linux-sg2042/drivers/net/via-velocity.c

3304 lines
86 KiB
C
Raw Normal View History

/*
* This code is derived from the VIA reference driver (copyright message
* below) provided to Red Hat by VIA Networking Technologies, Inc. for
* addition to the Linux kernel.
*
* The code has been merged into one source file, cleaned up to follow
* Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
* for 64bit hardware platforms.
*
* TODO
* Big-endian support
* rx_copybreak/alignment
* Scatter gather
* More testing
*
* The changes are (c) Copyright 2004, Red Hat Inc. <alan@redhat.com>
* Additional fixes and clean up: Francois Romieu
*
* This source has not been verified for use in safety critical systems.
*
* Please direct queries about the revamped driver to the linux-kernel
* list not VIA.
*
* Original code:
*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This software may be redistributed and/or modified under
* the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* Author: Chuang Liang-Shing, AJ Jiang
*
* Date: Jan 24, 2003
*
* MODULE_LICENSE("GPL");
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/config.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/version.h>
#include <linux/string.h>
#include <linux/wait.h>
#include <asm/io.h>
#include <linux/if.h>
#include <linux/config.h>
#include <asm/uaccess.h>
#include <linux/proc_fs.h>
#include <linux/inetdevice.h>
#include <linux/reboot.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/crc-ccitt.h>
#include <linux/crc32.h>
#include "via-velocity.h"
static int velocity_nics = 0;
static int msglevel = MSG_LEVEL_INFO;
static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
static struct ethtool_ops velocity_ethtool_ops;
/*
Define module options
*/
MODULE_AUTHOR("VIA Networking Technologies, Inc.");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
#define VELOCITY_PARAM(N,D) \
static int N[MAX_UNITS]=OPTION_DEFAULT;\
module_param_array(N, int, NULL, 0); \
MODULE_PARM_DESC(N, D);
#define RX_DESC_MIN 64
#define RX_DESC_MAX 255
#define RX_DESC_DEF 64
VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
#define TX_DESC_MIN 16
#define TX_DESC_MAX 256
#define TX_DESC_DEF 64
VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
#define VLAN_ID_MIN 0
#define VLAN_ID_MAX 4095
#define VLAN_ID_DEF 0
/* VID_setting[] is used for setting the VID of NIC.
0: default VID.
1-4094: other VIDs.
*/
VELOCITY_PARAM(VID_setting, "802.1Q VLAN ID");
#define RX_THRESH_MIN 0
#define RX_THRESH_MAX 3
#define RX_THRESH_DEF 0
/* rx_thresh[] is used for controlling the receive fifo threshold.
0: indicate the rxfifo threshold is 128 bytes.
1: indicate the rxfifo threshold is 512 bytes.
2: indicate the rxfifo threshold is 1024 bytes.
3: indicate the rxfifo threshold is store & forward.
*/
VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
#define DMA_LENGTH_MIN 0
#define DMA_LENGTH_MAX 7
#define DMA_LENGTH_DEF 0
/* DMA_length[] is used for controlling the DMA length
0: 8 DWORDs
1: 16 DWORDs
2: 32 DWORDs
3: 64 DWORDs
4: 128 DWORDs
5: 256 DWORDs
6: SF(flush till emply)
7: SF(flush till emply)
*/
VELOCITY_PARAM(DMA_length, "DMA length");
#define TAGGING_DEF 0
/* enable_tagging[] is used for enabling 802.1Q VID tagging.
0: disable VID seeting(default).
1: enable VID setting.
*/
VELOCITY_PARAM(enable_tagging, "Enable 802.1Q tagging");
#define IP_ALIG_DEF 0
/* IP_byte_align[] is used for IP header DWORD byte aligned
0: indicate the IP header won't be DWORD byte aligned.(Default) .
1: indicate the IP header will be DWORD byte aligned.
In some enviroment, the IP header should be DWORD byte aligned,
or the packet will be droped when we receive it. (eg: IPVS)
*/
VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
#define TX_CSUM_DEF 1
/* txcsum_offload[] is used for setting the checksum offload ability of NIC.
(We only support RX checksum offload now)
0: disable csum_offload[checksum offload
1: enable checksum offload. (Default)
*/
VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
#define FLOW_CNTL_DEF 1
#define FLOW_CNTL_MIN 1
#define FLOW_CNTL_MAX 5
/* flow_control[] is used for setting the flow control ability of NIC.
1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
2: enable TX flow control.
3: enable RX flow control.
4: enable RX/TX flow control.
5: disable
*/
VELOCITY_PARAM(flow_control, "Enable flow control ability");
#define MED_LNK_DEF 0
#define MED_LNK_MIN 0
#define MED_LNK_MAX 4
/* speed_duplex[] is used for setting the speed and duplex mode of NIC.
0: indicate autonegotiation for both speed and duplex mode
1: indicate 100Mbps half duplex mode
2: indicate 100Mbps full duplex mode
3: indicate 10Mbps half duplex mode
4: indicate 10Mbps full duplex mode
Note:
if EEPROM have been set to the force mode, this option is ignored
by driver.
*/
VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
#define VAL_PKT_LEN_DEF 0
/* ValPktLen[] is used for setting the checksum offload ability of NIC.
0: Receive frame with invalid layer 2 length (Default)
1: Drop frame with invalid layer 2 length
*/
VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
#define WOL_OPT_DEF 0
#define WOL_OPT_MIN 0
#define WOL_OPT_MAX 7
/* wol_opts[] is used for controlling wake on lan behavior.
0: Wake up if recevied a magic packet. (Default)
1: Wake up if link status is on/off.
2: Wake up if recevied an arp packet.
4: Wake up if recevied any unicast packet.
Those value can be sumed up to support more than one option.
*/
VELOCITY_PARAM(wol_opts, "Wake On Lan options");
#define INT_WORKS_DEF 20
#define INT_WORKS_MIN 10
#define INT_WORKS_MAX 64
VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
static int rx_copybreak = 200;
module_param(rx_copybreak, int, 0644);
MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr, struct velocity_info_tbl *info);
static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
static void velocity_print_info(struct velocity_info *vptr);
static int velocity_open(struct net_device *dev);
static int velocity_change_mtu(struct net_device *dev, int mtu);
static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs);
static void velocity_set_multi(struct net_device *dev);
static struct net_device_stats *velocity_get_stats(struct net_device *dev);
static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int velocity_close(struct net_device *dev);
static int velocity_receive_frame(struct velocity_info *, int idx);
static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
static void velocity_free_rd_ring(struct velocity_info *vptr);
static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
static int velocity_soft_reset(struct velocity_info *vptr);
static void mii_init(struct velocity_info *vptr, u32 mii_status);
static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
static void velocity_print_link_status(struct velocity_info *vptr);
static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
static void velocity_shutdown(struct velocity_info *vptr);
static void enable_flow_control_ability(struct velocity_info *vptr);
static void enable_mii_autopoll(struct mac_regs __iomem * regs);
static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
static u32 check_connection_type(struct mac_regs __iomem * regs);
static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
#ifdef CONFIG_PM
static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
static int velocity_resume(struct pci_dev *pdev);
static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
static struct notifier_block velocity_inetaddr_notifier = {
.notifier_call = velocity_netdev_event,
};
static DEFINE_SPINLOCK(velocity_dev_list_lock);
static LIST_HEAD(velocity_dev_list);
static void velocity_register_notifier(void)
{
register_inetaddr_notifier(&velocity_inetaddr_notifier);
}
static void velocity_unregister_notifier(void)
{
unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
}
#else /* CONFIG_PM */
#define velocity_register_notifier() do {} while (0)
#define velocity_unregister_notifier() do {} while (0)
#endif /* !CONFIG_PM */
/*
* Internal board variants. At the moment we have only one
*/
static struct velocity_info_tbl chip_info_table[] = {
{CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 256, 1, 0x00FFFFFFUL},
{0, NULL}
};
/*
* Describe the PCI device identifiers that we support in this
* device driver. Used for hotplug autoloading.
*/
static struct pci_device_id velocity_id_table[] __devinitdata = {
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) chip_info_table},
{0, }
};
MODULE_DEVICE_TABLE(pci, velocity_id_table);
/**
* get_chip_name - identifier to name
* @id: chip identifier
*
* Given a chip identifier return a suitable description. Returns
* a pointer a static string valid while the driver is loaded.
*/
static char __devinit *get_chip_name(enum chip_type chip_id)
{
int i;
for (i = 0; chip_info_table[i].name != NULL; i++)
if (chip_info_table[i].chip_id == chip_id)
break;
return chip_info_table[i].name;
}
/**
* velocity_remove1 - device unplug
* @pdev: PCI device being removed
*
* Device unload callback. Called on an unplug or on module
* unload for each active device that is present. Disconnects
* the device from the network layer and frees all the resources
*/
static void __devexit velocity_remove1(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct velocity_info *vptr = dev->priv;
#ifdef CONFIG_PM
unsigned long flags;
spin_lock_irqsave(&velocity_dev_list_lock, flags);
if (!list_empty(&velocity_dev_list))
list_del(&vptr->list);
spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
#endif
unregister_netdev(dev);
iounmap(vptr->mac_regs);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
free_netdev(dev);
velocity_nics--;
}
/**
* velocity_set_int_opt - parser for integer options
* @opt: pointer to option value
* @val: value the user requested (or -1 for default)
* @min: lowest value allowed
* @max: highest value allowed
* @def: default value
* @name: property name
* @dev: device name
*
* Set an integer property in the module options. This function does
* all the verification and checking as well as reporting so that
* we don't duplicate code for each option.
*/
static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, char *devname)
{
if (val == -1)
*opt = def;
else if (val < min || val > max) {
VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
devname, name, min, max);
*opt = def;
} else {
VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
devname, name, val);
*opt = val;
}
}
/**
* velocity_set_bool_opt - parser for boolean options
* @opt: pointer to option value
* @val: value the user requested (or -1 for default)
* @def: default value (yes/no)
* @flag: numeric value to set for true.
* @name: property name
* @dev: device name
*
* Set a boolean property in the module options. This function does
* all the verification and checking as well as reporting so that
* we don't duplicate code for each option.
*/
static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, char *devname)
{
(*opt) &= (~flag);
if (val == -1)
*opt |= (def ? flag : 0);
else if (val < 0 || val > 1) {
printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
devname, name);
*opt |= (def ? flag : 0);
} else {
printk(KERN_INFO "%s: set parameter %s to %s\n",
devname, name, val ? "TRUE" : "FALSE");
*opt |= (val ? flag : 0);
}
}
/**
* velocity_get_options - set options on device
* @opts: option structure for the device
* @index: index of option to use in module options array
* @devname: device name
*
* Turn the module and command options into a single structure
* for the current device
*/
static void __devinit velocity_get_options(struct velocity_opt *opts, int index, char *devname)
{
velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
velocity_set_int_opt(&opts->vid, VID_setting[index], VLAN_ID_MIN, VLAN_ID_MAX, VLAN_ID_DEF, "VID_setting", devname);
velocity_set_bool_opt(&opts->flags, enable_tagging[index], TAGGING_DEF, VELOCITY_FLAGS_TAGGING, "enable_tagging", devname);
velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
opts->numrx = (opts->numrx & ~3);
}
/**
* velocity_init_cam_filter - initialise CAM
* @vptr: velocity to program
*
* Initialize the content addressable memory used for filters. Load
* appropriately according to the presence of VLAN
*/
static void velocity_init_cam_filter(struct velocity_info *vptr)
{
struct mac_regs __iomem * regs = vptr->mac_regs;
/* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
/* Disable all CAMs */
memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
/* Enable first VCAM */
if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
/* If Tagging option is enabled and VLAN ID is not zero, then
turn on MCFG_RTGOPT also */
if (vptr->options.vid != 0)
WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
mac_set_cam(regs, 0, (u8 *) & (vptr->options.vid), VELOCITY_VLAN_ID_CAM);
vptr->vCAMmask[0] |= 1;
mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
} else {
u16 temp = 0;
mac_set_cam(regs, 0, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
temp = 1;
mac_set_cam_mask(regs, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
}
}
/**
* velocity_rx_reset - handle a receive reset
* @vptr: velocity we are resetting
*
* Reset the ownership and status for the receive ring side.
* Hand all the receive queue to the NIC.
*/
static void velocity_rx_reset(struct velocity_info *vptr)
{
struct mac_regs __iomem * regs = vptr->mac_regs;
int i;
vptr->rd_dirty = vptr->rd_filled = vptr->rd_curr = 0;
/*
* Init state, all RD entries belong to the NIC
*/
for (i = 0; i < vptr->options.numrx; ++i)
vptr->rd_ring[i].rdesc0.owner = OWNED_BY_NIC;
writew(vptr->options.numrx, &regs->RBRDU);
writel(vptr->rd_pool_dma, &regs->RDBaseLo);
writew(0, &regs->RDIdx);
writew(vptr->options.numrx - 1, &regs->RDCSize);
}
/**
* velocity_init_registers - initialise MAC registers
* @vptr: velocity to init
* @type: type of initialisation (hot or cold)
*
* Initialise the MAC on a reset or on first set up on the
* hardware.
*/
static void velocity_init_registers(struct velocity_info *vptr,
enum velocity_init_type type)
{
struct mac_regs __iomem * regs = vptr->mac_regs;
int i, mii_status;
mac_wol_reset(regs);
switch (type) {
case VELOCITY_INIT_RESET:
case VELOCITY_INIT_WOL:
netif_stop_queue(vptr->dev);
/*
* Reset RX to prevent RX pointer not on the 4X location
*/
velocity_rx_reset(vptr);
mac_rx_queue_run(regs);
mac_rx_queue_wake(regs);
mii_status = velocity_get_opt_media_mode(vptr);
if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
velocity_print_link_status(vptr);
if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
netif_wake_queue(vptr->dev);
}
enable_flow_control_ability(vptr);
mac_clear_isr(regs);
writel(CR0_STOP, &regs->CR0Clr);
writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
&regs->CR0Set);
break;
case VELOCITY_INIT_COLD:
default:
/*
* Do reset
*/
velocity_soft_reset(vptr);
mdelay(5);
mac_eeprom_reload(regs);
for (i = 0; i < 6; i++) {
writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
}
/*
* clear Pre_ACPI bit.
*/
BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
mac_set_rx_thresh(regs, vptr->options.rx_thresh);
mac_set_dma_length(regs, vptr->options.DMA_length);
writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
/*
* Back off algorithm use original IEEE standard
*/
BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
/*
* Init CAM filter
*/
velocity_init_cam_filter(vptr);
/*
* Set packet filter: Receive directed and broadcast address
*/
velocity_set_multi(vptr->dev);
/*
* Enable MII auto-polling
*/
enable_mii_autopoll(regs);
vptr->int_mask = INT_MASK_DEF;
writel(cpu_to_le32(vptr->rd_pool_dma), &regs->RDBaseLo);
writew(vptr->options.numrx - 1, &regs->RDCSize);
mac_rx_queue_run(regs);
mac_rx_queue_wake(regs);
writew(vptr->options.numtx - 1, &regs->TDCSize);
for (i = 0; i < vptr->num_txq; i++) {
writel(cpu_to_le32(vptr->td_pool_dma[i]), &(regs->TDBaseLo[i]));
mac_tx_queue_run(regs, i);
}
init_flow_control_register(vptr);
writel(CR0_STOP, &regs->CR0Clr);
writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
mii_status = velocity_get_opt_media_mode(vptr);
netif_stop_queue(vptr->dev);
mii_init(vptr, mii_status);
if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
velocity_print_link_status(vptr);
if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
netif_wake_queue(vptr->dev);
}
enable_flow_control_ability(vptr);
mac_hw_mibs_init(regs);
mac_write_int_mask(vptr->int_mask, regs);
mac_clear_isr(regs);
}
}
/**
* velocity_soft_reset - soft reset
* @vptr: velocity to reset
*
* Kick off a soft reset of the velocity adapter and then poll
* until the reset sequence has completed before returning.
*/
static int velocity_soft_reset(struct velocity_info *vptr)
{
struct mac_regs __iomem * regs = vptr->mac_regs;
int i = 0;
writel(CR0_SFRST, &regs->CR0Set);
for (i = 0; i < W_MAX_TIMEOUT; i++) {
udelay(5);
if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
break;
}
if (i == W_MAX_TIMEOUT) {
writel(CR0_FORSRST, &regs->CR0Set);
/* FIXME: PCI POSTING */
/* delay 2ms */
mdelay(2);
}
return 0;
}
/**
* velocity_found1 - set up discovered velocity card
* @pdev: PCI device
* @ent: PCI device table entry that matched
*
* Configure a discovered adapter from scratch. Return a negative
* errno error code on failure paths.
*/
static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
{
static int first = 1;
struct net_device *dev;
int i;
struct velocity_info_tbl *info = (struct velocity_info_tbl *) ent->driver_data;
struct velocity_info *vptr;
struct mac_regs __iomem * regs;
int ret = -ENOMEM;
if (velocity_nics >= MAX_UNITS) {
printk(KERN_NOTICE VELOCITY_NAME ": already found %d NICs.\n",
velocity_nics);
return -ENODEV;
}
dev = alloc_etherdev(sizeof(struct velocity_info));
if (dev == NULL) {
printk(KERN_ERR VELOCITY_NAME ": allocate net device failed.\n");
goto out;
}
/* Chain it all together */
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
vptr = dev->priv;
if (first) {
printk(KERN_INFO "%s Ver. %s\n",
VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
first = 0;
}
velocity_init_info(pdev, vptr, info);
vptr->dev = dev;
dev->irq = pdev->irq;
ret = pci_enable_device(pdev);
if (ret < 0)
goto err_free_dev;
ret = velocity_get_pci_info(vptr, pdev);
if (ret < 0) {
printk(KERN_ERR VELOCITY_NAME ": Failed to find PCI device.\n");
goto err_disable;
}
ret = pci_request_regions(pdev, VELOCITY_NAME);
if (ret < 0) {
printk(KERN_ERR VELOCITY_NAME ": Failed to find PCI device.\n");
goto err_disable;
}
regs = ioremap(vptr->memaddr, vptr->io_size);
if (regs == NULL) {
ret = -EIO;
goto err_release_res;
}
vptr->mac_regs = regs;
mac_wol_reset(regs);
dev->base_addr = vptr->ioaddr;
for (i = 0; i < 6; i++)
dev->dev_addr[i] = readb(&regs->PAR[i]);
velocity_get_options(&vptr->options, velocity_nics, dev->name);
/*
* Mask out the options cannot be set to the chip
*/
vptr->options.flags &= info->flags;
/*
* Enable the chip specified capbilities
*/
vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
vptr->wol_opts = vptr->options.wol_opts;
vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
dev->irq = pdev->irq;
dev->open = velocity_open;
dev->hard_start_xmit = velocity_xmit;
dev->stop = velocity_close;
dev->get_stats = velocity_get_stats;
dev->set_multicast_list = velocity_set_multi;
dev->do_ioctl = velocity_ioctl;
dev->ethtool_ops = &velocity_ethtool_ops;
dev->change_mtu = velocity_change_mtu;
#ifdef VELOCITY_ZERO_COPY_SUPPORT
dev->features |= NETIF_F_SG;
#endif
if (vptr->flags & VELOCITY_FLAGS_TX_CSUM) {
dev->features |= NETIF_F_HW_CSUM;
}
ret = register_netdev(dev);
if (ret < 0)
goto err_iounmap;
velocity_print_info(vptr);
pci_set_drvdata(pdev, dev);
/* and leave the chip powered down */
pci_set_power_state(pdev, PCI_D3hot);
#ifdef CONFIG_PM
{
unsigned long flags;
spin_lock_irqsave(&velocity_dev_list_lock, flags);
list_add(&vptr->list, &velocity_dev_list);
spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
}
#endif
velocity_nics++;
out:
return ret;
err_iounmap:
iounmap(regs);
err_release_res:
pci_release_regions(pdev);
err_disable:
pci_disable_device(pdev);
err_free_dev:
free_netdev(dev);
goto out;
}
/**
* velocity_print_info - per driver data
* @vptr: velocity
*
* Print per driver data as the kernel driver finds Velocity
* hardware
*/
static void __devinit velocity_print_info(struct velocity_info *vptr)
{
struct net_device *dev = vptr->dev;
printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
dev->name,
dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
}
/**
* velocity_init_info - init private data
* @pdev: PCI device
* @vptr: Velocity info
* @info: Board type
*
* Set up the initial velocity_info struct for the device that has been
* discovered.
*/
static void __devinit velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr, struct velocity_info_tbl *info)
{
memset(vptr, 0, sizeof(struct velocity_info));
vptr->pdev = pdev;
vptr->chip_id = info->chip_id;
vptr->io_size = info->io_size;
vptr->num_txq = info->txqueue;
vptr->multicast_limit = MCAM_SIZE;
spin_lock_init(&vptr->lock);
INIT_LIST_HEAD(&vptr->list);
}
/**
* velocity_get_pci_info - retrieve PCI info for device
* @vptr: velocity device
* @pdev: PCI device it matches
*
* Retrieve the PCI configuration space data that interests us from
* the kernel PCI layer
*/
static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
{
if(pci_read_config_byte(pdev, PCI_REVISION_ID, &vptr->rev_id) < 0)
return -EIO;
pci_set_master(pdev);
vptr->ioaddr = pci_resource_start(pdev, 0);
vptr->memaddr = pci_resource_start(pdev, 1);
if(!(pci_resource_flags(pdev, 0) & IORESOURCE_IO))
{
printk(KERN_ERR "%s: region #0 is not an I/O resource, aborting.\n",
pci_name(pdev));
return -EINVAL;
}
if((pci_resource_flags(pdev, 1) & IORESOURCE_IO))
{
printk(KERN_ERR "%s: region #1 is an I/O resource, aborting.\n",
pci_name(pdev));
return -EINVAL;
}
if(pci_resource_len(pdev, 1) < 256)
{
printk(KERN_ERR "%s: region #1 is too small.\n",
pci_name(pdev));
return -EINVAL;
}
vptr->pdev = pdev;
return 0;
}
/**
* velocity_init_rings - set up DMA rings
* @vptr: Velocity to set up
*
* Allocate PCI mapped DMA rings for the receive and transmit layer
* to use.
*/
static int velocity_init_rings(struct velocity_info *vptr)
{
int i;
unsigned int psize;
unsigned int tsize;
dma_addr_t pool_dma;
u8 *pool;
/*
* Allocate all RD/TD rings a single pool
*/
psize = vptr->options.numrx * sizeof(struct rx_desc) +
vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
/*
* pci_alloc_consistent() fulfills the requirement for 64 bytes
* alignment
*/
pool = pci_alloc_consistent(vptr->pdev, psize, &pool_dma);
if (pool == NULL) {
printk(KERN_ERR "%s : DMA memory allocation failed.\n",
vptr->dev->name);
return -ENOMEM;
}
memset(pool, 0, psize);
vptr->rd_ring = (struct rx_desc *) pool;
vptr->rd_pool_dma = pool_dma;
tsize = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
vptr->tx_bufs = pci_alloc_consistent(vptr->pdev, tsize,
&vptr->tx_bufs_dma);
if (vptr->tx_bufs == NULL) {
printk(KERN_ERR "%s: DMA memory allocation failed.\n",
vptr->dev->name);
pci_free_consistent(vptr->pdev, psize, pool, pool_dma);
return -ENOMEM;
}
memset(vptr->tx_bufs, 0, vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq);
i = vptr->options.numrx * sizeof(struct rx_desc);
pool += i;
pool_dma += i;
for (i = 0; i < vptr->num_txq; i++) {
int offset = vptr->options.numtx * sizeof(struct tx_desc);
vptr->td_pool_dma[i] = pool_dma;
vptr->td_rings[i] = (struct tx_desc *) pool;
pool += offset;
pool_dma += offset;
}
return 0;
}
/**
* velocity_free_rings - free PCI ring pointers
* @vptr: Velocity to free from
*
* Clean up the PCI ring buffers allocated to this velocity.
*/
static void velocity_free_rings(struct velocity_info *vptr)
{
int size;
size = vptr->options.numrx * sizeof(struct rx_desc) +
vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
pci_free_consistent(vptr->pdev, size, vptr->rd_ring, vptr->rd_pool_dma);
size = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
pci_free_consistent(vptr->pdev, size, vptr->tx_bufs, vptr->tx_bufs_dma);
}
static inline void velocity_give_many_rx_descs(struct velocity_info *vptr)
{
struct mac_regs __iomem *regs = vptr->mac_regs;
int avail, dirty, unusable;
/*
* RD number must be equal to 4X per hardware spec
* (programming guide rev 1.20, p.13)
*/
if (vptr->rd_filled < 4)
return;
wmb();
unusable = vptr->rd_filled & 0x0003;
dirty = vptr->rd_dirty - unusable;
for (avail = vptr->rd_filled & 0xfffc; avail; avail--) {
dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
vptr->rd_ring[dirty].rdesc0.owner = OWNED_BY_NIC;
}
writew(vptr->rd_filled & 0xfffc, &regs->RBRDU);
vptr->rd_filled = unusable;
}
static int velocity_rx_refill(struct velocity_info *vptr)
{
int dirty = vptr->rd_dirty, done = 0, ret = 0;
do {
struct rx_desc *rd = vptr->rd_ring + dirty;
/* Fine for an all zero Rx desc at init time as well */
if (rd->rdesc0.owner == OWNED_BY_NIC)
break;
if (!vptr->rd_info[dirty].skb) {
ret = velocity_alloc_rx_buf(vptr, dirty);
if (ret < 0)
break;
}
done++;
dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
} while (dirty != vptr->rd_curr);
if (done) {
vptr->rd_dirty = dirty;
vptr->rd_filled += done;
velocity_give_many_rx_descs(vptr);
}
return ret;
}
/**
* velocity_init_rd_ring - set up receive ring
* @vptr: velocity to configure
*
* Allocate and set up the receive buffers for each ring slot and
* assign them to the network adapter.
*/
static int velocity_init_rd_ring(struct velocity_info *vptr)
{
int ret = -ENOMEM;
unsigned int rsize = sizeof(struct velocity_rd_info) *
vptr->options.numrx;
vptr->rd_info = kmalloc(rsize, GFP_KERNEL);
if(vptr->rd_info == NULL)
goto out;
memset(vptr->rd_info, 0, rsize);
vptr->rd_filled = vptr->rd_dirty = vptr->rd_curr = 0;
ret = velocity_rx_refill(vptr);
if (ret < 0) {
VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
"%s: failed to allocate RX buffer.\n", vptr->dev->name);
velocity_free_rd_ring(vptr);
}
out:
return ret;
}
/**
* velocity_free_rd_ring - free receive ring
* @vptr: velocity to clean up
*
* Free the receive buffers for each ring slot and any
* attached socket buffers that need to go away.
*/
static void velocity_free_rd_ring(struct velocity_info *vptr)
{
int i;
if (vptr->rd_info == NULL)
return;
for (i = 0; i < vptr->options.numrx; i++) {
struct velocity_rd_info *rd_info = &(vptr->rd_info[i]);
if (!rd_info->skb)
continue;
pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
PCI_DMA_FROMDEVICE);
rd_info->skb_dma = (dma_addr_t) NULL;
dev_kfree_skb(rd_info->skb);
rd_info->skb = NULL;
}
kfree(vptr->rd_info);
vptr->rd_info = NULL;
}
/**
* velocity_init_td_ring - set up transmit ring
* @vptr: velocity
*
* Set up the transmit ring and chain the ring pointers together.
* Returns zero on success or a negative posix errno code for
* failure.
*/
static int velocity_init_td_ring(struct velocity_info *vptr)
{
int i, j;
dma_addr_t curr;
struct tx_desc *td;
struct velocity_td_info *td_info;
unsigned int tsize = sizeof(struct velocity_td_info) *
vptr->options.numtx;
/* Init the TD ring entries */
for (j = 0; j < vptr->num_txq; j++) {
curr = vptr->td_pool_dma[j];
vptr->td_infos[j] = kmalloc(tsize, GFP_KERNEL);
if(vptr->td_infos[j] == NULL)
{
while(--j >= 0)
kfree(vptr->td_infos[j]);
return -ENOMEM;
}
memset(vptr->td_infos[j], 0, tsize);
for (i = 0; i < vptr->options.numtx; i++, curr += sizeof(struct tx_desc)) {
td = &(vptr->td_rings[j][i]);
td_info = &(vptr->td_infos[j][i]);
td_info->buf = vptr->tx_bufs +
(j * vptr->options.numtx + i) * PKT_BUF_SZ;
td_info->buf_dma = vptr->tx_bufs_dma +
(j * vptr->options.numtx + i) * PKT_BUF_SZ;
}
vptr->td_tail[j] = vptr->td_curr[j] = vptr->td_used[j] = 0;
}
return 0;
}
/*
* FIXME: could we merge this with velocity_free_tx_buf ?
*/
static void velocity_free_td_ring_entry(struct velocity_info *vptr,
int q, int n)
{
struct velocity_td_info * td_info = &(vptr->td_infos[q][n]);
int i;
if (td_info == NULL)
return;
if (td_info->skb) {
for (i = 0; i < td_info->nskb_dma; i++)
{
if (td_info->skb_dma[i]) {
pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
td_info->skb->len, PCI_DMA_TODEVICE);
td_info->skb_dma[i] = (dma_addr_t) NULL;
}
}
dev_kfree_skb(td_info->skb);
td_info->skb = NULL;
}
}
/**
* velocity_free_td_ring - free td ring
* @vptr: velocity
*
* Free up the transmit ring for this particular velocity adapter.
* We free the ring contents but not the ring itself.
*/
static void velocity_free_td_ring(struct velocity_info *vptr)
{
int i, j;
for (j = 0; j < vptr->num_txq; j++) {
if (vptr->td_infos[j] == NULL)
continue;
for (i = 0; i < vptr->options.numtx; i++) {
velocity_free_td_ring_entry(vptr, j, i);
}
if (vptr->td_infos[j]) {
kfree(vptr->td_infos[j]);
vptr->td_infos[j] = NULL;
}
}
}
/**
* velocity_rx_srv - service RX interrupt
* @vptr: velocity
* @status: adapter status (unused)
*
* Walk the receive ring of the velocity adapter and remove
* any received packets from the receive queue. Hand the ring
* slots back to the adapter for reuse.
*/
static int velocity_rx_srv(struct velocity_info *vptr, int status)
{
struct net_device_stats *stats = &vptr->stats;
int rd_curr = vptr->rd_curr;
int works = 0;
do {
struct rx_desc *rd = vptr->rd_ring + rd_curr;
if (!vptr->rd_info[rd_curr].skb)
break;
if (rd->rdesc0.owner == OWNED_BY_NIC)
break;
rmb();
/*
* Don't drop CE or RL error frame although RXOK is off
*/
if ((rd->rdesc0.RSR & RSR_RXOK) || (!(rd->rdesc0.RSR & RSR_RXOK) && (rd->rdesc0.RSR & (RSR_CE | RSR_RL)))) {
if (velocity_receive_frame(vptr, rd_curr) < 0)
stats->rx_dropped++;
} else {
if (rd->rdesc0.RSR & RSR_CRC)
stats->rx_crc_errors++;
if (rd->rdesc0.RSR & RSR_FAE)
stats->rx_frame_errors++;
stats->rx_dropped++;
}
rd->inten = 1;
vptr->dev->last_rx = jiffies;
rd_curr++;
if (rd_curr >= vptr->options.numrx)
rd_curr = 0;
} while (++works <= 15);
vptr->rd_curr = rd_curr;
if (works > 0 && velocity_rx_refill(vptr) < 0) {
VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
"%s: rx buf allocation failure\n", vptr->dev->name);
}
VAR_USED(stats);
return works;
}
/**
* velocity_rx_csum - checksum process
* @rd: receive packet descriptor
* @skb: network layer packet buffer
*
* Process the status bits for the received packet and determine
* if the checksum was computed and verified by the hardware
*/
static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
{
skb->ip_summed = CHECKSUM_NONE;
if (rd->rdesc1.CSM & CSM_IPKT) {
if (rd->rdesc1.CSM & CSM_IPOK) {
if ((rd->rdesc1.CSM & CSM_TCPKT) ||
(rd->rdesc1.CSM & CSM_UDPKT)) {
if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
return;
}
}
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
}
}
/**
* velocity_rx_copy - in place Rx copy for small packets
* @rx_skb: network layer packet buffer candidate
* @pkt_size: received data size
* @rd: receive packet descriptor
* @dev: network device
*
* Replace the current skb that is scheduled for Rx processing by a
* shorter, immediatly allocated skb, if the received packet is small
* enough. This function returns a negative value if the received
* packet is too big or if memory is exhausted.
*/
static inline int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
struct velocity_info *vptr)
{
int ret = -1;
if (pkt_size < rx_copybreak) {
struct sk_buff *new_skb;
new_skb = dev_alloc_skb(pkt_size + 2);
if (new_skb) {
new_skb->dev = vptr->dev;
new_skb->ip_summed = rx_skb[0]->ip_summed;
if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN)
skb_reserve(new_skb, 2);
memcpy(new_skb->data, rx_skb[0]->data, pkt_size);
*rx_skb = new_skb;
ret = 0;
}
}
return ret;
}
/**
* velocity_iph_realign - IP header alignment
* @vptr: velocity we are handling
* @skb: network layer packet buffer
* @pkt_size: received data size
*
* Align IP header on a 2 bytes boundary. This behavior can be
* configured by the user.
*/
static inline void velocity_iph_realign(struct velocity_info *vptr,
struct sk_buff *skb, int pkt_size)
{
/* FIXME - memmove ? */
if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
int i;
for (i = pkt_size; i >= 0; i--)
*(skb->data + i + 2) = *(skb->data + i);
skb_reserve(skb, 2);
}
}
/**
* velocity_receive_frame - received packet processor
* @vptr: velocity we are handling
* @idx: ring index
*
* A packet has arrived. We process the packet and if appropriate
* pass the frame up the network stack
*/
static int velocity_receive_frame(struct velocity_info *vptr, int idx)
{
void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
struct net_device_stats *stats = &vptr->stats;
struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
struct rx_desc *rd = &(vptr->rd_ring[idx]);
int pkt_len = rd->rdesc0.len;
struct sk_buff *skb;
if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
stats->rx_length_errors++;
return -EINVAL;
}
if (rd->rdesc0.RSR & RSR_MAR)
vptr->stats.multicast++;
skb = rd_info->skb;
skb->dev = vptr->dev;
pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
/*
* Drop frame not meeting IEEE 802.3
*/
if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
if (rd->rdesc0.RSR & RSR_RL) {
stats->rx_length_errors++;
return -EINVAL;
}
}
pci_action = pci_dma_sync_single_for_device;
velocity_rx_csum(rd, skb);
if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
velocity_iph_realign(vptr, skb, pkt_len);
pci_action = pci_unmap_single;
rd_info->skb = NULL;
}
pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
PCI_DMA_FROMDEVICE);
skb_put(skb, pkt_len - 4);
skb->protocol = eth_type_trans(skb, skb->dev);
stats->rx_bytes += pkt_len;
netif_rx(skb);
return 0;
}
/**
* velocity_alloc_rx_buf - allocate aligned receive buffer
* @vptr: velocity
* @idx: ring index
*
* Allocate a new full sized buffer for the reception of a frame and
* map it into PCI space for the hardware to use. The hardware
* requires *64* byte alignment of the buffer which makes life
* less fun than would be ideal.
*/
static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
{
struct rx_desc *rd = &(vptr->rd_ring[idx]);
struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
rd_info->skb = dev_alloc_skb(vptr->rx_buf_sz + 64);
if (rd_info->skb == NULL)
return -ENOMEM;
/*
* Do the gymnastics to get the buffer head for data at
* 64byte alignment.
*/
skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
rd_info->skb->dev = vptr->dev;
rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data, vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
/*
* Fill in the descriptor to match
*/
*((u32 *) & (rd->rdesc0)) = 0;
rd->len = cpu_to_le32(vptr->rx_buf_sz);
rd->inten = 1;
rd->pa_low = cpu_to_le32(rd_info->skb_dma);
rd->pa_high = 0;
return 0;
}
/**
* tx_srv - transmit interrupt service
* @vptr; Velocity
* @status:
*
* Scan the queues looking for transmitted packets that
* we can complete and clean up. Update any statistics as
* neccessary/
*/
static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
{
struct tx_desc *td;
int qnum;
int full = 0;
int idx;
int works = 0;
struct velocity_td_info *tdinfo;
struct net_device_stats *stats = &vptr->stats;
for (qnum = 0; qnum < vptr->num_txq; qnum++) {
for (idx = vptr->td_tail[qnum]; vptr->td_used[qnum] > 0;
idx = (idx + 1) % vptr->options.numtx) {
/*
* Get Tx Descriptor
*/
td = &(vptr->td_rings[qnum][idx]);
tdinfo = &(vptr->td_infos[qnum][idx]);
if (td->tdesc0.owner == OWNED_BY_NIC)
break;
if ((works++ > 15))
break;
if (td->tdesc0.TSR & TSR0_TERR) {
stats->tx_errors++;
stats->tx_dropped++;
if (td->tdesc0.TSR & TSR0_CDH)
stats->tx_heartbeat_errors++;
if (td->tdesc0.TSR & TSR0_CRS)
stats->tx_carrier_errors++;
if (td->tdesc0.TSR & TSR0_ABT)
stats->tx_aborted_errors++;
if (td->tdesc0.TSR & TSR0_OWC)
stats->tx_window_errors++;
} else {
stats->tx_packets++;
stats->tx_bytes += tdinfo->skb->len;
}
velocity_free_tx_buf(vptr, tdinfo);
vptr->td_used[qnum]--;
}
vptr->td_tail[qnum] = idx;
if (AVAIL_TD(vptr, qnum) < 1) {
full = 1;
}
}
/*
* Look to see if we should kick the transmit network
* layer for more work.
*/
if (netif_queue_stopped(vptr->dev) && (full == 0)
&& (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
netif_wake_queue(vptr->dev);
}
return works;
}
/**
* velocity_print_link_status - link status reporting
* @vptr: velocity to report on
*
* Turn the link status of the velocity card into a kernel log
* description of the new link state, detailing speed and duplex
* status
*/
static void velocity_print_link_status(struct velocity_info *vptr)
{
if (vptr->mii_status & VELOCITY_LINK_FAIL) {
VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
} else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link autonegation", vptr->dev->name);
if (vptr->mii_status & VELOCITY_SPEED_1000)
VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
else if (vptr->mii_status & VELOCITY_SPEED_100)
VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
else
VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
else
VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
} else {
VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
switch (vptr->options.spd_dpx) {
case SPD_DPX_100_HALF:
VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
break;
case SPD_DPX_100_FULL:
VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
break;
case SPD_DPX_10_HALF:
VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
break;
case SPD_DPX_10_FULL:
VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
break;
default:
break;
}
}
}
/**
* velocity_error - handle error from controller
* @vptr: velocity
* @status: card status
*
* Process an error report from the hardware and attempt to recover
* the card itself. At the moment we cannot recover from some
* theoretically impossible errors but this could be fixed using
* the pci_device_failed logic to bounce the hardware
*
*/
static void velocity_error(struct velocity_info *vptr, int status)
{
if (status & ISR_TXSTLI) {
struct mac_regs __iomem * regs = vptr->mac_regs;
printk(KERN_ERR "TD structure errror TDindex=%hx\n", readw(&regs->TDIdx[0]));
BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
writew(TRDCSR_RUN, &regs->TDCSRClr);
netif_stop_queue(vptr->dev);
/* FIXME: port over the pci_device_failed code and use it
here */
}
if (status & ISR_SRCI) {
struct mac_regs __iomem * regs = vptr->mac_regs;
int linked;
if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
vptr->mii_status = check_connection_type(regs);
/*
* If it is a 3119, disable frame bursting in
* halfduplex mode and enable it in fullduplex
* mode
*/
if (vptr->rev_id < REV_ID_VT3216_A0) {
if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
else
BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
}
/*
* Only enable CD heart beat counter in 10HD mode
*/
if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
} else {
BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
}
}
/*
* Get link status from PHYSR0
*/
linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
if (linked) {
vptr->mii_status &= ~VELOCITY_LINK_FAIL;
} else {
vptr->mii_status |= VELOCITY_LINK_FAIL;
}
velocity_print_link_status(vptr);
enable_flow_control_ability(vptr);
/*
* Re-enable auto-polling because SRCI will disable
* auto-polling
*/
enable_mii_autopoll(regs);
if (vptr->mii_status & VELOCITY_LINK_FAIL)
netif_stop_queue(vptr->dev);
else
netif_wake_queue(vptr->dev);
};
if (status & ISR_MIBFI)
velocity_update_hw_mibs(vptr);
if (status & ISR_LSTEI)
mac_rx_queue_wake(vptr->mac_regs);
}
/**
* velocity_free_tx_buf - free transmit buffer
* @vptr: velocity
* @tdinfo: buffer
*
* Release an transmit buffer. If the buffer was preallocated then
* recycle it, if not then unmap the buffer.
*/
static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
{
struct sk_buff *skb = tdinfo->skb;
int i;
/*
* Don't unmap the pre-allocated tx_bufs
*/
if (tdinfo->skb_dma && (tdinfo->skb_dma[0] != tdinfo->buf_dma)) {
for (i = 0; i < tdinfo->nskb_dma; i++) {
#ifdef VELOCITY_ZERO_COPY_SUPPORT
pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], td->tdesc1.len, PCI_DMA_TODEVICE);
#else
pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], skb->len, PCI_DMA_TODEVICE);
#endif
tdinfo->skb_dma[i] = 0;
}
}
dev_kfree_skb_irq(skb);
tdinfo->skb = NULL;
}
/**
* velocity_open - interface activation callback
* @dev: network layer device to open
*
* Called when the network layer brings the interface up. Returns
* a negative posix error code on failure, or zero on success.
*
* All the ring allocation and set up is done on open for this
* adapter to minimise memory usage when inactive
*/
static int velocity_open(struct net_device *dev)
{
struct velocity_info *vptr = dev->priv;
int ret;
vptr->rx_buf_sz = (dev->mtu <= 1504 ? PKT_BUF_SZ : dev->mtu + 32);
ret = velocity_init_rings(vptr);
if (ret < 0)
goto out;
ret = velocity_init_rd_ring(vptr);
if (ret < 0)
goto err_free_desc_rings;
ret = velocity_init_td_ring(vptr);
if (ret < 0)
goto err_free_rd_ring;
/* Ensure chip is running */
pci_set_power_state(vptr->pdev, PCI_D0);
velocity_init_registers(vptr, VELOCITY_INIT_COLD);
ret = request_irq(vptr->pdev->irq, &velocity_intr, SA_SHIRQ,
dev->name, dev);
if (ret < 0) {
/* Power down the chip */
pci_set_power_state(vptr->pdev, PCI_D3hot);
goto err_free_td_ring;
}
mac_enable_int(vptr->mac_regs);
netif_start_queue(dev);
vptr->flags |= VELOCITY_FLAGS_OPENED;
out:
return ret;
err_free_td_ring:
velocity_free_td_ring(vptr);
err_free_rd_ring:
velocity_free_rd_ring(vptr);
err_free_desc_rings:
velocity_free_rings(vptr);
goto out;
}
/**
* velocity_change_mtu - MTU change callback
* @dev: network device
* @new_mtu: desired MTU
*
* Handle requests from the networking layer for MTU change on
* this interface. It gets called on a change by the network layer.
* Return zero for success or negative posix error code.
*/
static int velocity_change_mtu(struct net_device *dev, int new_mtu)
{
struct velocity_info *vptr = dev->priv;
unsigned long flags;
int oldmtu = dev->mtu;
int ret = 0;
if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
vptr->dev->name);
return -EINVAL;
}
if (new_mtu != oldmtu) {
spin_lock_irqsave(&vptr->lock, flags);
netif_stop_queue(dev);
velocity_shutdown(vptr);
velocity_free_td_ring(vptr);
velocity_free_rd_ring(vptr);
dev->mtu = new_mtu;
if (new_mtu > 8192)
vptr->rx_buf_sz = 9 * 1024;
else if (new_mtu > 4096)
vptr->rx_buf_sz = 8192;
else
vptr->rx_buf_sz = 4 * 1024;
ret = velocity_init_rd_ring(vptr);
if (ret < 0)
goto out_unlock;
ret = velocity_init_td_ring(vptr);
if (ret < 0)
goto out_unlock;
velocity_init_registers(vptr, VELOCITY_INIT_COLD);
mac_enable_int(vptr->mac_regs);
netif_start_queue(dev);
out_unlock:
spin_unlock_irqrestore(&vptr->lock, flags);
}
return ret;
}
/**
* velocity_shutdown - shut down the chip
* @vptr: velocity to deactivate
*
* Shuts down the internal operations of the velocity and
* disables interrupts, autopolling, transmit and receive
*/
static void velocity_shutdown(struct velocity_info *vptr)
{
struct mac_regs __iomem * regs = vptr->mac_regs;
mac_disable_int(regs);
writel(CR0_STOP, &regs->CR0Set);
writew(0xFFFF, &regs->TDCSRClr);
writeb(0xFF, &regs->RDCSRClr);
safe_disable_mii_autopoll(regs);
mac_clear_isr(regs);
}
/**
* velocity_close - close adapter callback
* @dev: network device
*
* Callback from the network layer when the velocity is being
* deactivated by the network layer
*/
static int velocity_close(struct net_device *dev)
{
struct velocity_info *vptr = dev->priv;
netif_stop_queue(dev);
velocity_shutdown(vptr);
if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
velocity_get_ip(vptr);
if (dev->irq != 0)
free_irq(dev->irq, dev);
/* Power down the chip */
pci_set_power_state(vptr->pdev, PCI_D3hot);
/* Free the resources */
velocity_free_td_ring(vptr);
velocity_free_rd_ring(vptr);
velocity_free_rings(vptr);
vptr->flags &= (~VELOCITY_FLAGS_OPENED);
return 0;
}
/**
* velocity_xmit - transmit packet callback
* @skb: buffer to transmit
* @dev: network device
*
* Called by the networ layer to request a packet is queued to
* the velocity. Returns zero on success.
*/
static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct velocity_info *vptr = dev->priv;
int qnum = 0;
struct tx_desc *td_ptr;
struct velocity_td_info *tdinfo;
unsigned long flags;
int index;
int pktlen = skb->len;
spin_lock_irqsave(&vptr->lock, flags);
index = vptr->td_curr[qnum];
td_ptr = &(vptr->td_rings[qnum][index]);
tdinfo = &(vptr->td_infos[qnum][index]);
td_ptr->tdesc1.TCPLS = TCPLS_NORMAL;
td_ptr->tdesc1.TCR = TCR0_TIC;
td_ptr->td_buf[0].queue = 0;
/*
* Pad short frames.
*/
if (pktlen < ETH_ZLEN) {
/* Cannot occur until ZC support */
if(skb_linearize(skb, GFP_ATOMIC))
return 0;
pktlen = ETH_ZLEN;
memcpy(tdinfo->buf, skb->data, skb->len);
memset(tdinfo->buf + skb->len, 0, ETH_ZLEN - skb->len);
tdinfo->skb = skb;
tdinfo->skb_dma[0] = tdinfo->buf_dma;
td_ptr->tdesc0.pktsize = pktlen;
td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
td_ptr->td_buf[0].pa_high = 0;
td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
tdinfo->nskb_dma = 1;
td_ptr->tdesc1.CMDZ = 2;
} else
#ifdef VELOCITY_ZERO_COPY_SUPPORT
if (skb_shinfo(skb)->nr_frags > 0) {
int nfrags = skb_shinfo(skb)->nr_frags;
tdinfo->skb = skb;
if (nfrags > 6) {
skb_linearize(skb, GFP_ATOMIC);
memcpy(tdinfo->buf, skb->data, skb->len);
tdinfo->skb_dma[0] = tdinfo->buf_dma;
td_ptr->tdesc0.pktsize =
td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
td_ptr->td_buf[0].pa_high = 0;
td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
tdinfo->nskb_dma = 1;
td_ptr->tdesc1.CMDZ = 2;
} else {
int i = 0;
tdinfo->nskb_dma = 0;
tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data, skb->len - skb->data_len, PCI_DMA_TODEVICE);
td_ptr->tdesc0.pktsize = pktlen;
/* FIXME: support 48bit DMA later */
td_ptr->td_buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
td_ptr->td_buf[i].pa_high = 0;
td_ptr->td_buf[i].bufsize = skb->len->skb->data_len;
for (i = 0; i < nfrags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
void *addr = ((void *) page_address(frag->page + frag->page_offset));
tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
td_ptr->td_buf[i + 1].pa_high = 0;
td_ptr->td_buf[i + 1].bufsize = frag->size;
}
tdinfo->nskb_dma = i - 1;
td_ptr->tdesc1.CMDZ = i;
}
} else
#endif
{
/*
* Map the linear network buffer into PCI space and
* add it to the transmit ring.
*/
tdinfo->skb = skb;
tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
td_ptr->tdesc0.pktsize = pktlen;
td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
td_ptr->td_buf[0].pa_high = 0;
td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
tdinfo->nskb_dma = 1;
td_ptr->tdesc1.CMDZ = 2;
}
if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
td_ptr->tdesc1.pqinf.VID = (vptr->options.vid & 0xfff);
td_ptr->tdesc1.pqinf.priority = 0;
td_ptr->tdesc1.pqinf.CFI = 0;
td_ptr->tdesc1.TCR |= TCR0_VETAG;
}
/*
* Handle hardware checksum
*/
if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
&& (skb->ip_summed == CHECKSUM_HW)) {
struct iphdr *ip = skb->nh.iph;
if (ip->protocol == IPPROTO_TCP)
td_ptr->tdesc1.TCR |= TCR0_TCPCK;
else if (ip->protocol == IPPROTO_UDP)
td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
td_ptr->tdesc1.TCR |= TCR0_IPCK;
}
{
int prev = index - 1;
if (prev < 0)
prev = vptr->options.numtx - 1;
td_ptr->tdesc0.owner = OWNED_BY_NIC;
vptr->td_used[qnum]++;
vptr->td_curr[qnum] = (index + 1) % vptr->options.numtx;
if (AVAIL_TD(vptr, qnum) < 1)
netif_stop_queue(dev);
td_ptr = &(vptr->td_rings[qnum][prev]);
td_ptr->td_buf[0].queue = 1;
mac_tx_queue_wake(vptr->mac_regs, qnum);
}
dev->trans_start = jiffies;
spin_unlock_irqrestore(&vptr->lock, flags);
return 0;
}
/**
* velocity_intr - interrupt callback
* @irq: interrupt number
* @dev_instance: interrupting device
* @pt_regs: CPU register state at interrupt
*
* Called whenever an interrupt is generated by the velocity
* adapter IRQ line. We may not be the source of the interrupt
* and need to identify initially if we are, and if not exit as
* efficiently as possible.
*/
static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs)
{
struct net_device *dev = dev_instance;
struct velocity_info *vptr = dev->priv;
u32 isr_status;
int max_count = 0;
spin_lock(&vptr->lock);
isr_status = mac_read_isr(vptr->mac_regs);
/* Not us ? */
if (isr_status == 0) {
spin_unlock(&vptr->lock);
return IRQ_NONE;
}
mac_disable_int(vptr->mac_regs);
/*
* Keep processing the ISR until we have completed
* processing and the isr_status becomes zero
*/
while (isr_status != 0) {
mac_write_isr(vptr->mac_regs, isr_status);
if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
velocity_error(vptr, isr_status);
if (isr_status & (ISR_PRXI | ISR_PPRXI))
max_count += velocity_rx_srv(vptr, isr_status);
if (isr_status & (ISR_PTXI | ISR_PPTXI))
max_count += velocity_tx_srv(vptr, isr_status);
isr_status = mac_read_isr(vptr->mac_regs);
if (max_count > vptr->options.int_works)
{
printk(KERN_WARNING "%s: excessive work at interrupt.\n",
dev->name);
max_count = 0;
}
}
spin_unlock(&vptr->lock);
mac_enable_int(vptr->mac_regs);
return IRQ_HANDLED;
}
/**
* velocity_set_multi - filter list change callback
* @dev: network device
*
* Called by the network layer when the filter lists need to change
* for a velocity adapter. Reload the CAMs with the new address
* filter ruleset.
*/
static void velocity_set_multi(struct net_device *dev)
{
struct velocity_info *vptr = dev->priv;
struct mac_regs __iomem * regs = vptr->mac_regs;
u8 rx_mode;
int i;
struct dev_mc_list *mclist;
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
/* Unconditionally log net taps. */
printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
writel(0xffffffff, &regs->MARCAM[0]);
writel(0xffffffff, &regs->MARCAM[4]);
rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
} else if ((dev->mc_count > vptr->multicast_limit)
|| (dev->flags & IFF_ALLMULTI)) {
writel(0xffffffff, &regs->MARCAM[0]);
writel(0xffffffff, &regs->MARCAM[4]);
rx_mode = (RCR_AM | RCR_AB);
} else {
int offset = MCAM_SIZE - vptr->multicast_limit;
mac_get_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
mac_set_cam(regs, i + offset, mclist->dmi_addr, VELOCITY_MULTICAST_CAM);
vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
}
mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
rx_mode = (RCR_AM | RCR_AB);
}
if (dev->mtu > 1500)
rx_mode |= RCR_AL;
BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
}
/**
* velocity_get_status - statistics callback
* @dev: network device
*
* Callback from the network layer to allow driver statistics
* to be resynchronized with hardware collected state. In the
* case of the velocity we need to pull the MIB counters from
* the hardware into the counters before letting the network
* layer display them.
*/
static struct net_device_stats *velocity_get_stats(struct net_device *dev)
{
struct velocity_info *vptr = dev->priv;
/* If the hardware is down, don't touch MII */
if(!netif_running(dev))
return &vptr->stats;
spin_lock_irq(&vptr->lock);
velocity_update_hw_mibs(vptr);
spin_unlock_irq(&vptr->lock);
vptr->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
vptr->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
vptr->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
// unsigned long rx_dropped; /* no space in linux buffers */
vptr->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
/* detailed rx_errors: */
// unsigned long rx_length_errors;
// unsigned long rx_over_errors; /* receiver ring buff overflow */
vptr->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
// unsigned long rx_frame_errors; /* recv'd frame alignment error */
// unsigned long rx_fifo_errors; /* recv'r fifo overrun */
// unsigned long rx_missed_errors; /* receiver missed packet */
/* detailed tx_errors */
// unsigned long tx_fifo_errors;
return &vptr->stats;
}
/**
* velocity_ioctl - ioctl entry point
* @dev: network device
* @rq: interface request ioctl
* @cmd: command code
*
* Called when the user issues an ioctl request to the network
* device in question. The velocity interface supports MII.
*/
static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct velocity_info *vptr = dev->priv;
int ret;
/* If we are asked for information and the device is power
saving then we need to bring the device back up to talk to it */
if (!netif_running(dev))
pci_set_power_state(vptr->pdev, PCI_D0);
switch (cmd) {
case SIOCGMIIPHY: /* Get address of MII PHY in use. */
case SIOCGMIIREG: /* Read MII PHY register. */
case SIOCSMIIREG: /* Write to MII PHY register. */
ret = velocity_mii_ioctl(dev, rq, cmd);
break;
default:
ret = -EOPNOTSUPP;
}
if (!netif_running(dev))
pci_set_power_state(vptr->pdev, PCI_D3hot);
return ret;
}
/*
* Definition for our device driver. The PCI layer interface
* uses this to handle all our card discover and plugging
*/
static struct pci_driver velocity_driver = {
.name = VELOCITY_NAME,
.id_table = velocity_id_table,
.probe = velocity_found1,
.remove = __devexit_p(velocity_remove1),
#ifdef CONFIG_PM
.suspend = velocity_suspend,
.resume = velocity_resume,
#endif
};
/**
* velocity_init_module - load time function
*
* Called when the velocity module is loaded. The PCI driver
* is registered with the PCI layer, and in turn will call
* the probe functions for each velocity adapter installed
* in the system.
*/
static int __init velocity_init_module(void)
{
int ret;
velocity_register_notifier();
ret = pci_module_init(&velocity_driver);
if (ret < 0)
velocity_unregister_notifier();
return ret;
}
/**
* velocity_cleanup - module unload
*
* When the velocity hardware is unloaded this function is called.
* It will clean up the notifiers and the unregister the PCI
* driver interface for this hardware. This in turn cleans up
* all discovered interfaces before returning from the function
*/
static void __exit velocity_cleanup_module(void)
{
velocity_unregister_notifier();
pci_unregister_driver(&velocity_driver);
}
module_init(velocity_init_module);
module_exit(velocity_cleanup_module);
/*
* MII access , media link mode setting functions
*/
/**
* mii_init - set up MII
* @vptr: velocity adapter
* @mii_status: links tatus
*
* Set up the PHY for the current link state.
*/
static void mii_init(struct velocity_info *vptr, u32 mii_status)
{
u16 BMCR;
switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
case PHYID_CICADA_CS8201:
/*
* Reset to hardware default
*/
MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
/*
* Turn on ECHODIS bit in NWay-forced full mode and turn it
* off it in NWay-forced half mode for NWay-forced v.s.
* legacy-forced issue.
*/
if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
else
MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
/*
* Turn on Link/Activity LED enable bit for CIS8201
*/
MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
break;
case PHYID_VT3216_32BIT:
case PHYID_VT3216_64BIT:
/*
* Reset to hardware default
*/
MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
/*
* Turn on ECHODIS bit in NWay-forced full mode and turn it
* off it in NWay-forced half mode for NWay-forced v.s.
* legacy-forced issue
*/
if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
else
MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
break;
case PHYID_MARVELL_1000:
case PHYID_MARVELL_1000S:
/*
* Assert CRS on Transmit
*/
MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
/*
* Reset to hardware default
*/
MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
break;
default:
;
}
velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
if (BMCR & BMCR_ISO) {
BMCR &= ~BMCR_ISO;
velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
}
}
/**
* safe_disable_mii_autopoll - autopoll off
* @regs: velocity registers
*
* Turn off the autopoll and wait for it to disable on the chip
*/
static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
{
u16 ww;
/* turn off MAUTO */
writeb(0, &regs->MIICR);
for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
udelay(1);
if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
break;
}
}
/**
* enable_mii_autopoll - turn on autopolling
* @regs: velocity registers
*
* Enable the MII link status autopoll feature on the Velocity
* hardware. Wait for it to enable.
*/
static void enable_mii_autopoll(struct mac_regs __iomem * regs)
{
int ii;
writeb(0, &(regs->MIICR));
writeb(MIIADR_SWMPL, &regs->MIIADR);
for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
udelay(1);
if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
break;
}
writeb(MIICR_MAUTO, &regs->MIICR);
for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
udelay(1);
if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
break;
}
}
/**
* velocity_mii_read - read MII data
* @regs: velocity registers
* @index: MII register index
* @data: buffer for received data
*
* Perform a single read of an MII 16bit register. Returns zero
* on success or -ETIMEDOUT if the PHY did not respond.
*/
static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
{
u16 ww;
/*
* Disable MIICR_MAUTO, so that mii addr can be set normally
*/
safe_disable_mii_autopoll(regs);
writeb(index, &regs->MIIADR);
BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
if (!(readb(&regs->MIICR) & MIICR_RCMD))
break;
}
*data = readw(&regs->MIIDATA);
enable_mii_autopoll(regs);
if (ww == W_MAX_TIMEOUT)
return -ETIMEDOUT;
return 0;
}
/**
* velocity_mii_write - write MII data
* @regs: velocity registers
* @index: MII register index
* @data: 16bit data for the MII register
*
* Perform a single write to an MII 16bit register. Returns zero
* on success or -ETIMEDOUT if the PHY did not respond.
*/
static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
{
u16 ww;
/*
* Disable MIICR_MAUTO, so that mii addr can be set normally
*/
safe_disable_mii_autopoll(regs);
/* MII reg offset */
writeb(mii_addr, &regs->MIIADR);
/* set MII data */
writew(data, &regs->MIIDATA);
/* turn on MIICR_WCMD */
BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
/* W_MAX_TIMEOUT is the timeout period */
for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
udelay(5);
if (!(readb(&regs->MIICR) & MIICR_WCMD))
break;
}
enable_mii_autopoll(regs);
if (ww == W_MAX_TIMEOUT)
return -ETIMEDOUT;
return 0;
}
/**
* velocity_get_opt_media_mode - get media selection
* @vptr: velocity adapter
*
* Get the media mode stored in EEPROM or module options and load
* mii_status accordingly. The requested link state information
* is also returned.
*/
static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
{
u32 status = 0;
switch (vptr->options.spd_dpx) {
case SPD_DPX_AUTO:
status = VELOCITY_AUTONEG_ENABLE;
break;
case SPD_DPX_100_FULL:
status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
break;
case SPD_DPX_10_FULL:
status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
break;
case SPD_DPX_100_HALF:
status = VELOCITY_SPEED_100;
break;
case SPD_DPX_10_HALF:
status = VELOCITY_SPEED_10;
break;
}
vptr->mii_status = status;
return status;
}
/**
* mii_set_auto_on - autonegotiate on
* @vptr: velocity
*
* Enable autonegotation on this interface
*/
static void mii_set_auto_on(struct velocity_info *vptr)
{
if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
else
MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
}
/*
static void mii_set_auto_off(struct velocity_info * vptr)
{
MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
}
*/
/**
* set_mii_flow_control - flow control setup
* @vptr: velocity interface
*
* Set up the flow control on this interface according to
* the supplied user/eeprom options.
*/
static void set_mii_flow_control(struct velocity_info *vptr)
{
/*Enable or Disable PAUSE in ANAR */
switch (vptr->options.flow_cntl) {
case FLOW_CNTL_TX:
MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
break;
case FLOW_CNTL_RX:
MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
break;
case FLOW_CNTL_TX_RX:
MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
break;
case FLOW_CNTL_DISABLE:
MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
break;
default:
break;
}
}
/**
* velocity_set_media_mode - set media mode
* @mii_status: old MII link state
*
* Check the media link state and configure the flow control
* PHY and also velocity hardware setup accordingly. In particular
* we need to set up CD polling and frame bursting.
*/
static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
{
u32 curr_status;
struct mac_regs __iomem * regs = vptr->mac_regs;
vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
/* Set mii link status */
set_mii_flow_control(vptr);
/*
Check if new status is consisent with current status
if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
|| (mii_status==curr_status)) {
vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
vptr->mii_status=check_connection_type(vptr->mac_regs);
VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
return 0;
}
*/
if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
}
/*
* If connection type is AUTO
*/
if (mii_status & VELOCITY_AUTONEG_ENABLE) {
VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
/* clear force MAC mode bit */
BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
/* set duplex mode of MAC according to duplex mode of MII */
MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
/* enable AUTO-NEGO mode */
mii_set_auto_on(vptr);
} else {
u16 ANAR;
u8 CHIPGCR;
/*
* 1. if it's 3119, disable frame bursting in halfduplex mode
* and enable it in fullduplex mode
* 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
* 3. only enable CD heart beat counter in 10HD mode
*/
/* set force MAC mode bit */
BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
CHIPGCR = readb(&regs->CHIPGCR);
CHIPGCR &= ~CHIPGCR_FCGMII;
if (mii_status & VELOCITY_DUPLEX_FULL) {
CHIPGCR |= CHIPGCR_FCFDX;
writeb(CHIPGCR, &regs->CHIPGCR);
VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
if (vptr->rev_id < REV_ID_VT3216_A0)
BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
} else {
CHIPGCR &= ~CHIPGCR_FCFDX;
VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
writeb(CHIPGCR, &regs->CHIPGCR);
if (vptr->rev_id < REV_ID_VT3216_A0)
BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
}
MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
} else {
BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
}
/* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
if (mii_status & VELOCITY_SPEED_100) {
if (mii_status & VELOCITY_DUPLEX_FULL)
ANAR |= ANAR_TXFD;
else
ANAR |= ANAR_TX;
} else {
if (mii_status & VELOCITY_DUPLEX_FULL)
ANAR |= ANAR_10FD;
else
ANAR |= ANAR_10;
}
velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
/* enable AUTO-NEGO mode */
mii_set_auto_on(vptr);
/* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
}
/* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
/* vptr->mii_status=check_connection_type(vptr->mac_regs); */
return VELOCITY_LINK_CHANGE;
}
/**
* mii_check_media_mode - check media state
* @regs: velocity registers
*
* Check the current MII status and determine the link status
* accordingly
*/
static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
{
u32 status = 0;
u16 ANAR;
if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
status |= VELOCITY_LINK_FAIL;
if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
status |= (VELOCITY_SPEED_1000);
else {
velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
if (ANAR & ANAR_TXFD)
status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
else if (ANAR & ANAR_TX)
status |= VELOCITY_SPEED_100;
else if (ANAR & ANAR_10FD)
status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
else
status |= (VELOCITY_SPEED_10);
}
if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
== (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
status |= VELOCITY_AUTONEG_ENABLE;
}
}
return status;
}
static u32 check_connection_type(struct mac_regs __iomem * regs)
{
u32 status = 0;
u8 PHYSR0;
u16 ANAR;
PHYSR0 = readb(&regs->PHYSR0);
/*
if (!(PHYSR0 & PHYSR0_LINKGD))
status|=VELOCITY_LINK_FAIL;
*/
if (PHYSR0 & PHYSR0_FDPX)
status |= VELOCITY_DUPLEX_FULL;
if (PHYSR0 & PHYSR0_SPDG)
status |= VELOCITY_SPEED_1000;
if (PHYSR0 & PHYSR0_SPD10)
status |= VELOCITY_SPEED_10;
else
status |= VELOCITY_SPEED_100;
if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
== (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
status |= VELOCITY_AUTONEG_ENABLE;
}
}
return status;
}
/**
* enable_flow_control_ability - flow control
* @vptr: veloity to configure
*
* Set up flow control according to the flow control options
* determined by the eeprom/configuration.
*/
static void enable_flow_control_ability(struct velocity_info *vptr)
{
struct mac_regs __iomem * regs = vptr->mac_regs;
switch (vptr->options.flow_cntl) {
case FLOW_CNTL_DEFAULT:
if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
writel(CR0_FDXRFCEN, &regs->CR0Set);
else
writel(CR0_FDXRFCEN, &regs->CR0Clr);
if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
writel(CR0_FDXTFCEN, &regs->CR0Set);
else
writel(CR0_FDXTFCEN, &regs->CR0Clr);
break;
case FLOW_CNTL_TX:
writel(CR0_FDXTFCEN, &regs->CR0Set);
writel(CR0_FDXRFCEN, &regs->CR0Clr);
break;
case FLOW_CNTL_RX:
writel(CR0_FDXRFCEN, &regs->CR0Set);
writel(CR0_FDXTFCEN, &regs->CR0Clr);
break;
case FLOW_CNTL_TX_RX:
writel(CR0_FDXTFCEN, &regs->CR0Set);
writel(CR0_FDXRFCEN, &regs->CR0Set);
break;
case FLOW_CNTL_DISABLE:
writel(CR0_FDXRFCEN, &regs->CR0Clr);
writel(CR0_FDXTFCEN, &regs->CR0Clr);
break;
default:
break;
}
}
/**
* velocity_ethtool_up - pre hook for ethtool
* @dev: network device
*
* Called before an ethtool operation. We need to make sure the
* chip is out of D3 state before we poke at it.
*/
static int velocity_ethtool_up(struct net_device *dev)
{
struct velocity_info *vptr = dev->priv;
if (!netif_running(dev))
pci_set_power_state(vptr->pdev, PCI_D0);
return 0;
}
/**
* velocity_ethtool_down - post hook for ethtool
* @dev: network device
*
* Called after an ethtool operation. Restore the chip back to D3
* state if it isn't running.
*/
static void velocity_ethtool_down(struct net_device *dev)
{
struct velocity_info *vptr = dev->priv;
if (!netif_running(dev))
pci_set_power_state(vptr->pdev, PCI_D3hot);
}
static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct velocity_info *vptr = dev->priv;
struct mac_regs __iomem * regs = vptr->mac_regs;
u32 status;
status = check_connection_type(vptr->mac_regs);
cmd->supported = SUPPORTED_TP | SUPPORTED_Autoneg | SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full;
if (status & VELOCITY_SPEED_100)
cmd->speed = SPEED_100;
else
cmd->speed = SPEED_10;
cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
cmd->port = PORT_TP;
cmd->transceiver = XCVR_INTERNAL;
cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
if (status & VELOCITY_DUPLEX_FULL)
cmd->duplex = DUPLEX_FULL;
else
cmd->duplex = DUPLEX_HALF;
return 0;
}
static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct velocity_info *vptr = dev->priv;
u32 curr_status;
u32 new_status = 0;
int ret = 0;
curr_status = check_connection_type(vptr->mac_regs);
curr_status &= (~VELOCITY_LINK_FAIL);
new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
ret = -EINVAL;
else
velocity_set_media_mode(vptr, new_status);
return ret;
}
static u32 velocity_get_link(struct net_device *dev)
{
struct velocity_info *vptr = dev->priv;
struct mac_regs __iomem * regs = vptr->mac_regs;
return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 0 : 1;
}
static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct velocity_info *vptr = dev->priv;
strcpy(info->driver, VELOCITY_NAME);
strcpy(info->version, VELOCITY_VERSION);
strcpy(info->bus_info, pci_name(vptr->pdev));
}
static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct velocity_info *vptr = dev->priv;
wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
wol->wolopts |= WAKE_MAGIC;
/*
if (vptr->wol_opts & VELOCITY_WOL_PHY)
wol.wolopts|=WAKE_PHY;
*/
if (vptr->wol_opts & VELOCITY_WOL_UCAST)
wol->wolopts |= WAKE_UCAST;
if (vptr->wol_opts & VELOCITY_WOL_ARP)
wol->wolopts |= WAKE_ARP;
memcpy(&wol->sopass, vptr->wol_passwd, 6);
}
static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct velocity_info *vptr = dev->priv;
if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
return -EFAULT;
vptr->wol_opts = VELOCITY_WOL_MAGIC;
/*
if (wol.wolopts & WAKE_PHY) {
vptr->wol_opts|=VELOCITY_WOL_PHY;
vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
}
*/
if (wol->wolopts & WAKE_MAGIC) {
vptr->wol_opts |= VELOCITY_WOL_MAGIC;
vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
}
if (wol->wolopts & WAKE_UCAST) {
vptr->wol_opts |= VELOCITY_WOL_UCAST;
vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
}
if (wol->wolopts & WAKE_ARP) {
vptr->wol_opts |= VELOCITY_WOL_ARP;
vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
}
memcpy(vptr->wol_passwd, wol->sopass, 6);
return 0;
}
static u32 velocity_get_msglevel(struct net_device *dev)
{
return msglevel;
}
static void velocity_set_msglevel(struct net_device *dev, u32 value)
{
msglevel = value;
}
static struct ethtool_ops velocity_ethtool_ops = {
.get_settings = velocity_get_settings,
.set_settings = velocity_set_settings,
.get_drvinfo = velocity_get_drvinfo,
.get_wol = velocity_ethtool_get_wol,
.set_wol = velocity_ethtool_set_wol,
.get_msglevel = velocity_get_msglevel,
.set_msglevel = velocity_set_msglevel,
.get_link = velocity_get_link,
.begin = velocity_ethtool_up,
.complete = velocity_ethtool_down
};
/**
* velocity_mii_ioctl - MII ioctl handler
* @dev: network device
* @ifr: the ifreq block for the ioctl
* @cmd: the command
*
* Process MII requests made via ioctl from the network layer. These
* are used by tools like kudzu to interrogate the link state of the
* hardware
*/
static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct velocity_info *vptr = dev->priv;
struct mac_regs __iomem * regs = vptr->mac_regs;
unsigned long flags;
struct mii_ioctl_data *miidata = if_mii(ifr);
int err;
switch (cmd) {
case SIOCGMIIPHY:
miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
break;
case SIOCGMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
return -ETIMEDOUT;
break;
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
spin_lock_irqsave(&vptr->lock, flags);
err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
spin_unlock_irqrestore(&vptr->lock, flags);
check_connection_type(vptr->mac_regs);
if(err)
return err;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
#ifdef CONFIG_PM
/**
* velocity_save_context - save registers
* @vptr: velocity
* @context: buffer for stored context
*
* Retrieve the current configuration from the velocity hardware
* and stash it in the context structure, for use by the context
* restore functions. This allows us to save things we need across
* power down states
*/
static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
{
struct mac_regs __iomem * regs = vptr->mac_regs;
u16 i;
u8 __iomem *ptr = (u8 __iomem *)regs;
for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
}
/**
* velocity_restore_context - restore registers
* @vptr: velocity
* @context: buffer for stored context
*
* Reload the register configuration from the velocity context
* created by velocity_save_context.
*/
static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
{
struct mac_regs __iomem * regs = vptr->mac_regs;
int i;
u8 __iomem *ptr = (u8 __iomem *)regs;
for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
writel(*((u32 *) (context->mac_reg + i)), ptr + i);
}
/* Just skip cr0 */
for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
/* Clear */
writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
/* Set */
writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
}
for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
writel(*((u32 *) (context->mac_reg + i)), ptr + i);
}
for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
writel(*((u32 *) (context->mac_reg + i)), ptr + i);
}
for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
}
}
/**
* wol_calc_crc - WOL CRC
* @pattern: data pattern
* @mask_pattern: mask
*
* Compute the wake on lan crc hashes for the packet header
* we are interested in.
*/
static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
{
u16 crc = 0xFFFF;
u8 mask;
int i, j;
for (i = 0; i < size; i++) {
mask = mask_pattern[i];
/* Skip this loop if the mask equals to zero */
if (mask == 0x00)
continue;
for (j = 0; j < 8; j++) {
if ((mask & 0x01) == 0) {
mask >>= 1;
continue;
}
mask >>= 1;
crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
}
}
/* Finally, invert the result once to get the correct data */
crc = ~crc;
return bitreverse(crc) >> 16;
}
/**
* velocity_set_wol - set up for wake on lan
* @vptr: velocity to set WOL status on
*
* Set a card up for wake on lan either by unicast or by
* ARP packet.
*
* FIXME: check static buffer is safe here
*/
static int velocity_set_wol(struct velocity_info *vptr)
{
struct mac_regs __iomem * regs = vptr->mac_regs;
static u8 buf[256];
int i;
static u32 mask_pattern[2][4] = {
{0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
{0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
};
writew(0xFFFF, &regs->WOLCRClr);
writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
/*
if (vptr->wol_opts & VELOCITY_WOL_PHY)
writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
*/
if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
}
if (vptr->wol_opts & VELOCITY_WOL_ARP) {
struct arp_packet *arp = (struct arp_packet *) buf;
u16 crc;
memset(buf, 0, sizeof(struct arp_packet) + 7);
for (i = 0; i < 4; i++)
writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
arp->type = htons(ETH_P_ARP);
arp->ar_op = htons(1);
memcpy(arp->ar_tip, vptr->ip_addr, 4);
crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
(u8 *) & mask_pattern[0][0]);
writew(crc, &regs->PatternCRC[0]);
writew(WOLCR_ARP_EN, &regs->WOLCRSet);
}
BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
writew(0x0FFF, &regs->WOLSRClr);
if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
}
if (vptr->mii_status & VELOCITY_SPEED_1000)
MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
{
u8 GCR;
GCR = readb(&regs->CHIPGCR);
GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
writeb(GCR, &regs->CHIPGCR);
}
BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
/* Turn on SWPTAG just before entering power mode */
BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
/* Go to bed ..... */
BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
return 0;
}
static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct velocity_info *vptr = netdev_priv(dev);
unsigned long flags;
if(!netif_running(vptr->dev))
return 0;
netif_device_detach(vptr->dev);
spin_lock_irqsave(&vptr->lock, flags);
pci_save_state(pdev);
#ifdef ETHTOOL_GWOL
if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
velocity_get_ip(vptr);
velocity_save_context(vptr, &vptr->context);
velocity_shutdown(vptr);
velocity_set_wol(vptr);
pci_enable_wake(pdev, 3, 1);
pci_set_power_state(pdev, PCI_D3hot);
} else {
velocity_save_context(vptr, &vptr->context);
velocity_shutdown(vptr);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
}
#else
pci_set_power_state(pdev, pci_choose_state(pdev, state));
#endif
spin_unlock_irqrestore(&vptr->lock, flags);
return 0;
}
static int velocity_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct velocity_info *vptr = netdev_priv(dev);
unsigned long flags;
int i;
if(!netif_running(vptr->dev))
return 0;
pci_set_power_state(pdev, PCI_D0);
pci_enable_wake(pdev, 0, 0);
pci_restore_state(pdev);
mac_wol_reset(vptr->mac_regs);
spin_lock_irqsave(&vptr->lock, flags);
velocity_restore_context(vptr, &vptr->context);
velocity_init_registers(vptr, VELOCITY_INIT_WOL);
mac_disable_int(vptr->mac_regs);
velocity_tx_srv(vptr, 0);
for (i = 0; i < vptr->num_txq; i++) {
if (vptr->td_used[i]) {
mac_tx_queue_wake(vptr->mac_regs, i);
}
}
mac_enable_int(vptr->mac_regs);
spin_unlock_irqrestore(&vptr->lock, flags);
netif_device_attach(vptr->dev);
return 0;
}
static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
{
struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
if (ifa) {
struct net_device *dev = ifa->ifa_dev->dev;
struct velocity_info *vptr;
unsigned long flags;
spin_lock_irqsave(&velocity_dev_list_lock, flags);
list_for_each_entry(vptr, &velocity_dev_list, list) {
if (vptr->dev == dev) {
velocity_get_ip(vptr);
break;
}
}
spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
}
return NOTIFY_DONE;
}
#endif