed to enable MCLK: %d\n", ret);
return ret;
}
regmap_update_bits(priv->regmap, CS53L30_MCLKCTL,
CS53L30_MCLK_DIS_MASK, 0);
regmap_update_bits(priv->regmap, CS53L30_PWRCTL,
CS53L30_PDN_ULP_MASK, 0);
msleep(50);
} else {
regmap_update_bits(priv->regmap, CS53L30_PWRCTL,
CS53L30_PDN_ULP_MASK,
CS53L30_PDN_ULP);
}
break;
case SND_SOC_BIAS_OFF:
regmap_update_bits(priv->regmap, CS53L30_INT_MASK,
CS53L30_PDN_DONE, 0);
/*
* If digital softramp is set, the amount of time required
* for power down increases and depends on the digital
* volume setting.
*/
/* Set the max possible time if digsft is set */
regmap_read(priv->regmap, CS53L30_SFT_RAMP, &reg);
if (reg & CS53L30_DIGSFT_MASK)
inter_max_check = CS53L30_PDN_POLL_MAX;
else
inter_max_check = 10;
regmap_update_bits(priv->regmap, CS53L30_PWRCTL,
CS53L30_PDN_ULP_MASK,
CS53L30_PDN_ULP);
/* PDN_DONE will take a min of 20ms to be set.*/
msleep(20);
/* Clr status */
regmap_read(priv->regmap, CS53L30_IS, &reg);
for (i = 0; i < inter_max_check; i++) {
if (inter_max_check < 10) {
usleep_range(1000, 1100);
regmap_read(priv->regmap, CS53L30_IS, &reg);
if (reg & CS53L30_PDN_DONE)
break;
} else {
usleep_range(10000, 10100);
regmap_read(priv->regmap, CS53L30_IS, &reg);
if (reg & CS53L30_PDN_DONE)
break;
}
}
/* PDN_DONE is set. We now can disable the MCLK */
regmap_update_bits(priv->regmap, CS53L30_INT_MASK,
CS53L30_PDN_DONE, CS53L30_PDN_DONE);
regmap_update_bits(priv->regmap, CS53L30_MCLKCTL,
CS53L30_MCLK_DIS_MASK,
CS53L30_MCLK_DIS);
clk_disable_unprepare(priv->mclk);
break;
}
return 0;
}
static int cs53l30_set_tristate(struct snd_soc_dai *dai, int tristate)
{
struct cs53l30_private *priv = snd_soc_codec_get_drvdata(dai->codec);
u8 val = tristate ? CS53L30_ASP_3ST : 0;
return regmap_update_bits(priv->regmap, CS53L30_ASP_CTL1,
CS53L30_ASP_3ST_MASK, val);
}
static unsigned int const cs53l30_src_rates[] = {
8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000
};
static struct snd_pcm_hw_constraint_list src_constraints = {
.count = ARRAY_SIZE(cs53l30_src_rates),
.list = cs53l30_src_rates,
};
static int cs53l30_pcm_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
snd_pcm_hw_constraint_list(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE, &src_constraints);
return 0;
}
/*
* Note: CS53L30 counts the slot number per byte while ASoC counts the slot
* number per slot_width. So there is a difference between the slots of ASoC
* and the slots of CS53L30.
*/
static int cs53l30_set_dai_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask,
int slots, int slot_width)
{
struct cs53l30_private *priv = snd_soc_codec_get_drvdata(dai->codec);
unsigned int loc[CS53L30_TDM_SLOT_MAX] = {48, 48, 48, 48};
unsigned int slot_next, slot_step;
u64 tx_enable = 0;
int i;
if (!rx_mask) {
dev_err(dai->dev, "rx masks must not be 0\n");
return -EINVAL;
}
/* Assuming slot_width is not supposed to be greater than 64 */
if (slots <= 0 || slot_width <= 0 || slot_width > 64) {
dev_err(dai->dev, "invalid slot number or slot width\n");
return -EINVAL;
}
if (slot_width & 0x7) {
dev_err(dai->dev, "slot width must count in byte\n");
return -EINVAL;
}
/* How many bytes in each ASoC slot */
slot_step = slot_width >> 3;
for (i = 0; rx_mask && i < CS53L30_TDM_SLOT_MAX; i++) {
/* Find the first slot from LSB */
slot_next = __ffs(rx_mask);
/* Save the slot location by converting to CS53L30 slot */
loc[i] = slot_next * slot_step;
/* Create the mask of CS53L30 slot */
tx_enable |= (u64)((u64)(1 << slot_step) - 1) << (u64)loc[i];
/* Clear this slot from rx_mask */
rx_mask &= ~(1 << slot_next);
}
/* Error out to avoid slot shift */
if (rx_mask && i == CS53L30_TDM_SLOT_MAX) {
dev_err(dai->dev, "rx_mask exceeds max slot number: %d\n",
CS53L30_TDM_SLOT_MAX);
return -EINVAL;
}
/* Validate the last CS53L30 slot */
slot_next = loc[CS53L30_TDM_SLOT_MAX - 1] + slot_step - 1;
if (slot_next > 47) {
dev_err(dai->dev, "slot selection out of bounds: %u\n",
slot_next);
return -EINVAL;
}
for (i = 0; i < CS53L30_TDM_SLOT_MAX && loc[i] != 48; i++) {
regmap_update_bits(priv->regmap, CS53L30_ASP_TDMTX_CTL(i),
CS53L30_ASP_CHx_TX_LOC_MASK, loc[i]);
dev_dbg(dai->dev, "loc[%d]=%x\n", i, loc[i]);
}
for (i = 0; i < CS53L30_ASP_TDMTX_ENx_MAX && tx_enable; i++) {
regmap_write(priv->regmap, CS53L30_ASP_TDMTX_ENx(i),
tx_enable & 0xff);
tx_enable >>= 8;
dev_dbg(dai->dev, "en_reg=%x, tx_enable=%llx\n",
CS53L30_ASP_TDMTX_ENx(i), tx_enable & 0xff);
}
return 0;
}
/* SNDRV_PCM_RATE_KNOT -> 12000, 24000 Hz, limit with constraint list */
#define CS53L30_RATES (SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_KNOT)
#define CS53L30_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE |\
SNDRV_PCM_FMTBIT_S24_LE)
static const struct snd_soc_dai_ops cs53l30_ops = {
.startup = cs53l30_pcm_startup,
.hw_params = cs53l30_pcm_hw_params,
.set_fmt = cs53l30_set_dai_fmt,
.set_sysclk = cs53l30_set_sysclk,
.set_tristate = cs53l30_set_tristate,
.set_tdm_slot = cs53l30_set_dai_tdm_slot,
};
static struct snd_soc_dai_driver cs53l30_dai = {
.name = "cs53l30",
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 4,
.rates = CS53L30_RATES,
.formats = CS53L30_FORMATS,
},
.ops = &cs53l30_ops,
.symmetric_rates = 1,
};
static int cs53l30_codec_probe(struct snd_soc_codec *codec)
{
struct cs53l30_private *priv = snd_soc_codec_get_drvdata(codec);
struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec);
if (priv->use_sdout2)
snd_soc_dapm_add_routes(dapm, cs53l30_dapm_routes_sdout2,
ARRAY_SIZE(cs53l30_dapm_routes_sdout2));
else
snd_soc_dapm_add_routes(dapm, cs53l30_dapm_routes_sdout1,
ARRAY_SIZE(cs53l30_dapm_routes_sdout1));
return 0;
}
static struct snd_soc_codec_driver cs53l30_driver = {
.probe = cs53l30_codec_probe,
.set_bias_level = cs53l30_set_bias_level,
.idle_bias_off = true,
.dapm_widgets = cs53l30_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(cs53l30_dapm_widgets),
.dapm_routes = cs53l30_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(cs53l30_dapm_routes),
.controls = cs53l30_snd_controls,
.num_controls = ARRAY_SIZE(cs53l30_snd_controls),
};
static struct regmap_config cs53l30_regmap = {
.reg_bits = 8,
.val_bits = 8,
.max_register = CS53L30_MAX_REGISTER,
.reg_defaults = cs53l30_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(cs53l30_reg_defaults),
.volatile_reg = cs53l30_volatile_register,
.writeable_reg = cs53l30_writeable_register,
.readable_reg = cs53l30_readable_register,
.cache_type = REGCACHE_RBTREE,
};
static int cs53l30_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
const struct device_node *np = client->dev.of_node;
struct device *dev = &client->dev;
struct cs53l30_private *cs53l30;
unsigned int devid = 0;
unsigned int reg;
int ret = 0, i;
u8 val;
cs53l30 = devm_kzalloc(dev, sizeof(*cs53l30), GFP_KERNEL);
if (!cs53l30)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(cs53l30->supplies); i++)
cs53l30->supplies[i].supply = cs53l30_supply_names[i];
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(cs53l30->supplies),
cs53l30->supplies);
if (ret) {
dev_err(dev, "failed to get supplies: %d\n", ret);
return ret;
}
ret = regulator_bulk_enable(ARRAY_SIZE(cs53l30->supplies),
cs53l30->supplies);
if (ret) {
dev_err(dev, "failed to enable supplies: %d\n", ret);
return ret;
}
/* Reset the Device */
cs53l30->reset_gpio = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(cs53l30->reset_gpio)) {
ret = PTR_ERR(cs53l30->reset_gpio);
goto error;
}
if (cs53l30->reset_gpio)
gpiod_set_value_cansleep(cs53l30->reset_gpio, 1);
i2c_set_clientdata(client, cs53l30);
cs53l30->mclk_rate = 0;
cs53l30->regmap = devm_regmap_init_i2c(client, &cs53l30_regmap);
if (IS_ERR(cs53l30->regmap)) {
ret = PTR_ERR(cs53l30->regmap);
dev_err(dev, "regmap_init() failed: %d\n", ret);
goto error;
}
/* Initialize codec */
ret = regmap_read(cs53l30->regmap, CS53L30_DEVID_AB, &reg);
devid = reg << 12;
ret = regmap_read(cs53l30->regmap, CS53L30_DEVID_CD, &reg);
devid |= reg << 4;
ret = regmap_read(cs53l30->regmap, CS53L30_DEVID_E, &reg);
devid |= (reg & 0xF0) >> 4;
if (devid != CS53L30_DEVID) {
ret = -ENODEV;
dev_err(dev, "Device ID (%X). Expected %X\n",
devid, CS53L30_DEVID);
goto error;
}
ret = regmap_read(cs53l30->regmap, CS53L30_REVID, &reg);
if (ret < 0) {
dev_err(dev, "failed to get Revision ID: %d\n", ret);
goto error;
}
/* Check if MCLK provided */
cs53l30->mclk = devm_clk_get(dev, "mclk");
if (IS_ERR(cs53l30->mclk)) {
if (PTR_ERR(cs53l30->mclk) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto error;
}
/* Otherwise mark the mclk pointer to NULL */
cs53l30->mclk = NULL;
}
if (!of_property_read_u8(np, "cirrus,micbias-lvl", &val))
regmap_update_bits(cs53l30->regmap, CS53L30_MICBIAS_CTL,
CS53L30_MIC_BIAS_CTRL_MASK, val);
if (of_property_read_bool(np, "cirrus,use-sdout2"))
cs53l30->use_sdout2 = true;
dev_info(dev, "Cirrus Logic CS53L30, Revision: %02X\n", reg & 0xFF);
ret = snd_soc_register_codec(dev, &cs53l30_driver, &cs53l30_dai, 1);
if (ret) {
dev_err(dev, "failed to register codec: %d\n", ret);
goto error;
}
return 0;
error:
regulator_bulk_disable(ARRAY_SIZE(cs53l30->supplies),
cs53l30->supplies);
return ret;
}
static int cs53l30_i2c_remove(struct i2c_client *client)
{
struct cs53l30_private *cs53l30 = i2c_get_clientdata(client);
snd_soc_unregister_codec(&client->dev);
/* Hold down reset */
if (cs53l30->reset_gpio)
gpiod_set_value_cansleep(cs53l30->reset_gpio, 0);
regulator_bulk_disable(ARRAY_SIZE(cs53l30->supplies),
cs53l30->supplies);
return 0;
}
#ifdef CONFIG_PM
static int cs53l30_runtime_suspend(struct device *dev)
{
struct cs53l30_private *cs53l30 = dev_get_drvdata(dev);
regcache_cache_only(cs53l30->regmap, true);
/* Hold down reset */
if (cs53l30->reset_gpio)
gpiod_set_value_cansleep(cs53l30->reset_gpio, 0);
regulator_bulk_disable(ARRAY_SIZE(cs53l30->supplies),
cs53l30->supplies);
return 0;
}
static int cs53l30_runtime_resume(struct device *dev)
{
struct cs53l30_private *cs53l30 = dev_get_drvdata(dev);
int ret;
ret = regulator_bulk_enable(ARRAY_SIZE(cs53l30->supplies),
cs53l30->supplies);
if (ret) {
dev_err(dev, "failed to enable supplies: %d\n", ret);
return ret;
}
if (cs53l30->reset_gpio)
gpiod_set_value_cansleep(cs53l30->reset_gpio, 1);
regcache_cache_only(cs53l30->regmap, false);
ret = regcache_sync(cs53l30->regmap);
if (ret) {
dev_err(dev, "failed to synchronize regcache: %d\n", ret);
return ret;
}
return 0;
}
#endif
static const struct dev_pm_ops cs53l30_runtime_pm = {
SET_RUNTIME_PM_OPS(cs53l30_runtime_suspend, cs53l30_runtime_resume,
NULL)
};
static const struct of_device_id cs53l30_of_match[] = {
{ .compatible = "cirrus,cs53l30", },
{},
};
MODULE_DEVICE_TABLE(of, cs53l30_of_match);
static const struct i2c_device_id cs53l30_id[] = {
{ "cs53l30", 0 },
{}
};
MODULE_DEVICE_TABLE(i2c, cs53l30_id);
static struct i2c_driver cs53l30_i2c_driver = {
.driver = {
.name = "cs53l30",
.pm = &cs53l30_runtime_pm,
},
.id_table = cs53l30_id,
.probe = cs53l30_i2c_probe,
.remove = cs53l30_i2c_remove,
};
module_i2c_driver(cs53l30_i2c_driver);
MODULE_DESCRIPTION("ASoC CS53L30 driver");
MODULE_AUTHOR("Paul Handrigan, Cirrus Logic Inc, <Paul.Handrigan@cirrus.com>");
MODULE_LICENSE("GPL");