linux-sg2042/drivers/media/dvb-frontends/ts2020.c

627 lines
14 KiB
C
Raw Normal View History

/*
Montage Technology TS2020 - Silicon Tuner driver
Copyright (C) 2009-2012 Konstantin Dimitrov <kosio.dimitrov@gmail.com>
Copyright (C) 2009-2012 TurboSight.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "dvb_frontend.h"
#include "ts2020.h"
#define TS2020_XTAL_FREQ 27000 /* in kHz */
#define FREQ_OFFSET_LOW_SYM_RATE 3000
struct ts2020_priv {
struct dvb_frontend *fe;
/* i2c details */
int i2c_address;
struct i2c_adapter *i2c;
u8 clk_out:2;
u8 clk_out_div:5;
u32 frequency_div; /* LO output divider switch frequency */
u32 frequency_khz; /* actual used LO frequency */
#define TS2020_M88TS2020 0
#define TS2020_M88TS2022 1
u8 tuner;
u8 loop_through:1;
};
struct ts2020_reg_val {
u8 reg;
u8 val;
};
static int ts2020_release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
static int ts2020_writereg(struct dvb_frontend *fe, int reg, int data)
{
struct ts2020_priv *priv = fe->tuner_priv;
u8 buf[] = { reg, data };
struct i2c_msg msg[] = {
{
.addr = priv->i2c_address,
.flags = 0,
.buf = buf,
.len = 2
}
};
int err;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
err = i2c_transfer(priv->i2c, msg, 1);
if (err != 1) {
printk(KERN_ERR
"%s: writereg error(err == %i, reg == 0x%02x, value == 0x%02x)\n",
__func__, err, reg, data);
return -EREMOTEIO;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
}
static int ts2020_readreg(struct dvb_frontend *fe, u8 reg)
{
struct ts2020_priv *priv = fe->tuner_priv;
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {
{
.addr = priv->i2c_address,
.flags = 0,
.buf = b0,
.len = 1
}, {
.addr = priv->i2c_address,
.flags = I2C_M_RD,
.buf = b1,
.len = 1
}
};
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
ret = i2c_transfer(priv->i2c, msg, 2);
if (ret != 2) {
printk(KERN_ERR "%s: reg=0x%x(error=%d)\n",
__func__, reg, ret);
return ret;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return b1[0];
}
static int ts2020_sleep(struct dvb_frontend *fe)
{
struct ts2020_priv *priv = fe->tuner_priv;
u8 u8tmp;
if (priv->tuner == TS2020_M88TS2020)
u8tmp = 0x0a; /* XXX: probably wrong */
else
u8tmp = 0x00;
return ts2020_writereg(fe, u8tmp, 0x00);
}
static int ts2020_init(struct dvb_frontend *fe)
{
struct ts2020_priv *priv = fe->tuner_priv;
int i;
u8 u8tmp;
if (priv->tuner == TS2020_M88TS2020) {
ts2020_writereg(fe, 0x42, 0x73);
ts2020_writereg(fe, 0x05, priv->clk_out_div);
ts2020_writereg(fe, 0x20, 0x27);
ts2020_writereg(fe, 0x07, 0x02);
ts2020_writereg(fe, 0x11, 0xff);
ts2020_writereg(fe, 0x60, 0xf9);
ts2020_writereg(fe, 0x08, 0x01);
ts2020_writereg(fe, 0x00, 0x41);
} else {
static const struct ts2020_reg_val reg_vals[] = {
{0x7d, 0x9d},
{0x7c, 0x9a},
{0x7a, 0x76},
{0x3b, 0x01},
{0x63, 0x88},
{0x61, 0x85},
{0x22, 0x30},
{0x30, 0x40},
{0x20, 0x23},
{0x24, 0x02},
{0x12, 0xa0},
};
ts2020_writereg(fe, 0x00, 0x01);
ts2020_writereg(fe, 0x00, 0x03);
switch (priv->clk_out) {
case TS2020_CLK_OUT_DISABLED:
u8tmp = 0x60;
break;
case TS2020_CLK_OUT_ENABLED:
u8tmp = 0x70;
ts2020_writereg(fe, 0x05, priv->clk_out_div);
break;
case TS2020_CLK_OUT_ENABLED_XTALOUT:
u8tmp = 0x6c;
break;
default:
u8tmp = 0x60;
break;
}
ts2020_writereg(fe, 0x42, u8tmp);
if (priv->loop_through)
u8tmp = 0xec;
else
u8tmp = 0x6c;
ts2020_writereg(fe, 0x62, u8tmp);
for (i = 0; i < ARRAY_SIZE(reg_vals); i++)
ts2020_writereg(fe, reg_vals[i].reg, reg_vals[i].val);
}
return 0;
}
static int ts2020_tuner_gate_ctrl(struct dvb_frontend *fe, u8 offset)
{
int ret;
ret = ts2020_writereg(fe, 0x51, 0x1f - offset);
ret |= ts2020_writereg(fe, 0x51, 0x1f);
ret |= ts2020_writereg(fe, 0x50, offset);
ret |= ts2020_writereg(fe, 0x50, 0x00);
msleep(20);
return ret;
}
static int ts2020_set_tuner_rf(struct dvb_frontend *fe)
{
int reg;
reg = ts2020_readreg(fe, 0x3d);
reg &= 0x7f;
if (reg < 0x16)
reg = 0xa1;
else if (reg == 0x16)
reg = 0x99;
else
reg = 0xf9;
ts2020_writereg(fe, 0x60, reg);
reg = ts2020_tuner_gate_ctrl(fe, 0x08);
return reg;
}
static int ts2020_set_params(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct ts2020_priv *priv = fe->tuner_priv;
int ret;
u32 symbol_rate = (c->symbol_rate / 1000);
u32 f3db, gdiv28;
u16 u16tmp, value, lpf_coeff;
u8 buf[3], reg10, lpf_mxdiv, mlpf_max, mlpf_min, nlpf;
unsigned int f_ref_khz, f_vco_khz, div_ref, div_out, pll_n;
unsigned int frequency_khz = c->frequency;
/*
* Integer-N PLL synthesizer
* kHz is used for all calculations to keep calculations within 32-bit
*/
f_ref_khz = TS2020_XTAL_FREQ;
div_ref = DIV_ROUND_CLOSEST(f_ref_khz, 2000);
/* select LO output divider */
if (frequency_khz < priv->frequency_div) {
div_out = 4;
reg10 = 0x10;
} else {
div_out = 2;
reg10 = 0x00;
}
f_vco_khz = frequency_khz * div_out;
pll_n = f_vco_khz * div_ref / f_ref_khz;
pll_n += pll_n % 2;
priv->frequency_khz = pll_n * f_ref_khz / div_ref / div_out;
pr_debug("frequency=%u offset=%d f_vco_khz=%u pll_n=%u div_ref=%u div_out=%u\n",
priv->frequency_khz, priv->frequency_khz - c->frequency,
f_vco_khz, pll_n, div_ref, div_out);
if (priv->tuner == TS2020_M88TS2020) {
lpf_coeff = 2766;
reg10 |= 0x01;
ret = ts2020_writereg(fe, 0x10, reg10);
} else {
lpf_coeff = 3200;
reg10 |= 0x0b;
ret = ts2020_writereg(fe, 0x10, reg10);
ret |= ts2020_writereg(fe, 0x11, 0x40);
}
u16tmp = pll_n - 1024;
buf[0] = (u16tmp >> 8) & 0xff;
buf[1] = (u16tmp >> 0) & 0xff;
buf[2] = div_ref - 8;
ret |= ts2020_writereg(fe, 0x01, buf[0]);
ret |= ts2020_writereg(fe, 0x02, buf[1]);
ret |= ts2020_writereg(fe, 0x03, buf[2]);
ret |= ts2020_tuner_gate_ctrl(fe, 0x10);
if (ret < 0)
return -ENODEV;
ret |= ts2020_tuner_gate_ctrl(fe, 0x08);
/* Tuner RF */
if (priv->tuner == TS2020_M88TS2020)
ret |= ts2020_set_tuner_rf(fe);
gdiv28 = (TS2020_XTAL_FREQ / 1000 * 1694 + 500) / 1000;
ret |= ts2020_writereg(fe, 0x04, gdiv28 & 0xff);
ret |= ts2020_tuner_gate_ctrl(fe, 0x04);
if (ret < 0)
return -ENODEV;
if (priv->tuner == TS2020_M88TS2022) {
ret = ts2020_writereg(fe, 0x25, 0x00);
ret |= ts2020_writereg(fe, 0x27, 0x70);
ret |= ts2020_writereg(fe, 0x41, 0x09);
ret |= ts2020_writereg(fe, 0x08, 0x0b);
if (ret < 0)
return -ENODEV;
}
value = ts2020_readreg(fe, 0x26);
f3db = (symbol_rate * 135) / 200 + 2000;
f3db += FREQ_OFFSET_LOW_SYM_RATE;
if (f3db < 7000)
f3db = 7000;
if (f3db > 40000)
f3db = 40000;
gdiv28 = gdiv28 * 207 / (value * 2 + 151);
mlpf_max = gdiv28 * 135 / 100;
mlpf_min = gdiv28 * 78 / 100;
if (mlpf_max > 63)
mlpf_max = 63;
nlpf = (f3db * gdiv28 * 2 / lpf_coeff /
(TS2020_XTAL_FREQ / 1000) + 1) / 2;
if (nlpf > 23)
nlpf = 23;
if (nlpf < 1)
nlpf = 1;
lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000)
* lpf_coeff * 2 / f3db + 1) / 2;
if (lpf_mxdiv < mlpf_min) {
nlpf++;
lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000)
* lpf_coeff * 2 / f3db + 1) / 2;
}
if (lpf_mxdiv > mlpf_max)
lpf_mxdiv = mlpf_max;
ret = ts2020_writereg(fe, 0x04, lpf_mxdiv);
ret |= ts2020_writereg(fe, 0x06, nlpf);
ret |= ts2020_tuner_gate_ctrl(fe, 0x04);
ret |= ts2020_tuner_gate_ctrl(fe, 0x01);
msleep(80);
return (ret < 0) ? -EINVAL : 0;
}
static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct ts2020_priv *priv = fe->tuner_priv;
*frequency = priv->frequency_khz;
return 0;
}
static int ts2020_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
*frequency = 0; /* Zero-IF */
return 0;
}
/* read TS2020 signal strength */
static int ts2020_read_signal_strength(struct dvb_frontend *fe,
u16 *signal_strength)
{
u16 sig_reading, sig_strength;
u8 rfgain, bbgain;
rfgain = ts2020_readreg(fe, 0x3d) & 0x1f;
bbgain = ts2020_readreg(fe, 0x21) & 0x1f;
if (rfgain > 15)
rfgain = 15;
if (bbgain > 13)
bbgain = 13;
sig_reading = rfgain * 2 + bbgain * 3;
sig_strength = 40 + (64 - sig_reading) * 50 / 64 ;
/* cook the value to be suitable for szap-s2 human readable output */
*signal_strength = sig_strength * 1000;
return 0;
}
static struct dvb_tuner_ops ts2020_tuner_ops = {
.info = {
.name = "TS2020",
.frequency_min = 950000,
.frequency_max = 2150000
},
.init = ts2020_init,
.release = ts2020_release,
.sleep = ts2020_sleep,
.set_params = ts2020_set_params,
.get_frequency = ts2020_get_frequency,
.get_if_frequency = ts2020_get_if_frequency,
.get_rf_strength = ts2020_read_signal_strength,
};
struct dvb_frontend *ts2020_attach(struct dvb_frontend *fe,
const struct ts2020_config *config,
struct i2c_adapter *i2c)
{
struct ts2020_priv *priv = NULL;
u8 buf;
priv = kzalloc(sizeof(struct ts2020_priv), GFP_KERNEL);
if (priv == NULL)
return NULL;
priv->i2c_address = config->tuner_address;
priv->i2c = i2c;
priv->clk_out = config->clk_out;
priv->clk_out_div = config->clk_out_div;
priv->frequency_div = config->frequency_div;
priv->fe = fe;
fe->tuner_priv = priv;
if (!priv->frequency_div)
priv->frequency_div = 1060000;
/* Wake Up the tuner */
if ((0x03 & ts2020_readreg(fe, 0x00)) == 0x00) {
ts2020_writereg(fe, 0x00, 0x01);
msleep(2);
}
ts2020_writereg(fe, 0x00, 0x03);
msleep(2);
/* Check the tuner version */
buf = ts2020_readreg(fe, 0x00);
if ((buf == 0x01) || (buf == 0x41) || (buf == 0x81)) {
printk(KERN_INFO "%s: Find tuner TS2020!\n", __func__);
priv->tuner = TS2020_M88TS2020;
} else if ((buf == 0x83) || (buf == 0xc3)) {
printk(KERN_INFO "%s: Find tuner TS2022!\n", __func__);
priv->tuner = TS2020_M88TS2022;
} else {
printk(KERN_ERR "%s: Read tuner reg[0] = %d\n", __func__, buf);
kfree(priv);
return NULL;
}
memcpy(&fe->ops.tuner_ops, &ts2020_tuner_ops,
sizeof(struct dvb_tuner_ops));
return fe;
}
EXPORT_SYMBOL(ts2020_attach);
static int ts2020_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct ts2020_config *pdata = client->dev.platform_data;
struct dvb_frontend *fe = pdata->fe;
struct ts2020_priv *dev;
int ret;
u8 u8tmp;
unsigned int utmp;
char *chip_str;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
ret = -ENOMEM;
goto err;
}
dev->i2c = client->adapter;
dev->i2c_address = client->addr;
dev->clk_out = pdata->clk_out;
dev->clk_out_div = pdata->clk_out_div;
dev->frequency_div = pdata->frequency_div;
dev->fe = fe;
fe->tuner_priv = dev;
/* check if the tuner is there */
ret = ts2020_readreg(fe, 0x00);
if (ret < 0)
goto err;
utmp = ret;
if ((utmp & 0x03) == 0x00) {
ret = ts2020_writereg(fe, 0x00, 0x01);
if (ret)
goto err;
usleep_range(2000, 50000);
}
ret = ts2020_writereg(fe, 0x00, 0x03);
if (ret)
goto err;
usleep_range(2000, 50000);
ret = ts2020_readreg(fe, 0x00);
if (ret < 0)
goto err;
utmp = ret;
dev_dbg(&client->dev, "chip_id=%02x\n", utmp);
switch (utmp) {
case 0x01:
case 0x41:
case 0x81:
dev->tuner = TS2020_M88TS2020;
chip_str = "TS2020";
if (!dev->frequency_div)
dev->frequency_div = 1060000;
break;
case 0xc3:
case 0x83:
dev->tuner = TS2020_M88TS2022;
chip_str = "TS2022";
if (!dev->frequency_div)
dev->frequency_div = 1103000;
break;
default:
ret = -ENODEV;
goto err;
}
if (dev->tuner == TS2020_M88TS2022) {
switch (dev->clk_out) {
case TS2020_CLK_OUT_DISABLED:
u8tmp = 0x60;
break;
case TS2020_CLK_OUT_ENABLED:
u8tmp = 0x70;
ret = ts2020_writereg(fe, 0x05, dev->clk_out_div);
if (ret)
goto err;
break;
case TS2020_CLK_OUT_ENABLED_XTALOUT:
u8tmp = 0x6c;
break;
default:
ret = -EINVAL;
goto err;
}
ret = ts2020_writereg(fe, 0x42, u8tmp);
if (ret)
goto err;
if (dev->loop_through)
u8tmp = 0xec;
else
u8tmp = 0x6c;
ret = ts2020_writereg(fe, 0x62, u8tmp);
if (ret)
goto err;
}
/* sleep */
ret = ts2020_writereg(fe, 0x00, 0x00);
if (ret)
goto err;
dev_info(&client->dev,
"Montage Technology %s successfully identified\n", chip_str);
memcpy(&fe->ops.tuner_ops, &ts2020_tuner_ops,
sizeof(struct dvb_tuner_ops));
fe->ops.tuner_ops.release = NULL;
i2c_set_clientdata(client, dev);
return 0;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
kfree(dev);
return ret;
}
static int ts2020_remove(struct i2c_client *client)
{
struct ts2020_priv *dev = i2c_get_clientdata(client);
struct dvb_frontend *fe = dev->fe;
dev_dbg(&client->dev, "\n");
memset(&fe->ops.tuner_ops, 0, sizeof(struct dvb_tuner_ops));
fe->tuner_priv = NULL;
kfree(dev);
return 0;
}
static const struct i2c_device_id ts2020_id_table[] = {
{"ts2020", 0},
{"ts2022", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, ts2020_id_table);
static struct i2c_driver ts2020_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "ts2020",
},
.probe = ts2020_probe,
.remove = ts2020_remove,
.id_table = ts2020_id_table,
};
module_i2c_driver(ts2020_driver);
MODULE_AUTHOR("Konstantin Dimitrov <kosio.dimitrov@gmail.com>");
MODULE_DESCRIPTION("Montage Technology TS2020 - Silicon tuner driver module");
MODULE_LICENSE("GPL");