2019-05-19 20:08:55 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* Generic hugetlb support.
|
2012-12-06 17:39:54 +08:00
|
|
|
* (C) Nadia Yvette Chambers, April 2004
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/mm.h>
|
2008-10-16 03:50:22 +08:00
|
|
|
#include <linux/seq_file.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <linux/sysctl.h>
|
|
|
|
#include <linux/highmem.h>
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 06:46:29 +08:00
|
|
|
#include <linux/mmu_notifier.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <linux/nodemask.h>
|
2005-06-22 08:14:44 +08:00
|
|
|
#include <linux/pagemap.h>
|
2006-01-06 16:10:46 +08:00
|
|
|
#include <linux/mempolicy.h>
|
2014-04-08 06:37:26 +08:00
|
|
|
#include <linux/compiler.h>
|
2006-01-08 17:00:57 +08:00
|
|
|
#include <linux/cpuset.h>
|
[PATCH] hugepage: serialize hugepage allocation and instantiation
Currently, no lock or mutex is held between allocating a hugepage and
inserting it into the pagetables / page cache. When we do go to insert the
page into pagetables or page cache, we recheck and may free the newly
allocated hugepage. However, since the number of hugepages in the system
is strictly limited, and it's usualy to want to use all of them, this can
still lead to spurious allocation failures.
For example, suppose two processes are both mapping (MAP_SHARED) the same
hugepage file, large enough to consume the entire available hugepage pool.
If they race instantiating the last page in the mapping, they will both
attempt to allocate the last available hugepage. One will fail, of course,
returning OOM from the fault and thus causing the process to be killed,
despite the fact that the entire mapping can, in fact, be instantiated.
The patch fixes this race by the simple method of adding a (sleeping) mutex
to serialize the hugepage fault path between allocation and insertion into
pagetables and/or page cache. It would be possible to avoid the
serialization by catching the allocation failures, waiting on some
condition, then rechecking to see if someone else has instantiated the page
for us. Given the likely frequency of hugepage instantiations, it seems
very doubtful it's worth the extra complexity.
This patch causes no regression on the libhugetlbfs testsuite, and one
test, which can trigger this race now passes where it previously failed.
Actually, the test still sometimes fails, though less often and only as a
shmat() failure, rather processes getting OOM killed by the VM. The dodgy
heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage
space aren't protected by the new mutex, and would be ugly to do so, so
there's still a race there. Another patch to replace those tests with
something saner for this reason as well as others coming...
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 16:08:53 +08:00
|
|
|
#include <linux/mutex.h>
|
2018-10-31 06:09:44 +08:00
|
|
|
#include <linux/memblock.h>
|
2008-07-24 12:27:44 +08:00
|
|
|
#include <linux/sysfs.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
|
|
|
#include <linux/slab.h>
|
hugetlbfs: check for pgoff value overflow
A vma with vm_pgoff large enough to overflow a loff_t type when
converted to a byte offset can be passed via the remap_file_pages system
call. The hugetlbfs mmap routine uses the byte offset to calculate
reservations and file size.
A sequence such as:
mmap(0x20a00000, 0x600000, 0, 0x66033, -1, 0);
remap_file_pages(0x20a00000, 0x600000, 0, 0x20000000000000, 0);
will result in the following when task exits/file closed,
kernel BUG at mm/hugetlb.c:749!
Call Trace:
hugetlbfs_evict_inode+0x2f/0x40
evict+0xcb/0x190
__dentry_kill+0xcb/0x150
__fput+0x164/0x1e0
task_work_run+0x84/0xa0
exit_to_usermode_loop+0x7d/0x80
do_syscall_64+0x18b/0x190
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
The overflowed pgoff value causes hugetlbfs to try to set up a mapping
with a negative range (end < start) that leaves invalid state which
causes the BUG.
The previous overflow fix to this code was incomplete and did not take
the remap_file_pages system call into account.
[mike.kravetz@oracle.com: v3]
Link: http://lkml.kernel.org/r/20180309002726.7248-1-mike.kravetz@oracle.com
[akpm@linux-foundation.org: include mmdebug.h]
[akpm@linux-foundation.org: fix -ve left shift count on sh]
Link: http://lkml.kernel.org/r/20180308210502.15952-1-mike.kravetz@oracle.com
Fixes: 045c7a3f53d9 ("hugetlbfs: fix offset overflow in hugetlbfs mmap")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Nic Losby <blurbdust@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-23 07:17:13 +08:00
|
|
|
#include <linux/mmdebug.h>
|
2017-02-03 02:15:33 +08:00
|
|
|
#include <linux/sched/signal.h>
|
2010-05-28 08:29:16 +08:00
|
|
|
#include <linux/rmap.h>
|
2017-07-11 06:48:56 +08:00
|
|
|
#include <linux/string_helpers.h>
|
2010-05-28 08:29:21 +08:00
|
|
|
#include <linux/swap.h>
|
|
|
|
#include <linux/swapops.h>
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
#include <linux/jhash.h>
|
2019-03-06 07:42:58 +08:00
|
|
|
#include <linux/numa.h>
|
2020-01-05 05:00:15 +08:00
|
|
|
#include <linux/llist.h>
|
mm: hugetlb: optionally allocate gigantic hugepages using cma
Commit 944d9fec8d7a ("hugetlb: add support for gigantic page allocation
at runtime") has added the run-time allocation of gigantic pages.
However it actually works only at early stages of the system loading,
when the majority of memory is free. After some time the memory gets
fragmented by non-movable pages, so the chances to find a contiguous 1GB
block are getting close to zero. Even dropping caches manually doesn't
help a lot.
At large scale rebooting servers in order to allocate gigantic hugepages
is quite expensive and complex. At the same time keeping some constant
percentage of memory in reserved hugepages even if the workload isn't
using it is a big waste: not all workloads can benefit from using 1 GB
pages.
The following solution can solve the problem:
1) On boot time a dedicated cma area* is reserved. The size is passed
as a kernel argument.
2) Run-time allocations of gigantic hugepages are performed using the
cma allocator and the dedicated cma area
In this case gigantic hugepages can be allocated successfully with a
high probability, however the memory isn't completely wasted if nobody
is using 1GB hugepages: it can be used for pagecache, anon memory, THPs,
etc.
* On a multi-node machine a per-node cma area is allocated on each node.
Following gigantic hugetlb allocation are using the first available
numa node if the mask isn't specified by a user.
Usage:
1) configure the kernel to allocate a cma area for hugetlb allocations:
pass hugetlb_cma=10G as a kernel argument
2) allocate hugetlb pages as usual, e.g.
echo 10 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
If the option isn't enabled or the allocation of the cma area failed,
the current behavior of the system is preserved.
x86 and arm-64 are covered by this patch, other architectures can be
trivially added later.
The patch contains clean-ups and fixes proposed and implemented by Aslan
Bakirov and Randy Dunlap. It also contains ideas and suggestions
proposed by Rik van Riel, Michal Hocko and Mike Kravetz. Thanks!
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Andreas Schaufler <andreas.schaufler@gmx.de>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Aslan Bakirov <aslan@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200407163840.92263-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-11 05:32:45 +08:00
|
|
|
#include <linux/cma.h>
|
2008-08-07 03:04:54 +08:00
|
|
|
|
2005-06-22 08:14:44 +08:00
|
|
|
#include <asm/page.h>
|
|
|
|
#include <asm/pgtable.h>
|
2012-08-01 07:42:03 +08:00
|
|
|
#include <asm/tlb.h>
|
2005-06-22 08:14:44 +08:00
|
|
|
|
2012-08-01 07:42:03 +08:00
|
|
|
#include <linux/io.h>
|
2005-06-22 08:14:44 +08:00
|
|
|
#include <linux/hugetlb.h>
|
2012-08-01 07:42:15 +08:00
|
|
|
#include <linux/hugetlb_cgroup.h>
|
2009-12-15 09:58:25 +08:00
|
|
|
#include <linux/node.h>
|
2017-02-23 07:43:01 +08:00
|
|
|
#include <linux/userfaultfd_k.h>
|
2018-02-01 08:20:48 +08:00
|
|
|
#include <linux/page_owner.h>
|
2006-03-22 16:08:40 +08:00
|
|
|
#include "internal.h"
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2012-08-01 07:42:10 +08:00
|
|
|
int hugetlb_max_hstate __read_mostly;
|
2008-07-24 12:27:42 +08:00
|
|
|
unsigned int default_hstate_idx;
|
|
|
|
struct hstate hstates[HUGE_MAX_HSTATE];
|
mm: hugetlb: optionally allocate gigantic hugepages using cma
Commit 944d9fec8d7a ("hugetlb: add support for gigantic page allocation
at runtime") has added the run-time allocation of gigantic pages.
However it actually works only at early stages of the system loading,
when the majority of memory is free. After some time the memory gets
fragmented by non-movable pages, so the chances to find a contiguous 1GB
block are getting close to zero. Even dropping caches manually doesn't
help a lot.
At large scale rebooting servers in order to allocate gigantic hugepages
is quite expensive and complex. At the same time keeping some constant
percentage of memory in reserved hugepages even if the workload isn't
using it is a big waste: not all workloads can benefit from using 1 GB
pages.
The following solution can solve the problem:
1) On boot time a dedicated cma area* is reserved. The size is passed
as a kernel argument.
2) Run-time allocations of gigantic hugepages are performed using the
cma allocator and the dedicated cma area
In this case gigantic hugepages can be allocated successfully with a
high probability, however the memory isn't completely wasted if nobody
is using 1GB hugepages: it can be used for pagecache, anon memory, THPs,
etc.
* On a multi-node machine a per-node cma area is allocated on each node.
Following gigantic hugetlb allocation are using the first available
numa node if the mask isn't specified by a user.
Usage:
1) configure the kernel to allocate a cma area for hugetlb allocations:
pass hugetlb_cma=10G as a kernel argument
2) allocate hugetlb pages as usual, e.g.
echo 10 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
If the option isn't enabled or the allocation of the cma area failed,
the current behavior of the system is preserved.
x86 and arm-64 are covered by this patch, other architectures can be
trivially added later.
The patch contains clean-ups and fixes proposed and implemented by Aslan
Bakirov and Randy Dunlap. It also contains ideas and suggestions
proposed by Rik van Riel, Michal Hocko and Mike Kravetz. Thanks!
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Andreas Schaufler <andreas.schaufler@gmx.de>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Aslan Bakirov <aslan@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200407163840.92263-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-11 05:32:45 +08:00
|
|
|
|
|
|
|
static struct cma *hugetlb_cma[MAX_NUMNODES];
|
|
|
|
|
2015-06-25 07:56:59 +08:00
|
|
|
/*
|
|
|
|
* Minimum page order among possible hugepage sizes, set to a proper value
|
|
|
|
* at boot time.
|
|
|
|
*/
|
|
|
|
static unsigned int minimum_order __read_mostly = UINT_MAX;
|
2008-07-24 12:27:42 +08:00
|
|
|
|
2008-07-24 12:27:52 +08:00
|
|
|
__initdata LIST_HEAD(huge_boot_pages);
|
|
|
|
|
2008-07-24 12:27:42 +08:00
|
|
|
/* for command line parsing */
|
|
|
|
static struct hstate * __initdata parsed_hstate;
|
|
|
|
static unsigned long __initdata default_hstate_max_huge_pages;
|
2008-07-24 12:27:52 +08:00
|
|
|
static unsigned long __initdata default_hstate_size;
|
2016-05-20 08:11:04 +08:00
|
|
|
static bool __initdata parsed_valid_hugepagesz = true;
|
2008-07-24 12:27:42 +08:00
|
|
|
|
[PATCH] hugepage: serialize hugepage allocation and instantiation
Currently, no lock or mutex is held between allocating a hugepage and
inserting it into the pagetables / page cache. When we do go to insert the
page into pagetables or page cache, we recheck and may free the newly
allocated hugepage. However, since the number of hugepages in the system
is strictly limited, and it's usualy to want to use all of them, this can
still lead to spurious allocation failures.
For example, suppose two processes are both mapping (MAP_SHARED) the same
hugepage file, large enough to consume the entire available hugepage pool.
If they race instantiating the last page in the mapping, they will both
attempt to allocate the last available hugepage. One will fail, of course,
returning OOM from the fault and thus causing the process to be killed,
despite the fact that the entire mapping can, in fact, be instantiated.
The patch fixes this race by the simple method of adding a (sleeping) mutex
to serialize the hugepage fault path between allocation and insertion into
pagetables and/or page cache. It would be possible to avoid the
serialization by catching the allocation failures, waiting on some
condition, then rechecking to see if someone else has instantiated the page
for us. Given the likely frequency of hugepage instantiations, it seems
very doubtful it's worth the extra complexity.
This patch causes no regression on the libhugetlbfs testsuite, and one
test, which can trigger this race now passes where it previously failed.
Actually, the test still sometimes fails, though less often and only as a
shmat() failure, rather processes getting OOM killed by the VM. The dodgy
heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage
space aren't protected by the new mutex, and would be ugly to do so, so
there's still a race there. Another patch to replace those tests with
something saner for this reason as well as others coming...
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 16:08:53 +08:00
|
|
|
/*
|
mm: migrate: make core migration code aware of hugepage
Currently hugepage migration is available only for soft offlining, but
it's also useful for some other users of page migration (clearly because
users of hugepage can enjoy the benefit of mempolicy and memory hotplug.)
So this patchset tries to extend such users to support hugepage migration.
The target of this patchset is to enable hugepage migration for NUMA
related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and
memory hotplug.
This patchset does not add hugepage migration for memory compaction,
because users of memory compaction mainly expect to construct thp by
arranging raw pages, and there's little or no need to compact hugepages.
CMA, another user of page migration, can have benefit from hugepage
migration, but is not enabled to support it for now (just because of lack
of testing and expertise in CMA.)
Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in
x86_64, or hugepages in architectures like ia64) is not enabled for now
(again, because of lack of testing.)
As for how these are achived, I extended the API (migrate_pages()) to
handle hugepage (with patch 1 and 2) and adjusted code of each caller to
check and collect movable hugepages (with patch 3-7). Remaining 2 patches
are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is
about making sure that we only migrate pmd-based hugepages. And patch 9
is about choosing appropriate zone for hugepage allocation.
My test is mainly functional one, simply kicking hugepage migration via
each entry point and confirm that migration is done correctly. Test code
is available here:
git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git
And I always run libhugetlbfs test when changing hugetlbfs's code. With
this patchset, no regression was found in the test.
This patch (of 9):
Before enabling each user of page migration to support hugepage,
this patch enables the list of pages for migration to link not only
LRU pages, but also hugepages. As a result, putback_movable_pages()
and migrate_pages() can handle both of LRU pages and hugepages.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:21:59 +08:00
|
|
|
* Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
|
|
|
|
* free_huge_pages, and surplus_huge_pages.
|
[PATCH] hugepage: serialize hugepage allocation and instantiation
Currently, no lock or mutex is held between allocating a hugepage and
inserting it into the pagetables / page cache. When we do go to insert the
page into pagetables or page cache, we recheck and may free the newly
allocated hugepage. However, since the number of hugepages in the system
is strictly limited, and it's usualy to want to use all of them, this can
still lead to spurious allocation failures.
For example, suppose two processes are both mapping (MAP_SHARED) the same
hugepage file, large enough to consume the entire available hugepage pool.
If they race instantiating the last page in the mapping, they will both
attempt to allocate the last available hugepage. One will fail, of course,
returning OOM from the fault and thus causing the process to be killed,
despite the fact that the entire mapping can, in fact, be instantiated.
The patch fixes this race by the simple method of adding a (sleeping) mutex
to serialize the hugepage fault path between allocation and insertion into
pagetables and/or page cache. It would be possible to avoid the
serialization by catching the allocation failures, waiting on some
condition, then rechecking to see if someone else has instantiated the page
for us. Given the likely frequency of hugepage instantiations, it seems
very doubtful it's worth the extra complexity.
This patch causes no regression on the libhugetlbfs testsuite, and one
test, which can trigger this race now passes where it previously failed.
Actually, the test still sometimes fails, though less often and only as a
shmat() failure, rather processes getting OOM killed by the VM. The dodgy
heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage
space aren't protected by the new mutex, and would be ugly to do so, so
there's still a race there. Another patch to replace those tests with
something saner for this reason as well as others coming...
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 16:08:53 +08:00
|
|
|
*/
|
2012-08-01 07:42:10 +08:00
|
|
|
DEFINE_SPINLOCK(hugetlb_lock);
|
2005-11-22 13:32:28 +08:00
|
|
|
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
/*
|
|
|
|
* Serializes faults on the same logical page. This is used to
|
|
|
|
* prevent spurious OOMs when the hugepage pool is fully utilized.
|
|
|
|
*/
|
|
|
|
static int num_fault_mutexes;
|
2015-09-09 06:01:35 +08:00
|
|
|
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
|
2015-04-16 07:13:42 +08:00
|
|
|
/* Forward declaration */
|
|
|
|
static int hugetlb_acct_memory(struct hstate *h, long delta);
|
|
|
|
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
|
|
|
|
{
|
|
|
|
bool free = (spool->count == 0) && (spool->used_hpages == 0);
|
|
|
|
|
|
|
|
spin_unlock(&spool->lock);
|
|
|
|
|
|
|
|
/* If no pages are used, and no other handles to the subpool
|
2015-04-16 07:13:42 +08:00
|
|
|
* remain, give up any reservations mased on minimum size and
|
|
|
|
* free the subpool */
|
|
|
|
if (free) {
|
|
|
|
if (spool->min_hpages != -1)
|
|
|
|
hugetlb_acct_memory(spool->hstate,
|
|
|
|
-spool->min_hpages);
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
kfree(spool);
|
2015-04-16 07:13:42 +08:00
|
|
|
}
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
}
|
|
|
|
|
2015-04-16 07:13:42 +08:00
|
|
|
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
|
|
|
|
long min_hpages)
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
{
|
|
|
|
struct hugepage_subpool *spool;
|
|
|
|
|
hugetlbfs: add minimum size tracking fields to subpool structure
hugetlbfs allocates huge pages from the global pool as needed. Even if
the global pool contains a sufficient number pages for the filesystem size
at mount time, those global pages could be grabbed for some other use. As
a result, filesystem huge page allocations may fail due to lack of pages.
Applications such as a database want to use huge pages for performance
reasons. hugetlbfs filesystem semantics with ownership and modes work
well to manage access to a pool of huge pages. However, the application
would like some reasonable assurance that allocations will not fail due to
a lack of huge pages. At application startup time, the application would
like to configure itself to use a specific number of huge pages. Before
starting, the application can check to make sure that enough huge pages
exist in the system global pools. However, there are no guarantees that
those pages will be available when needed by the application. What the
application wants is exclusive use of a subset of huge pages.
Add a new hugetlbfs mount option 'min_size=<value>' to indicate that the
specified number of pages will be available for use by the filesystem. At
mount time, this number of huge pages will be reserved for exclusive use
of the filesystem. If there is not a sufficient number of free pages, the
mount will fail. As pages are allocated to and freeed from the
filesystem, the number of reserved pages is adjusted so that the specified
minimum is maintained.
This patch (of 4):
Add a field to the subpool structure to indicate the minimimum number of
huge pages to always be used by this subpool. This minimum count includes
allocated pages as well as reserved pages. If the minimum number of pages
for the subpool have not been allocated, pages are reserved up to this
minimum. An additional field (rsv_hpages) is used to track the number of
pages reserved to meet this minimum size. The hstate pointer in the
subpool is convenient to have when reserving and unreserving the pages.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:13:36 +08:00
|
|
|
spool = kzalloc(sizeof(*spool), GFP_KERNEL);
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
if (!spool)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
spin_lock_init(&spool->lock);
|
|
|
|
spool->count = 1;
|
2015-04-16 07:13:42 +08:00
|
|
|
spool->max_hpages = max_hpages;
|
|
|
|
spool->hstate = h;
|
|
|
|
spool->min_hpages = min_hpages;
|
|
|
|
|
|
|
|
if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
|
|
|
|
kfree(spool);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
spool->rsv_hpages = min_hpages;
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
|
|
|
|
return spool;
|
|
|
|
}
|
|
|
|
|
|
|
|
void hugepage_put_subpool(struct hugepage_subpool *spool)
|
|
|
|
{
|
|
|
|
spin_lock(&spool->lock);
|
|
|
|
BUG_ON(!spool->count);
|
|
|
|
spool->count--;
|
|
|
|
unlock_or_release_subpool(spool);
|
|
|
|
}
|
|
|
|
|
2015-04-16 07:13:39 +08:00
|
|
|
/*
|
|
|
|
* Subpool accounting for allocating and reserving pages.
|
|
|
|
* Return -ENOMEM if there are not enough resources to satisfy the
|
|
|
|
* the request. Otherwise, return the number of pages by which the
|
|
|
|
* global pools must be adjusted (upward). The returned value may
|
|
|
|
* only be different than the passed value (delta) in the case where
|
|
|
|
* a subpool minimum size must be manitained.
|
|
|
|
*/
|
|
|
|
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
long delta)
|
|
|
|
{
|
2015-04-16 07:13:39 +08:00
|
|
|
long ret = delta;
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
|
|
|
|
if (!spool)
|
2015-04-16 07:13:39 +08:00
|
|
|
return ret;
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
|
|
|
|
spin_lock(&spool->lock);
|
2015-04-16 07:13:39 +08:00
|
|
|
|
|
|
|
if (spool->max_hpages != -1) { /* maximum size accounting */
|
|
|
|
if ((spool->used_hpages + delta) <= spool->max_hpages)
|
|
|
|
spool->used_hpages += delta;
|
|
|
|
else {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto unlock_ret;
|
|
|
|
}
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
}
|
|
|
|
|
2016-05-20 08:11:01 +08:00
|
|
|
/* minimum size accounting */
|
|
|
|
if (spool->min_hpages != -1 && spool->rsv_hpages) {
|
2015-04-16 07:13:39 +08:00
|
|
|
if (delta > spool->rsv_hpages) {
|
|
|
|
/*
|
|
|
|
* Asking for more reserves than those already taken on
|
|
|
|
* behalf of subpool. Return difference.
|
|
|
|
*/
|
|
|
|
ret = delta - spool->rsv_hpages;
|
|
|
|
spool->rsv_hpages = 0;
|
|
|
|
} else {
|
|
|
|
ret = 0; /* reserves already accounted for */
|
|
|
|
spool->rsv_hpages -= delta;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
unlock_ret:
|
|
|
|
spin_unlock(&spool->lock);
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-04-16 07:13:39 +08:00
|
|
|
/*
|
|
|
|
* Subpool accounting for freeing and unreserving pages.
|
|
|
|
* Return the number of global page reservations that must be dropped.
|
|
|
|
* The return value may only be different than the passed value (delta)
|
|
|
|
* in the case where a subpool minimum size must be maintained.
|
|
|
|
*/
|
|
|
|
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
long delta)
|
|
|
|
{
|
2015-04-16 07:13:39 +08:00
|
|
|
long ret = delta;
|
|
|
|
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
if (!spool)
|
2015-04-16 07:13:39 +08:00
|
|
|
return delta;
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
|
|
|
|
spin_lock(&spool->lock);
|
2015-04-16 07:13:39 +08:00
|
|
|
|
|
|
|
if (spool->max_hpages != -1) /* maximum size accounting */
|
|
|
|
spool->used_hpages -= delta;
|
|
|
|
|
2016-05-20 08:11:01 +08:00
|
|
|
/* minimum size accounting */
|
|
|
|
if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
|
2015-04-16 07:13:39 +08:00
|
|
|
if (spool->rsv_hpages + delta <= spool->min_hpages)
|
|
|
|
ret = 0;
|
|
|
|
else
|
|
|
|
ret = spool->rsv_hpages + delta - spool->min_hpages;
|
|
|
|
|
|
|
|
spool->rsv_hpages += delta;
|
|
|
|
if (spool->rsv_hpages > spool->min_hpages)
|
|
|
|
spool->rsv_hpages = spool->min_hpages;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If hugetlbfs_put_super couldn't free spool due to an outstanding
|
|
|
|
* quota reference, free it now.
|
|
|
|
*/
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
unlock_or_release_subpool(spool);
|
2015-04-16 07:13:39 +08:00
|
|
|
|
|
|
|
return ret;
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
|
|
|
|
{
|
|
|
|
return HUGETLBFS_SB(inode->i_sb)->spool;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
|
|
|
|
{
|
2013-01-24 06:07:38 +08:00
|
|
|
return subpool_inode(file_inode(vma->vm_file));
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
}
|
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
/* Helper that removes a struct file_region from the resv_map cache and returns
|
|
|
|
* it for use.
|
|
|
|
*/
|
|
|
|
static struct file_region *
|
|
|
|
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
|
|
|
|
{
|
|
|
|
struct file_region *nrg = NULL;
|
|
|
|
|
|
|
|
VM_BUG_ON(resv->region_cache_count <= 0);
|
|
|
|
|
|
|
|
resv->region_cache_count--;
|
|
|
|
nrg = list_first_entry(&resv->region_cache, struct file_region, link);
|
|
|
|
VM_BUG_ON(!nrg);
|
|
|
|
list_del(&nrg->link);
|
|
|
|
|
|
|
|
nrg->from = from;
|
|
|
|
nrg->to = to;
|
|
|
|
|
|
|
|
return nrg;
|
|
|
|
}
|
|
|
|
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
|
|
|
|
struct file_region *rg)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_CGROUP_HUGETLB
|
|
|
|
nrg->reservation_counter = rg->reservation_counter;
|
|
|
|
nrg->css = rg->css;
|
|
|
|
if (rg->css)
|
|
|
|
css_get(rg->css);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Helper that records hugetlb_cgroup uncharge info. */
|
|
|
|
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
|
|
|
|
struct hstate *h,
|
|
|
|
struct resv_map *resv,
|
|
|
|
struct file_region *nrg)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_CGROUP_HUGETLB
|
|
|
|
if (h_cg) {
|
|
|
|
nrg->reservation_counter =
|
|
|
|
&h_cg->rsvd_hugepage[hstate_index(h)];
|
|
|
|
nrg->css = &h_cg->css;
|
|
|
|
if (!resv->pages_per_hpage)
|
|
|
|
resv->pages_per_hpage = pages_per_huge_page(h);
|
|
|
|
/* pages_per_hpage should be the same for all entries in
|
|
|
|
* a resv_map.
|
|
|
|
*/
|
|
|
|
VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
|
|
|
|
} else {
|
|
|
|
nrg->reservation_counter = NULL;
|
|
|
|
nrg->css = NULL;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2020-04-02 12:11:35 +08:00
|
|
|
static bool has_same_uncharge_info(struct file_region *rg,
|
|
|
|
struct file_region *org)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_CGROUP_HUGETLB
|
|
|
|
return rg && org &&
|
|
|
|
rg->reservation_counter == org->reservation_counter &&
|
|
|
|
rg->css == org->css;
|
|
|
|
|
|
|
|
#else
|
|
|
|
return true;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
|
|
|
|
{
|
|
|
|
struct file_region *nrg = NULL, *prg = NULL;
|
|
|
|
|
|
|
|
prg = list_prev_entry(rg, link);
|
|
|
|
if (&prg->link != &resv->regions && prg->to == rg->from &&
|
|
|
|
has_same_uncharge_info(prg, rg)) {
|
|
|
|
prg->to = rg->to;
|
|
|
|
|
|
|
|
list_del(&rg->link);
|
|
|
|
kfree(rg);
|
|
|
|
|
|
|
|
coalesce_file_region(resv, prg);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
nrg = list_next_entry(rg, link);
|
|
|
|
if (&nrg->link != &resv->regions && nrg->from == rg->to &&
|
|
|
|
has_same_uncharge_info(nrg, rg)) {
|
|
|
|
nrg->from = rg->from;
|
|
|
|
|
|
|
|
list_del(&rg->link);
|
|
|
|
kfree(rg);
|
|
|
|
|
|
|
|
coalesce_file_region(resv, nrg);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-12-01 09:56:59 +08:00
|
|
|
/* Must be called with resv->lock held. Calling this with count_only == true
|
|
|
|
* will count the number of pages to be added but will not modify the linked
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
* list. If regions_needed != NULL and count_only == true, then regions_needed
|
|
|
|
* will indicate the number of file_regions needed in the cache to carry out to
|
|
|
|
* add the regions for this range.
|
2019-12-01 09:56:59 +08:00
|
|
|
*/
|
|
|
|
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
struct hugetlb_cgroup *h_cg,
|
|
|
|
struct hstate *h, long *regions_needed,
|
|
|
|
bool count_only)
|
2019-12-01 09:56:59 +08:00
|
|
|
{
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
long add = 0;
|
2019-12-01 09:56:59 +08:00
|
|
|
struct list_head *head = &resv->regions;
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
long last_accounted_offset = f;
|
2019-12-01 09:56:59 +08:00
|
|
|
struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
|
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
if (regions_needed)
|
|
|
|
*regions_needed = 0;
|
2019-12-01 09:56:59 +08:00
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
/* In this loop, we essentially handle an entry for the range
|
|
|
|
* [last_accounted_offset, rg->from), at every iteration, with some
|
|
|
|
* bounds checking.
|
|
|
|
*/
|
|
|
|
list_for_each_entry_safe(rg, trg, head, link) {
|
|
|
|
/* Skip irrelevant regions that start before our range. */
|
|
|
|
if (rg->from < f) {
|
|
|
|
/* If this region ends after the last accounted offset,
|
|
|
|
* then we need to update last_accounted_offset.
|
|
|
|
*/
|
|
|
|
if (rg->to > last_accounted_offset)
|
|
|
|
last_accounted_offset = rg->to;
|
|
|
|
continue;
|
|
|
|
}
|
2019-12-01 09:56:59 +08:00
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
/* When we find a region that starts beyond our range, we've
|
|
|
|
* finished.
|
|
|
|
*/
|
2019-12-01 09:56:59 +08:00
|
|
|
if (rg->from > t)
|
|
|
|
break;
|
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
/* Add an entry for last_accounted_offset -> rg->from, and
|
|
|
|
* update last_accounted_offset.
|
|
|
|
*/
|
|
|
|
if (rg->from > last_accounted_offset) {
|
|
|
|
add += rg->from - last_accounted_offset;
|
|
|
|
if (!count_only) {
|
|
|
|
nrg = get_file_region_entry_from_cache(
|
|
|
|
resv, last_accounted_offset, rg->from);
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
record_hugetlb_cgroup_uncharge_info(h_cg, h,
|
|
|
|
resv, nrg);
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
list_add(&nrg->link, rg->link.prev);
|
2020-04-02 12:11:35 +08:00
|
|
|
coalesce_file_region(resv, nrg);
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
} else if (regions_needed)
|
|
|
|
*regions_needed += 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
last_accounted_offset = rg->to;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle the case where our range extends beyond
|
|
|
|
* last_accounted_offset.
|
|
|
|
*/
|
|
|
|
if (last_accounted_offset < t) {
|
|
|
|
add += t - last_accounted_offset;
|
|
|
|
if (!count_only) {
|
|
|
|
nrg = get_file_region_entry_from_cache(
|
|
|
|
resv, last_accounted_offset, t);
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
list_add(&nrg->link, rg->link.prev);
|
2020-04-02 12:11:35 +08:00
|
|
|
coalesce_file_region(resv, nrg);
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
} else if (regions_needed)
|
|
|
|
*regions_needed += 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
VM_BUG_ON(add < 0);
|
|
|
|
return add;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
|
|
|
|
*/
|
|
|
|
static int allocate_file_region_entries(struct resv_map *resv,
|
|
|
|
int regions_needed)
|
|
|
|
__must_hold(&resv->lock)
|
|
|
|
{
|
|
|
|
struct list_head allocated_regions;
|
|
|
|
int to_allocate = 0, i = 0;
|
|
|
|
struct file_region *trg = NULL, *rg = NULL;
|
|
|
|
|
|
|
|
VM_BUG_ON(regions_needed < 0);
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&allocated_regions);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check for sufficient descriptors in the cache to accommodate
|
|
|
|
* the number of in progress add operations plus regions_needed.
|
|
|
|
*
|
|
|
|
* This is a while loop because when we drop the lock, some other call
|
|
|
|
* to region_add or region_del may have consumed some region_entries,
|
|
|
|
* so we keep looping here until we finally have enough entries for
|
|
|
|
* (adds_in_progress + regions_needed).
|
|
|
|
*/
|
|
|
|
while (resv->region_cache_count <
|
|
|
|
(resv->adds_in_progress + regions_needed)) {
|
|
|
|
to_allocate = resv->adds_in_progress + regions_needed -
|
|
|
|
resv->region_cache_count;
|
|
|
|
|
|
|
|
/* At this point, we should have enough entries in the cache
|
|
|
|
* for all the existings adds_in_progress. We should only be
|
|
|
|
* needing to allocate for regions_needed.
|
2019-12-01 09:56:59 +08:00
|
|
|
*/
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
|
|
|
|
|
|
|
|
spin_unlock(&resv->lock);
|
|
|
|
for (i = 0; i < to_allocate; i++) {
|
|
|
|
trg = kmalloc(sizeof(*trg), GFP_KERNEL);
|
|
|
|
if (!trg)
|
|
|
|
goto out_of_memory;
|
|
|
|
list_add(&trg->link, &allocated_regions);
|
2019-12-01 09:56:59 +08:00
|
|
|
}
|
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
spin_lock(&resv->lock);
|
|
|
|
|
|
|
|
list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
|
2019-12-01 09:56:59 +08:00
|
|
|
list_del(&rg->link);
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
list_add(&rg->link, &resv->region_cache);
|
|
|
|
resv->region_cache_count++;
|
2019-12-01 09:56:59 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
return 0;
|
2019-12-01 09:56:59 +08:00
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
out_of_memory:
|
|
|
|
list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
|
|
|
|
list_del(&rg->link);
|
|
|
|
kfree(rg);
|
|
|
|
}
|
|
|
|
return -ENOMEM;
|
2019-12-01 09:56:59 +08:00
|
|
|
}
|
|
|
|
|
2015-06-25 07:57:52 +08:00
|
|
|
/*
|
|
|
|
* Add the huge page range represented by [f, t) to the reserve
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
* map. Regions will be taken from the cache to fill in this range.
|
|
|
|
* Sufficient regions should exist in the cache due to the previous
|
|
|
|
* call to region_chg with the same range, but in some cases the cache will not
|
|
|
|
* have sufficient entries due to races with other code doing region_add or
|
|
|
|
* region_del. The extra needed entries will be allocated.
|
2015-06-25 07:57:55 +08:00
|
|
|
*
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
* regions_needed is the out value provided by a previous call to region_chg.
|
|
|
|
*
|
|
|
|
* Return the number of new huge pages added to the map. This number is greater
|
|
|
|
* than or equal to zero. If file_region entries needed to be allocated for
|
|
|
|
* this operation and we were not able to allocate, it ruturns -ENOMEM.
|
|
|
|
* region_add of regions of length 1 never allocate file_regions and cannot
|
|
|
|
* fail; region_chg will always allocate at least 1 entry and a region_add for
|
|
|
|
* 1 page will only require at most 1 entry.
|
2015-06-25 07:57:52 +08:00
|
|
|
*/
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
static long region_add(struct resv_map *resv, long f, long t,
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
long in_regions_needed, struct hstate *h,
|
|
|
|
struct hugetlb_cgroup *h_cg)
|
2008-07-24 12:27:29 +08:00
|
|
|
{
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
long add = 0, actual_regions_needed = 0;
|
2008-07-24 12:27:29 +08:00
|
|
|
|
2014-04-04 05:47:27 +08:00
|
|
|
spin_lock(&resv->lock);
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
retry:
|
|
|
|
|
|
|
|
/* Count how many regions are actually needed to execute this add. */
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
|
|
|
|
true);
|
2008-07-24 12:27:29 +08:00
|
|
|
|
2015-09-09 06:01:28 +08:00
|
|
|
/*
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
* Check for sufficient descriptors in the cache to accommodate
|
|
|
|
* this add operation. Note that actual_regions_needed may be greater
|
|
|
|
* than in_regions_needed, as the resv_map may have been modified since
|
|
|
|
* the region_chg call. In this case, we need to make sure that we
|
|
|
|
* allocate extra entries, such that we have enough for all the
|
|
|
|
* existing adds_in_progress, plus the excess needed for this
|
|
|
|
* operation.
|
2015-09-09 06:01:28 +08:00
|
|
|
*/
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
if (actual_regions_needed > in_regions_needed &&
|
|
|
|
resv->region_cache_count <
|
|
|
|
resv->adds_in_progress +
|
|
|
|
(actual_regions_needed - in_regions_needed)) {
|
|
|
|
/* region_add operation of range 1 should never need to
|
|
|
|
* allocate file_region entries.
|
|
|
|
*/
|
|
|
|
VM_BUG_ON(t - f <= 1);
|
2015-09-09 06:01:28 +08:00
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
if (allocate_file_region_entries(
|
|
|
|
resv, actual_regions_needed - in_regions_needed)) {
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
2015-09-09 06:01:28 +08:00
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
goto retry;
|
2015-09-09 06:01:28 +08:00
|
|
|
}
|
|
|
|
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
|
|
|
|
resv->adds_in_progress -= in_regions_needed;
|
2015-06-25 07:57:55 +08:00
|
|
|
|
2014-04-04 05:47:27 +08:00
|
|
|
spin_unlock(&resv->lock);
|
2015-06-25 07:57:55 +08:00
|
|
|
VM_BUG_ON(add < 0);
|
|
|
|
return add;
|
2008-07-24 12:27:29 +08:00
|
|
|
}
|
|
|
|
|
2015-06-25 07:57:52 +08:00
|
|
|
/*
|
|
|
|
* Examine the existing reserve map and determine how many
|
|
|
|
* huge pages in the specified range [f, t) are NOT currently
|
|
|
|
* represented. This routine is called before a subsequent
|
|
|
|
* call to region_add that will actually modify the reserve
|
|
|
|
* map to add the specified range [f, t). region_chg does
|
|
|
|
* not change the number of huge pages represented by the
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
* map. A number of new file_region structures is added to the cache as a
|
|
|
|
* placeholder, for the subsequent region_add call to use. At least 1
|
|
|
|
* file_region structure is added.
|
|
|
|
*
|
|
|
|
* out_regions_needed is the number of regions added to the
|
|
|
|
* resv->adds_in_progress. This value needs to be provided to a follow up call
|
|
|
|
* to region_add or region_abort for proper accounting.
|
2015-09-09 06:01:28 +08:00
|
|
|
*
|
|
|
|
* Returns the number of huge pages that need to be added to the existing
|
|
|
|
* reservation map for the range [f, t). This number is greater or equal to
|
|
|
|
* zero. -ENOMEM is returned if a new file_region structure or cache entry
|
|
|
|
* is needed and can not be allocated.
|
2015-06-25 07:57:52 +08:00
|
|
|
*/
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
static long region_chg(struct resv_map *resv, long f, long t,
|
|
|
|
long *out_regions_needed)
|
2008-07-24 12:27:29 +08:00
|
|
|
{
|
|
|
|
long chg = 0;
|
|
|
|
|
2014-04-04 05:47:27 +08:00
|
|
|
spin_lock(&resv->lock);
|
2015-09-09 06:01:28 +08:00
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
/* Count how many hugepages in this range are NOT respresented. */
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
chg = add_reservation_in_range(resv, f, t, NULL, NULL,
|
|
|
|
out_regions_needed, true);
|
2015-09-09 06:01:28 +08:00
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
if (*out_regions_needed == 0)
|
|
|
|
*out_regions_needed = 1;
|
2015-09-09 06:01:28 +08:00
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
if (allocate_file_region_entries(resv, *out_regions_needed))
|
|
|
|
return -ENOMEM;
|
2015-09-09 06:01:28 +08:00
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
resv->adds_in_progress += *out_regions_needed;
|
2014-04-04 05:47:27 +08:00
|
|
|
|
|
|
|
spin_unlock(&resv->lock);
|
2008-07-24 12:27:29 +08:00
|
|
|
return chg;
|
|
|
|
}
|
|
|
|
|
2015-09-09 06:01:28 +08:00
|
|
|
/*
|
|
|
|
* Abort the in progress add operation. The adds_in_progress field
|
|
|
|
* of the resv_map keeps track of the operations in progress between
|
|
|
|
* calls to region_chg and region_add. Operations are sometimes
|
|
|
|
* aborted after the call to region_chg. In such cases, region_abort
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
* is called to decrement the adds_in_progress counter. regions_needed
|
|
|
|
* is the value returned by the region_chg call, it is used to decrement
|
|
|
|
* the adds_in_progress counter.
|
2015-09-09 06:01:28 +08:00
|
|
|
*
|
|
|
|
* NOTE: The range arguments [f, t) are not needed or used in this
|
|
|
|
* routine. They are kept to make reading the calling code easier as
|
|
|
|
* arguments will match the associated region_chg call.
|
|
|
|
*/
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
static void region_abort(struct resv_map *resv, long f, long t,
|
|
|
|
long regions_needed)
|
2015-09-09 06:01:28 +08:00
|
|
|
{
|
|
|
|
spin_lock(&resv->lock);
|
|
|
|
VM_BUG_ON(!resv->region_cache_count);
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
resv->adds_in_progress -= regions_needed;
|
2015-09-09 06:01:28 +08:00
|
|
|
spin_unlock(&resv->lock);
|
|
|
|
}
|
|
|
|
|
2015-06-25 07:57:52 +08:00
|
|
|
/*
|
2015-09-09 06:01:31 +08:00
|
|
|
* Delete the specified range [f, t) from the reserve map. If the
|
|
|
|
* t parameter is LONG_MAX, this indicates that ALL regions after f
|
|
|
|
* should be deleted. Locate the regions which intersect [f, t)
|
|
|
|
* and either trim, delete or split the existing regions.
|
|
|
|
*
|
|
|
|
* Returns the number of huge pages deleted from the reserve map.
|
|
|
|
* In the normal case, the return value is zero or more. In the
|
|
|
|
* case where a region must be split, a new region descriptor must
|
|
|
|
* be allocated. If the allocation fails, -ENOMEM will be returned.
|
|
|
|
* NOTE: If the parameter t == LONG_MAX, then we will never split
|
|
|
|
* a region and possibly return -ENOMEM. Callers specifying
|
|
|
|
* t == LONG_MAX do not need to check for -ENOMEM error.
|
2015-06-25 07:57:52 +08:00
|
|
|
*/
|
2015-09-09 06:01:31 +08:00
|
|
|
static long region_del(struct resv_map *resv, long f, long t)
|
2008-07-24 12:27:29 +08:00
|
|
|
{
|
2014-04-04 05:47:26 +08:00
|
|
|
struct list_head *head = &resv->regions;
|
2008-07-24 12:27:29 +08:00
|
|
|
struct file_region *rg, *trg;
|
2015-09-09 06:01:31 +08:00
|
|
|
struct file_region *nrg = NULL;
|
|
|
|
long del = 0;
|
2008-07-24 12:27:29 +08:00
|
|
|
|
2015-09-09 06:01:31 +08:00
|
|
|
retry:
|
2014-04-04 05:47:27 +08:00
|
|
|
spin_lock(&resv->lock);
|
2015-09-09 06:01:31 +08:00
|
|
|
list_for_each_entry_safe(rg, trg, head, link) {
|
2015-12-12 05:40:52 +08:00
|
|
|
/*
|
|
|
|
* Skip regions before the range to be deleted. file_region
|
|
|
|
* ranges are normally of the form [from, to). However, there
|
|
|
|
* may be a "placeholder" entry in the map which is of the form
|
|
|
|
* (from, to) with from == to. Check for placeholder entries
|
|
|
|
* at the beginning of the range to be deleted.
|
|
|
|
*/
|
|
|
|
if (rg->to <= f && (rg->to != rg->from || rg->to != f))
|
2015-09-09 06:01:31 +08:00
|
|
|
continue;
|
2015-12-12 05:40:52 +08:00
|
|
|
|
2015-09-09 06:01:31 +08:00
|
|
|
if (rg->from >= t)
|
2008-07-24 12:27:29 +08:00
|
|
|
break;
|
|
|
|
|
2015-09-09 06:01:31 +08:00
|
|
|
if (f > rg->from && t < rg->to) { /* Must split region */
|
|
|
|
/*
|
|
|
|
* Check for an entry in the cache before dropping
|
|
|
|
* lock and attempting allocation.
|
|
|
|
*/
|
|
|
|
if (!nrg &&
|
|
|
|
resv->region_cache_count > resv->adds_in_progress) {
|
|
|
|
nrg = list_first_entry(&resv->region_cache,
|
|
|
|
struct file_region,
|
|
|
|
link);
|
|
|
|
list_del(&nrg->link);
|
|
|
|
resv->region_cache_count--;
|
|
|
|
}
|
2008-07-24 12:27:29 +08:00
|
|
|
|
2015-09-09 06:01:31 +08:00
|
|
|
if (!nrg) {
|
|
|
|
spin_unlock(&resv->lock);
|
|
|
|
nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
|
|
|
|
if (!nrg)
|
|
|
|
return -ENOMEM;
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
|
|
|
|
del += t - f;
|
|
|
|
|
|
|
|
/* New entry for end of split region */
|
|
|
|
nrg->from = t;
|
|
|
|
nrg->to = rg->to;
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
|
|
|
|
copy_hugetlb_cgroup_uncharge_info(nrg, rg);
|
|
|
|
|
2015-09-09 06:01:31 +08:00
|
|
|
INIT_LIST_HEAD(&nrg->link);
|
|
|
|
|
|
|
|
/* Original entry is trimmed */
|
|
|
|
rg->to = f;
|
|
|
|
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
hugetlb_cgroup_uncharge_file_region(
|
|
|
|
resv, rg, nrg->to - nrg->from);
|
|
|
|
|
2015-09-09 06:01:31 +08:00
|
|
|
list_add(&nrg->link, &rg->link);
|
|
|
|
nrg = NULL;
|
2008-07-24 12:27:29 +08:00
|
|
|
break;
|
2015-09-09 06:01:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (f <= rg->from && t >= rg->to) { /* Remove entire region */
|
|
|
|
del += rg->to - rg->from;
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
hugetlb_cgroup_uncharge_file_region(resv, rg,
|
|
|
|
rg->to - rg->from);
|
2015-09-09 06:01:31 +08:00
|
|
|
list_del(&rg->link);
|
|
|
|
kfree(rg);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (f <= rg->from) { /* Trim beginning of region */
|
|
|
|
del += t - rg->from;
|
|
|
|
rg->from = t;
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
|
|
|
|
hugetlb_cgroup_uncharge_file_region(resv, rg,
|
|
|
|
t - rg->from);
|
2015-09-09 06:01:31 +08:00
|
|
|
} else { /* Trim end of region */
|
|
|
|
del += rg->to - f;
|
|
|
|
rg->to = f;
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
|
|
|
|
hugetlb_cgroup_uncharge_file_region(resv, rg,
|
|
|
|
rg->to - f);
|
2015-09-09 06:01:31 +08:00
|
|
|
}
|
2008-07-24 12:27:29 +08:00
|
|
|
}
|
2014-04-04 05:47:27 +08:00
|
|
|
|
|
|
|
spin_unlock(&resv->lock);
|
2015-09-09 06:01:31 +08:00
|
|
|
kfree(nrg);
|
|
|
|
return del;
|
2008-07-24 12:27:29 +08:00
|
|
|
}
|
|
|
|
|
2015-09-09 06:01:41 +08:00
|
|
|
/*
|
|
|
|
* A rare out of memory error was encountered which prevented removal of
|
|
|
|
* the reserve map region for a page. The huge page itself was free'ed
|
|
|
|
* and removed from the page cache. This routine will adjust the subpool
|
|
|
|
* usage count, and the global reserve count if needed. By incrementing
|
|
|
|
* these counts, the reserve map entry which could not be deleted will
|
|
|
|
* appear as a "reserved" entry instead of simply dangling with incorrect
|
|
|
|
* counts.
|
|
|
|
*/
|
2016-10-08 08:02:01 +08:00
|
|
|
void hugetlb_fix_reserve_counts(struct inode *inode)
|
2015-09-09 06:01:41 +08:00
|
|
|
{
|
|
|
|
struct hugepage_subpool *spool = subpool_inode(inode);
|
|
|
|
long rsv_adjust;
|
|
|
|
|
|
|
|
rsv_adjust = hugepage_subpool_get_pages(spool, 1);
|
2016-10-08 08:02:01 +08:00
|
|
|
if (rsv_adjust) {
|
2015-09-09 06:01:41 +08:00
|
|
|
struct hstate *h = hstate_inode(inode);
|
|
|
|
|
|
|
|
hugetlb_acct_memory(h, 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-06-25 07:57:52 +08:00
|
|
|
/*
|
|
|
|
* Count and return the number of huge pages in the reserve map
|
|
|
|
* that intersect with the range [f, t).
|
|
|
|
*/
|
2014-04-04 05:47:26 +08:00
|
|
|
static long region_count(struct resv_map *resv, long f, long t)
|
2008-07-24 12:27:32 +08:00
|
|
|
{
|
2014-04-04 05:47:26 +08:00
|
|
|
struct list_head *head = &resv->regions;
|
2008-07-24 12:27:32 +08:00
|
|
|
struct file_region *rg;
|
|
|
|
long chg = 0;
|
|
|
|
|
2014-04-04 05:47:27 +08:00
|
|
|
spin_lock(&resv->lock);
|
2008-07-24 12:27:32 +08:00
|
|
|
/* Locate each segment we overlap with, and count that overlap. */
|
|
|
|
list_for_each_entry(rg, head, link) {
|
2012-05-30 06:06:17 +08:00
|
|
|
long seg_from;
|
|
|
|
long seg_to;
|
2008-07-24 12:27:32 +08:00
|
|
|
|
|
|
|
if (rg->to <= f)
|
|
|
|
continue;
|
|
|
|
if (rg->from >= t)
|
|
|
|
break;
|
|
|
|
|
|
|
|
seg_from = max(rg->from, f);
|
|
|
|
seg_to = min(rg->to, t);
|
|
|
|
|
|
|
|
chg += seg_to - seg_from;
|
|
|
|
}
|
2014-04-04 05:47:27 +08:00
|
|
|
spin_unlock(&resv->lock);
|
2008-07-24 12:27:32 +08:00
|
|
|
|
|
|
|
return chg;
|
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:26 +08:00
|
|
|
/*
|
|
|
|
* Convert the address within this vma to the page offset within
|
|
|
|
* the mapping, in pagecache page units; huge pages here.
|
|
|
|
*/
|
2008-07-24 12:27:41 +08:00
|
|
|
static pgoff_t vma_hugecache_offset(struct hstate *h,
|
|
|
|
struct vm_area_struct *vma, unsigned long address)
|
2008-07-24 12:27:26 +08:00
|
|
|
{
|
2008-07-24 12:27:41 +08:00
|
|
|
return ((address - vma->vm_start) >> huge_page_shift(h)) +
|
|
|
|
(vma->vm_pgoff >> huge_page_order(h));
|
2008-07-24 12:27:26 +08:00
|
|
|
}
|
|
|
|
|
2010-05-28 08:29:16 +08:00
|
|
|
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
|
|
|
|
unsigned long address)
|
|
|
|
{
|
|
|
|
return vma_hugecache_offset(hstate_vma(vma), vma, address);
|
|
|
|
}
|
2016-05-15 03:20:44 +08:00
|
|
|
EXPORT_SYMBOL_GPL(linear_hugepage_index);
|
2010-05-28 08:29:16 +08:00
|
|
|
|
2009-01-07 06:38:53 +08:00
|
|
|
/*
|
|
|
|
* Return the size of the pages allocated when backing a VMA. In the majority
|
|
|
|
* cases this will be same size as used by the page table entries.
|
|
|
|
*/
|
|
|
|
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
|
|
|
|
{
|
2018-04-06 07:24:25 +08:00
|
|
|
if (vma->vm_ops && vma->vm_ops->pagesize)
|
|
|
|
return vma->vm_ops->pagesize(vma);
|
|
|
|
return PAGE_SIZE;
|
2009-01-07 06:38:53 +08:00
|
|
|
}
|
2009-06-19 21:16:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
|
2009-01-07 06:38:53 +08:00
|
|
|
|
2009-01-07 06:38:54 +08:00
|
|
|
/*
|
|
|
|
* Return the page size being used by the MMU to back a VMA. In the majority
|
|
|
|
* of cases, the page size used by the kernel matches the MMU size. On
|
2018-04-06 07:24:21 +08:00
|
|
|
* architectures where it differs, an architecture-specific 'strong'
|
|
|
|
* version of this symbol is required.
|
2009-01-07 06:38:54 +08:00
|
|
|
*/
|
2018-04-06 07:24:21 +08:00
|
|
|
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
|
2009-01-07 06:38:54 +08:00
|
|
|
{
|
|
|
|
return vma_kernel_pagesize(vma);
|
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:32 +08:00
|
|
|
/*
|
|
|
|
* Flags for MAP_PRIVATE reservations. These are stored in the bottom
|
|
|
|
* bits of the reservation map pointer, which are always clear due to
|
|
|
|
* alignment.
|
|
|
|
*/
|
|
|
|
#define HPAGE_RESV_OWNER (1UL << 0)
|
|
|
|
#define HPAGE_RESV_UNMAPPED (1UL << 1)
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
|
2008-07-24 12:27:32 +08:00
|
|
|
|
2008-07-24 12:27:23 +08:00
|
|
|
/*
|
|
|
|
* These helpers are used to track how many pages are reserved for
|
|
|
|
* faults in a MAP_PRIVATE mapping. Only the process that called mmap()
|
|
|
|
* is guaranteed to have their future faults succeed.
|
|
|
|
*
|
|
|
|
* With the exception of reset_vma_resv_huge_pages() which is called at fork(),
|
|
|
|
* the reserve counters are updated with the hugetlb_lock held. It is safe
|
|
|
|
* to reset the VMA at fork() time as it is not in use yet and there is no
|
|
|
|
* chance of the global counters getting corrupted as a result of the values.
|
2008-07-24 12:27:32 +08:00
|
|
|
*
|
|
|
|
* The private mapping reservation is represented in a subtly different
|
|
|
|
* manner to a shared mapping. A shared mapping has a region map associated
|
|
|
|
* with the underlying file, this region map represents the backing file
|
|
|
|
* pages which have ever had a reservation assigned which this persists even
|
|
|
|
* after the page is instantiated. A private mapping has a region map
|
|
|
|
* associated with the original mmap which is attached to all VMAs which
|
|
|
|
* reference it, this region map represents those offsets which have consumed
|
|
|
|
* reservation ie. where pages have been instantiated.
|
2008-07-24 12:27:23 +08:00
|
|
|
*/
|
2008-07-24 12:27:26 +08:00
|
|
|
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
return (unsigned long)vma->vm_private_data;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void set_vma_private_data(struct vm_area_struct *vma,
|
|
|
|
unsigned long value)
|
|
|
|
{
|
|
|
|
vma->vm_private_data = (void *)value;
|
|
|
|
}
|
|
|
|
|
2020-04-02 12:11:21 +08:00
|
|
|
static void
|
|
|
|
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
|
|
|
|
struct hugetlb_cgroup *h_cg,
|
|
|
|
struct hstate *h)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_CGROUP_HUGETLB
|
|
|
|
if (!h_cg || !h) {
|
|
|
|
resv_map->reservation_counter = NULL;
|
|
|
|
resv_map->pages_per_hpage = 0;
|
|
|
|
resv_map->css = NULL;
|
|
|
|
} else {
|
|
|
|
resv_map->reservation_counter =
|
|
|
|
&h_cg->rsvd_hugepage[hstate_index(h)];
|
|
|
|
resv_map->pages_per_hpage = pages_per_huge_page(h);
|
|
|
|
resv_map->css = &h_cg->css;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
mm, hugetlb: unify region structure handling
Currently, to track reserved and allocated regions, we use two different
ways, depending on the mapping. For MAP_SHARED, we use
address_mapping's private_list and, while for MAP_PRIVATE, we use a
resv_map.
Now, we are preparing to change a coarse grained lock which protect a
region structure to fine grained lock, and this difference hinder it.
So, before changing it, unify region structure handling, consistently
using a resv_map regardless of the kind of mapping.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:25 +08:00
|
|
|
struct resv_map *resv_map_alloc(void)
|
2008-07-24 12:27:32 +08:00
|
|
|
{
|
|
|
|
struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
|
2015-09-09 06:01:28 +08:00
|
|
|
struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
|
|
|
|
|
|
|
|
if (!resv_map || !rg) {
|
|
|
|
kfree(resv_map);
|
|
|
|
kfree(rg);
|
2008-07-24 12:27:32 +08:00
|
|
|
return NULL;
|
2015-09-09 06:01:28 +08:00
|
|
|
}
|
2008-07-24 12:27:32 +08:00
|
|
|
|
|
|
|
kref_init(&resv_map->refs);
|
2014-04-04 05:47:27 +08:00
|
|
|
spin_lock_init(&resv_map->lock);
|
2008-07-24 12:27:32 +08:00
|
|
|
INIT_LIST_HEAD(&resv_map->regions);
|
|
|
|
|
2015-09-09 06:01:28 +08:00
|
|
|
resv_map->adds_in_progress = 0;
|
2020-04-02 12:11:21 +08:00
|
|
|
/*
|
|
|
|
* Initialize these to 0. On shared mappings, 0's here indicate these
|
|
|
|
* fields don't do cgroup accounting. On private mappings, these will be
|
|
|
|
* re-initialized to the proper values, to indicate that hugetlb cgroup
|
|
|
|
* reservations are to be un-charged from here.
|
|
|
|
*/
|
|
|
|
resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
|
2015-09-09 06:01:28 +08:00
|
|
|
|
|
|
|
INIT_LIST_HEAD(&resv_map->region_cache);
|
|
|
|
list_add(&rg->link, &resv_map->region_cache);
|
|
|
|
resv_map->region_cache_count = 1;
|
|
|
|
|
2008-07-24 12:27:32 +08:00
|
|
|
return resv_map;
|
|
|
|
}
|
|
|
|
|
mm, hugetlb: unify region structure handling
Currently, to track reserved and allocated regions, we use two different
ways, depending on the mapping. For MAP_SHARED, we use
address_mapping's private_list and, while for MAP_PRIVATE, we use a
resv_map.
Now, we are preparing to change a coarse grained lock which protect a
region structure to fine grained lock, and this difference hinder it.
So, before changing it, unify region structure handling, consistently
using a resv_map regardless of the kind of mapping.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:25 +08:00
|
|
|
void resv_map_release(struct kref *ref)
|
2008-07-24 12:27:32 +08:00
|
|
|
{
|
|
|
|
struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
|
2015-09-09 06:01:28 +08:00
|
|
|
struct list_head *head = &resv_map->region_cache;
|
|
|
|
struct file_region *rg, *trg;
|
2008-07-24 12:27:32 +08:00
|
|
|
|
|
|
|
/* Clear out any active regions before we release the map. */
|
2015-09-09 06:01:31 +08:00
|
|
|
region_del(resv_map, 0, LONG_MAX);
|
2015-09-09 06:01:28 +08:00
|
|
|
|
|
|
|
/* ... and any entries left in the cache */
|
|
|
|
list_for_each_entry_safe(rg, trg, head, link) {
|
|
|
|
list_del(&rg->link);
|
|
|
|
kfree(rg);
|
|
|
|
}
|
|
|
|
|
|
|
|
VM_BUG_ON(resv_map->adds_in_progress);
|
|
|
|
|
2008-07-24 12:27:32 +08:00
|
|
|
kfree(resv_map);
|
|
|
|
}
|
|
|
|
|
2014-04-04 05:47:30 +08:00
|
|
|
static inline struct resv_map *inode_resv_map(struct inode *inode)
|
|
|
|
{
|
2019-05-14 08:22:55 +08:00
|
|
|
/*
|
|
|
|
* At inode evict time, i_mapping may not point to the original
|
|
|
|
* address space within the inode. This original address space
|
|
|
|
* contains the pointer to the resv_map. So, always use the
|
|
|
|
* address space embedded within the inode.
|
|
|
|
* The VERY common case is inode->mapping == &inode->i_data but,
|
|
|
|
* this may not be true for device special inodes.
|
|
|
|
*/
|
|
|
|
return (struct resv_map *)(&inode->i_data)->private_data;
|
2014-04-04 05:47:30 +08:00
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:32 +08:00
|
|
|
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
|
2008-07-24 12:27:23 +08:00
|
|
|
{
|
2014-10-10 06:28:10 +08:00
|
|
|
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
|
2014-04-04 05:47:30 +08:00
|
|
|
if (vma->vm_flags & VM_MAYSHARE) {
|
|
|
|
struct address_space *mapping = vma->vm_file->f_mapping;
|
|
|
|
struct inode *inode = mapping->host;
|
|
|
|
|
|
|
|
return inode_resv_map(inode);
|
|
|
|
|
|
|
|
} else {
|
2008-07-24 12:27:32 +08:00
|
|
|
return (struct resv_map *)(get_vma_private_data(vma) &
|
|
|
|
~HPAGE_RESV_MASK);
|
2014-04-04 05:47:30 +08:00
|
|
|
}
|
2008-07-24 12:27:23 +08:00
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:32 +08:00
|
|
|
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
|
2008-07-24 12:27:23 +08:00
|
|
|
{
|
2014-10-10 06:28:10 +08:00
|
|
|
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
|
|
|
|
VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
|
2008-07-24 12:27:23 +08:00
|
|
|
|
2008-07-24 12:27:32 +08:00
|
|
|
set_vma_private_data(vma, (get_vma_private_data(vma) &
|
|
|
|
HPAGE_RESV_MASK) | (unsigned long)map);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
|
|
|
|
{
|
2014-10-10 06:28:10 +08:00
|
|
|
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
|
|
|
|
VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
|
2008-07-24 12:27:26 +08:00
|
|
|
|
|
|
|
set_vma_private_data(vma, get_vma_private_data(vma) | flags);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
|
|
|
|
{
|
2014-10-10 06:28:10 +08:00
|
|
|
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
|
2008-07-24 12:27:26 +08:00
|
|
|
|
|
|
|
return (get_vma_private_data(vma) & flag) != 0;
|
2008-07-24 12:27:23 +08:00
|
|
|
}
|
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
|
2008-07-24 12:27:23 +08:00
|
|
|
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
|
|
|
|
{
|
2014-10-10 06:28:10 +08:00
|
|
|
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
|
2009-05-29 05:34:40 +08:00
|
|
|
if (!(vma->vm_flags & VM_MAYSHARE))
|
2008-07-24 12:27:23 +08:00
|
|
|
vma->vm_private_data = (void *)0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Returns true if the VMA has associated reserve pages */
|
2015-09-05 06:48:27 +08:00
|
|
|
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
|
2008-07-24 12:27:23 +08:00
|
|
|
{
|
mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cache
If a vma with VM_NORESERVE allocate a new page for page cache, we should
check whether this area is reserved or not. If this address is already
reserved by other process(in case of chg == 0), we should decrement
reserve count, because this allocated page will go into page cache and
currently, there is no way to know that this page comes from reserved pool
or not when releasing inode. This may introduce over-counting problem to
reserved count. With following example code, you can easily reproduce
this situation.
Assume 2MB, nr_hugepages = 100
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
flag = MAP_SHARED | MAP_NORESERVE;
q = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (q == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
q[0] = 'c';
After finish the program, run 'cat /proc/meminfo'. You can see below
result.
HugePages_Free: 100
HugePages_Rsvd: 1
To fix this, we should check our mapping type and tracked region. If our
mapping is VM_NORESERVE, VM_MAYSHARE and chg is 0, this imply that current
allocated page will go into page cache which is already reserved region
when mapping is created. In this case, we should decrease reserve count.
As implementing above, this patch solve the problem.
[akpm@linux-foundation.org: fix spelling in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:21:18 +08:00
|
|
|
if (vma->vm_flags & VM_NORESERVE) {
|
|
|
|
/*
|
|
|
|
* This address is already reserved by other process(chg == 0),
|
|
|
|
* so, we should decrement reserved count. Without decrementing,
|
|
|
|
* reserve count remains after releasing inode, because this
|
|
|
|
* allocated page will go into page cache and is regarded as
|
|
|
|
* coming from reserved pool in releasing step. Currently, we
|
|
|
|
* don't have any other solution to deal with this situation
|
|
|
|
* properly, so add work-around here.
|
|
|
|
*/
|
|
|
|
if (vma->vm_flags & VM_MAYSHARE && chg == 0)
|
2015-09-05 06:48:27 +08:00
|
|
|
return true;
|
mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cache
If a vma with VM_NORESERVE allocate a new page for page cache, we should
check whether this area is reserved or not. If this address is already
reserved by other process(in case of chg == 0), we should decrement
reserve count, because this allocated page will go into page cache and
currently, there is no way to know that this page comes from reserved pool
or not when releasing inode. This may introduce over-counting problem to
reserved count. With following example code, you can easily reproduce
this situation.
Assume 2MB, nr_hugepages = 100
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
flag = MAP_SHARED | MAP_NORESERVE;
q = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (q == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
q[0] = 'c';
After finish the program, run 'cat /proc/meminfo'. You can see below
result.
HugePages_Free: 100
HugePages_Rsvd: 1
To fix this, we should check our mapping type and tracked region. If our
mapping is VM_NORESERVE, VM_MAYSHARE and chg is 0, this imply that current
allocated page will go into page cache which is already reserved region
when mapping is created. In this case, we should decrease reserve count.
As implementing above, this patch solve the problem.
[akpm@linux-foundation.org: fix spelling in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:21:18 +08:00
|
|
|
else
|
2015-09-05 06:48:27 +08:00
|
|
|
return false;
|
mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cache
If a vma with VM_NORESERVE allocate a new page for page cache, we should
check whether this area is reserved or not. If this address is already
reserved by other process(in case of chg == 0), we should decrement
reserve count, because this allocated page will go into page cache and
currently, there is no way to know that this page comes from reserved pool
or not when releasing inode. This may introduce over-counting problem to
reserved count. With following example code, you can easily reproduce
this situation.
Assume 2MB, nr_hugepages = 100
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
flag = MAP_SHARED | MAP_NORESERVE;
q = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (q == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
q[0] = 'c';
After finish the program, run 'cat /proc/meminfo'. You can see below
result.
HugePages_Free: 100
HugePages_Rsvd: 1
To fix this, we should check our mapping type and tracked region. If our
mapping is VM_NORESERVE, VM_MAYSHARE and chg is 0, this imply that current
allocated page will go into page cache which is already reserved region
when mapping is created. In this case, we should decrease reserve count.
As implementing above, this patch solve the problem.
[akpm@linux-foundation.org: fix spelling in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:21:18 +08:00
|
|
|
}
|
2013-09-12 05:21:07 +08:00
|
|
|
|
|
|
|
/* Shared mappings always use reserves */
|
2015-09-09 06:01:44 +08:00
|
|
|
if (vma->vm_flags & VM_MAYSHARE) {
|
|
|
|
/*
|
|
|
|
* We know VM_NORESERVE is not set. Therefore, there SHOULD
|
|
|
|
* be a region map for all pages. The only situation where
|
|
|
|
* there is no region map is if a hole was punched via
|
|
|
|
* fallocate. In this case, there really are no reverves to
|
|
|
|
* use. This situation is indicated if chg != 0.
|
|
|
|
*/
|
|
|
|
if (chg)
|
|
|
|
return false;
|
|
|
|
else
|
|
|
|
return true;
|
|
|
|
}
|
2013-09-12 05:21:07 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Only the process that called mmap() has reserves for
|
|
|
|
* private mappings.
|
|
|
|
*/
|
2016-06-09 06:33:42 +08:00
|
|
|
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
|
|
|
|
/*
|
|
|
|
* Like the shared case above, a hole punch or truncate
|
|
|
|
* could have been performed on the private mapping.
|
|
|
|
* Examine the value of chg to determine if reserves
|
|
|
|
* actually exist or were previously consumed.
|
|
|
|
* Very Subtle - The value of chg comes from a previous
|
|
|
|
* call to vma_needs_reserves(). The reserve map for
|
|
|
|
* private mappings has different (opposite) semantics
|
|
|
|
* than that of shared mappings. vma_needs_reserves()
|
|
|
|
* has already taken this difference in semantics into
|
|
|
|
* account. Therefore, the meaning of chg is the same
|
|
|
|
* as in the shared case above. Code could easily be
|
|
|
|
* combined, but keeping it separate draws attention to
|
|
|
|
* subtle differences.
|
|
|
|
*/
|
|
|
|
if (chg)
|
|
|
|
return false;
|
|
|
|
else
|
|
|
|
return true;
|
|
|
|
}
|
2013-09-12 05:21:07 +08:00
|
|
|
|
2015-09-05 06:48:27 +08:00
|
|
|
return false;
|
2008-07-24 12:27:23 +08:00
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:41 +08:00
|
|
|
static void enqueue_huge_page(struct hstate *h, struct page *page)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
int nid = page_to_nid(page);
|
2012-08-01 07:42:07 +08:00
|
|
|
list_move(&page->lru, &h->hugepage_freelists[nid]);
|
2008-07-24 12:27:41 +08:00
|
|
|
h->free_huge_pages++;
|
|
|
|
h->free_huge_pages_node[nid]++;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2017-07-07 06:38:38 +08:00
|
|
|
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
|
2010-09-08 09:19:33 +08:00
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
|
2013-09-12 05:22:09 +08:00
|
|
|
list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
|
2017-07-11 06:47:32 +08:00
|
|
|
if (!PageHWPoison(page))
|
2013-09-12 05:22:09 +08:00
|
|
|
break;
|
|
|
|
/*
|
|
|
|
* if 'non-isolated free hugepage' not found on the list,
|
|
|
|
* the allocation fails.
|
|
|
|
*/
|
|
|
|
if (&h->hugepage_freelists[nid] == &page->lru)
|
2010-09-08 09:19:33 +08:00
|
|
|
return NULL;
|
2012-08-01 07:42:07 +08:00
|
|
|
list_move(&page->lru, &h->hugepage_activelist);
|
2010-09-08 09:19:37 +08:00
|
|
|
set_page_refcounted(page);
|
2010-09-08 09:19:33 +08:00
|
|
|
h->free_huge_pages--;
|
|
|
|
h->free_huge_pages_node[nid]--;
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2017-07-11 06:49:11 +08:00
|
|
|
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
|
|
|
|
nodemask_t *nmask)
|
2017-07-07 06:38:38 +08:00
|
|
|
{
|
2017-07-11 06:49:11 +08:00
|
|
|
unsigned int cpuset_mems_cookie;
|
|
|
|
struct zonelist *zonelist;
|
|
|
|
struct zone *zone;
|
|
|
|
struct zoneref *z;
|
2019-03-06 07:42:58 +08:00
|
|
|
int node = NUMA_NO_NODE;
|
2017-07-07 06:38:38 +08:00
|
|
|
|
2017-07-11 06:49:11 +08:00
|
|
|
zonelist = node_zonelist(nid, gfp_mask);
|
|
|
|
|
|
|
|
retry_cpuset:
|
|
|
|
cpuset_mems_cookie = read_mems_allowed_begin();
|
|
|
|
for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
if (!cpuset_zone_allowed(zone, gfp_mask))
|
|
|
|
continue;
|
|
|
|
/*
|
|
|
|
* no need to ask again on the same node. Pool is node rather than
|
|
|
|
* zone aware
|
|
|
|
*/
|
|
|
|
if (zone_to_nid(zone) == node)
|
|
|
|
continue;
|
|
|
|
node = zone_to_nid(zone);
|
2017-07-07 06:38:38 +08:00
|
|
|
|
|
|
|
page = dequeue_huge_page_node_exact(h, node);
|
|
|
|
if (page)
|
|
|
|
return page;
|
|
|
|
}
|
2017-07-11 06:49:11 +08:00
|
|
|
if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
|
|
|
|
goto retry_cpuset;
|
|
|
|
|
2017-07-07 06:38:38 +08:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2013-09-12 05:22:13 +08:00
|
|
|
/* Movability of hugepages depends on migration support. */
|
|
|
|
static inline gfp_t htlb_alloc_mask(struct hstate *h)
|
|
|
|
{
|
2019-03-06 07:43:44 +08:00
|
|
|
if (hugepage_movable_supported(h))
|
2013-09-12 05:22:13 +08:00
|
|
|
return GFP_HIGHUSER_MOVABLE;
|
|
|
|
else
|
|
|
|
return GFP_HIGHUSER;
|
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:41 +08:00
|
|
|
static struct page *dequeue_huge_page_vma(struct hstate *h,
|
|
|
|
struct vm_area_struct *vma,
|
mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cache
If a vma with VM_NORESERVE allocate a new page for page cache, we should
check whether this area is reserved or not. If this address is already
reserved by other process(in case of chg == 0), we should decrement
reserve count, because this allocated page will go into page cache and
currently, there is no way to know that this page comes from reserved pool
or not when releasing inode. This may introduce over-counting problem to
reserved count. With following example code, you can easily reproduce
this situation.
Assume 2MB, nr_hugepages = 100
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
flag = MAP_SHARED | MAP_NORESERVE;
q = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (q == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
q[0] = 'c';
After finish the program, run 'cat /proc/meminfo'. You can see below
result.
HugePages_Free: 100
HugePages_Rsvd: 1
To fix this, we should check our mapping type and tracked region. If our
mapping is VM_NORESERVE, VM_MAYSHARE and chg is 0, this imply that current
allocated page will go into page cache which is already reserved region
when mapping is created. In this case, we should decrease reserve count.
As implementing above, this patch solve the problem.
[akpm@linux-foundation.org: fix spelling in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:21:18 +08:00
|
|
|
unsigned long address, int avoid_reserve,
|
|
|
|
long chg)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2017-07-11 06:49:11 +08:00
|
|
|
struct page *page;
|
Fix NUMA Memory Policy Reference Counting
This patch proposes fixes to the reference counting of memory policy in the
page allocation paths and in show_numa_map(). Extracted from my "Memory
Policy Cleanups and Enhancements" series as stand-alone.
Shared policy lookup [shmem] has always added a reference to the policy,
but this was never unrefed after page allocation or after formatting the
numa map data.
Default system policy should not require additional ref counting, nor
should the current task's task policy. However, show_numa_map() calls
get_vma_policy() to examine what may be [likely is] another task's policy.
The latter case needs protection against freeing of the policy.
This patch adds a reference count to a mempolicy returned by
get_vma_policy() when the policy is a vma policy or another task's
mempolicy. Again, shared policy is already reference counted on lookup. A
matching "unref" [__mpol_free()] is performed in alloc_page_vma() for
shared and vma policies, and in show_numa_map() for shared and another
task's mempolicy. We can call __mpol_free() directly, saving an admittedly
inexpensive inline NULL test, because we know we have a non-NULL policy.
Handling policy ref counts for hugepages is a bit trickier.
huge_zonelist() returns a zone list that might come from a shared or vma
'BIND policy. In this case, we should hold the reference until after the
huge page allocation in dequeue_hugepage(). The patch modifies
huge_zonelist() to return a pointer to the mempolicy if it needs to be
unref'd after allocation.
Kernel Build [16cpu, 32GB, ia64] - average of 10 runs:
w/o patch w/ refcount patch
Avg Std Devn Avg Std Devn
Real: 100.59 0.38 100.63 0.43
User: 1209.60 0.37 1209.91 0.31
System: 81.52 0.42 81.64 0.34
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Andi Kleen <ak@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
|
|
|
struct mempolicy *mpol;
|
2017-07-07 06:40:03 +08:00
|
|
|
gfp_t gfp_mask;
|
2017-07-11 06:49:11 +08:00
|
|
|
nodemask_t *nodemask;
|
2017-07-07 06:40:03 +08:00
|
|
|
int nid;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2008-07-24 12:27:23 +08:00
|
|
|
/*
|
|
|
|
* A child process with MAP_PRIVATE mappings created by their parent
|
|
|
|
* have no page reserves. This check ensures that reservations are
|
|
|
|
* not "stolen". The child may still get SIGKILLed
|
|
|
|
*/
|
mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cache
If a vma with VM_NORESERVE allocate a new page for page cache, we should
check whether this area is reserved or not. If this address is already
reserved by other process(in case of chg == 0), we should decrement
reserve count, because this allocated page will go into page cache and
currently, there is no way to know that this page comes from reserved pool
or not when releasing inode. This may introduce over-counting problem to
reserved count. With following example code, you can easily reproduce
this situation.
Assume 2MB, nr_hugepages = 100
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
flag = MAP_SHARED | MAP_NORESERVE;
q = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (q == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
q[0] = 'c';
After finish the program, run 'cat /proc/meminfo'. You can see below
result.
HugePages_Free: 100
HugePages_Rsvd: 1
To fix this, we should check our mapping type and tracked region. If our
mapping is VM_NORESERVE, VM_MAYSHARE and chg is 0, this imply that current
allocated page will go into page cache which is already reserved region
when mapping is created. In this case, we should decrease reserve count.
As implementing above, this patch solve the problem.
[akpm@linux-foundation.org: fix spelling in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:21:18 +08:00
|
|
|
if (!vma_has_reserves(vma, chg) &&
|
2008-07-24 12:27:41 +08:00
|
|
|
h->free_huge_pages - h->resv_huge_pages == 0)
|
2010-05-25 05:32:08 +08:00
|
|
|
goto err;
|
2008-07-24 12:27:23 +08:00
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
/* If reserves cannot be used, ensure enough pages are in the pool */
|
2008-07-24 12:27:41 +08:00
|
|
|
if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
|
2011-04-09 10:49:08 +08:00
|
|
|
goto err;
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
|
2017-07-07 06:40:03 +08:00
|
|
|
gfp_mask = htlb_alloc_mask(h);
|
|
|
|
nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
|
2017-07-11 06:49:11 +08:00
|
|
|
page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
|
|
|
|
if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
|
|
|
|
SetPagePrivate(page);
|
|
|
|
h->resv_huge_pages--;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
cpuset: mm: reduce large amounts of memory barrier related damage v3
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.
[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths. This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32. The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.
For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.
This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side. This is much cheaper on some architectures, including x86. The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.
While updating the nodemask, a check is made to see if a false failure
is a risk. If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.
In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The
actual results were
3.3.0-rc3 3.3.0-rc3
rc3-vanilla nobarrier-v2r1
Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%)
Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%)
Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%)
Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%)
Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%)
Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%)
Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%)
Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%)
Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%)
Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%)
Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%)
Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%)
Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%)
Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%)
Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 135.68 132.17
User+Sys Time Running Test (seconds) 164.2 160.13
Total Elapsed Time (seconds) 123.46 120.87
The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected). The
actual number of page faults is noticeably improved.
For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.
To test the actual bug the commit fixed I opened two terminals. The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data. In a second window, the nodemask of the
cpuset was continually randomised in a loop.
Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:11 +08:00
|
|
|
|
mempolicy: rework mempolicy Reference Counting [yet again]
After further discussion with Christoph Lameter, it has become clear that my
earlier attempts to clean up the mempolicy reference counting were a bit of
overkill in some areas, resulting in superflous ref/unref in what are usually
fast paths. In other areas, further inspection reveals that I botched the
unref for interleave policies.
A separate patch, suitable for upstream/stable trees, fixes up the known
errors in the previous attempt to fix reference counting.
This patch reworks the memory policy referencing counting and, one hopes,
simplifies the code. Maybe I'll get it right this time.
See the update to the numa_memory_policy.txt document for a discussion of
memory policy reference counting that motivates this patch.
Summary:
Lookup of mempolicy, based on (vma, address) need only add a reference for
shared policy, and we need only unref the policy when finished for shared
policies. So, this patch backs out all of the unneeded extra reference
counting added by my previous attempt. It then unrefs only shared policies
when we're finished with them, using the mpol_cond_put() [conditional put]
helper function introduced by this patch.
Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma
containing just the policy. read_swap_cache_async() can call alloc_page_vma()
multiple times, so we can't let alloc_page_vma() unref the shared policy in
this case. To avoid this, we make a copy of any non-null shared policy and
remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading
a page [or multiple pages] from swap, so the overhead should not be an issue
here.
I introduced a new static inline function "mpol_cond_copy()" to copy the
shared policy to an on-stack policy and remove the flags that would require a
conditional free. The current implementation of mpol_cond_copy() assumes that
the struct mempolicy contains no pointers to dynamically allocated structures
that must be duplicated or reference counted during copy.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
|
|
|
mpol_cond_put(mpol);
|
2005-04-17 06:20:36 +08:00
|
|
|
return page;
|
cpuset: mm: reduce large amounts of memory barrier related damage v3
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.
[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths. This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32. The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.
For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.
This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side. This is much cheaper on some architectures, including x86. The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.
While updating the nodemask, a check is made to see if a false failure
is a risk. If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.
In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The
actual results were
3.3.0-rc3 3.3.0-rc3
rc3-vanilla nobarrier-v2r1
Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%)
Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%)
Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%)
Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%)
Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%)
Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%)
Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%)
Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%)
Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%)
Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%)
Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%)
Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%)
Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%)
Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%)
Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 135.68 132.17
User+Sys Time Running Test (seconds) 164.2 160.13
Total Elapsed Time (seconds) 123.46 120.87
The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected). The
actual number of page faults is noticeably improved.
For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.
To test the actual bug the commit fixed I opened two terminals. The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data. In a second window, the nodemask of the
cpuset was continually randomised in a loop.
Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:11 +08:00
|
|
|
|
|
|
|
err:
|
|
|
|
return NULL;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2014-06-05 07:07:11 +08:00
|
|
|
/*
|
|
|
|
* common helper functions for hstate_next_node_to_{alloc|free}.
|
|
|
|
* We may have allocated or freed a huge page based on a different
|
|
|
|
* nodes_allowed previously, so h->next_node_to_{alloc|free} might
|
|
|
|
* be outside of *nodes_allowed. Ensure that we use an allowed
|
|
|
|
* node for alloc or free.
|
|
|
|
*/
|
|
|
|
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
|
|
|
|
{
|
2016-05-20 08:10:58 +08:00
|
|
|
nid = next_node_in(nid, *nodes_allowed);
|
2014-06-05 07:07:11 +08:00
|
|
|
VM_BUG_ON(nid >= MAX_NUMNODES);
|
|
|
|
|
|
|
|
return nid;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
|
|
|
|
{
|
|
|
|
if (!node_isset(nid, *nodes_allowed))
|
|
|
|
nid = next_node_allowed(nid, nodes_allowed);
|
|
|
|
return nid;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* returns the previously saved node ["this node"] from which to
|
|
|
|
* allocate a persistent huge page for the pool and advance the
|
|
|
|
* next node from which to allocate, handling wrap at end of node
|
|
|
|
* mask.
|
|
|
|
*/
|
|
|
|
static int hstate_next_node_to_alloc(struct hstate *h,
|
|
|
|
nodemask_t *nodes_allowed)
|
|
|
|
{
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
VM_BUG_ON(!nodes_allowed);
|
|
|
|
|
|
|
|
nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
|
|
|
|
h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
|
|
|
|
|
|
|
|
return nid;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* helper for free_pool_huge_page() - return the previously saved
|
|
|
|
* node ["this node"] from which to free a huge page. Advance the
|
|
|
|
* next node id whether or not we find a free huge page to free so
|
|
|
|
* that the next attempt to free addresses the next node.
|
|
|
|
*/
|
|
|
|
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
|
|
|
|
{
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
VM_BUG_ON(!nodes_allowed);
|
|
|
|
|
|
|
|
nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
|
|
|
|
h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
|
|
|
|
|
|
|
|
return nid;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
|
|
|
|
for (nr_nodes = nodes_weight(*mask); \
|
|
|
|
nr_nodes > 0 && \
|
|
|
|
((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
|
|
|
|
nr_nodes--)
|
|
|
|
|
|
|
|
#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
|
|
|
|
for (nr_nodes = nodes_weight(*mask); \
|
|
|
|
nr_nodes > 0 && \
|
|
|
|
((node = hstate_next_node_to_free(hs, mask)) || 1); \
|
|
|
|
nr_nodes--)
|
|
|
|
|
2017-07-07 06:39:17 +08:00
|
|
|
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
static void destroy_compound_gigantic_page(struct page *page,
|
2015-11-07 08:29:57 +08:00
|
|
|
unsigned int order)
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int nr_pages = 1 << order;
|
|
|
|
struct page *p = page + 1;
|
|
|
|
|
mm/hugetlb: clear compound_mapcount when freeing gigantic pages
While working on s390 support for gigantic hugepages I ran into the
following "Bad page state" warning when freeing gigantic pages:
BUG: Bad page state in process bash pfn:580001
page:000003d116000040 count:0 mapcount:0 mapping:ffffffff00000000 index:0x0
flags: 0x7fffc0000000000()
page dumped because: non-NULL mapping
This is because page->compound_mapcount, which is part of a union with
page->mapping, is initialized with -1 in prep_compound_gigantic_page(),
and not cleared again during destroy_compound_gigantic_page(). Fix this
by clearing the compound_mapcount in destroy_compound_gigantic_page()
before clearing compound_head.
Interestingly enough, the warning will not show up on x86_64, although
this should not be architecture specific. Apparently there is an
endianness issue, combined with the fact that the union contains both a
64 bit ->mapping pointer and a 32 bit atomic_t ->compound_mapcount as
members. The resulting bogus page->mapping on x86_64 therefore contains
00000000ffffffff instead of ffffffff00000000 on s390, which will falsely
trigger the PageAnon() check in free_pages_prepare() because
page->mapping & PAGE_MAPPING_ANON is true on little-endian architectures
like x86_64 in this case (the page is not compound anymore,
->compound_head was already cleared before). As a result, page->mapping
will be cleared before doing the checks in free_pages_check().
Not sure if the bogus "PageAnon() returning true" on x86_64 for the
first tail page of a gigantic page (at this stage) has other theoretical
implications, but they would also be fixed with this patch.
Link: http://lkml.kernel.org/r/1466612719-5642-1-git-send-email-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-25 05:50:04 +08:00
|
|
|
atomic_set(compound_mapcount_ptr(page), 0);
|
mm/gup: page->hpage_pinned_refcount: exact pin counts for huge pages
For huge pages (and in fact, any compound page), the GUP_PIN_COUNTING_BIAS
scheme tends to overflow too easily, each tail page increments the head
page->_refcount by GUP_PIN_COUNTING_BIAS (1024). That limits the number
of huge pages that can be pinned.
This patch removes that limitation, by using an exact form of pin counting
for compound pages of order > 1. The "order > 1" is required because this
approach uses the 3rd struct page in the compound page, and order 1
compound pages only have two pages, so that won't work there.
A new struct page field, hpage_pinned_refcount, has been added, replacing
a padding field in the union (so no new space is used).
This enhancement also has a useful side effect: huge pages and compound
pages (of order > 1) do not suffer from the "potential false positives"
problem that is discussed in the page_dma_pinned() comment block. That is
because these compound pages have extra space for tracking things, so they
get exact pin counts instead of overloading page->_refcount.
Documentation/core-api/pin_user_pages.rst is updated accordingly.
Suggested-by: Jan Kara <jack@suse.cz>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200211001536.1027652-8-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:33 +08:00
|
|
|
if (hpage_pincount_available(page))
|
|
|
|
atomic_set(compound_pincount_ptr(page), 0);
|
|
|
|
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
|
2015-11-07 08:29:54 +08:00
|
|
|
clear_compound_head(p);
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
set_page_refcounted(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
set_compound_order(page, 0);
|
|
|
|
__ClearPageHead(page);
|
|
|
|
}
|
|
|
|
|
2015-11-07 08:29:57 +08:00
|
|
|
static void free_gigantic_page(struct page *page, unsigned int order)
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
{
|
mm: hugetlb: optionally allocate gigantic hugepages using cma
Commit 944d9fec8d7a ("hugetlb: add support for gigantic page allocation
at runtime") has added the run-time allocation of gigantic pages.
However it actually works only at early stages of the system loading,
when the majority of memory is free. After some time the memory gets
fragmented by non-movable pages, so the chances to find a contiguous 1GB
block are getting close to zero. Even dropping caches manually doesn't
help a lot.
At large scale rebooting servers in order to allocate gigantic hugepages
is quite expensive and complex. At the same time keeping some constant
percentage of memory in reserved hugepages even if the workload isn't
using it is a big waste: not all workloads can benefit from using 1 GB
pages.
The following solution can solve the problem:
1) On boot time a dedicated cma area* is reserved. The size is passed
as a kernel argument.
2) Run-time allocations of gigantic hugepages are performed using the
cma allocator and the dedicated cma area
In this case gigantic hugepages can be allocated successfully with a
high probability, however the memory isn't completely wasted if nobody
is using 1GB hugepages: it can be used for pagecache, anon memory, THPs,
etc.
* On a multi-node machine a per-node cma area is allocated on each node.
Following gigantic hugetlb allocation are using the first available
numa node if the mask isn't specified by a user.
Usage:
1) configure the kernel to allocate a cma area for hugetlb allocations:
pass hugetlb_cma=10G as a kernel argument
2) allocate hugetlb pages as usual, e.g.
echo 10 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
If the option isn't enabled or the allocation of the cma area failed,
the current behavior of the system is preserved.
x86 and arm-64 are covered by this patch, other architectures can be
trivially added later.
The patch contains clean-ups and fixes proposed and implemented by Aslan
Bakirov and Randy Dunlap. It also contains ideas and suggestions
proposed by Rik van Riel, Michal Hocko and Mike Kravetz. Thanks!
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Andreas Schaufler <andreas.schaufler@gmx.de>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Aslan Bakirov <aslan@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200407163840.92263-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-11 05:32:45 +08:00
|
|
|
/*
|
|
|
|
* If the page isn't allocated using the cma allocator,
|
|
|
|
* cma_release() returns false.
|
|
|
|
*/
|
|
|
|
if (IS_ENABLED(CONFIG_CMA) &&
|
|
|
|
cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
|
|
|
|
return;
|
|
|
|
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
free_contig_range(page_to_pfn(page), 1 << order);
|
|
|
|
}
|
|
|
|
|
2019-05-14 08:19:04 +08:00
|
|
|
#ifdef CONFIG_CONTIG_ALLOC
|
2018-02-01 08:20:44 +08:00
|
|
|
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
|
|
|
|
int nid, nodemask_t *nodemask)
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
{
|
2019-12-01 09:55:06 +08:00
|
|
|
unsigned long nr_pages = 1UL << huge_page_order(h);
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
|
mm: hugetlb: optionally allocate gigantic hugepages using cma
Commit 944d9fec8d7a ("hugetlb: add support for gigantic page allocation
at runtime") has added the run-time allocation of gigantic pages.
However it actually works only at early stages of the system loading,
when the majority of memory is free. After some time the memory gets
fragmented by non-movable pages, so the chances to find a contiguous 1GB
block are getting close to zero. Even dropping caches manually doesn't
help a lot.
At large scale rebooting servers in order to allocate gigantic hugepages
is quite expensive and complex. At the same time keeping some constant
percentage of memory in reserved hugepages even if the workload isn't
using it is a big waste: not all workloads can benefit from using 1 GB
pages.
The following solution can solve the problem:
1) On boot time a dedicated cma area* is reserved. The size is passed
as a kernel argument.
2) Run-time allocations of gigantic hugepages are performed using the
cma allocator and the dedicated cma area
In this case gigantic hugepages can be allocated successfully with a
high probability, however the memory isn't completely wasted if nobody
is using 1GB hugepages: it can be used for pagecache, anon memory, THPs,
etc.
* On a multi-node machine a per-node cma area is allocated on each node.
Following gigantic hugetlb allocation are using the first available
numa node if the mask isn't specified by a user.
Usage:
1) configure the kernel to allocate a cma area for hugetlb allocations:
pass hugetlb_cma=10G as a kernel argument
2) allocate hugetlb pages as usual, e.g.
echo 10 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
If the option isn't enabled or the allocation of the cma area failed,
the current behavior of the system is preserved.
x86 and arm-64 are covered by this patch, other architectures can be
trivially added later.
The patch contains clean-ups and fixes proposed and implemented by Aslan
Bakirov and Randy Dunlap. It also contains ideas and suggestions
proposed by Rik van Riel, Michal Hocko and Mike Kravetz. Thanks!
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Andreas Schaufler <andreas.schaufler@gmx.de>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Aslan Bakirov <aslan@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200407163840.92263-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-11 05:32:45 +08:00
|
|
|
if (IS_ENABLED(CONFIG_CMA)) {
|
|
|
|
struct page *page;
|
|
|
|
int node;
|
|
|
|
|
|
|
|
for_each_node_mask(node, *nodemask) {
|
|
|
|
if (!hugetlb_cma[node])
|
|
|
|
continue;
|
|
|
|
|
|
|
|
page = cma_alloc(hugetlb_cma[node], nr_pages,
|
|
|
|
huge_page_order(h), true);
|
|
|
|
if (page)
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-12-01 09:55:06 +08:00
|
|
|
return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
|
2015-11-07 08:29:57 +08:00
|
|
|
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
|
2019-05-14 08:19:04 +08:00
|
|
|
#else /* !CONFIG_CONTIG_ALLOC */
|
|
|
|
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
|
|
|
|
int nid, nodemask_t *nodemask)
|
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_CONTIG_ALLOC */
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
|
2017-07-07 06:39:17 +08:00
|
|
|
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
|
2018-02-01 08:20:44 +08:00
|
|
|
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
|
2019-05-14 08:19:04 +08:00
|
|
|
int nid, nodemask_t *nodemask)
|
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
2015-11-07 08:29:57 +08:00
|
|
|
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
static inline void destroy_compound_gigantic_page(struct page *page,
|
2015-11-07 08:29:57 +08:00
|
|
|
unsigned int order) { }
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
#endif
|
|
|
|
|
2008-07-24 12:27:41 +08:00
|
|
|
static void update_and_free_page(struct hstate *h, struct page *page)
|
hugetlb: Move update_and_free_page
Dynamic huge page pool resizing.
In most real-world scenarios, configuring the size of the hugetlb pool
correctly is a difficult task. If too few pages are allocated to the pool,
applications using MAP_SHARED may fail to mmap() a hugepage region and
applications using MAP_PRIVATE may receive SIGBUS. Isolating too much memory
in the hugetlb pool means it is not available for other uses, especially those
programs not using huge pages.
The obvious answer is to let the hugetlb pool grow and shrink in response to
the runtime demand for huge pages. The work Mel Gorman has been doing to
establish a memory zone for movable memory allocations makes dynamically
resizing the hugetlb pool reliable within the limits of that zone. This patch
series implements dynamic pool resizing for private and shared mappings while
being careful to maintain existing semantics. Please reply with your comments
and feedback; even just to say whether it would be a useful feature to you.
Thanks.
How it works
============
Upon depletion of the hugetlb pool, rather than reporting an error immediately,
first try and allocate the needed huge pages directly from the buddy allocator.
Care must be taken to avoid unbounded growth of the hugetlb pool, so the
hugetlb filesystem quota is used to limit overall pool size.
The real work begins when we decide there is a shortage of huge pages. What
happens next depends on whether the pages are for a private or shared mapping.
Private mappings are straightforward. At fault time, if alloc_huge_page()
fails, we allocate a page from the buddy allocator and increment the source
node's surplus_huge_pages counter. When free_huge_page() is called for a page
on a node with a surplus, the page is freed directly to the buddy allocator
instead of the hugetlb pool.
Because shared mappings require all of the pages to be reserved up front, some
additional work must be done at mmap() to support them. We determine the
reservation shortage and allocate the required number of pages all at once.
These pages are then added to the hugetlb pool and marked reserved. Where that
is not possible the mmap() will fail. As with private mappings, the
appropriate surplus counters are updated. Since reserved huge pages won't
necessarily be used by the process, we can't be sure that free_huge_page() will
always be called to return surplus pages to the buddy allocator. To prevent
the huge page pool from bloating, we must free unused surplus pages when their
reservation has ended.
Controlling it
==============
With the entire patch series applied, pool resizing is off by default so unless
specific action is taken, the semantics are unchanged.
To take advantage of the flexibility afforded by this patch series one must
tolerate a change in semantics. To control hugetlb pool growth, the following
techniques can be employed:
* A sysctl tunable to enable/disable the feature entirely
* The size= mount option for hugetlbfs filesystems to limit pool size
Performance
===========
When contiguous memory is readily available, it is expected that the cost of
dynamicly resizing the pool will be small. This series has been performance
tested with 'stream' to measure this cost.
Stream (http://www.cs.virginia.edu/stream/) was linked with libhugetlbfs to
enable remapping of the text and data/bss segments into huge pages.
Stream with small array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 5, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 4695.6266 5942.8371 5982.2287
Scale: 4451.5776 5017.1419 5658.7843
Add: 5815.8849 7927.7827 8119.3552
Triad: 5949.4144 8527.6492 8110.6903
Stream with large array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 67, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 2227.8281 2544.2732 2546.4947
Scale: 2136.3208 2430.7294 2421.2074
Add: 2773.1449 4004.0021 3999.4331
Triad: 2748.4502 3777.0109 3773.4970
* All numbers are averages taken from 10 consecutive runs with a maximum
standard deviation of 1.3 percent noted.
This patch:
Simply move update_and_free_page() so that it can be reused later in this
patch series. The implementation is not changed.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Dave McCracken <dave.mccracken@oracle.com>
Acked-by: William Irwin <bill.irwin@oracle.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:26:16 +08:00
|
|
|
{
|
|
|
|
int i;
|
2008-07-24 12:27:41 +08:00
|
|
|
|
2019-05-14 08:19:04 +08:00
|
|
|
if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
return;
|
2008-11-07 04:53:27 +08:00
|
|
|
|
2008-07-24 12:27:41 +08:00
|
|
|
h->nr_huge_pages--;
|
|
|
|
h->nr_huge_pages_node[page_to_nid(page)]--;
|
|
|
|
for (i = 0; i < pages_per_huge_page(h); i++) {
|
2011-07-26 08:12:14 +08:00
|
|
|
page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
|
|
|
|
1 << PG_referenced | 1 << PG_dirty |
|
2014-06-05 07:07:09 +08:00
|
|
|
1 << PG_active | 1 << PG_private |
|
|
|
|
1 << PG_writeback);
|
hugetlb: Move update_and_free_page
Dynamic huge page pool resizing.
In most real-world scenarios, configuring the size of the hugetlb pool
correctly is a difficult task. If too few pages are allocated to the pool,
applications using MAP_SHARED may fail to mmap() a hugepage region and
applications using MAP_PRIVATE may receive SIGBUS. Isolating too much memory
in the hugetlb pool means it is not available for other uses, especially those
programs not using huge pages.
The obvious answer is to let the hugetlb pool grow and shrink in response to
the runtime demand for huge pages. The work Mel Gorman has been doing to
establish a memory zone for movable memory allocations makes dynamically
resizing the hugetlb pool reliable within the limits of that zone. This patch
series implements dynamic pool resizing for private and shared mappings while
being careful to maintain existing semantics. Please reply with your comments
and feedback; even just to say whether it would be a useful feature to you.
Thanks.
How it works
============
Upon depletion of the hugetlb pool, rather than reporting an error immediately,
first try and allocate the needed huge pages directly from the buddy allocator.
Care must be taken to avoid unbounded growth of the hugetlb pool, so the
hugetlb filesystem quota is used to limit overall pool size.
The real work begins when we decide there is a shortage of huge pages. What
happens next depends on whether the pages are for a private or shared mapping.
Private mappings are straightforward. At fault time, if alloc_huge_page()
fails, we allocate a page from the buddy allocator and increment the source
node's surplus_huge_pages counter. When free_huge_page() is called for a page
on a node with a surplus, the page is freed directly to the buddy allocator
instead of the hugetlb pool.
Because shared mappings require all of the pages to be reserved up front, some
additional work must be done at mmap() to support them. We determine the
reservation shortage and allocate the required number of pages all at once.
These pages are then added to the hugetlb pool and marked reserved. Where that
is not possible the mmap() will fail. As with private mappings, the
appropriate surplus counters are updated. Since reserved huge pages won't
necessarily be used by the process, we can't be sure that free_huge_page() will
always be called to return surplus pages to the buddy allocator. To prevent
the huge page pool from bloating, we must free unused surplus pages when their
reservation has ended.
Controlling it
==============
With the entire patch series applied, pool resizing is off by default so unless
specific action is taken, the semantics are unchanged.
To take advantage of the flexibility afforded by this patch series one must
tolerate a change in semantics. To control hugetlb pool growth, the following
techniques can be employed:
* A sysctl tunable to enable/disable the feature entirely
* The size= mount option for hugetlbfs filesystems to limit pool size
Performance
===========
When contiguous memory is readily available, it is expected that the cost of
dynamicly resizing the pool will be small. This series has been performance
tested with 'stream' to measure this cost.
Stream (http://www.cs.virginia.edu/stream/) was linked with libhugetlbfs to
enable remapping of the text and data/bss segments into huge pages.
Stream with small array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 5, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 4695.6266 5942.8371 5982.2287
Scale: 4451.5776 5017.1419 5658.7843
Add: 5815.8849 7927.7827 8119.3552
Triad: 5949.4144 8527.6492 8110.6903
Stream with large array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 67, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 2227.8281 2544.2732 2546.4947
Scale: 2136.3208 2430.7294 2421.2074
Add: 2773.1449 4004.0021 3999.4331
Triad: 2748.4502 3777.0109 3773.4970
* All numbers are averages taken from 10 consecutive runs with a maximum
standard deviation of 1.3 percent noted.
This patch:
Simply move update_and_free_page() so that it can be reused later in this
patch series. The implementation is not changed.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Dave McCracken <dave.mccracken@oracle.com>
Acked-by: William Irwin <bill.irwin@oracle.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:26:16 +08:00
|
|
|
}
|
2014-01-24 07:52:54 +08:00
|
|
|
VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
|
2020-04-02 12:11:15 +08:00
|
|
|
VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
|
2015-11-07 08:29:50 +08:00
|
|
|
set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
|
hugetlb: Move update_and_free_page
Dynamic huge page pool resizing.
In most real-world scenarios, configuring the size of the hugetlb pool
correctly is a difficult task. If too few pages are allocated to the pool,
applications using MAP_SHARED may fail to mmap() a hugepage region and
applications using MAP_PRIVATE may receive SIGBUS. Isolating too much memory
in the hugetlb pool means it is not available for other uses, especially those
programs not using huge pages.
The obvious answer is to let the hugetlb pool grow and shrink in response to
the runtime demand for huge pages. The work Mel Gorman has been doing to
establish a memory zone for movable memory allocations makes dynamically
resizing the hugetlb pool reliable within the limits of that zone. This patch
series implements dynamic pool resizing for private and shared mappings while
being careful to maintain existing semantics. Please reply with your comments
and feedback; even just to say whether it would be a useful feature to you.
Thanks.
How it works
============
Upon depletion of the hugetlb pool, rather than reporting an error immediately,
first try and allocate the needed huge pages directly from the buddy allocator.
Care must be taken to avoid unbounded growth of the hugetlb pool, so the
hugetlb filesystem quota is used to limit overall pool size.
The real work begins when we decide there is a shortage of huge pages. What
happens next depends on whether the pages are for a private or shared mapping.
Private mappings are straightforward. At fault time, if alloc_huge_page()
fails, we allocate a page from the buddy allocator and increment the source
node's surplus_huge_pages counter. When free_huge_page() is called for a page
on a node with a surplus, the page is freed directly to the buddy allocator
instead of the hugetlb pool.
Because shared mappings require all of the pages to be reserved up front, some
additional work must be done at mmap() to support them. We determine the
reservation shortage and allocate the required number of pages all at once.
These pages are then added to the hugetlb pool and marked reserved. Where that
is not possible the mmap() will fail. As with private mappings, the
appropriate surplus counters are updated. Since reserved huge pages won't
necessarily be used by the process, we can't be sure that free_huge_page() will
always be called to return surplus pages to the buddy allocator. To prevent
the huge page pool from bloating, we must free unused surplus pages when their
reservation has ended.
Controlling it
==============
With the entire patch series applied, pool resizing is off by default so unless
specific action is taken, the semantics are unchanged.
To take advantage of the flexibility afforded by this patch series one must
tolerate a change in semantics. To control hugetlb pool growth, the following
techniques can be employed:
* A sysctl tunable to enable/disable the feature entirely
* The size= mount option for hugetlbfs filesystems to limit pool size
Performance
===========
When contiguous memory is readily available, it is expected that the cost of
dynamicly resizing the pool will be small. This series has been performance
tested with 'stream' to measure this cost.
Stream (http://www.cs.virginia.edu/stream/) was linked with libhugetlbfs to
enable remapping of the text and data/bss segments into huge pages.
Stream with small array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 5, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 4695.6266 5942.8371 5982.2287
Scale: 4451.5776 5017.1419 5658.7843
Add: 5815.8849 7927.7827 8119.3552
Triad: 5949.4144 8527.6492 8110.6903
Stream with large array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 67, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 2227.8281 2544.2732 2546.4947
Scale: 2136.3208 2430.7294 2421.2074
Add: 2773.1449 4004.0021 3999.4331
Triad: 2748.4502 3777.0109 3773.4970
* All numbers are averages taken from 10 consecutive runs with a maximum
standard deviation of 1.3 percent noted.
This patch:
Simply move update_and_free_page() so that it can be reused later in this
patch series. The implementation is not changed.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Dave McCracken <dave.mccracken@oracle.com>
Acked-by: William Irwin <bill.irwin@oracle.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:26:16 +08:00
|
|
|
set_page_refcounted(page);
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
if (hstate_is_gigantic(h)) {
|
mm: hugetlb: optionally allocate gigantic hugepages using cma
Commit 944d9fec8d7a ("hugetlb: add support for gigantic page allocation
at runtime") has added the run-time allocation of gigantic pages.
However it actually works only at early stages of the system loading,
when the majority of memory is free. After some time the memory gets
fragmented by non-movable pages, so the chances to find a contiguous 1GB
block are getting close to zero. Even dropping caches manually doesn't
help a lot.
At large scale rebooting servers in order to allocate gigantic hugepages
is quite expensive and complex. At the same time keeping some constant
percentage of memory in reserved hugepages even if the workload isn't
using it is a big waste: not all workloads can benefit from using 1 GB
pages.
The following solution can solve the problem:
1) On boot time a dedicated cma area* is reserved. The size is passed
as a kernel argument.
2) Run-time allocations of gigantic hugepages are performed using the
cma allocator and the dedicated cma area
In this case gigantic hugepages can be allocated successfully with a
high probability, however the memory isn't completely wasted if nobody
is using 1GB hugepages: it can be used for pagecache, anon memory, THPs,
etc.
* On a multi-node machine a per-node cma area is allocated on each node.
Following gigantic hugetlb allocation are using the first available
numa node if the mask isn't specified by a user.
Usage:
1) configure the kernel to allocate a cma area for hugetlb allocations:
pass hugetlb_cma=10G as a kernel argument
2) allocate hugetlb pages as usual, e.g.
echo 10 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
If the option isn't enabled or the allocation of the cma area failed,
the current behavior of the system is preserved.
x86 and arm-64 are covered by this patch, other architectures can be
trivially added later.
The patch contains clean-ups and fixes proposed and implemented by Aslan
Bakirov and Randy Dunlap. It also contains ideas and suggestions
proposed by Rik van Riel, Michal Hocko and Mike Kravetz. Thanks!
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Andreas Schaufler <andreas.schaufler@gmx.de>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Aslan Bakirov <aslan@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200407163840.92263-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-11 05:32:45 +08:00
|
|
|
/*
|
|
|
|
* Temporarily drop the hugetlb_lock, because
|
|
|
|
* we might block in free_gigantic_page().
|
|
|
|
*/
|
|
|
|
spin_unlock(&hugetlb_lock);
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
destroy_compound_gigantic_page(page, huge_page_order(h));
|
|
|
|
free_gigantic_page(page, huge_page_order(h));
|
mm: hugetlb: optionally allocate gigantic hugepages using cma
Commit 944d9fec8d7a ("hugetlb: add support for gigantic page allocation
at runtime") has added the run-time allocation of gigantic pages.
However it actually works only at early stages of the system loading,
when the majority of memory is free. After some time the memory gets
fragmented by non-movable pages, so the chances to find a contiguous 1GB
block are getting close to zero. Even dropping caches manually doesn't
help a lot.
At large scale rebooting servers in order to allocate gigantic hugepages
is quite expensive and complex. At the same time keeping some constant
percentage of memory in reserved hugepages even if the workload isn't
using it is a big waste: not all workloads can benefit from using 1 GB
pages.
The following solution can solve the problem:
1) On boot time a dedicated cma area* is reserved. The size is passed
as a kernel argument.
2) Run-time allocations of gigantic hugepages are performed using the
cma allocator and the dedicated cma area
In this case gigantic hugepages can be allocated successfully with a
high probability, however the memory isn't completely wasted if nobody
is using 1GB hugepages: it can be used for pagecache, anon memory, THPs,
etc.
* On a multi-node machine a per-node cma area is allocated on each node.
Following gigantic hugetlb allocation are using the first available
numa node if the mask isn't specified by a user.
Usage:
1) configure the kernel to allocate a cma area for hugetlb allocations:
pass hugetlb_cma=10G as a kernel argument
2) allocate hugetlb pages as usual, e.g.
echo 10 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
If the option isn't enabled or the allocation of the cma area failed,
the current behavior of the system is preserved.
x86 and arm-64 are covered by this patch, other architectures can be
trivially added later.
The patch contains clean-ups and fixes proposed and implemented by Aslan
Bakirov and Randy Dunlap. It also contains ideas and suggestions
proposed by Rik van Riel, Michal Hocko and Mike Kravetz. Thanks!
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Andreas Schaufler <andreas.schaufler@gmx.de>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Aslan Bakirov <aslan@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200407163840.92263-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-11 05:32:45 +08:00
|
|
|
spin_lock(&hugetlb_lock);
|
hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order. This is so because HugeTLB allocates hugepages via the
buddy allocator. Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.
However, boottime allocation has at least two serious problems. First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.
This commit solves both issues by adding support for allocating gigantic
pages during runtime. It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.
For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:
# echo 2 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
And to free them all:
# echo 0 > \
/sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator. To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region. When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation. For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region. When one is found, it's allocated by alloc_contig_range().
One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by. The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script. Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.
It's also important to note the following:
1. Gigantic pages allocated at boottime by the hugepages= command-line
option can be freed at runtime just fine
2. This commit adds support for gigantic pages only to x86_64. The
reason is that I don't have access to nor experience with other archs.
The code is arch indepedent though, so it should be simple to add
support to different archs
3. I didn't add support for hugepage overcommit, that is allocating
a gigantic page on demand when
/proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
think it's reasonable to do the hard and long work required for
allocating a gigantic page at fault time. But it should be simple
to add this if wanted
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:13 +08:00
|
|
|
} else {
|
|
|
|
__free_pages(page, huge_page_order(h));
|
|
|
|
}
|
hugetlb: Move update_and_free_page
Dynamic huge page pool resizing.
In most real-world scenarios, configuring the size of the hugetlb pool
correctly is a difficult task. If too few pages are allocated to the pool,
applications using MAP_SHARED may fail to mmap() a hugepage region and
applications using MAP_PRIVATE may receive SIGBUS. Isolating too much memory
in the hugetlb pool means it is not available for other uses, especially those
programs not using huge pages.
The obvious answer is to let the hugetlb pool grow and shrink in response to
the runtime demand for huge pages. The work Mel Gorman has been doing to
establish a memory zone for movable memory allocations makes dynamically
resizing the hugetlb pool reliable within the limits of that zone. This patch
series implements dynamic pool resizing for private and shared mappings while
being careful to maintain existing semantics. Please reply with your comments
and feedback; even just to say whether it would be a useful feature to you.
Thanks.
How it works
============
Upon depletion of the hugetlb pool, rather than reporting an error immediately,
first try and allocate the needed huge pages directly from the buddy allocator.
Care must be taken to avoid unbounded growth of the hugetlb pool, so the
hugetlb filesystem quota is used to limit overall pool size.
The real work begins when we decide there is a shortage of huge pages. What
happens next depends on whether the pages are for a private or shared mapping.
Private mappings are straightforward. At fault time, if alloc_huge_page()
fails, we allocate a page from the buddy allocator and increment the source
node's surplus_huge_pages counter. When free_huge_page() is called for a page
on a node with a surplus, the page is freed directly to the buddy allocator
instead of the hugetlb pool.
Because shared mappings require all of the pages to be reserved up front, some
additional work must be done at mmap() to support them. We determine the
reservation shortage and allocate the required number of pages all at once.
These pages are then added to the hugetlb pool and marked reserved. Where that
is not possible the mmap() will fail. As with private mappings, the
appropriate surplus counters are updated. Since reserved huge pages won't
necessarily be used by the process, we can't be sure that free_huge_page() will
always be called to return surplus pages to the buddy allocator. To prevent
the huge page pool from bloating, we must free unused surplus pages when their
reservation has ended.
Controlling it
==============
With the entire patch series applied, pool resizing is off by default so unless
specific action is taken, the semantics are unchanged.
To take advantage of the flexibility afforded by this patch series one must
tolerate a change in semantics. To control hugetlb pool growth, the following
techniques can be employed:
* A sysctl tunable to enable/disable the feature entirely
* The size= mount option for hugetlbfs filesystems to limit pool size
Performance
===========
When contiguous memory is readily available, it is expected that the cost of
dynamicly resizing the pool will be small. This series has been performance
tested with 'stream' to measure this cost.
Stream (http://www.cs.virginia.edu/stream/) was linked with libhugetlbfs to
enable remapping of the text and data/bss segments into huge pages.
Stream with small array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 5, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 4695.6266 5942.8371 5982.2287
Scale: 4451.5776 5017.1419 5658.7843
Add: 5815.8849 7927.7827 8119.3552
Triad: 5949.4144 8527.6492 8110.6903
Stream with large array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 67, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 2227.8281 2544.2732 2546.4947
Scale: 2136.3208 2430.7294 2421.2074
Add: 2773.1449 4004.0021 3999.4331
Triad: 2748.4502 3777.0109 3773.4970
* All numbers are averages taken from 10 consecutive runs with a maximum
standard deviation of 1.3 percent noted.
This patch:
Simply move update_and_free_page() so that it can be reused later in this
patch series. The implementation is not changed.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Dave McCracken <dave.mccracken@oracle.com>
Acked-by: William Irwin <bill.irwin@oracle.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:26:16 +08:00
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:42 +08:00
|
|
|
struct hstate *size_to_hstate(unsigned long size)
|
|
|
|
{
|
|
|
|
struct hstate *h;
|
|
|
|
|
|
|
|
for_each_hstate(h) {
|
|
|
|
if (huge_page_size(h) == size)
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2015-04-16 07:14:38 +08:00
|
|
|
/*
|
|
|
|
* Test to determine whether the hugepage is "active/in-use" (i.e. being linked
|
|
|
|
* to hstate->hugepage_activelist.)
|
|
|
|
*
|
|
|
|
* This function can be called for tail pages, but never returns true for them.
|
|
|
|
*/
|
|
|
|
bool page_huge_active(struct page *page)
|
|
|
|
{
|
|
|
|
VM_BUG_ON_PAGE(!PageHuge(page), page);
|
|
|
|
return PageHead(page) && PagePrivate(&page[1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* never called for tail page */
|
|
|
|
static void set_page_huge_active(struct page *page)
|
|
|
|
{
|
|
|
|
VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
|
|
|
|
SetPagePrivate(&page[1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void clear_page_huge_active(struct page *page)
|
|
|
|
{
|
|
|
|
VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
|
|
|
|
ClearPagePrivate(&page[1]);
|
|
|
|
}
|
|
|
|
|
2018-02-01 08:20:48 +08:00
|
|
|
/*
|
|
|
|
* Internal hugetlb specific page flag. Do not use outside of the hugetlb
|
|
|
|
* code
|
|
|
|
*/
|
|
|
|
static inline bool PageHugeTemporary(struct page *page)
|
|
|
|
{
|
|
|
|
if (!PageHuge(page))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return (unsigned long)page[2].mapping == -1U;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void SetPageHugeTemporary(struct page *page)
|
|
|
|
{
|
|
|
|
page[2].mapping = (void *)-1U;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void ClearPageHugeTemporary(struct page *page)
|
|
|
|
{
|
|
|
|
page[2].mapping = NULL;
|
|
|
|
}
|
|
|
|
|
2020-01-05 05:00:15 +08:00
|
|
|
static void __free_huge_page(struct page *page)
|
2006-03-22 16:08:56 +08:00
|
|
|
{
|
2008-07-24 12:27:41 +08:00
|
|
|
/*
|
|
|
|
* Can't pass hstate in here because it is called from the
|
|
|
|
* compound page destructor.
|
|
|
|
*/
|
2008-07-24 12:27:42 +08:00
|
|
|
struct hstate *h = page_hstate(page);
|
2007-10-16 16:26:18 +08:00
|
|
|
int nid = page_to_nid(page);
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
struct hugepage_subpool *spool =
|
|
|
|
(struct hugepage_subpool *)page_private(page);
|
2013-09-12 05:21:58 +08:00
|
|
|
bool restore_reserve;
|
2006-03-22 16:08:56 +08:00
|
|
|
|
2016-02-06 07:36:38 +08:00
|
|
|
VM_BUG_ON_PAGE(page_count(page), page);
|
|
|
|
VM_BUG_ON_PAGE(page_mapcount(page), page);
|
2018-12-15 06:17:10 +08:00
|
|
|
|
|
|
|
set_page_private(page, 0);
|
|
|
|
page->mapping = NULL;
|
2013-09-12 05:21:58 +08:00
|
|
|
restore_reserve = PagePrivate(page);
|
2013-10-17 04:46:48 +08:00
|
|
|
ClearPagePrivate(page);
|
2006-03-22 16:08:56 +08:00
|
|
|
|
2015-04-16 07:13:39 +08:00
|
|
|
/*
|
2019-05-14 08:19:38 +08:00
|
|
|
* If PagePrivate() was set on page, page allocation consumed a
|
|
|
|
* reservation. If the page was associated with a subpool, there
|
|
|
|
* would have been a page reserved in the subpool before allocation
|
|
|
|
* via hugepage_subpool_get_pages(). Since we are 'restoring' the
|
|
|
|
* reservtion, do not call hugepage_subpool_put_pages() as this will
|
|
|
|
* remove the reserved page from the subpool.
|
2015-04-16 07:13:39 +08:00
|
|
|
*/
|
2019-05-14 08:19:38 +08:00
|
|
|
if (!restore_reserve) {
|
|
|
|
/*
|
|
|
|
* A return code of zero implies that the subpool will be
|
|
|
|
* under its minimum size if the reservation is not restored
|
|
|
|
* after page is free. Therefore, force restore_reserve
|
|
|
|
* operation.
|
|
|
|
*/
|
|
|
|
if (hugepage_subpool_put_pages(spool, 1) == 0)
|
|
|
|
restore_reserve = true;
|
|
|
|
}
|
2015-04-16 07:13:39 +08:00
|
|
|
|
2006-03-22 16:08:56 +08:00
|
|
|
spin_lock(&hugetlb_lock);
|
2015-04-16 07:14:38 +08:00
|
|
|
clear_page_huge_active(page);
|
2012-08-01 07:42:18 +08:00
|
|
|
hugetlb_cgroup_uncharge_page(hstate_index(h),
|
|
|
|
pages_per_huge_page(h), page);
|
2020-04-02 12:11:31 +08:00
|
|
|
hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
|
|
|
|
pages_per_huge_page(h), page);
|
2013-09-12 05:21:58 +08:00
|
|
|
if (restore_reserve)
|
|
|
|
h->resv_huge_pages++;
|
|
|
|
|
2018-02-01 08:20:48 +08:00
|
|
|
if (PageHugeTemporary(page)) {
|
|
|
|
list_del(&page->lru);
|
|
|
|
ClearPageHugeTemporary(page);
|
|
|
|
update_and_free_page(h, page);
|
|
|
|
} else if (h->surplus_huge_pages_node[nid]) {
|
2012-08-01 07:42:07 +08:00
|
|
|
/* remove the page from active list */
|
|
|
|
list_del(&page->lru);
|
2008-07-24 12:27:41 +08:00
|
|
|
update_and_free_page(h, page);
|
|
|
|
h->surplus_huge_pages--;
|
|
|
|
h->surplus_huge_pages_node[nid]--;
|
2007-10-16 16:26:18 +08:00
|
|
|
} else {
|
2012-10-09 07:29:32 +08:00
|
|
|
arch_clear_hugepage_flags(page);
|
2008-07-24 12:27:41 +08:00
|
|
|
enqueue_huge_page(h, page);
|
2007-10-16 16:26:18 +08:00
|
|
|
}
|
2006-03-22 16:08:56 +08:00
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
}
|
|
|
|
|
2020-01-05 05:00:15 +08:00
|
|
|
/*
|
|
|
|
* As free_huge_page() can be called from a non-task context, we have
|
|
|
|
* to defer the actual freeing in a workqueue to prevent potential
|
|
|
|
* hugetlb_lock deadlock.
|
|
|
|
*
|
|
|
|
* free_hpage_workfn() locklessly retrieves the linked list of pages to
|
|
|
|
* be freed and frees them one-by-one. As the page->mapping pointer is
|
|
|
|
* going to be cleared in __free_huge_page() anyway, it is reused as the
|
|
|
|
* llist_node structure of a lockless linked list of huge pages to be freed.
|
|
|
|
*/
|
|
|
|
static LLIST_HEAD(hpage_freelist);
|
|
|
|
|
|
|
|
static void free_hpage_workfn(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct llist_node *node;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
node = llist_del_all(&hpage_freelist);
|
|
|
|
|
|
|
|
while (node) {
|
|
|
|
page = container_of((struct address_space **)node,
|
|
|
|
struct page, mapping);
|
|
|
|
node = node->next;
|
|
|
|
__free_huge_page(page);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
|
|
|
|
|
|
|
|
void free_huge_page(struct page *page)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
|
|
|
|
*/
|
|
|
|
if (!in_task()) {
|
|
|
|
/*
|
|
|
|
* Only call schedule_work() if hpage_freelist is previously
|
|
|
|
* empty. Otherwise, schedule_work() had been called but the
|
|
|
|
* workfn hasn't retrieved the list yet.
|
|
|
|
*/
|
|
|
|
if (llist_add((struct llist_node *)&page->mapping,
|
|
|
|
&hpage_freelist))
|
|
|
|
schedule_work(&free_hpage_work);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__free_huge_page(page);
|
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:41 +08:00
|
|
|
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
|
2008-07-24 12:27:40 +08:00
|
|
|
{
|
2012-08-01 07:42:07 +08:00
|
|
|
INIT_LIST_HEAD(&page->lru);
|
2015-11-07 08:29:50 +08:00
|
|
|
set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
|
2008-07-24 12:27:40 +08:00
|
|
|
spin_lock(&hugetlb_lock);
|
2012-08-01 07:42:15 +08:00
|
|
|
set_hugetlb_cgroup(page, NULL);
|
2020-04-02 12:11:15 +08:00
|
|
|
set_hugetlb_cgroup_rsvd(page, NULL);
|
2008-07-24 12:27:41 +08:00
|
|
|
h->nr_huge_pages++;
|
|
|
|
h->nr_huge_pages_node[nid]++;
|
2008-07-24 12:27:40 +08:00
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
}
|
|
|
|
|
2015-11-07 08:29:57 +08:00
|
|
|
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:32:22 +08:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int nr_pages = 1 << order;
|
|
|
|
struct page *p = page + 1;
|
|
|
|
|
|
|
|
/* we rely on prep_new_huge_page to set the destructor */
|
|
|
|
set_compound_order(page, order);
|
2013-10-17 04:46:56 +08:00
|
|
|
__ClearPageReserved(page);
|
2016-01-16 08:51:42 +08:00
|
|
|
__SetPageHead(page);
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:32:22 +08:00
|
|
|
for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
|
2013-10-17 04:46:56 +08:00
|
|
|
/*
|
|
|
|
* For gigantic hugepages allocated through bootmem at
|
|
|
|
* boot, it's safer to be consistent with the not-gigantic
|
|
|
|
* hugepages and clear the PG_reserved bit from all tail pages
|
|
|
|
* too. Otherwse drivers using get_user_pages() to access tail
|
|
|
|
* pages may get the reference counting wrong if they see
|
|
|
|
* PG_reserved set on a tail page (despite the head page not
|
|
|
|
* having PG_reserved set). Enforcing this consistency between
|
|
|
|
* head and tail pages allows drivers to optimize away a check
|
|
|
|
* on the head page when they need know if put_page() is needed
|
|
|
|
* after get_user_pages().
|
|
|
|
*/
|
|
|
|
__ClearPageReserved(p);
|
2011-12-09 06:34:18 +08:00
|
|
|
set_page_count(p, 0);
|
2015-11-07 08:29:54 +08:00
|
|
|
set_compound_head(p, page);
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:32:22 +08:00
|
|
|
}
|
2016-02-06 07:36:38 +08:00
|
|
|
atomic_set(compound_mapcount_ptr(page), -1);
|
mm/gup: page->hpage_pinned_refcount: exact pin counts for huge pages
For huge pages (and in fact, any compound page), the GUP_PIN_COUNTING_BIAS
scheme tends to overflow too easily, each tail page increments the head
page->_refcount by GUP_PIN_COUNTING_BIAS (1024). That limits the number
of huge pages that can be pinned.
This patch removes that limitation, by using an exact form of pin counting
for compound pages of order > 1. The "order > 1" is required because this
approach uses the 3rd struct page in the compound page, and order 1
compound pages only have two pages, so that won't work there.
A new struct page field, hpage_pinned_refcount, has been added, replacing
a padding field in the union (so no new space is used).
This enhancement also has a useful side effect: huge pages and compound
pages (of order > 1) do not suffer from the "potential false positives"
problem that is discussed in the page_dma_pinned() comment block. That is
because these compound pages have extra space for tracking things, so they
get exact pin counts instead of overloading page->_refcount.
Documentation/core-api/pin_user_pages.rst is updated accordingly.
Suggested-by: Jan Kara <jack@suse.cz>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200211001536.1027652-8-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:33 +08:00
|
|
|
|
|
|
|
if (hpage_pincount_available(page))
|
|
|
|
atomic_set(compound_pincount_ptr(page), 0);
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:32:22 +08:00
|
|
|
}
|
|
|
|
|
2012-10-09 07:34:11 +08:00
|
|
|
/*
|
|
|
|
* PageHuge() only returns true for hugetlbfs pages, but not for normal or
|
|
|
|
* transparent huge pages. See the PageTransHuge() documentation for more
|
|
|
|
* details.
|
|
|
|
*/
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:32:22 +08:00
|
|
|
int PageHuge(struct page *page)
|
|
|
|
{
|
|
|
|
if (!PageCompound(page))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
page = compound_head(page);
|
2015-11-07 08:29:50 +08:00
|
|
|
return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:32:22 +08:00
|
|
|
}
|
2010-05-28 08:29:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(PageHuge);
|
|
|
|
|
2013-11-22 06:32:02 +08:00
|
|
|
/*
|
|
|
|
* PageHeadHuge() only returns true for hugetlbfs head page, but not for
|
|
|
|
* normal or transparent huge pages.
|
|
|
|
*/
|
|
|
|
int PageHeadHuge(struct page *page_head)
|
|
|
|
{
|
|
|
|
if (!PageHead(page_head))
|
|
|
|
return 0;
|
|
|
|
|
2020-04-02 12:11:48 +08:00
|
|
|
return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
|
2013-11-22 06:32:02 +08:00
|
|
|
}
|
|
|
|
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
/*
|
|
|
|
* Find address_space associated with hugetlbfs page.
|
|
|
|
* Upon entry page is locked and page 'was' mapped although mapped state
|
|
|
|
* could change. If necessary, use anon_vma to find vma and associated
|
|
|
|
* address space. The returned mapping may be stale, but it can not be
|
|
|
|
* invalid as page lock (which is held) is required to destroy mapping.
|
|
|
|
*/
|
|
|
|
static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
|
|
|
|
{
|
|
|
|
struct anon_vma *anon_vma;
|
|
|
|
pgoff_t pgoff_start, pgoff_end;
|
|
|
|
struct anon_vma_chain *avc;
|
|
|
|
struct address_space *mapping = page_mapping(hpage);
|
|
|
|
|
|
|
|
/* Simple file based mapping */
|
|
|
|
if (mapping)
|
|
|
|
return mapping;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Even anonymous hugetlbfs mappings are associated with an
|
|
|
|
* underlying hugetlbfs file (see hugetlb_file_setup in mmap
|
|
|
|
* code). Find a vma associated with the anonymous vma, and
|
|
|
|
* use the file pointer to get address_space.
|
|
|
|
*/
|
|
|
|
anon_vma = page_lock_anon_vma_read(hpage);
|
|
|
|
if (!anon_vma)
|
|
|
|
return mapping; /* NULL */
|
|
|
|
|
|
|
|
/* Use first found vma */
|
|
|
|
pgoff_start = page_to_pgoff(hpage);
|
|
|
|
pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
|
|
|
|
anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
|
|
|
|
pgoff_start, pgoff_end) {
|
|
|
|
struct vm_area_struct *vma = avc->vma;
|
|
|
|
|
|
|
|
mapping = vma->vm_file->f_mapping;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
anon_vma_unlock_read(anon_vma);
|
|
|
|
return mapping;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Find and lock address space (mapping) in write mode.
|
|
|
|
*
|
|
|
|
* Upon entry, the page is locked which allows us to find the mapping
|
|
|
|
* even in the case of an anon page. However, locking order dictates
|
|
|
|
* the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
|
|
|
|
* specific. So, we first try to lock the sema while still holding the
|
|
|
|
* page lock. If this works, great! If not, then we need to drop the
|
|
|
|
* page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
|
|
|
|
* course, need to revalidate state along the way.
|
|
|
|
*/
|
|
|
|
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
|
|
|
|
{
|
|
|
|
struct address_space *mapping, *mapping2;
|
|
|
|
|
|
|
|
mapping = _get_hugetlb_page_mapping(hpage);
|
|
|
|
retry:
|
|
|
|
if (!mapping)
|
|
|
|
return mapping;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If no contention, take lock and return
|
|
|
|
*/
|
|
|
|
if (i_mmap_trylock_write(mapping))
|
|
|
|
return mapping;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Must drop page lock and wait on mapping sema.
|
|
|
|
* Note: Once page lock is dropped, mapping could become invalid.
|
|
|
|
* As a hack, increase map count until we lock page again.
|
|
|
|
*/
|
|
|
|
atomic_inc(&hpage->_mapcount);
|
|
|
|
unlock_page(hpage);
|
|
|
|
i_mmap_lock_write(mapping);
|
|
|
|
lock_page(hpage);
|
|
|
|
atomic_add_negative(-1, &hpage->_mapcount);
|
|
|
|
|
|
|
|
/* verify page is still mapped */
|
|
|
|
if (!page_mapped(hpage)) {
|
|
|
|
i_mmap_unlock_write(mapping);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get address space again and verify it is the same one
|
|
|
|
* we locked. If not, drop lock and retry.
|
|
|
|
*/
|
|
|
|
mapping2 = _get_hugetlb_page_mapping(hpage);
|
|
|
|
if (mapping2 != mapping) {
|
|
|
|
i_mmap_unlock_write(mapping);
|
|
|
|
mapping = mapping2;
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
|
|
|
|
return mapping;
|
|
|
|
}
|
|
|
|
|
2013-06-25 21:19:31 +08:00
|
|
|
pgoff_t __basepage_index(struct page *page)
|
|
|
|
{
|
|
|
|
struct page *page_head = compound_head(page);
|
|
|
|
pgoff_t index = page_index(page_head);
|
|
|
|
unsigned long compound_idx;
|
|
|
|
|
|
|
|
if (!PageHuge(page_head))
|
|
|
|
return page_index(page);
|
|
|
|
|
|
|
|
if (compound_order(page_head) >= MAX_ORDER)
|
|
|
|
compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
|
|
|
|
else
|
|
|
|
compound_idx = page - page_head;
|
|
|
|
|
|
|
|
return (index << compound_order(page_head)) + compound_idx;
|
|
|
|
}
|
|
|
|
|
2018-02-01 08:20:56 +08:00
|
|
|
static struct page *alloc_buddy_huge_page(struct hstate *h,
|
2019-09-24 06:37:35 +08:00
|
|
|
gfp_t gfp_mask, int nid, nodemask_t *nmask,
|
|
|
|
nodemask_t *node_alloc_noretry)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2018-02-01 08:20:41 +08:00
|
|
|
int order = huge_page_order(h);
|
2005-04-17 06:20:36 +08:00
|
|
|
struct page *page;
|
2019-09-24 06:37:35 +08:00
|
|
|
bool alloc_try_hard = true;
|
2007-07-16 14:38:12 +08:00
|
|
|
|
2019-09-24 06:37:35 +08:00
|
|
|
/*
|
|
|
|
* By default we always try hard to allocate the page with
|
|
|
|
* __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
|
|
|
|
* a loop (to adjust global huge page counts) and previous allocation
|
|
|
|
* failed, do not continue to try hard on the same node. Use the
|
|
|
|
* node_alloc_noretry bitmap to manage this state information.
|
|
|
|
*/
|
|
|
|
if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
|
|
|
|
alloc_try_hard = false;
|
|
|
|
gfp_mask |= __GFP_COMP|__GFP_NOWARN;
|
|
|
|
if (alloc_try_hard)
|
|
|
|
gfp_mask |= __GFP_RETRY_MAYFAIL;
|
2018-02-01 08:20:41 +08:00
|
|
|
if (nid == NUMA_NO_NODE)
|
|
|
|
nid = numa_mem_id();
|
|
|
|
page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
|
|
|
|
if (page)
|
|
|
|
__count_vm_event(HTLB_BUDDY_PGALLOC);
|
|
|
|
else
|
|
|
|
__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
|
hugetlb: fix hugepage allocation with memoryless nodes
Anton found a problem with the hugetlb pool allocation when some nodes have
no memory (http://marc.info/?l=linux-mm&m=118133042025995&w=2). Lee worked
on versions that tried to fix it, but none were accepted. Christoph has
created a set of patches which allow for GFP_THISNODE allocations to fail
if the node has no memory.
Currently, alloc_fresh_huge_page() returns NULL when it is not able to
allocate a huge page on the current node, as specified by its custom
interleave variable. The callers of this function, though, assume that a
failure in alloc_fresh_huge_page() indicates no hugepages can be allocated
on the system period. This might not be the case, for instance, if we have
an uneven NUMA system, and we happen to try to allocate a hugepage on a
node with less memory and fail, while there is still plenty of free memory
on the other nodes.
To correct this, make alloc_fresh_huge_page() search through all online
nodes before deciding no hugepages can be allocated. Add a helper function
for actually allocating the hugepage. Use a new global nid iterator to
control which nid to allocate on.
Note: we expect particular semantics for __GFP_THISNODE, which are now
enforced even for memoryless nodes. That is, there is should be no
fallback to other nodes. Therefore, we rely on the nid passed into
alloc_pages_node() to be the nid the page comes from. If this is
incorrect, accounting will break.
Tested on x86 !NUMA, x86 NUMA, x86_64 NUMA and ppc64 NUMA (with 2
memoryless nodes).
Before on the ppc64 box:
Trying to clear the hugetlb pool
Done. 0 free
Trying to resize the pool to 100
Node 0 HugePages_Free: 25
Node 1 HugePages_Free: 75
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. Initially 100 free
Trying to resize the pool to 200
Node 0 HugePages_Free: 50
Node 1 HugePages_Free: 150
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. 200 free
After:
Trying to clear the hugetlb pool
Done. 0 free
Trying to resize the pool to 100
Node 0 HugePages_Free: 50
Node 1 HugePages_Free: 50
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. Initially 100 free
Trying to resize the pool to 200
Node 0 HugePages_Free: 100
Node 1 HugePages_Free: 100
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. 200 free
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Christoph Lameter <clameter@sgi.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: David Gibson <hermes@gibson.dropbear.id.au>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Ken Chen <kenchen@google.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:26:24 +08:00
|
|
|
|
2019-09-24 06:37:35 +08:00
|
|
|
/*
|
|
|
|
* If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
|
|
|
|
* indicates an overall state change. Clear bit so that we resume
|
|
|
|
* normal 'try hard' allocations.
|
|
|
|
*/
|
|
|
|
if (node_alloc_noretry && page && !alloc_try_hard)
|
|
|
|
node_clear(nid, *node_alloc_noretry);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we tried hard to get a page but failed, set bit so that
|
|
|
|
* subsequent attempts will not try as hard until there is an
|
|
|
|
* overall state change.
|
|
|
|
*/
|
|
|
|
if (node_alloc_noretry && !page && alloc_try_hard)
|
|
|
|
node_set(nid, *node_alloc_noretry);
|
|
|
|
|
hugetlb: fix hugepage allocation with memoryless nodes
Anton found a problem with the hugetlb pool allocation when some nodes have
no memory (http://marc.info/?l=linux-mm&m=118133042025995&w=2). Lee worked
on versions that tried to fix it, but none were accepted. Christoph has
created a set of patches which allow for GFP_THISNODE allocations to fail
if the node has no memory.
Currently, alloc_fresh_huge_page() returns NULL when it is not able to
allocate a huge page on the current node, as specified by its custom
interleave variable. The callers of this function, though, assume that a
failure in alloc_fresh_huge_page() indicates no hugepages can be allocated
on the system period. This might not be the case, for instance, if we have
an uneven NUMA system, and we happen to try to allocate a hugepage on a
node with less memory and fail, while there is still plenty of free memory
on the other nodes.
To correct this, make alloc_fresh_huge_page() search through all online
nodes before deciding no hugepages can be allocated. Add a helper function
for actually allocating the hugepage. Use a new global nid iterator to
control which nid to allocate on.
Note: we expect particular semantics for __GFP_THISNODE, which are now
enforced even for memoryless nodes. That is, there is should be no
fallback to other nodes. Therefore, we rely on the nid passed into
alloc_pages_node() to be the nid the page comes from. If this is
incorrect, accounting will break.
Tested on x86 !NUMA, x86 NUMA, x86_64 NUMA and ppc64 NUMA (with 2
memoryless nodes).
Before on the ppc64 box:
Trying to clear the hugetlb pool
Done. 0 free
Trying to resize the pool to 100
Node 0 HugePages_Free: 25
Node 1 HugePages_Free: 75
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. Initially 100 free
Trying to resize the pool to 200
Node 0 HugePages_Free: 50
Node 1 HugePages_Free: 150
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. 200 free
After:
Trying to clear the hugetlb pool
Done. 0 free
Trying to resize the pool to 100
Node 0 HugePages_Free: 50
Node 1 HugePages_Free: 50
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. Initially 100 free
Trying to resize the pool to 200
Node 0 HugePages_Free: 100
Node 1 HugePages_Free: 100
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. 200 free
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Christoph Lameter <clameter@sgi.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: David Gibson <hermes@gibson.dropbear.id.au>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Ken Chen <kenchen@google.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:26:24 +08:00
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2018-02-01 08:20:56 +08:00
|
|
|
/*
|
|
|
|
* Common helper to allocate a fresh hugetlb page. All specific allocators
|
|
|
|
* should use this function to get new hugetlb pages
|
|
|
|
*/
|
|
|
|
static struct page *alloc_fresh_huge_page(struct hstate *h,
|
2019-09-24 06:37:35 +08:00
|
|
|
gfp_t gfp_mask, int nid, nodemask_t *nmask,
|
|
|
|
nodemask_t *node_alloc_noretry)
|
2018-02-01 08:20:56 +08:00
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
if (hstate_is_gigantic(h))
|
|
|
|
page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
|
|
|
|
else
|
|
|
|
page = alloc_buddy_huge_page(h, gfp_mask,
|
2019-09-24 06:37:35 +08:00
|
|
|
nid, nmask, node_alloc_noretry);
|
2018-02-01 08:20:56 +08:00
|
|
|
if (!page)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
if (hstate_is_gigantic(h))
|
|
|
|
prep_compound_gigantic_page(page, huge_page_order(h));
|
|
|
|
prep_new_huge_page(h, page, page_to_nid(page));
|
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2018-02-01 08:20:41 +08:00
|
|
|
/*
|
|
|
|
* Allocates a fresh page to the hugetlb allocator pool in the node interleaved
|
|
|
|
* manner.
|
|
|
|
*/
|
2019-09-24 06:37:35 +08:00
|
|
|
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
|
|
|
|
nodemask_t *node_alloc_noretry)
|
2013-09-12 05:21:00 +08:00
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
int nr_nodes, node;
|
2018-02-01 08:20:41 +08:00
|
|
|
gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
|
2013-09-12 05:21:00 +08:00
|
|
|
|
|
|
|
for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
|
2019-09-24 06:37:35 +08:00
|
|
|
page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
|
|
|
|
node_alloc_noretry);
|
2018-02-01 08:20:41 +08:00
|
|
|
if (page)
|
2013-09-12 05:21:00 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2018-02-01 08:20:41 +08:00
|
|
|
if (!page)
|
|
|
|
return 0;
|
2013-09-12 05:21:00 +08:00
|
|
|
|
2018-02-01 08:20:41 +08:00
|
|
|
put_page(page); /* free it into the hugepage allocator */
|
|
|
|
|
|
|
|
return 1;
|
2013-09-12 05:21:00 +08:00
|
|
|
}
|
|
|
|
|
2009-09-22 08:01:22 +08:00
|
|
|
/*
|
|
|
|
* Free huge page from pool from next node to free.
|
|
|
|
* Attempt to keep persistent huge pages more or less
|
|
|
|
* balanced over allowed nodes.
|
|
|
|
* Called with hugetlb_lock locked.
|
|
|
|
*/
|
2009-12-15 09:58:16 +08:00
|
|
|
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
|
|
|
|
bool acct_surplus)
|
2009-09-22 08:01:22 +08:00
|
|
|
{
|
2013-09-12 05:21:00 +08:00
|
|
|
int nr_nodes, node;
|
2009-09-22 08:01:22 +08:00
|
|
|
int ret = 0;
|
|
|
|
|
2013-09-12 05:21:00 +08:00
|
|
|
for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
|
2009-09-22 08:01:23 +08:00
|
|
|
/*
|
|
|
|
* If we're returning unused surplus pages, only examine
|
|
|
|
* nodes with surplus pages.
|
|
|
|
*/
|
2013-09-12 05:21:00 +08:00
|
|
|
if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
|
|
|
|
!list_empty(&h->hugepage_freelists[node])) {
|
2009-09-22 08:01:22 +08:00
|
|
|
struct page *page =
|
2013-09-12 05:21:00 +08:00
|
|
|
list_entry(h->hugepage_freelists[node].next,
|
2009-09-22 08:01:22 +08:00
|
|
|
struct page, lru);
|
|
|
|
list_del(&page->lru);
|
|
|
|
h->free_huge_pages--;
|
2013-09-12 05:21:00 +08:00
|
|
|
h->free_huge_pages_node[node]--;
|
2009-09-22 08:01:23 +08:00
|
|
|
if (acct_surplus) {
|
|
|
|
h->surplus_huge_pages--;
|
2013-09-12 05:21:00 +08:00
|
|
|
h->surplus_huge_pages_node[node]--;
|
2009-09-22 08:01:23 +08:00
|
|
|
}
|
2009-09-22 08:01:22 +08:00
|
|
|
update_and_free_page(h, page);
|
|
|
|
ret = 1;
|
2009-12-15 09:58:15 +08:00
|
|
|
break;
|
2009-09-22 08:01:22 +08:00
|
|
|
}
|
2013-09-12 05:21:00 +08:00
|
|
|
}
|
2009-09-22 08:01:22 +08:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2013-09-12 05:22:09 +08:00
|
|
|
/*
|
|
|
|
* Dissolve a given free hugepage into free buddy pages. This function does
|
mm: hugetlb: soft-offline: dissolve_free_huge_page() return zero on !PageHuge
madvise(MADV_SOFT_OFFLINE) often returns -EBUSY when calling soft offline
for hugepages with overcommitting enabled. That was caused by the
suboptimal code in current soft-offline code. See the following part:
ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
MIGRATE_SYNC, MR_MEMORY_FAILURE);
if (ret) {
...
} else {
/*
* We set PG_hwpoison only when the migration source hugepage
* was successfully dissolved, because otherwise hwpoisoned
* hugepage remains on free hugepage list, then userspace will
* find it as SIGBUS by allocation failure. That's not expected
* in soft-offlining.
*/
ret = dissolve_free_huge_page(page);
if (!ret) {
if (set_hwpoison_free_buddy_page(page))
num_poisoned_pages_inc();
}
}
return ret;
Here dissolve_free_huge_page() returns -EBUSY if the migration source page
was freed into buddy in migrate_pages(), but even in that case we actually
has a chance that set_hwpoison_free_buddy_page() succeeds. So that means
current code gives up offlining too early now.
dissolve_free_huge_page() checks that a given hugepage is suitable for
dissolving, where we should return success for !PageHuge() case because
the given hugepage is considered as already dissolved.
This change also affects other callers of dissolve_free_huge_page(), which
are cleaned up together.
[n-horiguchi@ah.jp.nec.com: v3]
Link: http://lkml.kernel.org/r/1560761476-4651-3-git-send-email-n-horiguchi@ah.jp.nec.comLink: http://lkml.kernel.org/r/1560154686-18497-3-git-send-email-n-horiguchi@ah.jp.nec.com
Fixes: 6bc9b56433b76 ("mm: fix race on soft-offlining")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Chen, Jerry T <jerry.t.chen@intel.com>
Tested-by: Chen, Jerry T <jerry.t.chen@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Cc: "Chen, Jerry T" <jerry.t.chen@intel.com>
Cc: "Zhuo, Qiuxu" <qiuxu.zhuo@intel.com>
Cc: <stable@vger.kernel.org> [4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-29 03:06:56 +08:00
|
|
|
* nothing for in-use hugepages and non-hugepages.
|
|
|
|
* This function returns values like below:
|
|
|
|
*
|
|
|
|
* -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
|
|
|
|
* (allocated or reserved.)
|
|
|
|
* 0: successfully dissolved free hugepages or the page is not a
|
|
|
|
* hugepage (considered as already dissolved)
|
2013-09-12 05:22:09 +08:00
|
|
|
*/
|
2017-07-11 06:47:41 +08:00
|
|
|
int dissolve_free_huge_page(struct page *page)
|
2013-09-12 05:22:09 +08:00
|
|
|
{
|
2018-08-24 08:00:38 +08:00
|
|
|
int rc = -EBUSY;
|
2016-10-08 08:01:10 +08:00
|
|
|
|
mm: hugetlb: soft-offline: dissolve_free_huge_page() return zero on !PageHuge
madvise(MADV_SOFT_OFFLINE) often returns -EBUSY when calling soft offline
for hugepages with overcommitting enabled. That was caused by the
suboptimal code in current soft-offline code. See the following part:
ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
MIGRATE_SYNC, MR_MEMORY_FAILURE);
if (ret) {
...
} else {
/*
* We set PG_hwpoison only when the migration source hugepage
* was successfully dissolved, because otherwise hwpoisoned
* hugepage remains on free hugepage list, then userspace will
* find it as SIGBUS by allocation failure. That's not expected
* in soft-offlining.
*/
ret = dissolve_free_huge_page(page);
if (!ret) {
if (set_hwpoison_free_buddy_page(page))
num_poisoned_pages_inc();
}
}
return ret;
Here dissolve_free_huge_page() returns -EBUSY if the migration source page
was freed into buddy in migrate_pages(), but even in that case we actually
has a chance that set_hwpoison_free_buddy_page() succeeds. So that means
current code gives up offlining too early now.
dissolve_free_huge_page() checks that a given hugepage is suitable for
dissolving, where we should return success for !PageHuge() case because
the given hugepage is considered as already dissolved.
This change also affects other callers of dissolve_free_huge_page(), which
are cleaned up together.
[n-horiguchi@ah.jp.nec.com: v3]
Link: http://lkml.kernel.org/r/1560761476-4651-3-git-send-email-n-horiguchi@ah.jp.nec.comLink: http://lkml.kernel.org/r/1560154686-18497-3-git-send-email-n-horiguchi@ah.jp.nec.com
Fixes: 6bc9b56433b76 ("mm: fix race on soft-offlining")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Chen, Jerry T <jerry.t.chen@intel.com>
Tested-by: Chen, Jerry T <jerry.t.chen@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Cc: "Chen, Jerry T" <jerry.t.chen@intel.com>
Cc: "Zhuo, Qiuxu" <qiuxu.zhuo@intel.com>
Cc: <stable@vger.kernel.org> [4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-29 03:06:56 +08:00
|
|
|
/* Not to disrupt normal path by vainly holding hugetlb_lock */
|
|
|
|
if (!PageHuge(page))
|
|
|
|
return 0;
|
|
|
|
|
2013-09-12 05:22:09 +08:00
|
|
|
spin_lock(&hugetlb_lock);
|
mm: hugetlb: soft-offline: dissolve_free_huge_page() return zero on !PageHuge
madvise(MADV_SOFT_OFFLINE) often returns -EBUSY when calling soft offline
for hugepages with overcommitting enabled. That was caused by the
suboptimal code in current soft-offline code. See the following part:
ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
MIGRATE_SYNC, MR_MEMORY_FAILURE);
if (ret) {
...
} else {
/*
* We set PG_hwpoison only when the migration source hugepage
* was successfully dissolved, because otherwise hwpoisoned
* hugepage remains on free hugepage list, then userspace will
* find it as SIGBUS by allocation failure. That's not expected
* in soft-offlining.
*/
ret = dissolve_free_huge_page(page);
if (!ret) {
if (set_hwpoison_free_buddy_page(page))
num_poisoned_pages_inc();
}
}
return ret;
Here dissolve_free_huge_page() returns -EBUSY if the migration source page
was freed into buddy in migrate_pages(), but even in that case we actually
has a chance that set_hwpoison_free_buddy_page() succeeds. So that means
current code gives up offlining too early now.
dissolve_free_huge_page() checks that a given hugepage is suitable for
dissolving, where we should return success for !PageHuge() case because
the given hugepage is considered as already dissolved.
This change also affects other callers of dissolve_free_huge_page(), which
are cleaned up together.
[n-horiguchi@ah.jp.nec.com: v3]
Link: http://lkml.kernel.org/r/1560761476-4651-3-git-send-email-n-horiguchi@ah.jp.nec.comLink: http://lkml.kernel.org/r/1560154686-18497-3-git-send-email-n-horiguchi@ah.jp.nec.com
Fixes: 6bc9b56433b76 ("mm: fix race on soft-offlining")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Chen, Jerry T <jerry.t.chen@intel.com>
Tested-by: Chen, Jerry T <jerry.t.chen@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Cc: "Chen, Jerry T" <jerry.t.chen@intel.com>
Cc: "Zhuo, Qiuxu" <qiuxu.zhuo@intel.com>
Cc: <stable@vger.kernel.org> [4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-29 03:06:56 +08:00
|
|
|
if (!PageHuge(page)) {
|
|
|
|
rc = 0;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!page_count(page)) {
|
mm/hugetlb: fix memory offline with hugepage size > memory block size
Patch series "mm/hugetlb: memory offline issues with hugepages", v4.
This addresses several issues with hugepages and memory offline. While
the first patch fixes a panic, and is therefore rather important, the
last patch is just a performance optimization.
The second patch fixes a theoretical issue with reserved hugepages,
while still leaving some ugly usability issue, see description.
This patch (of 3):
dissolve_free_huge_pages() will either run into the VM_BUG_ON() or a
list corruption and addressing exception when trying to set a memory
block offline that is part (but not the first part) of a "gigantic"
hugetlb page with a size > memory block size.
When no other smaller hugetlb page sizes are present, the VM_BUG_ON()
will trigger directly. In the other case we will run into an addressing
exception later, because dissolve_free_huge_page() will not work on the
head page of the compound hugetlb page which will result in a NULL
hstate from page_hstate().
To fix this, first remove the VM_BUG_ON() because it is wrong, and then
use the compound head page in dissolve_free_huge_page(). This means
that an unused pre-allocated gigantic page that has any part of itself
inside the memory block that is going offline will be dissolved
completely. Losing an unused gigantic hugepage is preferable to failing
the memory offline, for example in the situation where a (possibly
faulty) memory DIMM needs to go offline.
Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Link: http://lkml.kernel.org/r/20160926172811.94033-2-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 08:01:07 +08:00
|
|
|
struct page *head = compound_head(page);
|
|
|
|
struct hstate *h = page_hstate(head);
|
|
|
|
int nid = page_to_nid(head);
|
2018-08-24 08:00:38 +08:00
|
|
|
if (h->free_huge_pages - h->resv_huge_pages == 0)
|
2016-10-08 08:01:10 +08:00
|
|
|
goto out;
|
2017-07-11 06:47:41 +08:00
|
|
|
/*
|
|
|
|
* Move PageHWPoison flag from head page to the raw error page,
|
|
|
|
* which makes any subpages rather than the error page reusable.
|
|
|
|
*/
|
|
|
|
if (PageHWPoison(head) && page != head) {
|
|
|
|
SetPageHWPoison(page);
|
|
|
|
ClearPageHWPoison(head);
|
|
|
|
}
|
mm/hugetlb: fix memory offline with hugepage size > memory block size
Patch series "mm/hugetlb: memory offline issues with hugepages", v4.
This addresses several issues with hugepages and memory offline. While
the first patch fixes a panic, and is therefore rather important, the
last patch is just a performance optimization.
The second patch fixes a theoretical issue with reserved hugepages,
while still leaving some ugly usability issue, see description.
This patch (of 3):
dissolve_free_huge_pages() will either run into the VM_BUG_ON() or a
list corruption and addressing exception when trying to set a memory
block offline that is part (but not the first part) of a "gigantic"
hugetlb page with a size > memory block size.
When no other smaller hugetlb page sizes are present, the VM_BUG_ON()
will trigger directly. In the other case we will run into an addressing
exception later, because dissolve_free_huge_page() will not work on the
head page of the compound hugetlb page which will result in a NULL
hstate from page_hstate().
To fix this, first remove the VM_BUG_ON() because it is wrong, and then
use the compound head page in dissolve_free_huge_page(). This means
that an unused pre-allocated gigantic page that has any part of itself
inside the memory block that is going offline will be dissolved
completely. Losing an unused gigantic hugepage is preferable to failing
the memory offline, for example in the situation where a (possibly
faulty) memory DIMM needs to go offline.
Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Link: http://lkml.kernel.org/r/20160926172811.94033-2-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 08:01:07 +08:00
|
|
|
list_del(&head->lru);
|
2013-09-12 05:22:09 +08:00
|
|
|
h->free_huge_pages--;
|
|
|
|
h->free_huge_pages_node[nid]--;
|
2016-08-12 06:32:55 +08:00
|
|
|
h->max_huge_pages--;
|
mm/hugetlb: fix memory offline with hugepage size > memory block size
Patch series "mm/hugetlb: memory offline issues with hugepages", v4.
This addresses several issues with hugepages and memory offline. While
the first patch fixes a panic, and is therefore rather important, the
last patch is just a performance optimization.
The second patch fixes a theoretical issue with reserved hugepages,
while still leaving some ugly usability issue, see description.
This patch (of 3):
dissolve_free_huge_pages() will either run into the VM_BUG_ON() or a
list corruption and addressing exception when trying to set a memory
block offline that is part (but not the first part) of a "gigantic"
hugetlb page with a size > memory block size.
When no other smaller hugetlb page sizes are present, the VM_BUG_ON()
will trigger directly. In the other case we will run into an addressing
exception later, because dissolve_free_huge_page() will not work on the
head page of the compound hugetlb page which will result in a NULL
hstate from page_hstate().
To fix this, first remove the VM_BUG_ON() because it is wrong, and then
use the compound head page in dissolve_free_huge_page(). This means
that an unused pre-allocated gigantic page that has any part of itself
inside the memory block that is going offline will be dissolved
completely. Losing an unused gigantic hugepage is preferable to failing
the memory offline, for example in the situation where a (possibly
faulty) memory DIMM needs to go offline.
Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Link: http://lkml.kernel.org/r/20160926172811.94033-2-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 08:01:07 +08:00
|
|
|
update_and_free_page(h, head);
|
2018-08-24 08:00:38 +08:00
|
|
|
rc = 0;
|
2013-09-12 05:22:09 +08:00
|
|
|
}
|
2016-10-08 08:01:10 +08:00
|
|
|
out:
|
2013-09-12 05:22:09 +08:00
|
|
|
spin_unlock(&hugetlb_lock);
|
2016-10-08 08:01:10 +08:00
|
|
|
return rc;
|
2013-09-12 05:22:09 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Dissolve free hugepages in a given pfn range. Used by memory hotplug to
|
|
|
|
* make specified memory blocks removable from the system.
|
mm/hugetlb: fix memory offline with hugepage size > memory block size
Patch series "mm/hugetlb: memory offline issues with hugepages", v4.
This addresses several issues with hugepages and memory offline. While
the first patch fixes a panic, and is therefore rather important, the
last patch is just a performance optimization.
The second patch fixes a theoretical issue with reserved hugepages,
while still leaving some ugly usability issue, see description.
This patch (of 3):
dissolve_free_huge_pages() will either run into the VM_BUG_ON() or a
list corruption and addressing exception when trying to set a memory
block offline that is part (but not the first part) of a "gigantic"
hugetlb page with a size > memory block size.
When no other smaller hugetlb page sizes are present, the VM_BUG_ON()
will trigger directly. In the other case we will run into an addressing
exception later, because dissolve_free_huge_page() will not work on the
head page of the compound hugetlb page which will result in a NULL
hstate from page_hstate().
To fix this, first remove the VM_BUG_ON() because it is wrong, and then
use the compound head page in dissolve_free_huge_page(). This means
that an unused pre-allocated gigantic page that has any part of itself
inside the memory block that is going offline will be dissolved
completely. Losing an unused gigantic hugepage is preferable to failing
the memory offline, for example in the situation where a (possibly
faulty) memory DIMM needs to go offline.
Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Link: http://lkml.kernel.org/r/20160926172811.94033-2-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 08:01:07 +08:00
|
|
|
* Note that this will dissolve a free gigantic hugepage completely, if any
|
|
|
|
* part of it lies within the given range.
|
2016-10-08 08:01:10 +08:00
|
|
|
* Also note that if dissolve_free_huge_page() returns with an error, all
|
|
|
|
* free hugepages that were dissolved before that error are lost.
|
2013-09-12 05:22:09 +08:00
|
|
|
*/
|
2016-10-08 08:01:10 +08:00
|
|
|
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
|
2013-09-12 05:22:09 +08:00
|
|
|
{
|
|
|
|
unsigned long pfn;
|
2016-10-08 08:01:13 +08:00
|
|
|
struct page *page;
|
2016-10-08 08:01:10 +08:00
|
|
|
int rc = 0;
|
2013-09-12 05:22:09 +08:00
|
|
|
|
2014-08-07 07:07:56 +08:00
|
|
|
if (!hugepages_supported())
|
2016-10-08 08:01:10 +08:00
|
|
|
return rc;
|
2014-08-07 07:07:56 +08:00
|
|
|
|
2016-10-08 08:01:13 +08:00
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
|
|
|
|
page = pfn_to_page(pfn);
|
mm: hugetlb: soft-offline: dissolve_free_huge_page() return zero on !PageHuge
madvise(MADV_SOFT_OFFLINE) often returns -EBUSY when calling soft offline
for hugepages with overcommitting enabled. That was caused by the
suboptimal code in current soft-offline code. See the following part:
ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
MIGRATE_SYNC, MR_MEMORY_FAILURE);
if (ret) {
...
} else {
/*
* We set PG_hwpoison only when the migration source hugepage
* was successfully dissolved, because otherwise hwpoisoned
* hugepage remains on free hugepage list, then userspace will
* find it as SIGBUS by allocation failure. That's not expected
* in soft-offlining.
*/
ret = dissolve_free_huge_page(page);
if (!ret) {
if (set_hwpoison_free_buddy_page(page))
num_poisoned_pages_inc();
}
}
return ret;
Here dissolve_free_huge_page() returns -EBUSY if the migration source page
was freed into buddy in migrate_pages(), but even in that case we actually
has a chance that set_hwpoison_free_buddy_page() succeeds. So that means
current code gives up offlining too early now.
dissolve_free_huge_page() checks that a given hugepage is suitable for
dissolving, where we should return success for !PageHuge() case because
the given hugepage is considered as already dissolved.
This change also affects other callers of dissolve_free_huge_page(), which
are cleaned up together.
[n-horiguchi@ah.jp.nec.com: v3]
Link: http://lkml.kernel.org/r/1560761476-4651-3-git-send-email-n-horiguchi@ah.jp.nec.comLink: http://lkml.kernel.org/r/1560154686-18497-3-git-send-email-n-horiguchi@ah.jp.nec.com
Fixes: 6bc9b56433b76 ("mm: fix race on soft-offlining")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Chen, Jerry T <jerry.t.chen@intel.com>
Tested-by: Chen, Jerry T <jerry.t.chen@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Cc: "Chen, Jerry T" <jerry.t.chen@intel.com>
Cc: "Zhuo, Qiuxu" <qiuxu.zhuo@intel.com>
Cc: <stable@vger.kernel.org> [4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-29 03:06:56 +08:00
|
|
|
rc = dissolve_free_huge_page(page);
|
|
|
|
if (rc)
|
|
|
|
break;
|
2016-10-08 08:01:13 +08:00
|
|
|
}
|
2016-10-08 08:01:10 +08:00
|
|
|
|
|
|
|
return rc;
|
2013-09-12 05:22:09 +08:00
|
|
|
}
|
|
|
|
|
2018-02-01 08:20:48 +08:00
|
|
|
/*
|
|
|
|
* Allocates a fresh surplus page from the page allocator.
|
|
|
|
*/
|
2018-02-01 08:20:56 +08:00
|
|
|
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
|
2017-07-11 06:49:08 +08:00
|
|
|
int nid, nodemask_t *nmask)
|
2007-10-16 16:26:18 +08:00
|
|
|
{
|
2018-02-01 08:20:52 +08:00
|
|
|
struct page *page = NULL;
|
2007-10-16 16:26:18 +08:00
|
|
|
|
2014-06-05 07:07:08 +08:00
|
|
|
if (hstate_is_gigantic(h))
|
2008-07-24 12:27:47 +08:00
|
|
|
return NULL;
|
|
|
|
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 08:20:12 +08:00
|
|
|
spin_lock(&hugetlb_lock);
|
2018-02-01 08:20:52 +08:00
|
|
|
if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
|
|
|
|
goto out_unlock;
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 08:20:12 +08:00
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
|
2019-09-24 06:37:35 +08:00
|
|
|
page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
|
2018-02-01 08:20:52 +08:00
|
|
|
if (!page)
|
2018-02-01 08:20:56 +08:00
|
|
|
return NULL;
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 08:20:12 +08:00
|
|
|
|
|
|
|
spin_lock(&hugetlb_lock);
|
2018-02-01 08:20:52 +08:00
|
|
|
/*
|
|
|
|
* We could have raced with the pool size change.
|
|
|
|
* Double check that and simply deallocate the new page
|
|
|
|
* if we would end up overcommiting the surpluses. Abuse
|
|
|
|
* temporary page to workaround the nasty free_huge_page
|
|
|
|
* codeflow
|
|
|
|
*/
|
|
|
|
if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
|
|
|
|
SetPageHugeTemporary(page);
|
2019-05-14 08:15:37 +08:00
|
|
|
spin_unlock(&hugetlb_lock);
|
2018-02-01 08:20:52 +08:00
|
|
|
put_page(page);
|
2019-05-14 08:15:37 +08:00
|
|
|
return NULL;
|
2018-02-01 08:20:52 +08:00
|
|
|
} else {
|
|
|
|
h->surplus_huge_pages++;
|
2018-03-10 07:50:55 +08:00
|
|
|
h->surplus_huge_pages_node[page_to_nid(page)]++;
|
2007-10-16 16:26:18 +08:00
|
|
|
}
|
2018-02-01 08:20:52 +08:00
|
|
|
|
|
|
|
out_unlock:
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 08:20:12 +08:00
|
|
|
spin_unlock(&hugetlb_lock);
|
2007-10-16 16:26:18 +08:00
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2019-03-06 07:47:44 +08:00
|
|
|
struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
|
|
|
|
int nid, nodemask_t *nmask)
|
2018-02-01 08:20:48 +08:00
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
if (hstate_is_gigantic(h))
|
|
|
|
return NULL;
|
|
|
|
|
2019-09-24 06:37:35 +08:00
|
|
|
page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
|
2018-02-01 08:20:48 +08:00
|
|
|
if (!page)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We do not account these pages as surplus because they are only
|
|
|
|
* temporary and will be released properly on the last reference
|
|
|
|
*/
|
|
|
|
SetPageHugeTemporary(page);
|
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
mm, hugetlb: use memory policy when available
I have a hugetlbfs user which is never explicitly allocating huge pages
with 'nr_hugepages'. They only set 'nr_overcommit_hugepages' and then let
the pages be allocated from the buddy allocator at fault time.
This works, but they noticed that mbind() was not doing them any good and
the pages were being allocated without respect for the policy they
specified.
The code in question is this:
> struct page *alloc_huge_page(struct vm_area_struct *vma,
...
> page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
> if (!page) {
> page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
dequeue_huge_page_vma() is smart and will respect the VMA's memory policy.
But, it only grabs _existing_ huge pages from the huge page pool. If the
pool is empty, we fall back to alloc_buddy_huge_page() which obviously
can't do anything with the VMA's policy because it isn't even passed the
VMA.
Almost everybody preallocates huge pages. That's probably why nobody has
ever noticed this. Looking back at the git history, I don't think this
_ever_ worked from when alloc_buddy_huge_page() was introduced in
7893d1d5, 8 years ago.
The fix is to pass vma/addr down in to the places where we actually call
in to the buddy allocator. It's fairly straightforward plumbing. This
has been lightly tested.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 10:50:17 +08:00
|
|
|
/*
|
|
|
|
* Use the VMA's mpolicy to allocate a huge page from the buddy.
|
|
|
|
*/
|
2015-11-06 10:50:20 +08:00
|
|
|
static
|
2018-02-01 08:20:56 +08:00
|
|
|
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
|
mm, hugetlb: use memory policy when available
I have a hugetlbfs user which is never explicitly allocating huge pages
with 'nr_hugepages'. They only set 'nr_overcommit_hugepages' and then let
the pages be allocated from the buddy allocator at fault time.
This works, but they noticed that mbind() was not doing them any good and
the pages were being allocated without respect for the policy they
specified.
The code in question is this:
> struct page *alloc_huge_page(struct vm_area_struct *vma,
...
> page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
> if (!page) {
> page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
dequeue_huge_page_vma() is smart and will respect the VMA's memory policy.
But, it only grabs _existing_ huge pages from the huge page pool. If the
pool is empty, we fall back to alloc_buddy_huge_page() which obviously
can't do anything with the VMA's policy because it isn't even passed the
VMA.
Almost everybody preallocates huge pages. That's probably why nobody has
ever noticed this. Looking back at the git history, I don't think this
_ever_ worked from when alloc_buddy_huge_page() was introduced in
7893d1d5, 8 years ago.
The fix is to pass vma/addr down in to the places where we actually call
in to the buddy allocator. It's fairly straightforward plumbing. This
has been lightly tested.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 10:50:17 +08:00
|
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
|
|
{
|
2017-07-11 06:49:08 +08:00
|
|
|
struct page *page;
|
|
|
|
struct mempolicy *mpol;
|
|
|
|
gfp_t gfp_mask = htlb_alloc_mask(h);
|
|
|
|
int nid;
|
|
|
|
nodemask_t *nodemask;
|
|
|
|
|
|
|
|
nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
|
2018-02-01 08:20:56 +08:00
|
|
|
page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
|
2017-07-11 06:49:08 +08:00
|
|
|
mpol_cond_put(mpol);
|
|
|
|
|
|
|
|
return page;
|
mm, hugetlb: use memory policy when available
I have a hugetlbfs user which is never explicitly allocating huge pages
with 'nr_hugepages'. They only set 'nr_overcommit_hugepages' and then let
the pages be allocated from the buddy allocator at fault time.
This works, but they noticed that mbind() was not doing them any good and
the pages were being allocated without respect for the policy they
specified.
The code in question is this:
> struct page *alloc_huge_page(struct vm_area_struct *vma,
...
> page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
> if (!page) {
> page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
dequeue_huge_page_vma() is smart and will respect the VMA's memory policy.
But, it only grabs _existing_ huge pages from the huge page pool. If the
pool is empty, we fall back to alloc_buddy_huge_page() which obviously
can't do anything with the VMA's policy because it isn't even passed the
VMA.
Almost everybody preallocates huge pages. That's probably why nobody has
ever noticed this. Looking back at the git history, I don't think this
_ever_ worked from when alloc_buddy_huge_page() was introduced in
7893d1d5, 8 years ago.
The fix is to pass vma/addr down in to the places where we actually call
in to the buddy allocator. It's fairly straightforward plumbing. This
has been lightly tested.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 10:50:17 +08:00
|
|
|
}
|
|
|
|
|
2018-02-01 08:20:48 +08:00
|
|
|
/* page migration callback function */
|
2010-09-08 09:19:33 +08:00
|
|
|
struct page *alloc_huge_page_node(struct hstate *h, int nid)
|
|
|
|
{
|
2017-07-11 06:49:08 +08:00
|
|
|
gfp_t gfp_mask = htlb_alloc_mask(h);
|
2013-09-12 05:21:51 +08:00
|
|
|
struct page *page = NULL;
|
2010-09-08 09:19:33 +08:00
|
|
|
|
2017-07-11 06:49:08 +08:00
|
|
|
if (nid != NUMA_NO_NODE)
|
|
|
|
gfp_mask |= __GFP_THISNODE;
|
|
|
|
|
2010-09-08 09:19:33 +08:00
|
|
|
spin_lock(&hugetlb_lock);
|
2013-09-12 05:21:51 +08:00
|
|
|
if (h->free_huge_pages - h->resv_huge_pages > 0)
|
2017-07-11 06:49:11 +08:00
|
|
|
page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
|
2010-09-08 09:19:33 +08:00
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
|
2012-08-01 07:42:35 +08:00
|
|
|
if (!page)
|
2018-02-01 08:20:56 +08:00
|
|
|
page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
|
2010-09-08 09:19:33 +08:00
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2018-02-01 08:20:48 +08:00
|
|
|
/* page migration callback function */
|
2017-07-11 06:49:11 +08:00
|
|
|
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
|
|
|
|
nodemask_t *nmask)
|
2017-07-11 06:48:44 +08:00
|
|
|
{
|
2017-07-11 06:49:08 +08:00
|
|
|
gfp_t gfp_mask = htlb_alloc_mask(h);
|
2017-07-11 06:48:44 +08:00
|
|
|
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
if (h->free_huge_pages - h->resv_huge_pages > 0) {
|
2017-07-11 06:49:11 +08:00
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
|
|
|
|
if (page) {
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
return page;
|
2017-07-11 06:48:44 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
|
2018-02-01 08:20:56 +08:00
|
|
|
return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
|
2017-07-11 06:48:44 +08:00
|
|
|
}
|
|
|
|
|
2018-02-01 08:21:00 +08:00
|
|
|
/* mempolicy aware migration callback */
|
2018-02-01 08:21:03 +08:00
|
|
|
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
|
|
|
|
unsigned long address)
|
2018-02-01 08:21:00 +08:00
|
|
|
{
|
|
|
|
struct mempolicy *mpol;
|
|
|
|
nodemask_t *nodemask;
|
|
|
|
struct page *page;
|
|
|
|
gfp_t gfp_mask;
|
|
|
|
int node;
|
|
|
|
|
|
|
|
gfp_mask = htlb_alloc_mask(h);
|
|
|
|
node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
|
|
|
|
page = alloc_huge_page_nodemask(h, node, nodemask);
|
|
|
|
mpol_cond_put(mpol);
|
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2007-10-16 16:26:19 +08:00
|
|
|
/*
|
2011-03-31 09:57:33 +08:00
|
|
|
* Increase the hugetlb pool such that it can accommodate a reservation
|
2007-10-16 16:26:19 +08:00
|
|
|
* of size 'delta'.
|
|
|
|
*/
|
2008-07-24 12:27:41 +08:00
|
|
|
static int gather_surplus_pages(struct hstate *h, int delta)
|
2020-04-07 11:08:09 +08:00
|
|
|
__must_hold(&hugetlb_lock)
|
2007-10-16 16:26:19 +08:00
|
|
|
{
|
|
|
|
struct list_head surplus_list;
|
|
|
|
struct page *page, *tmp;
|
|
|
|
int ret, i;
|
|
|
|
int needed, allocated;
|
2012-03-22 07:34:00 +08:00
|
|
|
bool alloc_ok = true;
|
2007-10-16 16:26:19 +08:00
|
|
|
|
2008-07-24 12:27:41 +08:00
|
|
|
needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
|
2008-03-05 06:29:38 +08:00
|
|
|
if (needed <= 0) {
|
2008-07-24 12:27:41 +08:00
|
|
|
h->resv_huge_pages += delta;
|
2007-10-16 16:26:19 +08:00
|
|
|
return 0;
|
2008-03-05 06:29:38 +08:00
|
|
|
}
|
2007-10-16 16:26:19 +08:00
|
|
|
|
|
|
|
allocated = 0;
|
|
|
|
INIT_LIST_HEAD(&surplus_list);
|
|
|
|
|
|
|
|
ret = -ENOMEM;
|
|
|
|
retry:
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
for (i = 0; i < needed; i++) {
|
2018-02-01 08:20:56 +08:00
|
|
|
page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
|
2017-07-11 06:49:08 +08:00
|
|
|
NUMA_NO_NODE, NULL);
|
2012-03-22 07:34:00 +08:00
|
|
|
if (!page) {
|
|
|
|
alloc_ok = false;
|
|
|
|
break;
|
|
|
|
}
|
2007-10-16 16:26:19 +08:00
|
|
|
list_add(&page->lru, &surplus_list);
|
2017-07-11 06:48:50 +08:00
|
|
|
cond_resched();
|
2007-10-16 16:26:19 +08:00
|
|
|
}
|
2012-03-22 07:34:00 +08:00
|
|
|
allocated += i;
|
2007-10-16 16:26:19 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* After retaking hugetlb_lock, we need to recalculate 'needed'
|
|
|
|
* because either resv_huge_pages or free_huge_pages may have changed.
|
|
|
|
*/
|
|
|
|
spin_lock(&hugetlb_lock);
|
2008-07-24 12:27:41 +08:00
|
|
|
needed = (h->resv_huge_pages + delta) -
|
|
|
|
(h->free_huge_pages + allocated);
|
2012-03-22 07:34:00 +08:00
|
|
|
if (needed > 0) {
|
|
|
|
if (alloc_ok)
|
|
|
|
goto retry;
|
|
|
|
/*
|
|
|
|
* We were not able to allocate enough pages to
|
|
|
|
* satisfy the entire reservation so we free what
|
|
|
|
* we've allocated so far.
|
|
|
|
*/
|
|
|
|
goto free;
|
|
|
|
}
|
2007-10-16 16:26:19 +08:00
|
|
|
/*
|
|
|
|
* The surplus_list now contains _at_least_ the number of extra pages
|
2011-03-31 09:57:33 +08:00
|
|
|
* needed to accommodate the reservation. Add the appropriate number
|
2007-10-16 16:26:19 +08:00
|
|
|
* of pages to the hugetlb pool and free the extras back to the buddy
|
2008-03-05 06:29:38 +08:00
|
|
|
* allocator. Commit the entire reservation here to prevent another
|
|
|
|
* process from stealing the pages as they are added to the pool but
|
|
|
|
* before they are reserved.
|
2007-10-16 16:26:19 +08:00
|
|
|
*/
|
|
|
|
needed += allocated;
|
2008-07-24 12:27:41 +08:00
|
|
|
h->resv_huge_pages += delta;
|
2007-10-16 16:26:19 +08:00
|
|
|
ret = 0;
|
2010-09-08 09:19:37 +08:00
|
|
|
|
2008-04-28 17:12:20 +08:00
|
|
|
/* Free the needed pages to the hugetlb pool */
|
2007-10-16 16:26:19 +08:00
|
|
|
list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
|
2008-04-28 17:12:20 +08:00
|
|
|
if ((--needed) < 0)
|
|
|
|
break;
|
2010-09-08 09:19:37 +08:00
|
|
|
/*
|
|
|
|
* This page is now managed by the hugetlb allocator and has
|
|
|
|
* no users -- drop the buddy allocator's reference.
|
|
|
|
*/
|
|
|
|
put_page_testzero(page);
|
2014-01-24 07:52:54 +08:00
|
|
|
VM_BUG_ON_PAGE(page_count(page), page);
|
2008-07-24 12:27:41 +08:00
|
|
|
enqueue_huge_page(h, page);
|
2008-04-28 17:12:20 +08:00
|
|
|
}
|
2012-03-22 07:34:00 +08:00
|
|
|
free:
|
2011-12-29 07:57:16 +08:00
|
|
|
spin_unlock(&hugetlb_lock);
|
2008-04-28 17:12:20 +08:00
|
|
|
|
|
|
|
/* Free unnecessary surplus pages to the buddy allocator */
|
2013-09-12 05:21:02 +08:00
|
|
|
list_for_each_entry_safe(page, tmp, &surplus_list, lru)
|
|
|
|
put_page(page);
|
2010-09-08 09:19:37 +08:00
|
|
|
spin_lock(&hugetlb_lock);
|
2007-10-16 16:26:19 +08:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2017-01-11 08:58:27 +08:00
|
|
|
* This routine has two main purposes:
|
|
|
|
* 1) Decrement the reservation count (resv_huge_pages) by the value passed
|
|
|
|
* in unused_resv_pages. This corresponds to the prior adjustments made
|
|
|
|
* to the associated reservation map.
|
|
|
|
* 2) Free any unused surplus pages that may have been allocated to satisfy
|
|
|
|
* the reservation. As many as unused_resv_pages may be freed.
|
|
|
|
*
|
|
|
|
* Called with hugetlb_lock held. However, the lock could be dropped (and
|
|
|
|
* reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
|
|
|
|
* we must make sure nobody else can claim pages we are in the process of
|
|
|
|
* freeing. Do this by ensuring resv_huge_page always is greater than the
|
|
|
|
* number of huge pages we plan to free when dropping the lock.
|
2007-10-16 16:26:19 +08:00
|
|
|
*/
|
2008-07-24 12:27:41 +08:00
|
|
|
static void return_unused_surplus_pages(struct hstate *h,
|
|
|
|
unsigned long unused_resv_pages)
|
2007-10-16 16:26:19 +08:00
|
|
|
{
|
|
|
|
unsigned long nr_pages;
|
|
|
|
|
2008-07-24 12:27:47 +08:00
|
|
|
/* Cannot return gigantic pages currently */
|
2014-06-05 07:07:08 +08:00
|
|
|
if (hstate_is_gigantic(h))
|
2017-01-11 08:58:27 +08:00
|
|
|
goto out;
|
2008-07-24 12:27:47 +08:00
|
|
|
|
2017-01-11 08:58:27 +08:00
|
|
|
/*
|
|
|
|
* Part (or even all) of the reservation could have been backed
|
|
|
|
* by pre-allocated pages. Only free surplus pages.
|
|
|
|
*/
|
2008-07-24 12:27:41 +08:00
|
|
|
nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
|
2007-10-16 16:26:19 +08:00
|
|
|
|
2009-09-22 08:01:23 +08:00
|
|
|
/*
|
|
|
|
* We want to release as many surplus pages as possible, spread
|
2009-12-15 09:58:32 +08:00
|
|
|
* evenly across all nodes with memory. Iterate across these nodes
|
|
|
|
* until we can no longer free unreserved surplus pages. This occurs
|
|
|
|
* when the nodes with surplus pages have no free pages.
|
|
|
|
* free_pool_huge_page() will balance the the freed pages across the
|
|
|
|
* on-line nodes with memory and will handle the hstate accounting.
|
2017-01-11 08:58:27 +08:00
|
|
|
*
|
|
|
|
* Note that we decrement resv_huge_pages as we free the pages. If
|
|
|
|
* we drop the lock, resv_huge_pages will still be sufficiently large
|
|
|
|
* to cover subsequent pages we may free.
|
2009-09-22 08:01:23 +08:00
|
|
|
*/
|
|
|
|
while (nr_pages--) {
|
2017-01-11 08:58:27 +08:00
|
|
|
h->resv_huge_pages--;
|
|
|
|
unused_resv_pages--;
|
2012-12-13 05:51:36 +08:00
|
|
|
if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
|
2017-01-11 08:58:27 +08:00
|
|
|
goto out;
|
2014-04-19 06:07:18 +08:00
|
|
|
cond_resched_lock(&hugetlb_lock);
|
2007-10-16 16:26:19 +08:00
|
|
|
}
|
2017-01-11 08:58:27 +08:00
|
|
|
|
|
|
|
out:
|
|
|
|
/* Fully uncommit the reservation */
|
|
|
|
h->resv_huge_pages -= unused_resv_pages;
|
2007-10-16 16:26:19 +08:00
|
|
|
}
|
|
|
|
|
2015-09-09 06:01:28 +08:00
|
|
|
|
2008-07-24 12:27:30 +08:00
|
|
|
/*
|
2015-09-09 06:01:31 +08:00
|
|
|
* vma_needs_reservation, vma_commit_reservation and vma_end_reservation
|
2015-09-09 06:01:28 +08:00
|
|
|
* are used by the huge page allocation routines to manage reservations.
|
2015-06-25 07:57:55 +08:00
|
|
|
*
|
|
|
|
* vma_needs_reservation is called to determine if the huge page at addr
|
|
|
|
* within the vma has an associated reservation. If a reservation is
|
|
|
|
* needed, the value 1 is returned. The caller is then responsible for
|
|
|
|
* managing the global reservation and subpool usage counts. After
|
|
|
|
* the huge page has been allocated, vma_commit_reservation is called
|
2015-09-09 06:01:31 +08:00
|
|
|
* to add the page to the reservation map. If the page allocation fails,
|
|
|
|
* the reservation must be ended instead of committed. vma_end_reservation
|
|
|
|
* is called in such cases.
|
2015-06-25 07:57:55 +08:00
|
|
|
*
|
|
|
|
* In the normal case, vma_commit_reservation returns the same value
|
|
|
|
* as the preceding vma_needs_reservation call. The only time this
|
|
|
|
* is not the case is if a reserve map was changed between calls. It
|
|
|
|
* is the responsibility of the caller to notice the difference and
|
|
|
|
* take appropriate action.
|
2016-11-11 02:46:32 +08:00
|
|
|
*
|
|
|
|
* vma_add_reservation is used in error paths where a reservation must
|
|
|
|
* be restored when a newly allocated huge page must be freed. It is
|
|
|
|
* to be called after calling vma_needs_reservation to determine if a
|
|
|
|
* reservation exists.
|
2008-07-24 12:27:30 +08:00
|
|
|
*/
|
2015-09-09 06:01:28 +08:00
|
|
|
enum vma_resv_mode {
|
|
|
|
VMA_NEEDS_RESV,
|
|
|
|
VMA_COMMIT_RESV,
|
2015-09-09 06:01:31 +08:00
|
|
|
VMA_END_RESV,
|
2016-11-11 02:46:32 +08:00
|
|
|
VMA_ADD_RESV,
|
2015-09-09 06:01:28 +08:00
|
|
|
};
|
2015-06-25 07:57:55 +08:00
|
|
|
static long __vma_reservation_common(struct hstate *h,
|
|
|
|
struct vm_area_struct *vma, unsigned long addr,
|
2015-09-09 06:01:28 +08:00
|
|
|
enum vma_resv_mode mode)
|
2008-07-24 12:27:30 +08:00
|
|
|
{
|
2014-04-04 05:47:30 +08:00
|
|
|
struct resv_map *resv;
|
|
|
|
pgoff_t idx;
|
2015-06-25 07:57:55 +08:00
|
|
|
long ret;
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
long dummy_out_regions_needed;
|
2008-07-24 12:27:30 +08:00
|
|
|
|
2014-04-04 05:47:30 +08:00
|
|
|
resv = vma_resv_map(vma);
|
|
|
|
if (!resv)
|
2008-07-24 12:27:32 +08:00
|
|
|
return 1;
|
2008-07-24 12:27:30 +08:00
|
|
|
|
2014-04-04 05:47:30 +08:00
|
|
|
idx = vma_hugecache_offset(h, vma, addr);
|
2015-09-09 06:01:28 +08:00
|
|
|
switch (mode) {
|
|
|
|
case VMA_NEEDS_RESV:
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
|
|
|
|
/* We assume that vma_reservation_* routines always operate on
|
|
|
|
* 1 page, and that adding to resv map a 1 page entry can only
|
|
|
|
* ever require 1 region.
|
|
|
|
*/
|
|
|
|
VM_BUG_ON(dummy_out_regions_needed != 1);
|
2015-09-09 06:01:28 +08:00
|
|
|
break;
|
|
|
|
case VMA_COMMIT_RESV:
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
/* region_add calls of range 1 should never fail. */
|
|
|
|
VM_BUG_ON(ret < 0);
|
2015-09-09 06:01:28 +08:00
|
|
|
break;
|
2015-09-09 06:01:31 +08:00
|
|
|
case VMA_END_RESV:
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
region_abort(resv, idx, idx + 1, 1);
|
2015-09-09 06:01:28 +08:00
|
|
|
ret = 0;
|
|
|
|
break;
|
2016-11-11 02:46:32 +08:00
|
|
|
case VMA_ADD_RESV:
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
if (vma->vm_flags & VM_MAYSHARE) {
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
/* region_add calls of range 1 should never fail. */
|
|
|
|
VM_BUG_ON(ret < 0);
|
|
|
|
} else {
|
|
|
|
region_abort(resv, idx, idx + 1, 1);
|
2016-11-11 02:46:32 +08:00
|
|
|
ret = region_del(resv, idx, idx + 1);
|
|
|
|
}
|
|
|
|
break;
|
2015-09-09 06:01:28 +08:00
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
2008-07-24 12:27:32 +08:00
|
|
|
|
2014-04-04 05:47:30 +08:00
|
|
|
if (vma->vm_flags & VM_MAYSHARE)
|
2015-06-25 07:57:55 +08:00
|
|
|
return ret;
|
2016-06-09 06:33:42 +08:00
|
|
|
else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
|
|
|
|
/*
|
|
|
|
* In most cases, reserves always exist for private mappings.
|
|
|
|
* However, a file associated with mapping could have been
|
|
|
|
* hole punched or truncated after reserves were consumed.
|
|
|
|
* As subsequent fault on such a range will not use reserves.
|
|
|
|
* Subtle - The reserve map for private mappings has the
|
|
|
|
* opposite meaning than that of shared mappings. If NO
|
|
|
|
* entry is in the reserve map, it means a reservation exists.
|
|
|
|
* If an entry exists in the reserve map, it means the
|
|
|
|
* reservation has already been consumed. As a result, the
|
|
|
|
* return value of this routine is the opposite of the
|
|
|
|
* value returned from reserve map manipulation routines above.
|
|
|
|
*/
|
|
|
|
if (ret)
|
|
|
|
return 0;
|
|
|
|
else
|
|
|
|
return 1;
|
|
|
|
}
|
2014-04-04 05:47:30 +08:00
|
|
|
else
|
2015-06-25 07:57:55 +08:00
|
|
|
return ret < 0 ? ret : 0;
|
2008-07-24 12:27:30 +08:00
|
|
|
}
|
2015-06-25 07:57:55 +08:00
|
|
|
|
|
|
|
static long vma_needs_reservation(struct hstate *h,
|
2008-07-24 12:27:41 +08:00
|
|
|
struct vm_area_struct *vma, unsigned long addr)
|
2008-07-24 12:27:30 +08:00
|
|
|
{
|
2015-09-09 06:01:28 +08:00
|
|
|
return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
|
2015-06-25 07:57:55 +08:00
|
|
|
}
|
2008-07-24 12:27:32 +08:00
|
|
|
|
2015-06-25 07:57:55 +08:00
|
|
|
static long vma_commit_reservation(struct hstate *h,
|
|
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
|
|
{
|
2015-09-09 06:01:28 +08:00
|
|
|
return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
|
|
|
|
}
|
|
|
|
|
2015-09-09 06:01:31 +08:00
|
|
|
static void vma_end_reservation(struct hstate *h,
|
2015-09-09 06:01:28 +08:00
|
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
|
|
{
|
2015-09-09 06:01:31 +08:00
|
|
|
(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
|
2008-07-24 12:27:30 +08:00
|
|
|
}
|
|
|
|
|
2016-11-11 02:46:32 +08:00
|
|
|
static long vma_add_reservation(struct hstate *h,
|
|
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
|
|
{
|
|
|
|
return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This routine is called to restore a reservation on error paths. In the
|
|
|
|
* specific error paths, a huge page was allocated (via alloc_huge_page)
|
|
|
|
* and is about to be freed. If a reservation for the page existed,
|
|
|
|
* alloc_huge_page would have consumed the reservation and set PagePrivate
|
|
|
|
* in the newly allocated page. When the page is freed via free_huge_page,
|
|
|
|
* the global reservation count will be incremented if PagePrivate is set.
|
|
|
|
* However, free_huge_page can not adjust the reserve map. Adjust the
|
|
|
|
* reserve map here to be consistent with global reserve count adjustments
|
|
|
|
* to be made by free_huge_page.
|
|
|
|
*/
|
|
|
|
static void restore_reserve_on_error(struct hstate *h,
|
|
|
|
struct vm_area_struct *vma, unsigned long address,
|
|
|
|
struct page *page)
|
|
|
|
{
|
|
|
|
if (unlikely(PagePrivate(page))) {
|
|
|
|
long rc = vma_needs_reservation(h, vma, address);
|
|
|
|
|
|
|
|
if (unlikely(rc < 0)) {
|
|
|
|
/*
|
|
|
|
* Rare out of memory condition in reserve map
|
|
|
|
* manipulation. Clear PagePrivate so that
|
|
|
|
* global reserve count will not be incremented
|
|
|
|
* by free_huge_page. This will make it appear
|
|
|
|
* as though the reservation for this page was
|
|
|
|
* consumed. This may prevent the task from
|
|
|
|
* faulting in the page at a later time. This
|
|
|
|
* is better than inconsistent global huge page
|
|
|
|
* accounting of reserve counts.
|
|
|
|
*/
|
|
|
|
ClearPagePrivate(page);
|
|
|
|
} else if (rc) {
|
|
|
|
rc = vma_add_reservation(h, vma, address);
|
|
|
|
if (unlikely(rc < 0))
|
|
|
|
/*
|
|
|
|
* See above comment about rare out of
|
|
|
|
* memory condition.
|
|
|
|
*/
|
|
|
|
ClearPagePrivate(page);
|
|
|
|
} else
|
|
|
|
vma_end_reservation(h, vma, address);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-09-09 06:01:54 +08:00
|
|
|
struct page *alloc_huge_page(struct vm_area_struct *vma,
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
unsigned long addr, int avoid_reserve)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
struct hugepage_subpool *spool = subpool_vma(vma);
|
2008-07-24 12:27:41 +08:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
2007-11-15 08:59:37 +08:00
|
|
|
struct page *page;
|
2015-09-09 06:01:47 +08:00
|
|
|
long map_chg, map_commit;
|
|
|
|
long gbl_chg;
|
2012-08-01 07:42:18 +08:00
|
|
|
int ret, idx;
|
|
|
|
struct hugetlb_cgroup *h_cg;
|
2020-04-02 12:11:31 +08:00
|
|
|
bool deferred_reserve;
|
2008-07-24 12:27:23 +08:00
|
|
|
|
2012-08-01 07:42:18 +08:00
|
|
|
idx = hstate_index(h);
|
2008-07-24 12:27:23 +08:00
|
|
|
/*
|
2015-09-09 06:01:47 +08:00
|
|
|
* Examine the region/reserve map to determine if the process
|
|
|
|
* has a reservation for the page to be allocated. A return
|
|
|
|
* code of zero indicates a reservation exists (no change).
|
2008-07-24 12:27:23 +08:00
|
|
|
*/
|
2015-09-09 06:01:47 +08:00
|
|
|
map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
|
|
|
|
if (map_chg < 0)
|
2012-08-01 07:41:57 +08:00
|
|
|
return ERR_PTR(-ENOMEM);
|
2015-09-09 06:01:47 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Processes that did not create the mapping will have no
|
|
|
|
* reserves as indicated by the region/reserve map. Check
|
|
|
|
* that the allocation will not exceed the subpool limit.
|
|
|
|
* Allocations for MAP_NORESERVE mappings also need to be
|
|
|
|
* checked against any subpool limit.
|
|
|
|
*/
|
|
|
|
if (map_chg || avoid_reserve) {
|
|
|
|
gbl_chg = hugepage_subpool_get_pages(spool, 1);
|
|
|
|
if (gbl_chg < 0) {
|
2015-09-09 06:01:31 +08:00
|
|
|
vma_end_reservation(h, vma, addr);
|
2012-08-01 07:41:57 +08:00
|
|
|
return ERR_PTR(-ENOSPC);
|
2015-09-09 06:01:28 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2015-09-09 06:01:47 +08:00
|
|
|
/*
|
|
|
|
* Even though there was no reservation in the region/reserve
|
|
|
|
* map, there could be reservations associated with the
|
|
|
|
* subpool that can be used. This would be indicated if the
|
|
|
|
* return value of hugepage_subpool_get_pages() is zero.
|
|
|
|
* However, if avoid_reserve is specified we still avoid even
|
|
|
|
* the subpool reservations.
|
|
|
|
*/
|
|
|
|
if (avoid_reserve)
|
|
|
|
gbl_chg = 1;
|
|
|
|
}
|
|
|
|
|
2020-04-02 12:11:31 +08:00
|
|
|
/* If this allocation is not consuming a reservation, charge it now.
|
|
|
|
*/
|
|
|
|
deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
|
|
|
|
if (deferred_reserve) {
|
|
|
|
ret = hugetlb_cgroup_charge_cgroup_rsvd(
|
|
|
|
idx, pages_per_huge_page(h), &h_cg);
|
|
|
|
if (ret)
|
|
|
|
goto out_subpool_put;
|
|
|
|
}
|
|
|
|
|
2012-08-01 07:42:18 +08:00
|
|
|
ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
|
2014-06-05 07:10:36 +08:00
|
|
|
if (ret)
|
2020-04-02 12:11:31 +08:00
|
|
|
goto out_uncharge_cgroup_reservation;
|
2014-06-05 07:10:36 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
spin_lock(&hugetlb_lock);
|
2015-09-09 06:01:47 +08:00
|
|
|
/*
|
|
|
|
* glb_chg is passed to indicate whether or not a page must be taken
|
|
|
|
* from the global free pool (global change). gbl_chg == 0 indicates
|
|
|
|
* a reservation exists for the allocation.
|
|
|
|
*/
|
|
|
|
page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
|
2013-09-12 05:20:58 +08:00
|
|
|
if (!page) {
|
2012-08-01 07:42:35 +08:00
|
|
|
spin_unlock(&hugetlb_lock);
|
2018-02-01 08:20:56 +08:00
|
|
|
page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
|
2014-06-05 07:10:36 +08:00
|
|
|
if (!page)
|
|
|
|
goto out_uncharge_cgroup;
|
mm: hugetlb: fix hugepage memory leak caused by wrong reserve count
When dequeue_huge_page_vma() in alloc_huge_page() fails, we fall back on
alloc_buddy_huge_page() to directly create a hugepage from the buddy
allocator.
In that case, however, if alloc_buddy_huge_page() succeeds we don't
decrement h->resv_huge_pages, which means that successful
hugetlb_fault() returns without releasing the reserve count. As a
result, subsequent hugetlb_fault() might fail despite that there are
still free hugepages.
This patch simply adds decrementing code on that code path.
I reproduced this problem when testing v4.3 kernel in the following situation:
- the test machine/VM is a NUMA system,
- hugepage overcommiting is enabled,
- most of hugepages are allocated and there's only one free hugepage
which is on node 0 (for example),
- another program, which calls set_mempolicy(MPOL_BIND) to bind itself to
node 1, tries to allocate a hugepage,
- the allocation should fail but the reserve count is still hold.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org> [3.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-12 05:40:24 +08:00
|
|
|
if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
|
|
|
|
SetPagePrivate(page);
|
|
|
|
h->resv_huge_pages--;
|
|
|
|
}
|
2012-08-01 07:42:32 +08:00
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
list_move(&page->lru, &h->hugepage_activelist);
|
2013-09-12 05:20:58 +08:00
|
|
|
/* Fall through */
|
2008-01-14 16:55:19 +08:00
|
|
|
}
|
2013-09-12 05:20:58 +08:00
|
|
|
hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
|
2020-04-02 12:11:31 +08:00
|
|
|
/* If allocation is not consuming a reservation, also store the
|
|
|
|
* hugetlb_cgroup pointer on the page.
|
|
|
|
*/
|
|
|
|
if (deferred_reserve) {
|
|
|
|
hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
|
|
|
|
h_cg, page);
|
|
|
|
}
|
|
|
|
|
2013-09-12 05:20:58 +08:00
|
|
|
spin_unlock(&hugetlb_lock);
|
2007-11-15 08:59:37 +08:00
|
|
|
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
set_page_private(page, (unsigned long)spool);
|
2007-11-15 08:59:42 +08:00
|
|
|
|
2015-09-09 06:01:47 +08:00
|
|
|
map_commit = vma_commit_reservation(h, vma, addr);
|
|
|
|
if (unlikely(map_chg > map_commit)) {
|
2015-06-25 07:57:58 +08:00
|
|
|
/*
|
|
|
|
* The page was added to the reservation map between
|
|
|
|
* vma_needs_reservation and vma_commit_reservation.
|
|
|
|
* This indicates a race with hugetlb_reserve_pages.
|
|
|
|
* Adjust for the subpool count incremented above AND
|
|
|
|
* in hugetlb_reserve_pages for the same page. Also,
|
|
|
|
* the reservation count added in hugetlb_reserve_pages
|
|
|
|
* no longer applies.
|
|
|
|
*/
|
|
|
|
long rsv_adjust;
|
|
|
|
|
|
|
|
rsv_adjust = hugepage_subpool_put_pages(spool, 1);
|
|
|
|
hugetlb_acct_memory(h, -rsv_adjust);
|
|
|
|
}
|
2007-11-15 08:59:42 +08:00
|
|
|
return page;
|
2014-06-05 07:10:36 +08:00
|
|
|
|
|
|
|
out_uncharge_cgroup:
|
|
|
|
hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
|
2020-04-02 12:11:31 +08:00
|
|
|
out_uncharge_cgroup_reservation:
|
|
|
|
if (deferred_reserve)
|
|
|
|
hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
|
|
|
|
h_cg);
|
2014-06-05 07:10:36 +08:00
|
|
|
out_subpool_put:
|
2015-09-09 06:01:47 +08:00
|
|
|
if (map_chg || avoid_reserve)
|
2014-06-05 07:10:36 +08:00
|
|
|
hugepage_subpool_put_pages(spool, 1);
|
2015-09-09 06:01:31 +08:00
|
|
|
vma_end_reservation(h, vma, addr);
|
2014-06-05 07:10:36 +08:00
|
|
|
return ERR_PTR(-ENOSPC);
|
[PATCH] hugepage: Strict page reservation for hugepage inodes
These days, hugepages are demand-allocated at first fault time. There's a
somewhat dubious (and racy) heuristic when making a new mmap() to check if
there are enough available hugepages to fully satisfy that mapping.
A particularly obvious case where the heuristic breaks down is where a
process maps its hugepages not as a single chunk, but as a bunch of
individually mmap()ed (or shmat()ed) blocks without touching and
instantiating the pages in between allocations. In this case the size of
each block is compared against the total number of available hugepages.
It's thus easy for the process to become overcommitted, because each block
mapping will succeed, although the total number of hugepages required by
all blocks exceeds the number available. In particular, this defeats such
a program which will detect a mapping failure and adjust its hugepage usage
downward accordingly.
The patch below addresses this problem, by strictly reserving a number of
physical hugepages for hugepage inodes which have been mapped, but not
instatiated. MAP_SHARED mappings are thus "safe" - they will fail on
mmap(), not later with an OOM SIGKILL. MAP_PRIVATE mappings can still
trigger an OOM. (Actually SHARED mappings can technically still OOM, but
only if the sysadmin explicitly reduces the hugepage pool between mapping
and instantiation)
This patch appears to address the problem at hand - it allows DB2 to start
correctly, for instance, which previously suffered the failure described
above.
This patch causes no regressions on the libhugetblfs testsuite, and makes a
test (designed to catch this problem) pass which previously failed (ppc64,
POWER5).
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 16:08:55 +08:00
|
|
|
}
|
|
|
|
|
2017-07-28 13:01:25 +08:00
|
|
|
int alloc_bootmem_huge_page(struct hstate *h)
|
|
|
|
__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
|
|
|
|
int __alloc_bootmem_huge_page(struct hstate *h)
|
2008-07-24 12:27:47 +08:00
|
|
|
{
|
|
|
|
struct huge_bootmem_page *m;
|
2013-09-12 05:21:00 +08:00
|
|
|
int nr_nodes, node;
|
2008-07-24 12:27:47 +08:00
|
|
|
|
2013-09-12 05:21:00 +08:00
|
|
|
for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
|
2008-07-24 12:27:47 +08:00
|
|
|
void *addr;
|
|
|
|
|
2018-10-31 06:08:04 +08:00
|
|
|
addr = memblock_alloc_try_nid_raw(
|
2014-01-22 07:50:36 +08:00
|
|
|
huge_page_size(h), huge_page_size(h),
|
2018-10-31 06:09:44 +08:00
|
|
|
0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
|
2008-07-24 12:27:47 +08:00
|
|
|
if (addr) {
|
|
|
|
/*
|
|
|
|
* Use the beginning of the huge page to store the
|
|
|
|
* huge_bootmem_page struct (until gather_bootmem
|
|
|
|
* puts them into the mem_map).
|
|
|
|
*/
|
|
|
|
m = addr;
|
2009-01-07 06:40:33 +08:00
|
|
|
goto found;
|
2008-07-24 12:27:47 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
found:
|
2014-12-13 08:55:21 +08:00
|
|
|
BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
|
2008-07-24 12:27:47 +08:00
|
|
|
/* Put them into a private list first because mem_map is not up yet */
|
2018-08-18 06:49:17 +08:00
|
|
|
INIT_LIST_HEAD(&m->list);
|
2008-07-24 12:27:47 +08:00
|
|
|
list_add(&m->list, &huge_boot_pages);
|
|
|
|
m->hstate = h;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2015-11-07 08:29:57 +08:00
|
|
|
static void __init prep_compound_huge_page(struct page *page,
|
|
|
|
unsigned int order)
|
2008-11-07 04:53:27 +08:00
|
|
|
{
|
|
|
|
if (unlikely(order > (MAX_ORDER - 1)))
|
|
|
|
prep_compound_gigantic_page(page, order);
|
|
|
|
else
|
|
|
|
prep_compound_page(page, order);
|
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:47 +08:00
|
|
|
/* Put bootmem huge pages into the standard lists after mem_map is up */
|
|
|
|
static void __init gather_bootmem_prealloc(void)
|
|
|
|
{
|
|
|
|
struct huge_bootmem_page *m;
|
|
|
|
|
|
|
|
list_for_each_entry(m, &huge_boot_pages, list) {
|
2018-08-18 06:49:07 +08:00
|
|
|
struct page *page = virt_to_page(m);
|
2008-07-24 12:27:47 +08:00
|
|
|
struct hstate *h = m->hstate;
|
2011-07-26 08:11:50 +08:00
|
|
|
|
2008-07-24 12:27:47 +08:00
|
|
|
WARN_ON(page_count(page) != 1);
|
2008-11-07 04:53:27 +08:00
|
|
|
prep_compound_huge_page(page, h->order);
|
2013-10-17 04:46:56 +08:00
|
|
|
WARN_ON(PageReserved(page));
|
2008-07-24 12:27:47 +08:00
|
|
|
prep_new_huge_page(h, page, page_to_nid(page));
|
2018-02-01 08:20:41 +08:00
|
|
|
put_page(page); /* free it into the hugepage allocator */
|
|
|
|
|
mm: fix negative commitlimit when gigantic hugepages are allocated
When 1GB hugepages are allocated on a system, free(1) reports less
available memory than what really is installed in the box. Also, if the
total size of hugepages allocated on a system is over half of the total
memory size, CommitLimit becomes a negative number.
The problem is that gigantic hugepages (order > MAX_ORDER) can only be
allocated at boot with bootmem, thus its frames are not accounted to
'totalram_pages'. However, they are accounted to hugetlb_total_pages()
What happens to turn CommitLimit into a negative number is this
calculation, in fs/proc/meminfo.c:
allowed = ((totalram_pages - hugetlb_total_pages())
* sysctl_overcommit_ratio / 100) + total_swap_pages;
A similar calculation occurs in __vm_enough_memory() in mm/mmap.c.
Also, every vm statistic which depends on 'totalram_pages' will render
confusing values, as if system were 'missing' some part of its memory.
Impact of this bug:
When gigantic hugepages are allocated and sysctl_overcommit_memory ==
OVERCOMMIT_NEVER. In a such situation, __vm_enough_memory() goes through
the mentioned 'allowed' calculation and might end up mistakenly returning
-ENOMEM, thus forcing the system to start reclaiming pages earlier than it
would be ususal, and this could cause detrimental impact to overall
system's performance, depending on the workload.
Besides the aforementioned scenario, I can only think of this causing
annoyances with memory reports from /proc/meminfo and free(1).
[akpm@linux-foundation.org: standardize comment layout]
Reported-by: Russ Anderson <rja@sgi.com>
Signed-off-by: Rafael Aquini <aquini@linux.com>
Acked-by: Russ Anderson <rja@sgi.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-16 06:08:39 +08:00
|
|
|
/*
|
|
|
|
* If we had gigantic hugepages allocated at boot time, we need
|
|
|
|
* to restore the 'stolen' pages to totalram_pages in order to
|
|
|
|
* fix confusing memory reports from free(1) and another
|
|
|
|
* side-effects, like CommitLimit going negative.
|
|
|
|
*/
|
2014-06-05 07:07:08 +08:00
|
|
|
if (hstate_is_gigantic(h))
|
2013-07-04 06:03:21 +08:00
|
|
|
adjust_managed_page_count(page, 1 << h->order);
|
2018-07-04 08:02:43 +08:00
|
|
|
cond_resched();
|
2008-07-24 12:27:47 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:48 +08:00
|
|
|
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
unsigned long i;
|
2019-09-24 06:37:35 +08:00
|
|
|
nodemask_t *node_alloc_noretry;
|
|
|
|
|
|
|
|
if (!hstate_is_gigantic(h)) {
|
|
|
|
/*
|
|
|
|
* Bit mask controlling how hard we retry per-node allocations.
|
|
|
|
* Ignore errors as lower level routines can deal with
|
|
|
|
* node_alloc_noretry == NULL. If this kmalloc fails at boot
|
|
|
|
* time, we are likely in bigger trouble.
|
|
|
|
*/
|
|
|
|
node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
|
|
|
|
GFP_KERNEL);
|
|
|
|
} else {
|
|
|
|
/* allocations done at boot time */
|
|
|
|
node_alloc_noretry = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* bit mask controlling how hard we retry per-node allocations */
|
|
|
|
if (node_alloc_noretry)
|
|
|
|
nodes_clear(*node_alloc_noretry);
|
2008-07-24 12:27:41 +08:00
|
|
|
|
2008-07-24 12:27:42 +08:00
|
|
|
for (i = 0; i < h->max_huge_pages; ++i) {
|
2014-06-05 07:07:08 +08:00
|
|
|
if (hstate_is_gigantic(h)) {
|
mm: hugetlb: optionally allocate gigantic hugepages using cma
Commit 944d9fec8d7a ("hugetlb: add support for gigantic page allocation
at runtime") has added the run-time allocation of gigantic pages.
However it actually works only at early stages of the system loading,
when the majority of memory is free. After some time the memory gets
fragmented by non-movable pages, so the chances to find a contiguous 1GB
block are getting close to zero. Even dropping caches manually doesn't
help a lot.
At large scale rebooting servers in order to allocate gigantic hugepages
is quite expensive and complex. At the same time keeping some constant
percentage of memory in reserved hugepages even if the workload isn't
using it is a big waste: not all workloads can benefit from using 1 GB
pages.
The following solution can solve the problem:
1) On boot time a dedicated cma area* is reserved. The size is passed
as a kernel argument.
2) Run-time allocations of gigantic hugepages are performed using the
cma allocator and the dedicated cma area
In this case gigantic hugepages can be allocated successfully with a
high probability, however the memory isn't completely wasted if nobody
is using 1GB hugepages: it can be used for pagecache, anon memory, THPs,
etc.
* On a multi-node machine a per-node cma area is allocated on each node.
Following gigantic hugetlb allocation are using the first available
numa node if the mask isn't specified by a user.
Usage:
1) configure the kernel to allocate a cma area for hugetlb allocations:
pass hugetlb_cma=10G as a kernel argument
2) allocate hugetlb pages as usual, e.g.
echo 10 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
If the option isn't enabled or the allocation of the cma area failed,
the current behavior of the system is preserved.
x86 and arm-64 are covered by this patch, other architectures can be
trivially added later.
The patch contains clean-ups and fixes proposed and implemented by Aslan
Bakirov and Randy Dunlap. It also contains ideas and suggestions
proposed by Rik van Riel, Michal Hocko and Mike Kravetz. Thanks!
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Andreas Schaufler <andreas.schaufler@gmx.de>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Aslan Bakirov <aslan@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200407163840.92263-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-11 05:32:45 +08:00
|
|
|
if (IS_ENABLED(CONFIG_CMA) && hugetlb_cma[0]) {
|
|
|
|
pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
|
|
|
|
break;
|
|
|
|
}
|
2008-07-24 12:27:47 +08:00
|
|
|
if (!alloc_bootmem_huge_page(h))
|
|
|
|
break;
|
2018-02-01 08:20:56 +08:00
|
|
|
} else if (!alloc_pool_huge_page(h,
|
2019-09-24 06:37:35 +08:00
|
|
|
&node_states[N_MEMORY],
|
|
|
|
node_alloc_noretry))
|
2005-04-17 06:20:36 +08:00
|
|
|
break;
|
2017-07-11 06:48:50 +08:00
|
|
|
cond_resched();
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
mm/hugetlb.c: warn the user when issues arise on boot due to hugepages
When the user specifies too many hugepages or an invalid
default_hugepagesz the communication to the user is implicit in the
allocation message. This patch adds a warning when the desired page
count is not allocated and prints an error when the default_hugepagesz
is invalid on boot.
During boot hugepages will allocate until there is a fraction of the
hugepage size left. That is, we allocate until either the request is
satisfied or memory for the pages is exhausted. When memory for the
pages is exhausted, it will most likely lead to the system failing with
the OOM manager not finding enough (or anything) to kill (unless you're
using really big hugepages in the order of 100s of MB or in the GBs).
The user will most likely see the OOM messages much later in the boot
sequence than the implicitly stated message. Worse yet, you may even
get an OOM for each processor which causes many pages of OOMs on modern
systems. Although these messages will be printed earlier than the OOM
messages, at least giving the user errors and warnings will highlight
the configuration as an issue. I'm trying to point the user in the
right direction by providing a more robust statement of what is failing.
During the sysctl or echo command, the user can check the results much
easier than if the system hangs during boot and the scenario of having
nothing to OOM for kernel memory is highly unlikely.
Mike said:
"Before sending out this patch, I asked Liam off list why he was doing
it. Was it something he just thought would be useful? Or, was there
some type of user situation/need. He said that he had been called in
to assist on several occasions when a system OOMed during boot. In
almost all of these situations, the user had grossly misconfigured
huge pages.
DB users want to pre-allocate just the right amount of huge pages, but
sometimes they can be really off. In such situations, the huge page
init code just allocates as many huge pages as it can and reports the
number allocated. There is no indication that it quit allocating
because it ran out of memory. Of course, a user could compare the
number in the message to what they requested on the command line to
determine if they got all the huge pages they requested. The thought
was that it would be useful to at least flag this situation. That way,
the user might be able to better relate the huge page allocation
failure to the OOM.
I'm not sure if the e-mail discussion made it obvious that this is
something he has seen on several occasions.
I see Michal's point that this will only flag the situation where
someone configures huge pages very badly. And, a more extensive look
at the situation of misconfiguring huge pages might be in order. But,
this has happened on several occasions which led to the creation of
this patch"
[akpm@linux-foundation.org: reposition memfmt() to avoid forward declaration]
Link: http://lkml.kernel.org/r/20170603005413.10380-1-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: zhongjiang <zhongjiang@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 06:48:15 +08:00
|
|
|
if (i < h->max_huge_pages) {
|
|
|
|
char buf[32];
|
|
|
|
|
2017-07-11 06:48:56 +08:00
|
|
|
string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
|
mm/hugetlb.c: warn the user when issues arise on boot due to hugepages
When the user specifies too many hugepages or an invalid
default_hugepagesz the communication to the user is implicit in the
allocation message. This patch adds a warning when the desired page
count is not allocated and prints an error when the default_hugepagesz
is invalid on boot.
During boot hugepages will allocate until there is a fraction of the
hugepage size left. That is, we allocate until either the request is
satisfied or memory for the pages is exhausted. When memory for the
pages is exhausted, it will most likely lead to the system failing with
the OOM manager not finding enough (or anything) to kill (unless you're
using really big hugepages in the order of 100s of MB or in the GBs).
The user will most likely see the OOM messages much later in the boot
sequence than the implicitly stated message. Worse yet, you may even
get an OOM for each processor which causes many pages of OOMs on modern
systems. Although these messages will be printed earlier than the OOM
messages, at least giving the user errors and warnings will highlight
the configuration as an issue. I'm trying to point the user in the
right direction by providing a more robust statement of what is failing.
During the sysctl or echo command, the user can check the results much
easier than if the system hangs during boot and the scenario of having
nothing to OOM for kernel memory is highly unlikely.
Mike said:
"Before sending out this patch, I asked Liam off list why he was doing
it. Was it something he just thought would be useful? Or, was there
some type of user situation/need. He said that he had been called in
to assist on several occasions when a system OOMed during boot. In
almost all of these situations, the user had grossly misconfigured
huge pages.
DB users want to pre-allocate just the right amount of huge pages, but
sometimes they can be really off. In such situations, the huge page
init code just allocates as many huge pages as it can and reports the
number allocated. There is no indication that it quit allocating
because it ran out of memory. Of course, a user could compare the
number in the message to what they requested on the command line to
determine if they got all the huge pages they requested. The thought
was that it would be useful to at least flag this situation. That way,
the user might be able to better relate the huge page allocation
failure to the OOM.
I'm not sure if the e-mail discussion made it obvious that this is
something he has seen on several occasions.
I see Michal's point that this will only flag the situation where
someone configures huge pages very badly. And, a more extensive look
at the situation of misconfiguring huge pages might be in order. But,
this has happened on several occasions which led to the creation of
this patch"
[akpm@linux-foundation.org: reposition memfmt() to avoid forward declaration]
Link: http://lkml.kernel.org/r/20170603005413.10380-1-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: zhongjiang <zhongjiang@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 06:48:15 +08:00
|
|
|
pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
|
|
|
|
h->max_huge_pages, buf, i);
|
|
|
|
h->max_huge_pages = i;
|
|
|
|
}
|
2019-09-24 06:37:35 +08:00
|
|
|
|
|
|
|
kfree(node_alloc_noretry);
|
2008-07-24 12:27:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void __init hugetlb_init_hstates(void)
|
|
|
|
{
|
|
|
|
struct hstate *h;
|
|
|
|
|
|
|
|
for_each_hstate(h) {
|
2015-06-25 07:56:59 +08:00
|
|
|
if (minimum_order > huge_page_order(h))
|
|
|
|
minimum_order = huge_page_order(h);
|
|
|
|
|
2008-07-24 12:27:48 +08:00
|
|
|
/* oversize hugepages were init'ed in early boot */
|
2014-06-05 07:07:08 +08:00
|
|
|
if (!hstate_is_gigantic(h))
|
2008-07-24 12:27:48 +08:00
|
|
|
hugetlb_hstate_alloc_pages(h);
|
2008-07-24 12:27:42 +08:00
|
|
|
}
|
2015-06-25 07:56:59 +08:00
|
|
|
VM_BUG_ON(minimum_order == UINT_MAX);
|
2008-07-24 12:27:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void __init report_hugepages(void)
|
|
|
|
{
|
|
|
|
struct hstate *h;
|
|
|
|
|
|
|
|
for_each_hstate(h) {
|
2008-07-24 12:27:49 +08:00
|
|
|
char buf[32];
|
2017-07-11 06:48:56 +08:00
|
|
|
|
|
|
|
string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
|
2013-02-23 08:32:08 +08:00
|
|
|
pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
|
2017-07-11 06:48:56 +08:00
|
|
|
buf, h->free_huge_pages);
|
2008-07-24 12:27:42 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
#ifdef CONFIG_HIGHMEM
|
2009-12-15 09:58:16 +08:00
|
|
|
static void try_to_free_low(struct hstate *h, unsigned long count,
|
|
|
|
nodemask_t *nodes_allowed)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2006-09-26 14:31:55 +08:00
|
|
|
int i;
|
|
|
|
|
2014-06-05 07:07:08 +08:00
|
|
|
if (hstate_is_gigantic(h))
|
2008-07-24 12:27:47 +08:00
|
|
|
return;
|
|
|
|
|
2009-12-15 09:58:16 +08:00
|
|
|
for_each_node_mask(i, *nodes_allowed) {
|
2005-04-17 06:20:36 +08:00
|
|
|
struct page *page, *next;
|
2008-07-24 12:27:41 +08:00
|
|
|
struct list_head *freel = &h->hugepage_freelists[i];
|
|
|
|
list_for_each_entry_safe(page, next, freel, lru) {
|
|
|
|
if (count >= h->nr_huge_pages)
|
2007-10-16 16:26:23 +08:00
|
|
|
return;
|
2005-04-17 06:20:36 +08:00
|
|
|
if (PageHighMem(page))
|
|
|
|
continue;
|
|
|
|
list_del(&page->lru);
|
2008-07-24 12:27:42 +08:00
|
|
|
update_and_free_page(h, page);
|
2008-07-24 12:27:41 +08:00
|
|
|
h->free_huge_pages--;
|
|
|
|
h->free_huge_pages_node[page_to_nid(page)]--;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
2009-12-15 09:58:16 +08:00
|
|
|
static inline void try_to_free_low(struct hstate *h, unsigned long count,
|
|
|
|
nodemask_t *nodes_allowed)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:32:22 +08:00
|
|
|
/*
|
|
|
|
* Increment or decrement surplus_huge_pages. Keep node-specific counters
|
|
|
|
* balanced by operating on them in a round-robin fashion.
|
|
|
|
* Returns 1 if an adjustment was made.
|
|
|
|
*/
|
2009-12-15 09:58:16 +08:00
|
|
|
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
|
|
|
|
int delta)
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:32:22 +08:00
|
|
|
{
|
2013-09-12 05:21:00 +08:00
|
|
|
int nr_nodes, node;
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:32:22 +08:00
|
|
|
|
|
|
|
VM_BUG_ON(delta != -1 && delta != 1);
|
|
|
|
|
2013-09-12 05:21:00 +08:00
|
|
|
if (delta < 0) {
|
|
|
|
for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
|
|
|
|
if (h->surplus_huge_pages_node[node])
|
|
|
|
goto found;
|
2009-09-22 08:01:22 +08:00
|
|
|
}
|
2013-09-12 05:21:00 +08:00
|
|
|
} else {
|
|
|
|
for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
|
|
|
|
if (h->surplus_huge_pages_node[node] <
|
|
|
|
h->nr_huge_pages_node[node])
|
|
|
|
goto found;
|
2009-09-22 08:01:22 +08:00
|
|
|
}
|
2013-09-12 05:21:00 +08:00
|
|
|
}
|
|
|
|
return 0;
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:32:22 +08:00
|
|
|
|
2013-09-12 05:21:00 +08:00
|
|
|
found:
|
|
|
|
h->surplus_huge_pages += delta;
|
|
|
|
h->surplus_huge_pages_node[node] += delta;
|
|
|
|
return 1;
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:32:22 +08:00
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:41 +08:00
|
|
|
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
|
2019-05-14 08:19:20 +08:00
|
|
|
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
|
2019-05-14 08:19:04 +08:00
|
|
|
nodemask_t *nodes_allowed)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2007-10-16 16:26:18 +08:00
|
|
|
unsigned long min_count, ret;
|
2019-09-24 06:37:35 +08:00
|
|
|
NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Bit mask controlling how hard we retry per-node allocations.
|
|
|
|
* If we can not allocate the bit mask, do not attempt to allocate
|
|
|
|
* the requested huge pages.
|
|
|
|
*/
|
|
|
|
if (node_alloc_noretry)
|
|
|
|
nodes_clear(*node_alloc_noretry);
|
|
|
|
else
|
|
|
|
return -ENOMEM;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2019-05-14 08:19:04 +08:00
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
|
2019-05-14 08:19:20 +08:00
|
|
|
/*
|
|
|
|
* Check for a node specific request.
|
|
|
|
* Changing node specific huge page count may require a corresponding
|
|
|
|
* change to the global count. In any case, the passed node mask
|
|
|
|
* (nodes_allowed) will restrict alloc/free to the specified node.
|
|
|
|
*/
|
|
|
|
if (nid != NUMA_NO_NODE) {
|
|
|
|
unsigned long old_count = count;
|
|
|
|
|
|
|
|
count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
|
|
|
|
/*
|
|
|
|
* User may have specified a large count value which caused the
|
|
|
|
* above calculation to overflow. In this case, they wanted
|
|
|
|
* to allocate as many huge pages as possible. Set count to
|
|
|
|
* largest possible value to align with their intention.
|
|
|
|
*/
|
|
|
|
if (count < old_count)
|
|
|
|
count = ULONG_MAX;
|
|
|
|
}
|
|
|
|
|
2019-05-14 08:19:04 +08:00
|
|
|
/*
|
|
|
|
* Gigantic pages runtime allocation depend on the capability for large
|
|
|
|
* page range allocation.
|
|
|
|
* If the system does not provide this feature, return an error when
|
|
|
|
* the user tries to allocate gigantic pages but let the user free the
|
|
|
|
* boottime allocated gigantic pages.
|
|
|
|
*/
|
|
|
|
if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
|
|
|
|
if (count > persistent_huge_pages(h)) {
|
|
|
|
spin_unlock(&hugetlb_lock);
|
2019-09-24 06:37:35 +08:00
|
|
|
NODEMASK_FREE(node_alloc_noretry);
|
2019-05-14 08:19:04 +08:00
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
/* Fall through to decrease pool */
|
|
|
|
}
|
2008-07-24 12:27:47 +08:00
|
|
|
|
2007-10-16 16:26:18 +08:00
|
|
|
/*
|
|
|
|
* Increase the pool size
|
|
|
|
* First take pages out of surplus state. Then make up the
|
|
|
|
* remaining difference by allocating fresh huge pages.
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 08:20:12 +08:00
|
|
|
*
|
2018-02-01 08:20:56 +08:00
|
|
|
* We might race with alloc_surplus_huge_page() here and be unable
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 08:20:12 +08:00
|
|
|
* to convert a surplus huge page to a normal huge page. That is
|
|
|
|
* not critical, though, it just means the overall size of the
|
|
|
|
* pool might be one hugepage larger than it needs to be, but
|
|
|
|
* within all the constraints specified by the sysctls.
|
2007-10-16 16:26:18 +08:00
|
|
|
*/
|
2008-07-24 12:27:41 +08:00
|
|
|
while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
|
2009-12-15 09:58:16 +08:00
|
|
|
if (!adjust_pool_surplus(h, nodes_allowed, -1))
|
2007-10-16 16:26:18 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:41 +08:00
|
|
|
while (count > persistent_huge_pages(h)) {
|
2007-10-16 16:26:18 +08:00
|
|
|
/*
|
|
|
|
* If this allocation races such that we no longer need the
|
|
|
|
* page, free_huge_page will handle it by freeing the page
|
|
|
|
* and reducing the surplus.
|
|
|
|
*/
|
|
|
|
spin_unlock(&hugetlb_lock);
|
2016-08-03 05:02:31 +08:00
|
|
|
|
|
|
|
/* yield cpu to avoid soft lockup */
|
|
|
|
cond_resched();
|
|
|
|
|
2019-09-24 06:37:35 +08:00
|
|
|
ret = alloc_pool_huge_page(h, nodes_allowed,
|
|
|
|
node_alloc_noretry);
|
2007-10-16 16:26:18 +08:00
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
if (!ret)
|
|
|
|
goto out;
|
|
|
|
|
2009-12-15 09:59:56 +08:00
|
|
|
/* Bail for signals. Probably ctrl-c from user */
|
|
|
|
if (signal_pending(current))
|
|
|
|
goto out;
|
2007-10-16 16:26:18 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Decrease the pool size
|
|
|
|
* First return free pages to the buddy allocator (being careful
|
|
|
|
* to keep enough around to satisfy reservations). Then place
|
|
|
|
* pages into surplus state as needed so the pool will shrink
|
|
|
|
* to the desired size as pages become free.
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 08:20:12 +08:00
|
|
|
*
|
|
|
|
* By placing pages into the surplus state independent of the
|
|
|
|
* overcommit value, we are allowing the surplus pool size to
|
|
|
|
* exceed overcommit. There are few sane options here. Since
|
2018-02-01 08:20:56 +08:00
|
|
|
* alloc_surplus_huge_page() is checking the global counter,
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 08:20:12 +08:00
|
|
|
* though, we'll note that we're not allowed to exceed surplus
|
|
|
|
* and won't grow the pool anywhere else. Not until one of the
|
|
|
|
* sysctls are changed, or the surplus pages go out of use.
|
2007-10-16 16:26:18 +08:00
|
|
|
*/
|
2008-07-24 12:27:41 +08:00
|
|
|
min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
|
2007-10-16 16:26:23 +08:00
|
|
|
min_count = max(count, min_count);
|
2009-12-15 09:58:16 +08:00
|
|
|
try_to_free_low(h, min_count, nodes_allowed);
|
2008-07-24 12:27:41 +08:00
|
|
|
while (min_count < persistent_huge_pages(h)) {
|
2009-12-15 09:58:16 +08:00
|
|
|
if (!free_pool_huge_page(h, nodes_allowed, 0))
|
2005-04-17 06:20:36 +08:00
|
|
|
break;
|
2014-04-08 06:37:54 +08:00
|
|
|
cond_resched_lock(&hugetlb_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2008-07-24 12:27:41 +08:00
|
|
|
while (count < persistent_huge_pages(h)) {
|
2009-12-15 09:58:16 +08:00
|
|
|
if (!adjust_pool_surplus(h, nodes_allowed, 1))
|
2007-10-16 16:26:18 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
out:
|
2019-05-14 08:19:04 +08:00
|
|
|
h->max_huge_pages = persistent_huge_pages(h);
|
2005-04-17 06:20:36 +08:00
|
|
|
spin_unlock(&hugetlb_lock);
|
2019-05-14 08:19:04 +08:00
|
|
|
|
2019-09-24 06:37:35 +08:00
|
|
|
NODEMASK_FREE(node_alloc_noretry);
|
|
|
|
|
2019-05-14 08:19:04 +08:00
|
|
|
return 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:44 +08:00
|
|
|
#define HSTATE_ATTR_RO(_name) \
|
|
|
|
static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
|
|
|
|
|
|
|
|
#define HSTATE_ATTR(_name) \
|
|
|
|
static struct kobj_attribute _name##_attr = \
|
|
|
|
__ATTR(_name, 0644, _name##_show, _name##_store)
|
|
|
|
|
|
|
|
static struct kobject *hugepages_kobj;
|
|
|
|
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
|
|
|
|
|
2009-12-15 09:58:25 +08:00
|
|
|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
|
|
|
|
|
|
|
|
static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
|
2008-07-24 12:27:44 +08:00
|
|
|
{
|
|
|
|
int i;
|
2009-12-15 09:58:25 +08:00
|
|
|
|
2008-07-24 12:27:44 +08:00
|
|
|
for (i = 0; i < HUGE_MAX_HSTATE; i++)
|
2009-12-15 09:58:25 +08:00
|
|
|
if (hstate_kobjs[i] == kobj) {
|
|
|
|
if (nidp)
|
|
|
|
*nidp = NUMA_NO_NODE;
|
2008-07-24 12:27:44 +08:00
|
|
|
return &hstates[i];
|
2009-12-15 09:58:25 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return kobj_to_node_hstate(kobj, nidp);
|
2008-07-24 12:27:44 +08:00
|
|
|
}
|
|
|
|
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:21 +08:00
|
|
|
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
|
2008-07-24 12:27:44 +08:00
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
2009-12-15 09:58:25 +08:00
|
|
|
struct hstate *h;
|
|
|
|
unsigned long nr_huge_pages;
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
h = kobj_to_hstate(kobj, &nid);
|
|
|
|
if (nid == NUMA_NO_NODE)
|
|
|
|
nr_huge_pages = h->nr_huge_pages;
|
|
|
|
else
|
|
|
|
nr_huge_pages = h->nr_huge_pages_node[nid];
|
|
|
|
|
|
|
|
return sprintf(buf, "%lu\n", nr_huge_pages);
|
2008-07-24 12:27:44 +08:00
|
|
|
}
|
2011-01-14 07:47:27 +08:00
|
|
|
|
2014-08-07 07:06:51 +08:00
|
|
|
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
|
|
|
|
struct hstate *h, int nid,
|
|
|
|
unsigned long count, size_t len)
|
2008-07-24 12:27:44 +08:00
|
|
|
{
|
|
|
|
int err;
|
2019-05-14 08:19:23 +08:00
|
|
|
nodemask_t nodes_allowed, *n_mask;
|
2008-07-24 12:27:44 +08:00
|
|
|
|
2019-05-14 08:19:23 +08:00
|
|
|
if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
|
|
|
|
return -EINVAL;
|
2011-01-14 07:47:27 +08:00
|
|
|
|
2009-12-15 09:58:25 +08:00
|
|
|
if (nid == NUMA_NO_NODE) {
|
|
|
|
/*
|
|
|
|
* global hstate attribute
|
|
|
|
*/
|
|
|
|
if (!(obey_mempolicy &&
|
2019-05-14 08:19:23 +08:00
|
|
|
init_nodemask_of_mempolicy(&nodes_allowed)))
|
|
|
|
n_mask = &node_states[N_MEMORY];
|
|
|
|
else
|
|
|
|
n_mask = &nodes_allowed;
|
|
|
|
} else {
|
2009-12-15 09:58:25 +08:00
|
|
|
/*
|
2019-05-14 08:19:20 +08:00
|
|
|
* Node specific request. count adjustment happens in
|
|
|
|
* set_max_huge_pages() after acquiring hugetlb_lock.
|
2009-12-15 09:58:25 +08:00
|
|
|
*/
|
2019-05-14 08:19:23 +08:00
|
|
|
init_nodemask_of_node(&nodes_allowed, nid);
|
|
|
|
n_mask = &nodes_allowed;
|
2019-05-14 08:19:20 +08:00
|
|
|
}
|
2009-12-15 09:58:25 +08:00
|
|
|
|
2019-05-14 08:19:23 +08:00
|
|
|
err = set_max_huge_pages(h, count, nid, n_mask);
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:21 +08:00
|
|
|
|
2019-05-14 08:19:04 +08:00
|
|
|
return err ? err : len;
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:21 +08:00
|
|
|
}
|
|
|
|
|
2014-08-07 07:06:51 +08:00
|
|
|
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
|
|
|
|
struct kobject *kobj, const char *buf,
|
|
|
|
size_t len)
|
|
|
|
{
|
|
|
|
struct hstate *h;
|
|
|
|
unsigned long count;
|
|
|
|
int nid;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = kstrtoul(buf, 10, &count);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
h = kobj_to_hstate(kobj, &nid);
|
|
|
|
return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
|
|
|
|
}
|
|
|
|
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:21 +08:00
|
|
|
static ssize_t nr_hugepages_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
|
|
|
return nr_hugepages_show_common(kobj, attr, buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t nr_hugepages_store(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, const char *buf, size_t len)
|
|
|
|
{
|
2014-08-07 07:06:51 +08:00
|
|
|
return nr_hugepages_store_common(false, kobj, buf, len);
|
2008-07-24 12:27:44 +08:00
|
|
|
}
|
|
|
|
HSTATE_ATTR(nr_hugepages);
|
|
|
|
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:21 +08:00
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
|
|
|
|
/*
|
|
|
|
* hstate attribute for optionally mempolicy-based constraint on persistent
|
|
|
|
* huge page alloc/free.
|
|
|
|
*/
|
|
|
|
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
|
|
|
return nr_hugepages_show_common(kobj, attr, buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, const char *buf, size_t len)
|
|
|
|
{
|
2014-08-07 07:06:51 +08:00
|
|
|
return nr_hugepages_store_common(true, kobj, buf, len);
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:21 +08:00
|
|
|
}
|
|
|
|
HSTATE_ATTR(nr_hugepages_mempolicy);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
2008-07-24 12:27:44 +08:00
|
|
|
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
2009-12-15 09:58:25 +08:00
|
|
|
struct hstate *h = kobj_to_hstate(kobj, NULL);
|
2008-07-24 12:27:44 +08:00
|
|
|
return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
|
|
|
|
}
|
2011-01-14 07:47:27 +08:00
|
|
|
|
2008-07-24 12:27:44 +08:00
|
|
|
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
unsigned long input;
|
2009-12-15 09:58:25 +08:00
|
|
|
struct hstate *h = kobj_to_hstate(kobj, NULL);
|
2008-07-24 12:27:44 +08:00
|
|
|
|
2014-06-05 07:07:08 +08:00
|
|
|
if (hstate_is_gigantic(h))
|
2011-01-14 07:47:27 +08:00
|
|
|
return -EINVAL;
|
|
|
|
|
2013-09-12 05:20:25 +08:00
|
|
|
err = kstrtoul(buf, 10, &input);
|
2008-07-24 12:27:44 +08:00
|
|
|
if (err)
|
2011-01-14 07:47:28 +08:00
|
|
|
return err;
|
2008-07-24 12:27:44 +08:00
|
|
|
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
h->nr_overcommit_huge_pages = input;
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
HSTATE_ATTR(nr_overcommit_hugepages);
|
|
|
|
|
|
|
|
static ssize_t free_hugepages_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
2009-12-15 09:58:25 +08:00
|
|
|
struct hstate *h;
|
|
|
|
unsigned long free_huge_pages;
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
h = kobj_to_hstate(kobj, &nid);
|
|
|
|
if (nid == NUMA_NO_NODE)
|
|
|
|
free_huge_pages = h->free_huge_pages;
|
|
|
|
else
|
|
|
|
free_huge_pages = h->free_huge_pages_node[nid];
|
|
|
|
|
|
|
|
return sprintf(buf, "%lu\n", free_huge_pages);
|
2008-07-24 12:27:44 +08:00
|
|
|
}
|
|
|
|
HSTATE_ATTR_RO(free_hugepages);
|
|
|
|
|
|
|
|
static ssize_t resv_hugepages_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
2009-12-15 09:58:25 +08:00
|
|
|
struct hstate *h = kobj_to_hstate(kobj, NULL);
|
2008-07-24 12:27:44 +08:00
|
|
|
return sprintf(buf, "%lu\n", h->resv_huge_pages);
|
|
|
|
}
|
|
|
|
HSTATE_ATTR_RO(resv_hugepages);
|
|
|
|
|
|
|
|
static ssize_t surplus_hugepages_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
2009-12-15 09:58:25 +08:00
|
|
|
struct hstate *h;
|
|
|
|
unsigned long surplus_huge_pages;
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
h = kobj_to_hstate(kobj, &nid);
|
|
|
|
if (nid == NUMA_NO_NODE)
|
|
|
|
surplus_huge_pages = h->surplus_huge_pages;
|
|
|
|
else
|
|
|
|
surplus_huge_pages = h->surplus_huge_pages_node[nid];
|
|
|
|
|
|
|
|
return sprintf(buf, "%lu\n", surplus_huge_pages);
|
2008-07-24 12:27:44 +08:00
|
|
|
}
|
|
|
|
HSTATE_ATTR_RO(surplus_hugepages);
|
|
|
|
|
|
|
|
static struct attribute *hstate_attrs[] = {
|
|
|
|
&nr_hugepages_attr.attr,
|
|
|
|
&nr_overcommit_hugepages_attr.attr,
|
|
|
|
&free_hugepages_attr.attr,
|
|
|
|
&resv_hugepages_attr.attr,
|
|
|
|
&surplus_hugepages_attr.attr,
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:21 +08:00
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
&nr_hugepages_mempolicy_attr.attr,
|
|
|
|
#endif
|
2008-07-24 12:27:44 +08:00
|
|
|
NULL,
|
|
|
|
};
|
|
|
|
|
2017-09-07 07:22:06 +08:00
|
|
|
static const struct attribute_group hstate_attr_group = {
|
2008-07-24 12:27:44 +08:00
|
|
|
.attrs = hstate_attrs,
|
|
|
|
};
|
|
|
|
|
2010-02-03 05:44:14 +08:00
|
|
|
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
|
|
|
|
struct kobject **hstate_kobjs,
|
2017-09-07 07:22:06 +08:00
|
|
|
const struct attribute_group *hstate_attr_group)
|
2008-07-24 12:27:44 +08:00
|
|
|
{
|
|
|
|
int retval;
|
2012-08-01 07:42:00 +08:00
|
|
|
int hi = hstate_index(h);
|
2008-07-24 12:27:44 +08:00
|
|
|
|
2009-12-15 09:58:25 +08:00
|
|
|
hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
|
|
|
|
if (!hstate_kobjs[hi])
|
2008-07-24 12:27:44 +08:00
|
|
|
return -ENOMEM;
|
|
|
|
|
2009-12-15 09:58:25 +08:00
|
|
|
retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
|
2008-07-24 12:27:44 +08:00
|
|
|
if (retval)
|
2009-12-15 09:58:25 +08:00
|
|
|
kobject_put(hstate_kobjs[hi]);
|
2008-07-24 12:27:44 +08:00
|
|
|
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __init hugetlb_sysfs_init(void)
|
|
|
|
{
|
|
|
|
struct hstate *h;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
|
|
|
|
if (!hugepages_kobj)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for_each_hstate(h) {
|
2009-12-15 09:58:25 +08:00
|
|
|
err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
|
|
|
|
hstate_kobjs, &hstate_attr_group);
|
2008-07-24 12:27:44 +08:00
|
|
|
if (err)
|
2013-02-23 08:32:08 +08:00
|
|
|
pr_err("Hugetlb: Unable to add hstate %s", h->name);
|
2008-07-24 12:27:44 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-12-15 09:58:25 +08:00
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
|
|
|
|
/*
|
|
|
|
* node_hstate/s - associate per node hstate attributes, via their kobjects,
|
2011-12-22 06:48:43 +08:00
|
|
|
* with node devices in node_devices[] using a parallel array. The array
|
|
|
|
* index of a node device or _hstate == node id.
|
|
|
|
* This is here to avoid any static dependency of the node device driver, in
|
2009-12-15 09:58:25 +08:00
|
|
|
* the base kernel, on the hugetlb module.
|
|
|
|
*/
|
|
|
|
struct node_hstate {
|
|
|
|
struct kobject *hugepages_kobj;
|
|
|
|
struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
|
|
|
|
};
|
2015-11-06 10:50:14 +08:00
|
|
|
static struct node_hstate node_hstates[MAX_NUMNODES];
|
2009-12-15 09:58:25 +08:00
|
|
|
|
|
|
|
/*
|
2011-12-22 06:48:43 +08:00
|
|
|
* A subset of global hstate attributes for node devices
|
2009-12-15 09:58:25 +08:00
|
|
|
*/
|
|
|
|
static struct attribute *per_node_hstate_attrs[] = {
|
|
|
|
&nr_hugepages_attr.attr,
|
|
|
|
&free_hugepages_attr.attr,
|
|
|
|
&surplus_hugepages_attr.attr,
|
|
|
|
NULL,
|
|
|
|
};
|
|
|
|
|
2017-09-07 07:22:06 +08:00
|
|
|
static const struct attribute_group per_node_hstate_attr_group = {
|
2009-12-15 09:58:25 +08:00
|
|
|
.attrs = per_node_hstate_attrs,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
2011-12-22 06:48:43 +08:00
|
|
|
* kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
|
2009-12-15 09:58:25 +08:00
|
|
|
* Returns node id via non-NULL nidp.
|
|
|
|
*/
|
|
|
|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
|
|
|
|
{
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
for (nid = 0; nid < nr_node_ids; nid++) {
|
|
|
|
struct node_hstate *nhs = &node_hstates[nid];
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < HUGE_MAX_HSTATE; i++)
|
|
|
|
if (nhs->hstate_kobjs[i] == kobj) {
|
|
|
|
if (nidp)
|
|
|
|
*nidp = nid;
|
|
|
|
return &hstates[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
BUG();
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2011-12-22 06:48:43 +08:00
|
|
|
* Unregister hstate attributes from a single node device.
|
2009-12-15 09:58:25 +08:00
|
|
|
* No-op if no hstate attributes attached.
|
|
|
|
*/
|
2013-03-04 18:46:15 +08:00
|
|
|
static void hugetlb_unregister_node(struct node *node)
|
2009-12-15 09:58:25 +08:00
|
|
|
{
|
|
|
|
struct hstate *h;
|
2011-12-22 06:48:43 +08:00
|
|
|
struct node_hstate *nhs = &node_hstates[node->dev.id];
|
2009-12-15 09:58:25 +08:00
|
|
|
|
|
|
|
if (!nhs->hugepages_kobj)
|
2009-12-15 09:58:32 +08:00
|
|
|
return; /* no hstate attributes */
|
2009-12-15 09:58:25 +08:00
|
|
|
|
2012-08-01 07:42:00 +08:00
|
|
|
for_each_hstate(h) {
|
|
|
|
int idx = hstate_index(h);
|
|
|
|
if (nhs->hstate_kobjs[idx]) {
|
|
|
|
kobject_put(nhs->hstate_kobjs[idx]);
|
|
|
|
nhs->hstate_kobjs[idx] = NULL;
|
2009-12-15 09:58:25 +08:00
|
|
|
}
|
2012-08-01 07:42:00 +08:00
|
|
|
}
|
2009-12-15 09:58:25 +08:00
|
|
|
|
|
|
|
kobject_put(nhs->hugepages_kobj);
|
|
|
|
nhs->hugepages_kobj = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
2011-12-22 06:48:43 +08:00
|
|
|
* Register hstate attributes for a single node device.
|
2009-12-15 09:58:25 +08:00
|
|
|
* No-op if attributes already registered.
|
|
|
|
*/
|
2013-03-04 18:46:15 +08:00
|
|
|
static void hugetlb_register_node(struct node *node)
|
2009-12-15 09:58:25 +08:00
|
|
|
{
|
|
|
|
struct hstate *h;
|
2011-12-22 06:48:43 +08:00
|
|
|
struct node_hstate *nhs = &node_hstates[node->dev.id];
|
2009-12-15 09:58:25 +08:00
|
|
|
int err;
|
|
|
|
|
|
|
|
if (nhs->hugepages_kobj)
|
|
|
|
return; /* already allocated */
|
|
|
|
|
|
|
|
nhs->hugepages_kobj = kobject_create_and_add("hugepages",
|
2011-12-22 06:48:43 +08:00
|
|
|
&node->dev.kobj);
|
2009-12-15 09:58:25 +08:00
|
|
|
if (!nhs->hugepages_kobj)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for_each_hstate(h) {
|
|
|
|
err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
|
|
|
|
nhs->hstate_kobjs,
|
|
|
|
&per_node_hstate_attr_group);
|
|
|
|
if (err) {
|
2013-02-23 08:32:08 +08:00
|
|
|
pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
|
|
|
|
h->name, node->dev.id);
|
2009-12-15 09:58:25 +08:00
|
|
|
hugetlb_unregister_node(node);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2009-12-15 09:58:32 +08:00
|
|
|
* hugetlb init time: register hstate attributes for all registered node
|
2011-12-22 06:48:43 +08:00
|
|
|
* devices of nodes that have memory. All on-line nodes should have
|
|
|
|
* registered their associated device by this time.
|
2009-12-15 09:58:25 +08:00
|
|
|
*/
|
2014-12-13 08:55:24 +08:00
|
|
|
static void __init hugetlb_register_all_nodes(void)
|
2009-12-15 09:58:25 +08:00
|
|
|
{
|
|
|
|
int nid;
|
|
|
|
|
2012-12-13 05:51:36 +08:00
|
|
|
for_each_node_state(nid, N_MEMORY) {
|
2012-12-12 08:00:56 +08:00
|
|
|
struct node *node = node_devices[nid];
|
2011-12-22 06:48:43 +08:00
|
|
|
if (node->dev.id == nid)
|
2009-12-15 09:58:25 +08:00
|
|
|
hugetlb_register_node(node);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2011-12-22 06:48:43 +08:00
|
|
|
* Let the node device driver know we're here so it can
|
2009-12-15 09:58:25 +08:00
|
|
|
* [un]register hstate attributes on node hotplug.
|
|
|
|
*/
|
|
|
|
register_hugetlbfs_with_node(hugetlb_register_node,
|
|
|
|
hugetlb_unregister_node);
|
|
|
|
}
|
|
|
|
#else /* !CONFIG_NUMA */
|
|
|
|
|
|
|
|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
|
|
|
|
{
|
|
|
|
BUG();
|
|
|
|
if (nidp)
|
|
|
|
*nidp = -1;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hugetlb_register_all_nodes(void) { }
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
2008-07-24 12:27:44 +08:00
|
|
|
static int __init hugetlb_init(void)
|
|
|
|
{
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
int i;
|
|
|
|
|
hugetlb: ensure hugepage access is denied if hugepages are not supported
Currently, I am seeing the following when I `mount -t hugetlbfs /none
/dev/hugetlbfs`, and then simply do a `ls /dev/hugetlbfs`. I think it's
related to the fact that hugetlbfs is properly not correctly setting
itself up in this state?:
Unable to handle kernel paging request for data at address 0x00000031
Faulting instruction address: 0xc000000000245710
Oops: Kernel access of bad area, sig: 11 [#1]
SMP NR_CPUS=2048 NUMA pSeries
....
In KVM guests on Power, in a guest not backed by hugepages, we see the
following:
AnonHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 64 kB
HPAGE_SHIFT == 0 in this configuration, which indicates that hugepages
are not supported at boot-time, but this is only checked in
hugetlb_init(). Extract the check to a helper function, and use it in a
few relevant places.
This does make hugetlbfs not supported (not registered at all) in this
environment. I believe this is fine, as there are no valid hugepages
and that won't change at runtime.
[akpm@linux-foundation.org: use pr_info(), per Mel]
[akpm@linux-foundation.org: fix build when HPAGE_SHIFT is undefined]
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-07 03:50:00 +08:00
|
|
|
if (!hugepages_supported())
|
2008-07-31 15:07:30 +08:00
|
|
|
return 0;
|
2008-07-24 12:27:44 +08:00
|
|
|
|
2008-07-24 12:27:52 +08:00
|
|
|
if (!size_to_hstate(default_hstate_size)) {
|
mm/hugetlb.c: warn the user when issues arise on boot due to hugepages
When the user specifies too many hugepages or an invalid
default_hugepagesz the communication to the user is implicit in the
allocation message. This patch adds a warning when the desired page
count is not allocated and prints an error when the default_hugepagesz
is invalid on boot.
During boot hugepages will allocate until there is a fraction of the
hugepage size left. That is, we allocate until either the request is
satisfied or memory for the pages is exhausted. When memory for the
pages is exhausted, it will most likely lead to the system failing with
the OOM manager not finding enough (or anything) to kill (unless you're
using really big hugepages in the order of 100s of MB or in the GBs).
The user will most likely see the OOM messages much later in the boot
sequence than the implicitly stated message. Worse yet, you may even
get an OOM for each processor which causes many pages of OOMs on modern
systems. Although these messages will be printed earlier than the OOM
messages, at least giving the user errors and warnings will highlight
the configuration as an issue. I'm trying to point the user in the
right direction by providing a more robust statement of what is failing.
During the sysctl or echo command, the user can check the results much
easier than if the system hangs during boot and the scenario of having
nothing to OOM for kernel memory is highly unlikely.
Mike said:
"Before sending out this patch, I asked Liam off list why he was doing
it. Was it something he just thought would be useful? Or, was there
some type of user situation/need. He said that he had been called in
to assist on several occasions when a system OOMed during boot. In
almost all of these situations, the user had grossly misconfigured
huge pages.
DB users want to pre-allocate just the right amount of huge pages, but
sometimes they can be really off. In such situations, the huge page
init code just allocates as many huge pages as it can and reports the
number allocated. There is no indication that it quit allocating
because it ran out of memory. Of course, a user could compare the
number in the message to what they requested on the command line to
determine if they got all the huge pages they requested. The thought
was that it would be useful to at least flag this situation. That way,
the user might be able to better relate the huge page allocation
failure to the OOM.
I'm not sure if the e-mail discussion made it obvious that this is
something he has seen on several occasions.
I see Michal's point that this will only flag the situation where
someone configures huge pages very badly. And, a more extensive look
at the situation of misconfiguring huge pages might be in order. But,
this has happened on several occasions which led to the creation of
this patch"
[akpm@linux-foundation.org: reposition memfmt() to avoid forward declaration]
Link: http://lkml.kernel.org/r/20170603005413.10380-1-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: zhongjiang <zhongjiang@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 06:48:15 +08:00
|
|
|
if (default_hstate_size != 0) {
|
|
|
|
pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
|
|
|
|
default_hstate_size, HPAGE_SIZE);
|
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:52 +08:00
|
|
|
default_hstate_size = HPAGE_SIZE;
|
|
|
|
if (!size_to_hstate(default_hstate_size))
|
|
|
|
hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
|
2008-07-24 12:27:44 +08:00
|
|
|
}
|
2012-08-01 07:42:00 +08:00
|
|
|
default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
|
2016-02-18 05:11:26 +08:00
|
|
|
if (default_hstate_max_huge_pages) {
|
|
|
|
if (!default_hstate.max_huge_pages)
|
|
|
|
default_hstate.max_huge_pages = default_hstate_max_huge_pages;
|
|
|
|
}
|
2008-07-24 12:27:44 +08:00
|
|
|
|
mm: hugetlb: optionally allocate gigantic hugepages using cma
Commit 944d9fec8d7a ("hugetlb: add support for gigantic page allocation
at runtime") has added the run-time allocation of gigantic pages.
However it actually works only at early stages of the system loading,
when the majority of memory is free. After some time the memory gets
fragmented by non-movable pages, so the chances to find a contiguous 1GB
block are getting close to zero. Even dropping caches manually doesn't
help a lot.
At large scale rebooting servers in order to allocate gigantic hugepages
is quite expensive and complex. At the same time keeping some constant
percentage of memory in reserved hugepages even if the workload isn't
using it is a big waste: not all workloads can benefit from using 1 GB
pages.
The following solution can solve the problem:
1) On boot time a dedicated cma area* is reserved. The size is passed
as a kernel argument.
2) Run-time allocations of gigantic hugepages are performed using the
cma allocator and the dedicated cma area
In this case gigantic hugepages can be allocated successfully with a
high probability, however the memory isn't completely wasted if nobody
is using 1GB hugepages: it can be used for pagecache, anon memory, THPs,
etc.
* On a multi-node machine a per-node cma area is allocated on each node.
Following gigantic hugetlb allocation are using the first available
numa node if the mask isn't specified by a user.
Usage:
1) configure the kernel to allocate a cma area for hugetlb allocations:
pass hugetlb_cma=10G as a kernel argument
2) allocate hugetlb pages as usual, e.g.
echo 10 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
If the option isn't enabled or the allocation of the cma area failed,
the current behavior of the system is preserved.
x86 and arm-64 are covered by this patch, other architectures can be
trivially added later.
The patch contains clean-ups and fixes proposed and implemented by Aslan
Bakirov and Randy Dunlap. It also contains ideas and suggestions
proposed by Rik van Riel, Michal Hocko and Mike Kravetz. Thanks!
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Andreas Schaufler <andreas.schaufler@gmx.de>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Aslan Bakirov <aslan@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200407163840.92263-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-11 05:32:45 +08:00
|
|
|
hugetlb_cma_check();
|
2008-07-24 12:27:44 +08:00
|
|
|
hugetlb_init_hstates();
|
2008-07-24 12:27:47 +08:00
|
|
|
gather_bootmem_prealloc();
|
2008-07-24 12:27:44 +08:00
|
|
|
report_hugepages();
|
|
|
|
|
|
|
|
hugetlb_sysfs_init();
|
2009-12-15 09:58:25 +08:00
|
|
|
hugetlb_register_all_nodes();
|
2012-12-19 06:23:19 +08:00
|
|
|
hugetlb_cgroup_file_init();
|
2009-12-15 09:58:25 +08:00
|
|
|
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
|
|
|
|
#else
|
|
|
|
num_fault_mutexes = 1;
|
|
|
|
#endif
|
2015-09-09 06:01:35 +08:00
|
|
|
hugetlb_fault_mutex_table =
|
treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:
kmalloc(a * b, gfp)
with:
kmalloc_array(a * b, gfp)
as well as handling cases of:
kmalloc(a * b * c, gfp)
with:
kmalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kmalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kmalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kmalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kmalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kmalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kmalloc
+ kmalloc_array
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kmalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kmalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kmalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kmalloc(sizeof(THING) * C2, ...)
|
kmalloc(sizeof(TYPE) * C2, ...)
|
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * E2
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:55:00 +08:00
|
|
|
kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
|
|
|
|
GFP_KERNEL);
|
2015-09-09 06:01:35 +08:00
|
|
|
BUG_ON(!hugetlb_fault_mutex_table);
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
|
|
|
|
for (i = 0; i < num_fault_mutexes; i++)
|
2015-09-09 06:01:35 +08:00
|
|
|
mutex_init(&hugetlb_fault_mutex_table[i]);
|
2008-07-24 12:27:44 +08:00
|
|
|
return 0;
|
|
|
|
}
|
2016-01-15 07:21:52 +08:00
|
|
|
subsys_initcall(hugetlb_init);
|
2008-07-24 12:27:44 +08:00
|
|
|
|
2020-06-04 07:00:34 +08:00
|
|
|
/* Overwritten by architectures with more huge page sizes */
|
|
|
|
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
|
|
|
|
{
|
|
|
|
return size == HPAGE_SIZE;
|
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:44 +08:00
|
|
|
/* Should be called on processing a hugepagesz=... option */
|
2016-05-20 08:11:04 +08:00
|
|
|
void __init hugetlb_bad_size(void)
|
|
|
|
{
|
|
|
|
parsed_valid_hugepagesz = false;
|
|
|
|
}
|
|
|
|
|
2015-11-07 08:29:57 +08:00
|
|
|
void __init hugetlb_add_hstate(unsigned int order)
|
2008-07-24 12:27:44 +08:00
|
|
|
{
|
|
|
|
struct hstate *h;
|
2008-07-24 12:27:48 +08:00
|
|
|
unsigned long i;
|
|
|
|
|
2008-07-24 12:27:44 +08:00
|
|
|
if (size_to_hstate(PAGE_SIZE << order)) {
|
2016-03-18 05:19:44 +08:00
|
|
|
pr_warn("hugepagesz= specified twice, ignoring\n");
|
2008-07-24 12:27:44 +08:00
|
|
|
return;
|
|
|
|
}
|
2012-08-01 07:41:54 +08:00
|
|
|
BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
|
2008-07-24 12:27:44 +08:00
|
|
|
BUG_ON(order == 0);
|
2012-08-01 07:41:54 +08:00
|
|
|
h = &hstates[hugetlb_max_hstate++];
|
2008-07-24 12:27:44 +08:00
|
|
|
h->order = order;
|
|
|
|
h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
|
2008-07-24 12:27:48 +08:00
|
|
|
h->nr_huge_pages = 0;
|
|
|
|
h->free_huge_pages = 0;
|
|
|
|
for (i = 0; i < MAX_NUMNODES; ++i)
|
|
|
|
INIT_LIST_HEAD(&h->hugepage_freelists[i]);
|
2012-08-01 07:42:07 +08:00
|
|
|
INIT_LIST_HEAD(&h->hugepage_activelist);
|
2016-05-20 08:11:40 +08:00
|
|
|
h->next_nid_to_alloc = first_memory_node;
|
|
|
|
h->next_nid_to_free = first_memory_node;
|
2008-07-24 12:27:44 +08:00
|
|
|
snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
|
|
|
|
huge_page_size(h)/1024);
|
2008-07-24 12:27:48 +08:00
|
|
|
|
2008-07-24 12:27:44 +08:00
|
|
|
parsed_hstate = h;
|
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:52 +08:00
|
|
|
static int __init hugetlb_nrpages_setup(char *s)
|
2008-07-24 12:27:44 +08:00
|
|
|
{
|
|
|
|
unsigned long *mhp;
|
2008-07-24 12:27:48 +08:00
|
|
|
static unsigned long *last_mhp;
|
2008-07-24 12:27:44 +08:00
|
|
|
|
2016-05-20 08:11:04 +08:00
|
|
|
if (!parsed_valid_hugepagesz) {
|
|
|
|
pr_warn("hugepages = %s preceded by "
|
|
|
|
"an unsupported hugepagesz, ignoring\n", s);
|
|
|
|
parsed_valid_hugepagesz = true;
|
|
|
|
return 1;
|
|
|
|
}
|
2008-07-24 12:27:44 +08:00
|
|
|
/*
|
2012-08-01 07:41:54 +08:00
|
|
|
* !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
|
2008-07-24 12:27:44 +08:00
|
|
|
* so this hugepages= parameter goes to the "default hstate".
|
|
|
|
*/
|
2016-05-20 08:11:04 +08:00
|
|
|
else if (!hugetlb_max_hstate)
|
2008-07-24 12:27:44 +08:00
|
|
|
mhp = &default_hstate_max_huge_pages;
|
|
|
|
else
|
|
|
|
mhp = &parsed_hstate->max_huge_pages;
|
|
|
|
|
2008-07-24 12:27:48 +08:00
|
|
|
if (mhp == last_mhp) {
|
2016-03-18 05:19:44 +08:00
|
|
|
pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
|
2008-07-24 12:27:48 +08:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:44 +08:00
|
|
|
if (sscanf(s, "%lu", mhp) <= 0)
|
|
|
|
*mhp = 0;
|
|
|
|
|
2008-07-24 12:27:48 +08:00
|
|
|
/*
|
|
|
|
* Global state is always initialized later in hugetlb_init.
|
|
|
|
* But we need to allocate >= MAX_ORDER hstates here early to still
|
|
|
|
* use the bootmem allocator.
|
|
|
|
*/
|
2012-08-01 07:41:54 +08:00
|
|
|
if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
|
2008-07-24 12:27:48 +08:00
|
|
|
hugetlb_hstate_alloc_pages(parsed_hstate);
|
|
|
|
|
|
|
|
last_mhp = mhp;
|
|
|
|
|
2008-07-24 12:27:44 +08:00
|
|
|
return 1;
|
|
|
|
}
|
2008-07-24 12:27:52 +08:00
|
|
|
__setup("hugepages=", hugetlb_nrpages_setup);
|
|
|
|
|
2020-06-04 07:00:34 +08:00
|
|
|
static int __init default_hugepagesz_setup(char *s)
|
2008-07-24 12:27:52 +08:00
|
|
|
{
|
2020-06-04 07:00:34 +08:00
|
|
|
unsigned long size;
|
|
|
|
|
|
|
|
size = (unsigned long)memparse(s, NULL);
|
|
|
|
|
|
|
|
if (!arch_hugetlb_valid_size(size)) {
|
|
|
|
pr_err("HugeTLB: unsupported default_hugepagesz %s\n", s);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
default_hstate_size = size;
|
2008-07-24 12:27:52 +08:00
|
|
|
return 1;
|
|
|
|
}
|
2020-06-04 07:00:34 +08:00
|
|
|
__setup("default_hugepagesz=", default_hugepagesz_setup);
|
2008-07-24 12:27:44 +08:00
|
|
|
|
2008-07-26 10:44:37 +08:00
|
|
|
static unsigned int cpuset_mems_nr(unsigned int *array)
|
|
|
|
{
|
|
|
|
int node;
|
|
|
|
unsigned int nr = 0;
|
|
|
|
|
|
|
|
for_each_node_mask(node, cpuset_current_mems_allowed)
|
|
|
|
nr += array[node];
|
|
|
|
|
|
|
|
return nr;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_SYSCTL
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:21 +08:00
|
|
|
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
|
|
|
|
struct ctl_table *table, int write,
|
|
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2008-07-24 12:27:42 +08:00
|
|
|
struct hstate *h = &default_hstate;
|
2014-08-07 07:06:51 +08:00
|
|
|
unsigned long tmp = h->max_huge_pages;
|
2011-01-14 07:47:26 +08:00
|
|
|
int ret;
|
2008-07-24 12:27:42 +08:00
|
|
|
|
hugetlb: ensure hugepage access is denied if hugepages are not supported
Currently, I am seeing the following when I `mount -t hugetlbfs /none
/dev/hugetlbfs`, and then simply do a `ls /dev/hugetlbfs`. I think it's
related to the fact that hugetlbfs is properly not correctly setting
itself up in this state?:
Unable to handle kernel paging request for data at address 0x00000031
Faulting instruction address: 0xc000000000245710
Oops: Kernel access of bad area, sig: 11 [#1]
SMP NR_CPUS=2048 NUMA pSeries
....
In KVM guests on Power, in a guest not backed by hugepages, we see the
following:
AnonHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 64 kB
HPAGE_SHIFT == 0 in this configuration, which indicates that hugepages
are not supported at boot-time, but this is only checked in
hugetlb_init(). Extract the check to a helper function, and use it in a
few relevant places.
This does make hugetlbfs not supported (not registered at all) in this
environment. I believe this is fine, as there are no valid hugepages
and that won't change at runtime.
[akpm@linux-foundation.org: use pr_info(), per Mel]
[akpm@linux-foundation.org: fix build when HPAGE_SHIFT is undefined]
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-07 03:50:00 +08:00
|
|
|
if (!hugepages_supported())
|
2016-03-10 06:08:35 +08:00
|
|
|
return -EOPNOTSUPP;
|
hugetlb: ensure hugepage access is denied if hugepages are not supported
Currently, I am seeing the following when I `mount -t hugetlbfs /none
/dev/hugetlbfs`, and then simply do a `ls /dev/hugetlbfs`. I think it's
related to the fact that hugetlbfs is properly not correctly setting
itself up in this state?:
Unable to handle kernel paging request for data at address 0x00000031
Faulting instruction address: 0xc000000000245710
Oops: Kernel access of bad area, sig: 11 [#1]
SMP NR_CPUS=2048 NUMA pSeries
....
In KVM guests on Power, in a guest not backed by hugepages, we see the
following:
AnonHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 64 kB
HPAGE_SHIFT == 0 in this configuration, which indicates that hugepages
are not supported at boot-time, but this is only checked in
hugetlb_init(). Extract the check to a helper function, and use it in a
few relevant places.
This does make hugetlbfs not supported (not registered at all) in this
environment. I believe this is fine, as there are no valid hugepages
and that won't change at runtime.
[akpm@linux-foundation.org: use pr_info(), per Mel]
[akpm@linux-foundation.org: fix build when HPAGE_SHIFT is undefined]
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-07 03:50:00 +08:00
|
|
|
|
2008-07-24 12:27:42 +08:00
|
|
|
table->data = &tmp;
|
|
|
|
table->maxlen = sizeof(unsigned long);
|
2011-01-14 07:47:26 +08:00
|
|
|
ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
2008-07-24 12:27:42 +08:00
|
|
|
|
2014-08-07 07:06:51 +08:00
|
|
|
if (write)
|
|
|
|
ret = __nr_hugepages_store_common(obey_mempolicy, h,
|
|
|
|
NUMA_NO_NODE, tmp, *length);
|
2011-01-14 07:47:26 +08:00
|
|
|
out:
|
|
|
|
return ret;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2007-07-17 19:03:13 +08:00
|
|
|
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:21 +08:00
|
|
|
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
|
|
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
|
|
{
|
|
|
|
|
|
|
|
return hugetlb_sysctl_handler_common(false, table, write,
|
|
|
|
buffer, length, ppos);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
|
|
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
|
|
{
|
|
|
|
return hugetlb_sysctl_handler_common(true, table, write,
|
|
|
|
buffer, length, ppos);
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
|
2008-02-08 20:18:18 +08:00
|
|
|
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
|
2009-09-24 06:57:19 +08:00
|
|
|
void __user *buffer,
|
2008-02-08 20:18:18 +08:00
|
|
|
size_t *length, loff_t *ppos)
|
|
|
|
{
|
2008-07-24 12:27:41 +08:00
|
|
|
struct hstate *h = &default_hstate;
|
2008-07-24 12:27:42 +08:00
|
|
|
unsigned long tmp;
|
2011-01-14 07:47:26 +08:00
|
|
|
int ret;
|
2008-07-24 12:27:42 +08:00
|
|
|
|
hugetlb: ensure hugepage access is denied if hugepages are not supported
Currently, I am seeing the following when I `mount -t hugetlbfs /none
/dev/hugetlbfs`, and then simply do a `ls /dev/hugetlbfs`. I think it's
related to the fact that hugetlbfs is properly not correctly setting
itself up in this state?:
Unable to handle kernel paging request for data at address 0x00000031
Faulting instruction address: 0xc000000000245710
Oops: Kernel access of bad area, sig: 11 [#1]
SMP NR_CPUS=2048 NUMA pSeries
....
In KVM guests on Power, in a guest not backed by hugepages, we see the
following:
AnonHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 64 kB
HPAGE_SHIFT == 0 in this configuration, which indicates that hugepages
are not supported at boot-time, but this is only checked in
hugetlb_init(). Extract the check to a helper function, and use it in a
few relevant places.
This does make hugetlbfs not supported (not registered at all) in this
environment. I believe this is fine, as there are no valid hugepages
and that won't change at runtime.
[akpm@linux-foundation.org: use pr_info(), per Mel]
[akpm@linux-foundation.org: fix build when HPAGE_SHIFT is undefined]
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-07 03:50:00 +08:00
|
|
|
if (!hugepages_supported())
|
2016-03-10 06:08:35 +08:00
|
|
|
return -EOPNOTSUPP;
|
hugetlb: ensure hugepage access is denied if hugepages are not supported
Currently, I am seeing the following when I `mount -t hugetlbfs /none
/dev/hugetlbfs`, and then simply do a `ls /dev/hugetlbfs`. I think it's
related to the fact that hugetlbfs is properly not correctly setting
itself up in this state?:
Unable to handle kernel paging request for data at address 0x00000031
Faulting instruction address: 0xc000000000245710
Oops: Kernel access of bad area, sig: 11 [#1]
SMP NR_CPUS=2048 NUMA pSeries
....
In KVM guests on Power, in a guest not backed by hugepages, we see the
following:
AnonHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 64 kB
HPAGE_SHIFT == 0 in this configuration, which indicates that hugepages
are not supported at boot-time, but this is only checked in
hugetlb_init(). Extract the check to a helper function, and use it in a
few relevant places.
This does make hugetlbfs not supported (not registered at all) in this
environment. I believe this is fine, as there are no valid hugepages
and that won't change at runtime.
[akpm@linux-foundation.org: use pr_info(), per Mel]
[akpm@linux-foundation.org: fix build when HPAGE_SHIFT is undefined]
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-07 03:50:00 +08:00
|
|
|
|
2011-03-23 07:33:05 +08:00
|
|
|
tmp = h->nr_overcommit_huge_pages;
|
2008-07-24 12:27:42 +08:00
|
|
|
|
2014-06-05 07:07:08 +08:00
|
|
|
if (write && hstate_is_gigantic(h))
|
2011-01-14 07:47:27 +08:00
|
|
|
return -EINVAL;
|
|
|
|
|
2008-07-24 12:27:42 +08:00
|
|
|
table->data = &tmp;
|
|
|
|
table->maxlen = sizeof(unsigned long);
|
2011-01-14 07:47:26 +08:00
|
|
|
ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
2008-07-24 12:27:42 +08:00
|
|
|
|
|
|
|
if (write) {
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
h->nr_overcommit_huge_pages = tmp;
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
}
|
2011-01-14 07:47:26 +08:00
|
|
|
out:
|
|
|
|
return ret;
|
2008-02-08 20:18:18 +08:00
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
|
2008-10-16 03:50:22 +08:00
|
|
|
void hugetlb_report_meminfo(struct seq_file *m)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
mm: show total hugetlb memory consumption in /proc/meminfo
Currently we display some hugepage statistics (total, free, etc) in
/proc/meminfo, but only for default hugepage size (e.g. 2Mb).
If hugepages of different sizes are used (like 2Mb and 1Gb on x86-64),
/proc/meminfo output can be confusing, as non-default sized hugepages
are not reflected at all, and there are no signs that they are existing
and consuming system memory.
To solve this problem, let's display the total amount of memory,
consumed by hugetlb pages of all sized (both free and used). Let's call
it "Hugetlb", and display size in kB to match generic /proc/meminfo
style.
For example, (1024 2Mb pages and 2 1Gb pages are pre-allocated):
$ cat /proc/meminfo
MemTotal: 8168984 kB
MemFree: 3789276 kB
<...>
CmaFree: 0 kB
HugePages_Total: 1024
HugePages_Free: 1024
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 4194304 kB
DirectMap4k: 32632 kB
DirectMap2M: 4161536 kB
DirectMap1G: 6291456 kB
Also, this patch updates corresponding docs to reflect Hugetlb entry
meaning and difference between Hugetlb and HugePages_Total * Hugepagesize.
Link: http://lkml.kernel.org/r/20171115231409.12131-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-01 08:16:22 +08:00
|
|
|
struct hstate *h;
|
|
|
|
unsigned long total = 0;
|
|
|
|
|
hugetlb: ensure hugepage access is denied if hugepages are not supported
Currently, I am seeing the following when I `mount -t hugetlbfs /none
/dev/hugetlbfs`, and then simply do a `ls /dev/hugetlbfs`. I think it's
related to the fact that hugetlbfs is properly not correctly setting
itself up in this state?:
Unable to handle kernel paging request for data at address 0x00000031
Faulting instruction address: 0xc000000000245710
Oops: Kernel access of bad area, sig: 11 [#1]
SMP NR_CPUS=2048 NUMA pSeries
....
In KVM guests on Power, in a guest not backed by hugepages, we see the
following:
AnonHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 64 kB
HPAGE_SHIFT == 0 in this configuration, which indicates that hugepages
are not supported at boot-time, but this is only checked in
hugetlb_init(). Extract the check to a helper function, and use it in a
few relevant places.
This does make hugetlbfs not supported (not registered at all) in this
environment. I believe this is fine, as there are no valid hugepages
and that won't change at runtime.
[akpm@linux-foundation.org: use pr_info(), per Mel]
[akpm@linux-foundation.org: fix build when HPAGE_SHIFT is undefined]
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-07 03:50:00 +08:00
|
|
|
if (!hugepages_supported())
|
|
|
|
return;
|
mm: show total hugetlb memory consumption in /proc/meminfo
Currently we display some hugepage statistics (total, free, etc) in
/proc/meminfo, but only for default hugepage size (e.g. 2Mb).
If hugepages of different sizes are used (like 2Mb and 1Gb on x86-64),
/proc/meminfo output can be confusing, as non-default sized hugepages
are not reflected at all, and there are no signs that they are existing
and consuming system memory.
To solve this problem, let's display the total amount of memory,
consumed by hugetlb pages of all sized (both free and used). Let's call
it "Hugetlb", and display size in kB to match generic /proc/meminfo
style.
For example, (1024 2Mb pages and 2 1Gb pages are pre-allocated):
$ cat /proc/meminfo
MemTotal: 8168984 kB
MemFree: 3789276 kB
<...>
CmaFree: 0 kB
HugePages_Total: 1024
HugePages_Free: 1024
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 4194304 kB
DirectMap4k: 32632 kB
DirectMap2M: 4161536 kB
DirectMap1G: 6291456 kB
Also, this patch updates corresponding docs to reflect Hugetlb entry
meaning and difference between Hugetlb and HugePages_Total * Hugepagesize.
Link: http://lkml.kernel.org/r/20171115231409.12131-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-01 08:16:22 +08:00
|
|
|
|
|
|
|
for_each_hstate(h) {
|
|
|
|
unsigned long count = h->nr_huge_pages;
|
|
|
|
|
|
|
|
total += (PAGE_SIZE << huge_page_order(h)) * count;
|
|
|
|
|
|
|
|
if (h == &default_hstate)
|
|
|
|
seq_printf(m,
|
|
|
|
"HugePages_Total: %5lu\n"
|
|
|
|
"HugePages_Free: %5lu\n"
|
|
|
|
"HugePages_Rsvd: %5lu\n"
|
|
|
|
"HugePages_Surp: %5lu\n"
|
|
|
|
"Hugepagesize: %8lu kB\n",
|
|
|
|
count,
|
|
|
|
h->free_huge_pages,
|
|
|
|
h->resv_huge_pages,
|
|
|
|
h->surplus_huge_pages,
|
|
|
|
(PAGE_SIZE << huge_page_order(h)) / 1024);
|
|
|
|
}
|
|
|
|
|
|
|
|
seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
int hugetlb_report_node_meminfo(int nid, char *buf)
|
|
|
|
{
|
2008-07-24 12:27:41 +08:00
|
|
|
struct hstate *h = &default_hstate;
|
hugetlb: ensure hugepage access is denied if hugepages are not supported
Currently, I am seeing the following when I `mount -t hugetlbfs /none
/dev/hugetlbfs`, and then simply do a `ls /dev/hugetlbfs`. I think it's
related to the fact that hugetlbfs is properly not correctly setting
itself up in this state?:
Unable to handle kernel paging request for data at address 0x00000031
Faulting instruction address: 0xc000000000245710
Oops: Kernel access of bad area, sig: 11 [#1]
SMP NR_CPUS=2048 NUMA pSeries
....
In KVM guests on Power, in a guest not backed by hugepages, we see the
following:
AnonHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 64 kB
HPAGE_SHIFT == 0 in this configuration, which indicates that hugepages
are not supported at boot-time, but this is only checked in
hugetlb_init(). Extract the check to a helper function, and use it in a
few relevant places.
This does make hugetlbfs not supported (not registered at all) in this
environment. I believe this is fine, as there are no valid hugepages
and that won't change at runtime.
[akpm@linux-foundation.org: use pr_info(), per Mel]
[akpm@linux-foundation.org: fix build when HPAGE_SHIFT is undefined]
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-07 03:50:00 +08:00
|
|
|
if (!hugepages_supported())
|
|
|
|
return 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
return sprintf(buf,
|
|
|
|
"Node %d HugePages_Total: %5u\n"
|
2008-03-27 05:37:53 +08:00
|
|
|
"Node %d HugePages_Free: %5u\n"
|
|
|
|
"Node %d HugePages_Surp: %5u\n",
|
2008-07-24 12:27:41 +08:00
|
|
|
nid, h->nr_huge_pages_node[nid],
|
|
|
|
nid, h->free_huge_pages_node[nid],
|
|
|
|
nid, h->surplus_huge_pages_node[nid]);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2013-04-30 06:07:48 +08:00
|
|
|
void hugetlb_show_meminfo(void)
|
|
|
|
{
|
|
|
|
struct hstate *h;
|
|
|
|
int nid;
|
|
|
|
|
hugetlb: ensure hugepage access is denied if hugepages are not supported
Currently, I am seeing the following when I `mount -t hugetlbfs /none
/dev/hugetlbfs`, and then simply do a `ls /dev/hugetlbfs`. I think it's
related to the fact that hugetlbfs is properly not correctly setting
itself up in this state?:
Unable to handle kernel paging request for data at address 0x00000031
Faulting instruction address: 0xc000000000245710
Oops: Kernel access of bad area, sig: 11 [#1]
SMP NR_CPUS=2048 NUMA pSeries
....
In KVM guests on Power, in a guest not backed by hugepages, we see the
following:
AnonHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 64 kB
HPAGE_SHIFT == 0 in this configuration, which indicates that hugepages
are not supported at boot-time, but this is only checked in
hugetlb_init(). Extract the check to a helper function, and use it in a
few relevant places.
This does make hugetlbfs not supported (not registered at all) in this
environment. I believe this is fine, as there are no valid hugepages
and that won't change at runtime.
[akpm@linux-foundation.org: use pr_info(), per Mel]
[akpm@linux-foundation.org: fix build when HPAGE_SHIFT is undefined]
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-07 03:50:00 +08:00
|
|
|
if (!hugepages_supported())
|
|
|
|
return;
|
|
|
|
|
2013-04-30 06:07:48 +08:00
|
|
|
for_each_node_state(nid, N_MEMORY)
|
|
|
|
for_each_hstate(h)
|
|
|
|
pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
|
|
|
|
nid,
|
|
|
|
h->nr_huge_pages_node[nid],
|
|
|
|
h->free_huge_pages_node[nid],
|
|
|
|
h->surplus_huge_pages_node[nid],
|
|
|
|
1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
|
|
|
|
}
|
|
|
|
|
2015-11-06 10:47:14 +08:00
|
|
|
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
seq_printf(m, "HugetlbPages:\t%8lu kB\n",
|
|
|
|
atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
|
|
|
|
unsigned long hugetlb_total_pages(void)
|
|
|
|
{
|
2013-03-23 06:04:40 +08:00
|
|
|
struct hstate *h;
|
|
|
|
unsigned long nr_total_pages = 0;
|
|
|
|
|
|
|
|
for_each_hstate(h)
|
|
|
|
nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
|
|
|
|
return nr_total_pages;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:41 +08:00
|
|
|
static int hugetlb_acct_memory(struct hstate *h, long delta)
|
2008-07-24 12:27:22 +08:00
|
|
|
{
|
|
|
|
int ret = -ENOMEM;
|
|
|
|
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
/*
|
|
|
|
* When cpuset is configured, it breaks the strict hugetlb page
|
|
|
|
* reservation as the accounting is done on a global variable. Such
|
|
|
|
* reservation is completely rubbish in the presence of cpuset because
|
|
|
|
* the reservation is not checked against page availability for the
|
|
|
|
* current cpuset. Application can still potentially OOM'ed by kernel
|
|
|
|
* with lack of free htlb page in cpuset that the task is in.
|
|
|
|
* Attempt to enforce strict accounting with cpuset is almost
|
|
|
|
* impossible (or too ugly) because cpuset is too fluid that
|
|
|
|
* task or memory node can be dynamically moved between cpusets.
|
|
|
|
*
|
|
|
|
* The change of semantics for shared hugetlb mapping with cpuset is
|
|
|
|
* undesirable. However, in order to preserve some of the semantics,
|
|
|
|
* we fall back to check against current free page availability as
|
|
|
|
* a best attempt and hopefully to minimize the impact of changing
|
|
|
|
* semantics that cpuset has.
|
|
|
|
*/
|
|
|
|
if (delta > 0) {
|
2008-07-24 12:27:41 +08:00
|
|
|
if (gather_surplus_pages(h, delta) < 0)
|
2008-07-24 12:27:22 +08:00
|
|
|
goto out;
|
|
|
|
|
2008-07-24 12:27:41 +08:00
|
|
|
if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
|
|
|
|
return_unused_surplus_pages(h, delta);
|
2008-07-24 12:27:22 +08:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = 0;
|
|
|
|
if (delta < 0)
|
2008-07-24 12:27:41 +08:00
|
|
|
return_unused_surplus_pages(h, (unsigned long) -delta);
|
2008-07-24 12:27:22 +08:00
|
|
|
|
|
|
|
out:
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:32 +08:00
|
|
|
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
|
|
|
|
{
|
2013-09-12 05:21:53 +08:00
|
|
|
struct resv_map *resv = vma_resv_map(vma);
|
2008-07-24 12:27:32 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This new VMA should share its siblings reservation map if present.
|
|
|
|
* The VMA will only ever have a valid reservation map pointer where
|
|
|
|
* it is being copied for another still existing VMA. As that VMA
|
2011-03-31 09:57:33 +08:00
|
|
|
* has a reference to the reservation map it cannot disappear until
|
2008-07-24 12:27:32 +08:00
|
|
|
* after this open call completes. It is therefore safe to take a
|
|
|
|
* new reference here without additional locking.
|
|
|
|
*/
|
2014-04-04 05:47:30 +08:00
|
|
|
if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
|
2013-09-12 05:21:53 +08:00
|
|
|
kref_get(&resv->refs);
|
2008-07-24 12:27:32 +08:00
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:23 +08:00
|
|
|
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
|
|
|
|
{
|
2008-07-24 12:27:41 +08:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
2013-09-12 05:21:53 +08:00
|
|
|
struct resv_map *resv = vma_resv_map(vma);
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
struct hugepage_subpool *spool = subpool_vma(vma);
|
2014-04-04 05:47:30 +08:00
|
|
|
unsigned long reserve, start, end;
|
2015-04-16 07:13:39 +08:00
|
|
|
long gbl_reserve;
|
2008-07-24 12:27:32 +08:00
|
|
|
|
2014-04-04 05:47:30 +08:00
|
|
|
if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
|
|
|
|
return;
|
2008-07-24 12:27:32 +08:00
|
|
|
|
2014-04-04 05:47:30 +08:00
|
|
|
start = vma_hugecache_offset(h, vma, vma->vm_start);
|
|
|
|
end = vma_hugecache_offset(h, vma, vma->vm_end);
|
2008-07-24 12:27:32 +08:00
|
|
|
|
2014-04-04 05:47:30 +08:00
|
|
|
reserve = (end - start) - region_count(resv, start, end);
|
2020-04-02 12:11:21 +08:00
|
|
|
hugetlb_cgroup_uncharge_counter(resv, start, end);
|
2014-04-04 05:47:30 +08:00
|
|
|
if (reserve) {
|
2015-04-16 07:13:39 +08:00
|
|
|
/*
|
|
|
|
* Decrement reserve counts. The global reserve count may be
|
|
|
|
* adjusted if the subpool has a minimum size.
|
|
|
|
*/
|
|
|
|
gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
|
|
|
|
hugetlb_acct_memory(h, -gbl_reserve);
|
2008-07-24 12:27:32 +08:00
|
|
|
}
|
2020-04-02 12:11:21 +08:00
|
|
|
|
|
|
|
kref_put(&resv->refs, resv_map_release);
|
2008-07-24 12:27:23 +08:00
|
|
|
}
|
|
|
|
|
2017-11-30 08:10:28 +08:00
|
|
|
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
|
|
|
|
{
|
|
|
|
if (addr & ~(huge_page_mask(hstate_vma(vma))))
|
|
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-04-06 07:24:25 +08:00
|
|
|
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
struct hstate *hstate = hstate_vma(vma);
|
|
|
|
|
|
|
|
return 1UL << huge_page_shift(hstate);
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* We cannot handle pagefaults against hugetlb pages at all. They cause
|
|
|
|
* handle_mm_fault() to try to instantiate regular-sized pages in the
|
|
|
|
* hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
|
|
|
|
* this far.
|
|
|
|
*/
|
2018-06-08 08:08:04 +08:00
|
|
|
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
BUG();
|
2007-07-19 16:47:03 +08:00
|
|
|
return 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2018-08-03 06:36:05 +08:00
|
|
|
/*
|
|
|
|
* When a new function is introduced to vm_operations_struct and added
|
|
|
|
* to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
|
|
|
|
* This is because under System V memory model, mappings created via
|
|
|
|
* shmget/shmat with "huge page" specified are backed by hugetlbfs files,
|
|
|
|
* their original vm_ops are overwritten with shm_vm_ops.
|
|
|
|
*/
|
2009-09-28 02:29:37 +08:00
|
|
|
const struct vm_operations_struct hugetlb_vm_ops = {
|
2007-07-19 16:47:03 +08:00
|
|
|
.fault = hugetlb_vm_op_fault,
|
2008-07-24 12:27:32 +08:00
|
|
|
.open = hugetlb_vm_op_open,
|
2008-07-24 12:27:23 +08:00
|
|
|
.close = hugetlb_vm_op_close,
|
2017-11-30 08:10:28 +08:00
|
|
|
.split = hugetlb_vm_op_split,
|
2018-04-06 07:24:25 +08:00
|
|
|
.pagesize = hugetlb_vm_op_pagesize,
|
2005-04-17 06:20:36 +08:00
|
|
|
};
|
|
|
|
|
2006-01-06 16:10:44 +08:00
|
|
|
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
|
|
|
|
int writable)
|
2005-06-22 08:14:44 +08:00
|
|
|
{
|
|
|
|
pte_t entry;
|
|
|
|
|
2006-01-06 16:10:44 +08:00
|
|
|
if (writable) {
|
2013-04-30 06:07:23 +08:00
|
|
|
entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
|
|
|
|
vma->vm_page_prot)));
|
2005-06-22 08:14:44 +08:00
|
|
|
} else {
|
2013-04-30 06:07:23 +08:00
|
|
|
entry = huge_pte_wrprotect(mk_huge_pte(page,
|
|
|
|
vma->vm_page_prot));
|
2005-06-22 08:14:44 +08:00
|
|
|
}
|
|
|
|
entry = pte_mkyoung(entry);
|
|
|
|
entry = pte_mkhuge(entry);
|
2012-04-02 02:01:34 +08:00
|
|
|
entry = arch_make_huge_pte(entry, vma, page, writable);
|
2005-06-22 08:14:44 +08:00
|
|
|
|
|
|
|
return entry;
|
|
|
|
}
|
|
|
|
|
2006-01-06 16:10:44 +08:00
|
|
|
static void set_huge_ptep_writable(struct vm_area_struct *vma,
|
|
|
|
unsigned long address, pte_t *ptep)
|
|
|
|
{
|
|
|
|
pte_t entry;
|
|
|
|
|
2013-04-30 06:07:23 +08:00
|
|
|
entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
|
2011-07-26 08:12:14 +08:00
|
|
|
if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
|
MM: Pass a PTE pointer to update_mmu_cache() rather than the PTE itself
On VIVT ARM, when we have multiple shared mappings of the same file
in the same MM, we need to ensure that we have coherency across all
copies. We do this via make_coherent() by making the pages
uncacheable.
This used to work fine, until we allowed highmem with highpte - we
now have a page table which is mapped as required, and is not available
for modification via update_mmu_cache().
Ralf Beache suggested getting rid of the PTE value passed to
update_mmu_cache():
On MIPS update_mmu_cache() calls __update_tlb() which walks pagetables
to construct a pointer to the pte again. Passing a pte_t * is much
more elegant. Maybe we might even replace the pte argument with the
pte_t?
Ben Herrenschmidt would also like the pte pointer for PowerPC:
Passing the ptep in there is exactly what I want. I want that
-instead- of the PTE value, because I have issue on some ppc cases,
for I$/D$ coherency, where set_pte_at() may decide to mask out the
_PAGE_EXEC.
So, pass in the mapped page table pointer into update_mmu_cache(), and
remove the PTE value, updating all implementations and call sites to
suit.
Includes a fix from Stephen Rothwell:
sparc: fix fallout from update_mmu_cache API change
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-12-19 00:40:18 +08:00
|
|
|
update_mmu_cache(vma, address, ptep);
|
2006-01-06 16:10:44 +08:00
|
|
|
}
|
|
|
|
|
2017-07-07 06:38:47 +08:00
|
|
|
bool is_hugetlb_entry_migration(pte_t pte)
|
2014-06-24 04:22:03 +08:00
|
|
|
{
|
|
|
|
swp_entry_t swp;
|
|
|
|
|
|
|
|
if (huge_pte_none(pte) || pte_present(pte))
|
2017-07-07 06:38:47 +08:00
|
|
|
return false;
|
2014-06-24 04:22:03 +08:00
|
|
|
swp = pte_to_swp_entry(pte);
|
|
|
|
if (non_swap_entry(swp) && is_migration_entry(swp))
|
2017-07-07 06:38:47 +08:00
|
|
|
return true;
|
2014-06-24 04:22:03 +08:00
|
|
|
else
|
2017-07-07 06:38:47 +08:00
|
|
|
return false;
|
2014-06-24 04:22:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
|
|
|
|
{
|
|
|
|
swp_entry_t swp;
|
|
|
|
|
|
|
|
if (huge_pte_none(pte) || pte_present(pte))
|
|
|
|
return 0;
|
|
|
|
swp = pte_to_swp_entry(pte);
|
|
|
|
if (non_swap_entry(swp) && is_hwpoison_entry(swp))
|
|
|
|
return 1;
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
2006-01-06 16:10:44 +08:00
|
|
|
|
2005-06-22 08:14:44 +08:00
|
|
|
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
|
|
|
|
struct vm_area_struct *vma)
|
|
|
|
{
|
hugetlbfs: fix kernel BUG at fs/hugetlbfs/inode.c:444!
This bug has been experienced several times by the Oracle DB team. The
BUG is in remove_inode_hugepages() as follows:
/*
* If page is mapped, it was faulted in after being
* unmapped in caller. Unmap (again) now after taking
* the fault mutex. The mutex will prevent faults
* until we finish removing the page.
*
* This race can only happen in the hole punch case.
* Getting here in a truncate operation is a bug.
*/
if (unlikely(page_mapped(page))) {
BUG_ON(truncate_op);
In this case, the elevated map count is not the result of a race.
Rather it was incorrectly incremented as the result of a bug in the huge
pmd sharing code. Consider the following:
- Process A maps a hugetlbfs file of sufficient size and alignment
(PUD_SIZE) that a pmd page could be shared.
- Process B maps the same hugetlbfs file with the same size and
alignment such that a pmd page is shared.
- Process B then calls mprotect() to change protections for the mapping
with the shared pmd. As a result, the pmd is 'unshared'.
- Process B then calls mprotect() again to chage protections for the
mapping back to their original value. pmd remains unshared.
- Process B then forks and process C is created. During the fork
process, we do dup_mm -> dup_mmap -> copy_page_range to copy page
tables. Copying page tables for hugetlb mappings is done in the
routine copy_hugetlb_page_range.
In copy_hugetlb_page_range(), the destination pte is obtained by:
dst_pte = huge_pte_alloc(dst, addr, sz);
If pmd sharing is possible, the returned pointer will be to a pte in an
existing page table. In the situation above, process C could share with
either process A or process B. Since process A is first in the list,
the returned pte is a pointer to a pte in process A's page table.
However, the check for pmd sharing in copy_hugetlb_page_range is:
/* If the pagetables are shared don't copy or take references */
if (dst_pte == src_pte)
continue;
Since process C is sharing with process A instead of process B, the
above test fails. The code in copy_hugetlb_page_range which follows
assumes dst_pte points to a huge_pte_none pte. It copies the pte entry
from src_pte to dst_pte and increments this map count of the associated
page. This is how we end up with an elevated map count.
To solve, check the dst_pte entry for huge_pte_none. If !none, this
implies PMD sharing so do not copy.
Link: http://lkml.kernel.org/r/20181105212315.14125-1-mike.kravetz@oracle.com
Fixes: c5c99429fa57 ("fix hugepages leak due to pagetable page sharing")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-17 07:08:04 +08:00
|
|
|
pte_t *src_pte, *dst_pte, entry, dst_entry;
|
2005-06-22 08:14:44 +08:00
|
|
|
struct page *ptepage;
|
2005-10-20 12:23:43 +08:00
|
|
|
unsigned long addr;
|
2006-01-06 16:10:44 +08:00
|
|
|
int cow;
|
2008-07-24 12:27:41 +08:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
|
|
|
unsigned long sz = huge_page_size(h);
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
struct address_space *mapping = vma->vm_file->f_mapping;
|
2018-12-28 16:38:09 +08:00
|
|
|
struct mmu_notifier_range range;
|
2014-01-22 07:49:09 +08:00
|
|
|
int ret = 0;
|
2006-01-06 16:10:44 +08:00
|
|
|
|
|
|
|
cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
|
2005-06-22 08:14:44 +08:00
|
|
|
|
2018-12-28 16:38:09 +08:00
|
|
|
if (cow) {
|
2019-05-14 08:20:53 +08:00
|
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
|
mm/mmu_notifier: contextual information for event triggering invalidation
CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).
Users of mmu notifier API track changes to the CPU page table and take
specific action for them. While current API only provide range of virtual
address affected by the change, not why the changes is happening.
This patchset do the initial mechanical convertion of all the places that
calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP
event as well as the vma if it is know (most invalidation happens against
a given vma). Passing down the vma allows the users of mmu notifier to
inspect the new vma page protection.
The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier
should assume that every for the range is going away when that event
happens. A latter patch do convert mm call path to use a more appropriate
events for each call.
This is done as 2 patches so that no call site is forgotten especialy
as it uses this following coccinelle patch:
%<----------------------------------------------------------------------
@@
identifier I1, I2, I3, I4;
@@
static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1,
+enum mmu_notifier_event event,
+unsigned flags,
+struct vm_area_struct *vma,
struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... }
@@
@@
-#define mmu_notifier_range_init(range, mm, start, end)
+#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end)
@@
expression E1, E3, E4;
identifier I1;
@@
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, I1,
I1->vm_mm, E3, E4)
...>
@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(..., struct vm_area_struct *VMA, ...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }
@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(...) {
struct vm_area_struct *VMA;
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }
@@
expression E1, E2, E3, E4;
identifier FN;
@@
FN(...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, NULL,
E2, E3, E4)
...> }
---------------------------------------------------------------------->%
Applied with:
spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place
spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place
spatch --sp-file mmu-notifier.spatch --dir mm --in-place
Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 08:20:49 +08:00
|
|
|
vma->vm_start,
|
2018-12-28 16:38:09 +08:00
|
|
|
vma->vm_end);
|
|
|
|
mmu_notifier_invalidate_range_start(&range);
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* For shared mappings i_mmap_rwsem must be held to call
|
|
|
|
* huge_pte_alloc, otherwise the returned ptep could go
|
|
|
|
* away if part of a shared pmd and another thread calls
|
|
|
|
* huge_pmd_unshare.
|
|
|
|
*/
|
|
|
|
i_mmap_lock_read(mapping);
|
2018-12-28 16:38:09 +08:00
|
|
|
}
|
2014-01-22 07:49:09 +08:00
|
|
|
|
2008-07-24 12:27:41 +08:00
|
|
|
for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
|
2013-11-15 06:31:02 +08:00
|
|
|
spinlock_t *src_ptl, *dst_ptl;
|
2017-07-07 06:39:42 +08:00
|
|
|
src_pte = huge_pte_offset(src, addr, sz);
|
2005-10-30 09:16:23 +08:00
|
|
|
if (!src_pte)
|
|
|
|
continue;
|
2008-07-24 12:27:41 +08:00
|
|
|
dst_pte = huge_pte_alloc(dst, addr, sz);
|
2014-01-22 07:49:09 +08:00
|
|
|
if (!dst_pte) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
break;
|
|
|
|
}
|
2008-01-24 21:49:25 +08:00
|
|
|
|
hugetlbfs: fix kernel BUG at fs/hugetlbfs/inode.c:444!
This bug has been experienced several times by the Oracle DB team. The
BUG is in remove_inode_hugepages() as follows:
/*
* If page is mapped, it was faulted in after being
* unmapped in caller. Unmap (again) now after taking
* the fault mutex. The mutex will prevent faults
* until we finish removing the page.
*
* This race can only happen in the hole punch case.
* Getting here in a truncate operation is a bug.
*/
if (unlikely(page_mapped(page))) {
BUG_ON(truncate_op);
In this case, the elevated map count is not the result of a race.
Rather it was incorrectly incremented as the result of a bug in the huge
pmd sharing code. Consider the following:
- Process A maps a hugetlbfs file of sufficient size and alignment
(PUD_SIZE) that a pmd page could be shared.
- Process B maps the same hugetlbfs file with the same size and
alignment such that a pmd page is shared.
- Process B then calls mprotect() to change protections for the mapping
with the shared pmd. As a result, the pmd is 'unshared'.
- Process B then calls mprotect() again to chage protections for the
mapping back to their original value. pmd remains unshared.
- Process B then forks and process C is created. During the fork
process, we do dup_mm -> dup_mmap -> copy_page_range to copy page
tables. Copying page tables for hugetlb mappings is done in the
routine copy_hugetlb_page_range.
In copy_hugetlb_page_range(), the destination pte is obtained by:
dst_pte = huge_pte_alloc(dst, addr, sz);
If pmd sharing is possible, the returned pointer will be to a pte in an
existing page table. In the situation above, process C could share with
either process A or process B. Since process A is first in the list,
the returned pte is a pointer to a pte in process A's page table.
However, the check for pmd sharing in copy_hugetlb_page_range is:
/* If the pagetables are shared don't copy or take references */
if (dst_pte == src_pte)
continue;
Since process C is sharing with process A instead of process B, the
above test fails. The code in copy_hugetlb_page_range which follows
assumes dst_pte points to a huge_pte_none pte. It copies the pte entry
from src_pte to dst_pte and increments this map count of the associated
page. This is how we end up with an elevated map count.
To solve, check the dst_pte entry for huge_pte_none. If !none, this
implies PMD sharing so do not copy.
Link: http://lkml.kernel.org/r/20181105212315.14125-1-mike.kravetz@oracle.com
Fixes: c5c99429fa57 ("fix hugepages leak due to pagetable page sharing")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-17 07:08:04 +08:00
|
|
|
/*
|
|
|
|
* If the pagetables are shared don't copy or take references.
|
|
|
|
* dst_pte == src_pte is the common case of src/dest sharing.
|
|
|
|
*
|
|
|
|
* However, src could have 'unshared' and dst shares with
|
|
|
|
* another vma. If dst_pte !none, this implies sharing.
|
|
|
|
* Check here before taking page table lock, and once again
|
|
|
|
* after taking the lock below.
|
|
|
|
*/
|
|
|
|
dst_entry = huge_ptep_get(dst_pte);
|
|
|
|
if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
|
2008-01-24 21:49:25 +08:00
|
|
|
continue;
|
|
|
|
|
2013-11-15 06:31:02 +08:00
|
|
|
dst_ptl = huge_pte_lock(h, dst, dst_pte);
|
|
|
|
src_ptl = huge_pte_lockptr(h, src, src_pte);
|
|
|
|
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
|
2014-06-24 04:22:03 +08:00
|
|
|
entry = huge_ptep_get(src_pte);
|
hugetlbfs: fix kernel BUG at fs/hugetlbfs/inode.c:444!
This bug has been experienced several times by the Oracle DB team. The
BUG is in remove_inode_hugepages() as follows:
/*
* If page is mapped, it was faulted in after being
* unmapped in caller. Unmap (again) now after taking
* the fault mutex. The mutex will prevent faults
* until we finish removing the page.
*
* This race can only happen in the hole punch case.
* Getting here in a truncate operation is a bug.
*/
if (unlikely(page_mapped(page))) {
BUG_ON(truncate_op);
In this case, the elevated map count is not the result of a race.
Rather it was incorrectly incremented as the result of a bug in the huge
pmd sharing code. Consider the following:
- Process A maps a hugetlbfs file of sufficient size and alignment
(PUD_SIZE) that a pmd page could be shared.
- Process B maps the same hugetlbfs file with the same size and
alignment such that a pmd page is shared.
- Process B then calls mprotect() to change protections for the mapping
with the shared pmd. As a result, the pmd is 'unshared'.
- Process B then calls mprotect() again to chage protections for the
mapping back to their original value. pmd remains unshared.
- Process B then forks and process C is created. During the fork
process, we do dup_mm -> dup_mmap -> copy_page_range to copy page
tables. Copying page tables for hugetlb mappings is done in the
routine copy_hugetlb_page_range.
In copy_hugetlb_page_range(), the destination pte is obtained by:
dst_pte = huge_pte_alloc(dst, addr, sz);
If pmd sharing is possible, the returned pointer will be to a pte in an
existing page table. In the situation above, process C could share with
either process A or process B. Since process A is first in the list,
the returned pte is a pointer to a pte in process A's page table.
However, the check for pmd sharing in copy_hugetlb_page_range is:
/* If the pagetables are shared don't copy or take references */
if (dst_pte == src_pte)
continue;
Since process C is sharing with process A instead of process B, the
above test fails. The code in copy_hugetlb_page_range which follows
assumes dst_pte points to a huge_pte_none pte. It copies the pte entry
from src_pte to dst_pte and increments this map count of the associated
page. This is how we end up with an elevated map count.
To solve, check the dst_pte entry for huge_pte_none. If !none, this
implies PMD sharing so do not copy.
Link: http://lkml.kernel.org/r/20181105212315.14125-1-mike.kravetz@oracle.com
Fixes: c5c99429fa57 ("fix hugepages leak due to pagetable page sharing")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-17 07:08:04 +08:00
|
|
|
dst_entry = huge_ptep_get(dst_pte);
|
|
|
|
if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
|
|
|
|
/*
|
|
|
|
* Skip if src entry none. Also, skip in the
|
|
|
|
* unlikely case dst entry !none as this implies
|
|
|
|
* sharing with another vma.
|
|
|
|
*/
|
2014-06-24 04:22:03 +08:00
|
|
|
;
|
|
|
|
} else if (unlikely(is_hugetlb_entry_migration(entry) ||
|
|
|
|
is_hugetlb_entry_hwpoisoned(entry))) {
|
|
|
|
swp_entry_t swp_entry = pte_to_swp_entry(entry);
|
|
|
|
|
|
|
|
if (is_write_migration_entry(swp_entry) && cow) {
|
|
|
|
/*
|
|
|
|
* COW mappings require pages in both
|
|
|
|
* parent and child to be set to read.
|
|
|
|
*/
|
|
|
|
make_migration_entry_read(&swp_entry);
|
|
|
|
entry = swp_entry_to_pte(swp_entry);
|
2017-07-07 06:39:50 +08:00
|
|
|
set_huge_swap_pte_at(src, addr, src_pte,
|
|
|
|
entry, sz);
|
2014-06-24 04:22:03 +08:00
|
|
|
}
|
2017-07-07 06:39:50 +08:00
|
|
|
set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
|
2014-06-24 04:22:03 +08:00
|
|
|
} else {
|
2014-11-13 10:46:09 +08:00
|
|
|
if (cow) {
|
2017-11-16 09:34:07 +08:00
|
|
|
/*
|
|
|
|
* No need to notify as we are downgrading page
|
|
|
|
* table protection not changing it to point
|
|
|
|
* to a new page.
|
|
|
|
*
|
2018-03-22 03:22:47 +08:00
|
|
|
* See Documentation/vm/mmu_notifier.rst
|
2017-11-16 09:34:07 +08:00
|
|
|
*/
|
2008-04-28 17:13:29 +08:00
|
|
|
huge_ptep_set_wrprotect(src, addr, src_pte);
|
2014-11-13 10:46:09 +08:00
|
|
|
}
|
2014-07-24 05:00:19 +08:00
|
|
|
entry = huge_ptep_get(src_pte);
|
2005-10-20 12:23:43 +08:00
|
|
|
ptepage = pte_page(entry);
|
|
|
|
get_page(ptepage);
|
2016-01-16 08:53:42 +08:00
|
|
|
page_dup_rmap(ptepage, true);
|
2005-10-20 12:23:43 +08:00
|
|
|
set_huge_pte_at(dst, addr, dst_pte, entry);
|
2015-11-06 10:47:14 +08:00
|
|
|
hugetlb_count_add(pages_per_huge_page(h), dst);
|
2005-10-20 12:23:43 +08:00
|
|
|
}
|
2013-11-15 06:31:02 +08:00
|
|
|
spin_unlock(src_ptl);
|
|
|
|
spin_unlock(dst_ptl);
|
2005-06-22 08:14:44 +08:00
|
|
|
}
|
|
|
|
|
2014-01-22 07:49:09 +08:00
|
|
|
if (cow)
|
2018-12-28 16:38:09 +08:00
|
|
|
mmu_notifier_invalidate_range_end(&range);
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
else
|
|
|
|
i_mmap_unlock_read(mapping);
|
2014-01-22 07:49:09 +08:00
|
|
|
|
|
|
|
return ret;
|
2005-06-22 08:14:44 +08:00
|
|
|
}
|
|
|
|
|
2012-08-01 07:42:03 +08:00
|
|
|
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
|
|
unsigned long start, unsigned long end,
|
|
|
|
struct page *ref_page)
|
2005-06-22 08:14:44 +08:00
|
|
|
{
|
|
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
unsigned long address;
|
2005-08-06 02:59:35 +08:00
|
|
|
pte_t *ptep;
|
2005-06-22 08:14:44 +08:00
|
|
|
pte_t pte;
|
2013-11-15 06:31:02 +08:00
|
|
|
spinlock_t *ptl;
|
2005-06-22 08:14:44 +08:00
|
|
|
struct page *page;
|
2008-07-24 12:27:41 +08:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
|
|
|
unsigned long sz = huge_page_size(h);
|
2018-12-28 16:38:09 +08:00
|
|
|
struct mmu_notifier_range range;
|
2008-07-24 12:27:41 +08:00
|
|
|
|
2005-06-22 08:14:44 +08:00
|
|
|
WARN_ON(!is_vm_hugetlb_page(vma));
|
2008-07-24 12:27:41 +08:00
|
|
|
BUG_ON(start & ~huge_page_mask(h));
|
|
|
|
BUG_ON(end & ~huge_page_mask(h));
|
2005-06-22 08:14:44 +08:00
|
|
|
|
2016-12-13 08:42:40 +08:00
|
|
|
/*
|
|
|
|
* This is a hugetlb vma, all the pte entries should point
|
|
|
|
* to huge page.
|
|
|
|
*/
|
2018-08-31 20:46:08 +08:00
|
|
|
tlb_change_page_size(tlb, sz);
|
2012-08-01 07:42:03 +08:00
|
|
|
tlb_start_vma(tlb, vma);
|
2018-10-06 06:51:33 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If sharing possible, alert mmu notifiers of worst case.
|
|
|
|
*/
|
mm/mmu_notifier: contextual information for event triggering invalidation
CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).
Users of mmu notifier API track changes to the CPU page table and take
specific action for them. While current API only provide range of virtual
address affected by the change, not why the changes is happening.
This patchset do the initial mechanical convertion of all the places that
calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP
event as well as the vma if it is know (most invalidation happens against
a given vma). Passing down the vma allows the users of mmu notifier to
inspect the new vma page protection.
The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier
should assume that every for the range is going away when that event
happens. A latter patch do convert mm call path to use a more appropriate
events for each call.
This is done as 2 patches so that no call site is forgotten especialy
as it uses this following coccinelle patch:
%<----------------------------------------------------------------------
@@
identifier I1, I2, I3, I4;
@@
static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1,
+enum mmu_notifier_event event,
+unsigned flags,
+struct vm_area_struct *vma,
struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... }
@@
@@
-#define mmu_notifier_range_init(range, mm, start, end)
+#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end)
@@
expression E1, E3, E4;
identifier I1;
@@
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, I1,
I1->vm_mm, E3, E4)
...>
@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(..., struct vm_area_struct *VMA, ...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }
@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(...) {
struct vm_area_struct *VMA;
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }
@@
expression E1, E2, E3, E4;
identifier FN;
@@
FN(...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, NULL,
E2, E3, E4)
...> }
---------------------------------------------------------------------->%
Applied with:
spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place
spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place
spatch --sp-file mmu-notifier.spatch --dir mm --in-place
Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 08:20:49 +08:00
|
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
|
|
|
|
end);
|
2018-12-28 16:38:09 +08:00
|
|
|
adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
|
|
|
|
mmu_notifier_invalidate_range_start(&range);
|
2014-12-11 07:44:41 +08:00
|
|
|
address = start;
|
|
|
|
for (; address < end; address += sz) {
|
2017-07-07 06:39:42 +08:00
|
|
|
ptep = huge_pte_offset(mm, address, sz);
|
2005-10-30 09:16:46 +08:00
|
|
|
if (!ptep)
|
2005-08-06 02:59:35 +08:00
|
|
|
continue;
|
|
|
|
|
2013-11-15 06:31:02 +08:00
|
|
|
ptl = huge_pte_lock(h, mm, ptep);
|
2016-07-27 06:24:06 +08:00
|
|
|
if (huge_pmd_unshare(mm, &address, ptep)) {
|
|
|
|
spin_unlock(ptl);
|
2018-10-06 06:51:33 +08:00
|
|
|
/*
|
|
|
|
* We just unmapped a page of PMDs by clearing a PUD.
|
|
|
|
* The caller's TLB flush range should cover this area.
|
|
|
|
*/
|
2016-07-27 06:24:06 +08:00
|
|
|
continue;
|
|
|
|
}
|
2006-12-07 12:32:03 +08:00
|
|
|
|
2012-03-24 06:01:48 +08:00
|
|
|
pte = huge_ptep_get(ptep);
|
2016-07-27 06:24:06 +08:00
|
|
|
if (huge_pte_none(pte)) {
|
|
|
|
spin_unlock(ptl);
|
|
|
|
continue;
|
|
|
|
}
|
2012-03-24 06:01:48 +08:00
|
|
|
|
|
|
|
/*
|
2015-02-12 07:25:32 +08:00
|
|
|
* Migrating hugepage or HWPoisoned hugepage is already
|
|
|
|
* unmapped and its refcount is dropped, so just clear pte here.
|
2012-03-24 06:01:48 +08:00
|
|
|
*/
|
2015-02-12 07:25:32 +08:00
|
|
|
if (unlikely(!pte_present(pte))) {
|
2017-07-07 06:39:46 +08:00
|
|
|
huge_pte_clear(mm, address, ptep, sz);
|
2016-07-27 06:24:06 +08:00
|
|
|
spin_unlock(ptl);
|
|
|
|
continue;
|
2012-12-13 05:52:28 +08:00
|
|
|
}
|
2012-03-24 06:01:48 +08:00
|
|
|
|
|
|
|
page = pte_page(pte);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
/*
|
|
|
|
* If a reference page is supplied, it is because a specific
|
|
|
|
* page is being unmapped, not a range. Ensure the page we
|
|
|
|
* are about to unmap is the actual page of interest.
|
|
|
|
*/
|
|
|
|
if (ref_page) {
|
2016-07-27 06:24:06 +08:00
|
|
|
if (page != ref_page) {
|
|
|
|
spin_unlock(ptl);
|
|
|
|
continue;
|
|
|
|
}
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
/*
|
|
|
|
* Mark the VMA as having unmapped its page so that
|
|
|
|
* future faults in this VMA will fail rather than
|
|
|
|
* looking like data was lost
|
|
|
|
*/
|
|
|
|
set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
|
|
|
|
}
|
|
|
|
|
2005-08-06 02:59:35 +08:00
|
|
|
pte = huge_ptep_get_and_clear(mm, address, ptep);
|
2016-12-13 08:42:37 +08:00
|
|
|
tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
|
2013-04-30 06:07:23 +08:00
|
|
|
if (huge_pte_dirty(pte))
|
2007-02-09 06:20:27 +08:00
|
|
|
set_page_dirty(page);
|
2012-03-22 07:34:03 +08:00
|
|
|
|
2015-11-06 10:47:14 +08:00
|
|
|
hugetlb_count_sub(pages_per_huge_page(h), mm);
|
2016-01-16 08:52:16 +08:00
|
|
|
page_remove_rmap(page, true);
|
2016-07-27 06:24:06 +08:00
|
|
|
|
2013-11-15 06:31:02 +08:00
|
|
|
spin_unlock(ptl);
|
2016-07-27 06:24:12 +08:00
|
|
|
tlb_remove_page_size(tlb, page, huge_page_size(h));
|
2016-07-27 06:24:06 +08:00
|
|
|
/*
|
|
|
|
* Bail out after unmapping reference page if supplied
|
|
|
|
*/
|
|
|
|
if (ref_page)
|
|
|
|
break;
|
2006-10-04 17:15:24 +08:00
|
|
|
}
|
2018-12-28 16:38:09 +08:00
|
|
|
mmu_notifier_invalidate_range_end(&range);
|
2012-08-01 07:42:03 +08:00
|
|
|
tlb_end_vma(tlb, vma);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2005-06-22 08:14:44 +08:00
|
|
|
|
mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables
If a process creates a large hugetlbfs mapping that is eligible for page
table sharing and forks heavily with children some of whom fault and
others which destroy the mapping then it is possible for page tables to
get corrupted. Some teardowns of the mapping encounter a "bad pmd" and
output a message to the kernel log. The final teardown will trigger a
BUG_ON in mm/filemap.c.
This was reproduced in 3.4 but is known to have existed for a long time
and goes back at least as far as 2.6.37. It was probably was introduced
in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages
look like this;
[ ..........] Lots of bad pmd messages followed by this
[ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7).
[ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7).
[ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7).
[ 127.186778] ------------[ cut here ]------------
[ 127.186781] kernel BUG at mm/filemap.c:134!
[ 127.186782] invalid opcode: 0000 [#1] SMP
[ 127.186783] CPU 7
[ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod
[ 127.186801]
[ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR
[ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002
[ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0
[ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00
[ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003
[ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8
[ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8
[ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000
[ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0
[ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
[ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0)
[ 127.186821] Stack:
[ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b
[ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98
[ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000
[ 127.186827] Call Trace:
[ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80
[ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220
[ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30
[ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0
[ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0
[ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50
[ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130
[ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0
[ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230
[ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150
[ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30
[ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80
[ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360
[ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170
[ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b
[ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0
[ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186870] RSP <ffff8804144b5c08>
[ 127.186871] ---[ end trace 7cbac5d1db69f426 ]---
The bug is a race and not always easy to reproduce. To reproduce it I was
doing the following on a single socket I7-based machine with 16G of RAM.
$ hugeadm --pool-pages-max DEFAULT:13G
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall
$ for i in `seq 1 9000`; do ./hugetlbfs-test; done
On my particular machine, it usually triggers within 10 minutes but
enabling debug options can change the timing such that it never hits.
Once the bug is triggered, the machine is in trouble and needs to be
rebooted. The machine will respond but processes accessing proc like "ps
aux" will hang due to the BUG_ON. shutdown will also hang and needs a
hard reset or a sysrq-b.
The basic problem is a race between page table sharing and teardown. For
the most part page table sharing depends on i_mmap_mutex. In some cases,
it is also taking the mm->page_table_lock for the PTE updates but with
shared page tables, it is the i_mmap_mutex that is more important.
Unfortunately it appears to be also insufficient. Consider the following
situation
Process A Process B
--------- ---------
hugetlb_fault shmdt
LockWrite(mmap_sem)
do_munmap
unmap_region
unmap_vmas
unmap_single_vma
unmap_hugepage_range
Lock(i_mmap_mutex)
Lock(mm->page_table_lock)
huge_pmd_unshare/unmap tables <--- (1)
Unlock(mm->page_table_lock)
Unlock(i_mmap_mutex)
huge_pte_alloc ...
Lock(i_mmap_mutex) ...
vma_prio_walk, find svma, spte ...
Lock(mm->page_table_lock) ...
share spte ...
Unlock(mm->page_table_lock) ...
Unlock(i_mmap_mutex) ...
hugetlb_no_page <--- (2)
free_pgtables
unlink_file_vma
hugetlb_free_pgd_range
remove_vma_list
In this scenario, it is possible for Process A to share page tables with
Process B that is trying to tear them down. The i_mmap_mutex on its own
does not prevent Process A walking Process B's page tables. At (1) above,
the page tables are not shared yet so it unmaps the PMDs. Process A sets
up page table sharing and at (2) faults a new entry. Process B then trips
up on it in free_pgtables.
This patch fixes the problem by adding a new function
__unmap_hugepage_range_final that is only called when the VMA is about to
be destroyed. This function clears VM_MAYSHARE during
unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA
ineligible for sharing and avoids the race. Superficially this looks like
it would then be vunerable to truncate and madvise issues but hugetlbfs
has its own truncate handlers so does not use unmap_mapping_range() and
does not support madvise(DONTNEED).
This should be treated as a -stable candidate if it is merged.
Test program is as follows. The test case was mostly written by Michal
Hocko with a few minor changes to reproduce this bug.
==== CUT HERE ====
static size_t huge_page_size = (2UL << 20);
static size_t nr_huge_page_A = 512;
static size_t nr_huge_page_B = 5632;
unsigned int get_random(unsigned int max)
{
struct timeval tv;
gettimeofday(&tv, NULL);
srandom(tv.tv_usec);
return random() % max;
}
static void play(void *addr, size_t size)
{
unsigned char *start = addr,
*end = start + size,
*a;
start += get_random(size/2);
/* we could itterate on huge pages but let's give it more time. */
for (a = start; a < end; a += 4096)
*a = 0;
}
int main(int argc, char **argv)
{
key_t key = IPC_PRIVATE;
size_t sizeA = nr_huge_page_A * huge_page_size;
size_t sizeB = nr_huge_page_B * huge_page_size;
int shmidA, shmidB;
void *addrA = NULL, *addrB = NULL;
int nr_children = 300, n = 0;
if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
fork_child:
switch(fork()) {
case 0:
switch (n%3) {
case 0:
play(addrA, sizeA);
break;
case 1:
play(addrB, sizeB);
break;
case 2:
break;
}
break;
case -1:
perror("fork:");
break;
default:
if (++n < nr_children)
goto fork_child;
play(addrA, sizeA);
break;
}
shmdt(addrA);
shmdt(addrB);
do {
wait(NULL);
} while (--n > 0);
shmctl(shmidA, IPC_RMID, NULL);
shmctl(shmidB, IPC_RMID, NULL);
return 0;
}
[akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build]
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 07:46:20 +08:00
|
|
|
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
|
|
|
|
struct vm_area_struct *vma, unsigned long start,
|
|
|
|
unsigned long end, struct page *ref_page)
|
|
|
|
{
|
|
|
|
__unmap_hugepage_range(tlb, vma, start, end, ref_page);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clear this flag so that x86's huge_pmd_share page_table_shareable
|
|
|
|
* test will fail on a vma being torn down, and not grab a page table
|
|
|
|
* on its way out. We're lucky that the flag has such an appropriate
|
|
|
|
* name, and can in fact be safely cleared here. We could clear it
|
|
|
|
* before the __unmap_hugepage_range above, but all that's necessary
|
2014-12-13 08:54:24 +08:00
|
|
|
* is to clear it before releasing the i_mmap_rwsem. This works
|
mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables
If a process creates a large hugetlbfs mapping that is eligible for page
table sharing and forks heavily with children some of whom fault and
others which destroy the mapping then it is possible for page tables to
get corrupted. Some teardowns of the mapping encounter a "bad pmd" and
output a message to the kernel log. The final teardown will trigger a
BUG_ON in mm/filemap.c.
This was reproduced in 3.4 but is known to have existed for a long time
and goes back at least as far as 2.6.37. It was probably was introduced
in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages
look like this;
[ ..........] Lots of bad pmd messages followed by this
[ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7).
[ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7).
[ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7).
[ 127.186778] ------------[ cut here ]------------
[ 127.186781] kernel BUG at mm/filemap.c:134!
[ 127.186782] invalid opcode: 0000 [#1] SMP
[ 127.186783] CPU 7
[ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod
[ 127.186801]
[ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR
[ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002
[ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0
[ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00
[ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003
[ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8
[ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8
[ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000
[ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0
[ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
[ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0)
[ 127.186821] Stack:
[ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b
[ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98
[ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000
[ 127.186827] Call Trace:
[ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80
[ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220
[ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30
[ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0
[ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0
[ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50
[ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130
[ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0
[ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230
[ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150
[ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30
[ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80
[ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360
[ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170
[ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b
[ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0
[ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186870] RSP <ffff8804144b5c08>
[ 127.186871] ---[ end trace 7cbac5d1db69f426 ]---
The bug is a race and not always easy to reproduce. To reproduce it I was
doing the following on a single socket I7-based machine with 16G of RAM.
$ hugeadm --pool-pages-max DEFAULT:13G
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall
$ for i in `seq 1 9000`; do ./hugetlbfs-test; done
On my particular machine, it usually triggers within 10 minutes but
enabling debug options can change the timing such that it never hits.
Once the bug is triggered, the machine is in trouble and needs to be
rebooted. The machine will respond but processes accessing proc like "ps
aux" will hang due to the BUG_ON. shutdown will also hang and needs a
hard reset or a sysrq-b.
The basic problem is a race between page table sharing and teardown. For
the most part page table sharing depends on i_mmap_mutex. In some cases,
it is also taking the mm->page_table_lock for the PTE updates but with
shared page tables, it is the i_mmap_mutex that is more important.
Unfortunately it appears to be also insufficient. Consider the following
situation
Process A Process B
--------- ---------
hugetlb_fault shmdt
LockWrite(mmap_sem)
do_munmap
unmap_region
unmap_vmas
unmap_single_vma
unmap_hugepage_range
Lock(i_mmap_mutex)
Lock(mm->page_table_lock)
huge_pmd_unshare/unmap tables <--- (1)
Unlock(mm->page_table_lock)
Unlock(i_mmap_mutex)
huge_pte_alloc ...
Lock(i_mmap_mutex) ...
vma_prio_walk, find svma, spte ...
Lock(mm->page_table_lock) ...
share spte ...
Unlock(mm->page_table_lock) ...
Unlock(i_mmap_mutex) ...
hugetlb_no_page <--- (2)
free_pgtables
unlink_file_vma
hugetlb_free_pgd_range
remove_vma_list
In this scenario, it is possible for Process A to share page tables with
Process B that is trying to tear them down. The i_mmap_mutex on its own
does not prevent Process A walking Process B's page tables. At (1) above,
the page tables are not shared yet so it unmaps the PMDs. Process A sets
up page table sharing and at (2) faults a new entry. Process B then trips
up on it in free_pgtables.
This patch fixes the problem by adding a new function
__unmap_hugepage_range_final that is only called when the VMA is about to
be destroyed. This function clears VM_MAYSHARE during
unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA
ineligible for sharing and avoids the race. Superficially this looks like
it would then be vunerable to truncate and madvise issues but hugetlbfs
has its own truncate handlers so does not use unmap_mapping_range() and
does not support madvise(DONTNEED).
This should be treated as a -stable candidate if it is merged.
Test program is as follows. The test case was mostly written by Michal
Hocko with a few minor changes to reproduce this bug.
==== CUT HERE ====
static size_t huge_page_size = (2UL << 20);
static size_t nr_huge_page_A = 512;
static size_t nr_huge_page_B = 5632;
unsigned int get_random(unsigned int max)
{
struct timeval tv;
gettimeofday(&tv, NULL);
srandom(tv.tv_usec);
return random() % max;
}
static void play(void *addr, size_t size)
{
unsigned char *start = addr,
*end = start + size,
*a;
start += get_random(size/2);
/* we could itterate on huge pages but let's give it more time. */
for (a = start; a < end; a += 4096)
*a = 0;
}
int main(int argc, char **argv)
{
key_t key = IPC_PRIVATE;
size_t sizeA = nr_huge_page_A * huge_page_size;
size_t sizeB = nr_huge_page_B * huge_page_size;
int shmidA, shmidB;
void *addrA = NULL, *addrB = NULL;
int nr_children = 300, n = 0;
if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
fork_child:
switch(fork()) {
case 0:
switch (n%3) {
case 0:
play(addrA, sizeA);
break;
case 1:
play(addrB, sizeB);
break;
case 2:
break;
}
break;
case -1:
perror("fork:");
break;
default:
if (++n < nr_children)
goto fork_child;
play(addrA, sizeA);
break;
}
shmdt(addrA);
shmdt(addrB);
do {
wait(NULL);
} while (--n > 0);
shmctl(shmidA, IPC_RMID, NULL);
shmctl(shmidB, IPC_RMID, NULL);
return 0;
}
[akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build]
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 07:46:20 +08:00
|
|
|
* because in the context this is called, the VMA is about to be
|
2014-12-13 08:54:24 +08:00
|
|
|
* destroyed and the i_mmap_rwsem is held.
|
mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables
If a process creates a large hugetlbfs mapping that is eligible for page
table sharing and forks heavily with children some of whom fault and
others which destroy the mapping then it is possible for page tables to
get corrupted. Some teardowns of the mapping encounter a "bad pmd" and
output a message to the kernel log. The final teardown will trigger a
BUG_ON in mm/filemap.c.
This was reproduced in 3.4 but is known to have existed for a long time
and goes back at least as far as 2.6.37. It was probably was introduced
in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages
look like this;
[ ..........] Lots of bad pmd messages followed by this
[ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7).
[ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7).
[ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7).
[ 127.186778] ------------[ cut here ]------------
[ 127.186781] kernel BUG at mm/filemap.c:134!
[ 127.186782] invalid opcode: 0000 [#1] SMP
[ 127.186783] CPU 7
[ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod
[ 127.186801]
[ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR
[ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002
[ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0
[ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00
[ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003
[ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8
[ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8
[ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000
[ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0
[ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
[ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0)
[ 127.186821] Stack:
[ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b
[ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98
[ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000
[ 127.186827] Call Trace:
[ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80
[ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220
[ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30
[ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0
[ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0
[ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50
[ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130
[ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0
[ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230
[ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150
[ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30
[ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80
[ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360
[ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170
[ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b
[ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0
[ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186870] RSP <ffff8804144b5c08>
[ 127.186871] ---[ end trace 7cbac5d1db69f426 ]---
The bug is a race and not always easy to reproduce. To reproduce it I was
doing the following on a single socket I7-based machine with 16G of RAM.
$ hugeadm --pool-pages-max DEFAULT:13G
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall
$ for i in `seq 1 9000`; do ./hugetlbfs-test; done
On my particular machine, it usually triggers within 10 minutes but
enabling debug options can change the timing such that it never hits.
Once the bug is triggered, the machine is in trouble and needs to be
rebooted. The machine will respond but processes accessing proc like "ps
aux" will hang due to the BUG_ON. shutdown will also hang and needs a
hard reset or a sysrq-b.
The basic problem is a race between page table sharing and teardown. For
the most part page table sharing depends on i_mmap_mutex. In some cases,
it is also taking the mm->page_table_lock for the PTE updates but with
shared page tables, it is the i_mmap_mutex that is more important.
Unfortunately it appears to be also insufficient. Consider the following
situation
Process A Process B
--------- ---------
hugetlb_fault shmdt
LockWrite(mmap_sem)
do_munmap
unmap_region
unmap_vmas
unmap_single_vma
unmap_hugepage_range
Lock(i_mmap_mutex)
Lock(mm->page_table_lock)
huge_pmd_unshare/unmap tables <--- (1)
Unlock(mm->page_table_lock)
Unlock(i_mmap_mutex)
huge_pte_alloc ...
Lock(i_mmap_mutex) ...
vma_prio_walk, find svma, spte ...
Lock(mm->page_table_lock) ...
share spte ...
Unlock(mm->page_table_lock) ...
Unlock(i_mmap_mutex) ...
hugetlb_no_page <--- (2)
free_pgtables
unlink_file_vma
hugetlb_free_pgd_range
remove_vma_list
In this scenario, it is possible for Process A to share page tables with
Process B that is trying to tear them down. The i_mmap_mutex on its own
does not prevent Process A walking Process B's page tables. At (1) above,
the page tables are not shared yet so it unmaps the PMDs. Process A sets
up page table sharing and at (2) faults a new entry. Process B then trips
up on it in free_pgtables.
This patch fixes the problem by adding a new function
__unmap_hugepage_range_final that is only called when the VMA is about to
be destroyed. This function clears VM_MAYSHARE during
unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA
ineligible for sharing and avoids the race. Superficially this looks like
it would then be vunerable to truncate and madvise issues but hugetlbfs
has its own truncate handlers so does not use unmap_mapping_range() and
does not support madvise(DONTNEED).
This should be treated as a -stable candidate if it is merged.
Test program is as follows. The test case was mostly written by Michal
Hocko with a few minor changes to reproduce this bug.
==== CUT HERE ====
static size_t huge_page_size = (2UL << 20);
static size_t nr_huge_page_A = 512;
static size_t nr_huge_page_B = 5632;
unsigned int get_random(unsigned int max)
{
struct timeval tv;
gettimeofday(&tv, NULL);
srandom(tv.tv_usec);
return random() % max;
}
static void play(void *addr, size_t size)
{
unsigned char *start = addr,
*end = start + size,
*a;
start += get_random(size/2);
/* we could itterate on huge pages but let's give it more time. */
for (a = start; a < end; a += 4096)
*a = 0;
}
int main(int argc, char **argv)
{
key_t key = IPC_PRIVATE;
size_t sizeA = nr_huge_page_A * huge_page_size;
size_t sizeB = nr_huge_page_B * huge_page_size;
int shmidA, shmidB;
void *addrA = NULL, *addrB = NULL;
int nr_children = 300, n = 0;
if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
fork_child:
switch(fork()) {
case 0:
switch (n%3) {
case 0:
play(addrA, sizeA);
break;
case 1:
play(addrB, sizeB);
break;
case 2:
break;
}
break;
case -1:
perror("fork:");
break;
default:
if (++n < nr_children)
goto fork_child;
play(addrA, sizeA);
break;
}
shmdt(addrA);
shmdt(addrB);
do {
wait(NULL);
} while (--n > 0);
shmctl(shmidA, IPC_RMID, NULL);
shmctl(shmidB, IPC_RMID, NULL);
return 0;
}
[akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build]
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 07:46:20 +08:00
|
|
|
*/
|
|
|
|
vma->vm_flags &= ~VM_MAYSHARE;
|
|
|
|
}
|
|
|
|
|
2006-10-11 16:20:46 +08:00
|
|
|
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
unsigned long end, struct page *ref_page)
|
2006-10-11 16:20:46 +08:00
|
|
|
{
|
2012-08-01 07:42:03 +08:00
|
|
|
struct mm_struct *mm;
|
|
|
|
struct mmu_gather tlb;
|
2018-10-06 06:51:33 +08:00
|
|
|
unsigned long tlb_start = start;
|
|
|
|
unsigned long tlb_end = end;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If shared PMDs were possibly used within this vma range, adjust
|
|
|
|
* start/end for worst case tlb flushing.
|
|
|
|
* Note that we can not be sure if PMDs are shared until we try to
|
|
|
|
* unmap pages. However, we want to make sure TLB flushing covers
|
|
|
|
* the largest possible range.
|
|
|
|
*/
|
|
|
|
adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
|
2012-08-01 07:42:03 +08:00
|
|
|
|
|
|
|
mm = vma->vm_mm;
|
|
|
|
|
2018-10-06 06:51:33 +08:00
|
|
|
tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
|
2012-08-01 07:42:03 +08:00
|
|
|
__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
|
2018-10-06 06:51:33 +08:00
|
|
|
tlb_finish_mmu(&tlb, tlb_start, tlb_end);
|
2006-10-11 16:20:46 +08:00
|
|
|
}
|
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
/*
|
|
|
|
* This is called when the original mapper is failing to COW a MAP_PRIVATE
|
|
|
|
* mappping it owns the reserve page for. The intention is to unmap the page
|
|
|
|
* from other VMAs and let the children be SIGKILLed if they are faulting the
|
|
|
|
* same region.
|
|
|
|
*/
|
2014-08-07 07:06:45 +08:00
|
|
|
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
|
|
struct page *page, unsigned long address)
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
{
|
2008-11-13 05:24:56 +08:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
struct vm_area_struct *iter_vma;
|
|
|
|
struct address_space *mapping;
|
|
|
|
pgoff_t pgoff;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* vm_pgoff is in PAGE_SIZE units, hence the different calculation
|
|
|
|
* from page cache lookup which is in HPAGE_SIZE units.
|
|
|
|
*/
|
2008-11-13 05:24:56 +08:00
|
|
|
address = address & huge_page_mask(h);
|
2012-10-09 07:33:31 +08:00
|
|
|
pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
|
|
|
|
vma->vm_pgoff;
|
2015-12-05 12:45:44 +08:00
|
|
|
mapping = vma->vm_file->f_mapping;
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
|
2009-12-15 09:59:53 +08:00
|
|
|
/*
|
|
|
|
* Take the mapping lock for the duration of the table walk. As
|
|
|
|
* this mapping should be shared between all the VMAs,
|
|
|
|
* __unmap_hugepage_range() is called as the lock is already held
|
|
|
|
*/
|
2014-12-13 08:54:21 +08:00
|
|
|
i_mmap_lock_write(mapping);
|
2012-10-09 07:31:25 +08:00
|
|
|
vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
/* Do not unmap the current VMA */
|
|
|
|
if (iter_vma == vma)
|
|
|
|
continue;
|
|
|
|
|
mm: hugetlbfs: skip shared VMAs when unmapping private pages to satisfy a fault
SunDong reported the following on
https://bugzilla.kernel.org/show_bug.cgi?id=103841
I think I find a linux bug, I have the test cases is constructed. I
can stable recurring problems in fedora22(4.0.4) kernel version,
arch for x86_64. I construct transparent huge page, when the parent
and child process with MAP_SHARE, MAP_PRIVATE way to access the same
huge page area, it has the opportunity to lead to huge page copy on
write failure, and then it will munmap the child corresponding mmap
area, but then the child mmap area with VM_MAYSHARE attributes, child
process munmap this area can trigger VM_BUG_ON in set_vma_resv_flags
functions (vma - > vm_flags & VM_MAYSHARE).
There were a number of problems with the report (e.g. it's hugetlbfs that
triggers this, not transparent huge pages) but it was fundamentally
correct in that a VM_BUG_ON in set_vma_resv_flags() can be triggered that
looks like this
vma ffff8804651fd0d0 start 00007fc474e00000 end 00007fc475e00000
next ffff8804651fd018 prev ffff8804651fd188 mm ffff88046b1b1800
prot 8000000000000027 anon_vma (null) vm_ops ffffffff8182a7a0
pgoff 0 file ffff88106bdb9800 private_data (null)
flags: 0x84400fb(read|write|shared|mayread|maywrite|mayexec|mayshare|dontexpand|hugetlb)
------------
kernel BUG at mm/hugetlb.c:462!
SMP
Modules linked in: xt_pkttype xt_LOG xt_limit [..]
CPU: 38 PID: 26839 Comm: map Not tainted 4.0.4-default #1
Hardware name: Dell Inc. PowerEdge R810/0TT6JF, BIOS 2.7.4 04/26/2012
set_vma_resv_flags+0x2d/0x30
The VM_BUG_ON is correct because private and shared mappings have
different reservation accounting but the warning clearly shows that the
VMA is shared.
When a private COW fails to allocate a new page then only the process
that created the VMA gets the page -- all the children unmap the page.
If the children access that data in the future then they get killed.
The problem is that the same file is mapped shared and private. During
the COW, the allocation fails, the VMAs are traversed to unmap the other
private pages but a shared VMA is found and the bug is triggered. This
patch identifies such VMAs and skips them.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: SunDong <sund_sky@126.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Rientjes <rientjes@google.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-10-02 06:36:57 +08:00
|
|
|
/*
|
|
|
|
* Shared VMAs have their own reserves and do not affect
|
|
|
|
* MAP_PRIVATE accounting but it is possible that a shared
|
|
|
|
* VMA is using the same page so check and skip such VMAs.
|
|
|
|
*/
|
|
|
|
if (iter_vma->vm_flags & VM_MAYSHARE)
|
|
|
|
continue;
|
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
/*
|
|
|
|
* Unmap the page from other VMAs without their own reserves.
|
|
|
|
* They get marked to be SIGKILLed if they fault in these
|
|
|
|
* areas. This is because a future no-page fault on this VMA
|
|
|
|
* could insert a zeroed page instead of the data existing
|
|
|
|
* from the time of fork. This would look like data corruption
|
|
|
|
*/
|
|
|
|
if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
|
2012-08-01 07:42:03 +08:00
|
|
|
unmap_hugepage_range(iter_vma, address,
|
|
|
|
address + huge_page_size(h), page);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
}
|
2014-12-13 08:54:21 +08:00
|
|
|
i_mmap_unlock_write(mapping);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
}
|
|
|
|
|
2010-05-28 08:29:16 +08:00
|
|
|
/*
|
|
|
|
* Hugetlb_cow() should be called with page lock of the original hugepage held.
|
2012-01-11 07:07:21 +08:00
|
|
|
* Called with hugetlb_instantiation_mutex held and pte_page locked so we
|
|
|
|
* cannot race with other handlers or page migration.
|
|
|
|
* Keep the pte_same checks anyway to make transition from the mutex easier.
|
2010-05-28 08:29:16 +08:00
|
|
|
*/
|
2018-08-24 08:01:36 +08:00
|
|
|
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
|
2018-08-18 06:45:57 +08:00
|
|
|
unsigned long address, pte_t *ptep,
|
2016-12-13 08:41:56 +08:00
|
|
|
struct page *pagecache_page, spinlock_t *ptl)
|
2006-01-06 16:10:44 +08:00
|
|
|
{
|
2016-12-13 08:41:56 +08:00
|
|
|
pte_t pte;
|
2008-07-24 12:27:41 +08:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
2006-01-06 16:10:44 +08:00
|
|
|
struct page *old_page, *new_page;
|
2018-08-24 08:01:36 +08:00
|
|
|
int outside_reserve = 0;
|
|
|
|
vm_fault_t ret = 0;
|
2018-08-18 06:45:57 +08:00
|
|
|
unsigned long haddr = address & huge_page_mask(h);
|
2018-12-28 16:38:09 +08:00
|
|
|
struct mmu_notifier_range range;
|
2006-01-06 16:10:44 +08:00
|
|
|
|
2016-12-13 08:41:56 +08:00
|
|
|
pte = huge_ptep_get(ptep);
|
2006-01-06 16:10:44 +08:00
|
|
|
old_page = pte_page(pte);
|
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
retry_avoidcopy:
|
2006-01-06 16:10:44 +08:00
|
|
|
/* If no-one else is actually using this page, avoid the copy
|
|
|
|
* and just make the page writable */
|
mm, hugetlb: do not use a page in page cache for cow optimization
Currently, we use a page with mapped count 1 in page cache for cow
optimization. If we find this condition, we don't allocate a new page and
copy contents. Instead, we map this page directly. This may introduce a
problem that writting to private mapping overwrite hugetlb file directly.
You can find this situation with following code.
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
p[0] = 's';
fprintf(stdout, "BEFORE STEAL PRIVATE WRITE: %c\n", p[0]);
munmap(p, size);
flag = MAP_PRIVATE;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
p[0] = 'c';
munmap(p, size);
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
fprintf(stdout, "AFTER STEAL PRIVATE WRITE: %c\n", p[0]);
munmap(p, size);
We can see that "AFTER STEAL PRIVATE WRITE: c", not "AFTER STEAL PRIVATE
WRITE: s". If we turn off this optimization to a page in page cache, the
problem is disappeared.
So, I change the trigger condition of optimization. If this page is not
AnonPage, we don't do optimization. This makes this optimization turning
off for a page cache.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:21:04 +08:00
|
|
|
if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
|
2016-07-15 03:07:38 +08:00
|
|
|
page_move_anon_rmap(old_page, vma);
|
2018-08-18 06:45:53 +08:00
|
|
|
set_huge_ptep_writable(vma, haddr, ptep);
|
2007-07-19 16:47:05 +08:00
|
|
|
return 0;
|
2006-01-06 16:10:44 +08:00
|
|
|
}
|
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
/*
|
|
|
|
* If the process that created a MAP_PRIVATE mapping is about to
|
|
|
|
* perform a COW due to a shared page count, attempt to satisfy
|
|
|
|
* the allocation without using the existing reserves. The pagecache
|
|
|
|
* page is used to determine if the reserve at this address was
|
|
|
|
* consumed or not. If reserves were used, a partial faulted mapping
|
|
|
|
* at the time of fork() could consume its reserves on COW instead
|
|
|
|
* of the full address range.
|
|
|
|
*/
|
2013-09-12 05:21:55 +08:00
|
|
|
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
old_page != pagecache_page)
|
|
|
|
outside_reserve = 1;
|
|
|
|
|
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
|
|
|
get_page(old_page);
|
2009-12-15 09:59:37 +08:00
|
|
|
|
2014-08-07 07:06:47 +08:00
|
|
|
/*
|
|
|
|
* Drop page table lock as buddy allocator may be called. It will
|
|
|
|
* be acquired again before returning to the caller, as expected.
|
|
|
|
*/
|
2013-11-15 06:31:02 +08:00
|
|
|
spin_unlock(ptl);
|
2018-08-18 06:45:53 +08:00
|
|
|
new_page = alloc_huge_page(vma, haddr, outside_reserve);
|
2006-01-06 16:10:44 +08:00
|
|
|
|
2007-11-15 08:59:39 +08:00
|
|
|
if (IS_ERR(new_page)) {
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
/*
|
|
|
|
* If a process owning a MAP_PRIVATE mapping fails to COW,
|
|
|
|
* it is due to references held by a child and an insufficient
|
|
|
|
* huge page pool. To guarantee the original mappers
|
|
|
|
* reliability, unmap the page from child processes. The child
|
|
|
|
* may get SIGKILLed if it later faults.
|
|
|
|
*/
|
|
|
|
if (outside_reserve) {
|
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
|
|
|
put_page(old_page);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
BUG_ON(huge_pte_none(pte));
|
2018-08-18 06:45:53 +08:00
|
|
|
unmap_ref_private(mm, vma, old_page, haddr);
|
2014-08-07 07:06:45 +08:00
|
|
|
BUG_ON(huge_pte_none(pte));
|
|
|
|
spin_lock(ptl);
|
2018-08-18 06:45:53 +08:00
|
|
|
ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
|
2014-08-07 07:06:45 +08:00
|
|
|
if (likely(ptep &&
|
|
|
|
pte_same(huge_ptep_get(ptep), pte)))
|
|
|
|
goto retry_avoidcopy;
|
|
|
|
/*
|
|
|
|
* race occurs while re-acquiring page table
|
|
|
|
* lock, and our job is done.
|
|
|
|
*/
|
|
|
|
return 0;
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
}
|
|
|
|
|
2018-08-24 08:01:36 +08:00
|
|
|
ret = vmf_error(PTR_ERR(new_page));
|
2014-08-07 07:06:47 +08:00
|
|
|
goto out_release_old;
|
2006-01-06 16:10:44 +08:00
|
|
|
}
|
|
|
|
|
2010-05-28 08:29:16 +08:00
|
|
|
/*
|
|
|
|
* When the original hugepage is shared one, it does not have
|
|
|
|
* anon_vma prepared.
|
|
|
|
*/
|
2010-10-27 05:22:08 +08:00
|
|
|
if (unlikely(anon_vma_prepare(vma))) {
|
2014-08-07 07:06:47 +08:00
|
|
|
ret = VM_FAULT_OOM;
|
|
|
|
goto out_release_all;
|
2010-10-27 05:22:08 +08:00
|
|
|
}
|
2010-05-28 08:29:16 +08:00
|
|
|
|
2018-08-18 06:45:57 +08:00
|
|
|
copy_user_huge_page(new_page, old_page, address, vma,
|
2011-01-14 07:46:47 +08:00
|
|
|
pages_per_huge_page(h));
|
mm: fix PageUptodate data race
After running SetPageUptodate, preceeding stores to the page contents to
actually bring it uptodate may not be ordered with the store to set the
page uptodate.
Therefore, another CPU which checks PageUptodate is true, then reads the
page contents can get stale data.
Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after
PageUptodate.
Many places that test PageUptodate, do so with the page locked, and this
would be enough to ensure memory ordering in those places if
SetPageUptodate were only called while the page is locked. Unfortunately
that is not always the case for some filesystems, but it could be an idea
for the future.
Also bring the handling of anonymous page uptodateness in line with that of
file backed page management, by marking anon pages as uptodate when they
_are_ uptodate, rather than when our implementation requires that they be
marked as such. Doing allows us to get rid of the smp_wmb's in the page
copying functions, which were especially added for anonymous pages for an
analogous memory ordering problem. Both file and anonymous pages are
handled with the same barriers.
FAQ:
Q. Why not do this in flush_dcache_page?
A. Firstly, flush_dcache_page handles only one side (the smb side) of the
ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away
memory barriers in a completely unrelated function is nasty; at least in the
PageUptodate macros, they are located together with (half) the operations
involved in the ordering. Thirdly, the smp_wmb is only required when first
bringing the page uptodate, wheras flush_dcache_page should be called each time
it is written to through the kernel mapping. It is logically the wrong place to
put it.
Q. Why does this increase my text size / reduce my performance / etc.
A. Because it is adding the necessary instructions to eliminate the data-race.
Q. Can it be improved?
A. Yes, eg. if you were to create a rule that all SetPageUptodate operations
run under the page lock, we could avoid the smp_rmb places where PageUptodate
is queried under the page lock. Requires audit of all filesystems and at least
some would need reworking. That's great you're interested, I'm eagerly awaiting
your patches.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:34 +08:00
|
|
|
__SetPageUptodate(new_page);
|
2006-01-06 16:10:44 +08:00
|
|
|
|
2019-05-14 08:20:53 +08:00
|
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
|
mm/mmu_notifier: contextual information for event triggering invalidation
CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).
Users of mmu notifier API track changes to the CPU page table and take
specific action for them. While current API only provide range of virtual
address affected by the change, not why the changes is happening.
This patchset do the initial mechanical convertion of all the places that
calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP
event as well as the vma if it is know (most invalidation happens against
a given vma). Passing down the vma allows the users of mmu notifier to
inspect the new vma page protection.
The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier
should assume that every for the range is going away when that event
happens. A latter patch do convert mm call path to use a more appropriate
events for each call.
This is done as 2 patches so that no call site is forgotten especialy
as it uses this following coccinelle patch:
%<----------------------------------------------------------------------
@@
identifier I1, I2, I3, I4;
@@
static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1,
+enum mmu_notifier_event event,
+unsigned flags,
+struct vm_area_struct *vma,
struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... }
@@
@@
-#define mmu_notifier_range_init(range, mm, start, end)
+#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end)
@@
expression E1, E3, E4;
identifier I1;
@@
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, I1,
I1->vm_mm, E3, E4)
...>
@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(..., struct vm_area_struct *VMA, ...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }
@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(...) {
struct vm_area_struct *VMA;
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }
@@
expression E1, E2, E3, E4;
identifier FN;
@@
FN(...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, NULL,
E2, E3, E4)
...> }
---------------------------------------------------------------------->%
Applied with:
spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place
spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place
spatch --sp-file mmu-notifier.spatch --dir mm --in-place
Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 08:20:49 +08:00
|
|
|
haddr + huge_page_size(h));
|
2018-12-28 16:38:09 +08:00
|
|
|
mmu_notifier_invalidate_range_start(&range);
|
2014-08-07 07:06:47 +08:00
|
|
|
|
2009-12-15 09:59:37 +08:00
|
|
|
/*
|
2013-11-15 06:31:02 +08:00
|
|
|
* Retake the page table lock to check for racing updates
|
2009-12-15 09:59:37 +08:00
|
|
|
* before the page tables are altered
|
|
|
|
*/
|
2013-11-15 06:31:02 +08:00
|
|
|
spin_lock(ptl);
|
2018-08-18 06:45:53 +08:00
|
|
|
ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
|
2014-04-08 06:36:54 +08:00
|
|
|
if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
|
2013-09-12 05:21:58 +08:00
|
|
|
ClearPagePrivate(new_page);
|
|
|
|
|
2006-01-06 16:10:44 +08:00
|
|
|
/* Break COW */
|
2018-08-18 06:45:53 +08:00
|
|
|
huge_ptep_clear_flush(vma, haddr, ptep);
|
2018-12-28 16:38:09 +08:00
|
|
|
mmu_notifier_invalidate_range(mm, range.start, range.end);
|
2018-08-18 06:45:53 +08:00
|
|
|
set_huge_pte_at(mm, haddr, ptep,
|
2006-01-06 16:10:44 +08:00
|
|
|
make_huge_pte(vma, new_page, 1));
|
2016-01-16 08:52:16 +08:00
|
|
|
page_remove_rmap(old_page, true);
|
2018-08-18 06:45:53 +08:00
|
|
|
hugepage_add_new_anon_rmap(new_page, vma, haddr);
|
hugetlbfs: fix races and page leaks during migration
hugetlb pages should only be migrated if they are 'active'. The
routines set/clear_page_huge_active() modify the active state of hugetlb
pages.
When a new hugetlb page is allocated at fault time, set_page_huge_active
is called before the page is locked. Therefore, another thread could
race and migrate the page while it is being added to page table by the
fault code. This race is somewhat hard to trigger, but can be seen by
strategically adding udelay to simulate worst case scheduling behavior.
Depending on 'how' the code races, various BUG()s could be triggered.
To address this issue, simply delay the set_page_huge_active call until
after the page is successfully added to the page table.
Hugetlb pages can also be leaked at migration time if the pages are
associated with a file in an explicitly mounted hugetlbfs filesystem.
For example, consider a two node system with 4GB worth of huge pages
available. A program mmaps a 2G file in a hugetlbfs filesystem. It
then migrates the pages associated with the file from one node to
another. When the program exits, huge page counts are as follows:
node0
1024 free_hugepages
1024 nr_hugepages
node1
0 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
That is as expected. 2G of huge pages are taken from the free_hugepages
counts, and 2G is the size of the file in the explicitly mounted
filesystem. If the file is then removed, the counts become:
node0
1024 free_hugepages
1024 nr_hugepages
node1
1024 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
Note that the filesystem still shows 2G of pages used, while there
actually are no huge pages in use. The only way to 'fix' the filesystem
accounting is to unmount the filesystem
If a hugetlb page is associated with an explicitly mounted filesystem,
this information in contained in the page_private field. At migration
time, this information is not preserved. To fix, simply transfer
page_private from old to new page at migration time if necessary.
There is a related race with removing a huge page from a file and
migration. When a huge page is removed from the pagecache, the
page_mapping() field is cleared, yet page_private remains set until the
page is actually freed by free_huge_page(). A page could be migrated
while in this state. However, since page_mapping() is not set the
hugetlbfs specific routine to transfer page_private is not called and we
leak the page count in the filesystem.
To fix that, check for this condition before migrating a huge page. If
the condition is detected, return EBUSY for the page.
Link: http://lkml.kernel.org/r/74510272-7319-7372-9ea6-ec914734c179@oracle.com
Link: http://lkml.kernel.org/r/20190212221400.3512-1-mike.kravetz@oracle.com
Fixes: bcc54222309c ("mm: hugetlb: introduce page_huge_active")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: <stable@vger.kernel.org>
[mike.kravetz@oracle.com: v2]
Link: http://lkml.kernel.org/r/7534d322-d782-8ac6-1c8d-a8dc380eb3ab@oracle.com
[mike.kravetz@oracle.com: update comment and changelog]
Link: http://lkml.kernel.org/r/420bcfd6-158b-38e4-98da-26d0cd85bd01@oracle.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-01 08:22:02 +08:00
|
|
|
set_page_huge_active(new_page);
|
2006-01-06 16:10:44 +08:00
|
|
|
/* Make the old page be freed below */
|
|
|
|
new_page = old_page;
|
|
|
|
}
|
2013-11-15 06:31:02 +08:00
|
|
|
spin_unlock(ptl);
|
2018-12-28 16:38:09 +08:00
|
|
|
mmu_notifier_invalidate_range_end(&range);
|
2014-08-07 07:06:47 +08:00
|
|
|
out_release_all:
|
2018-08-18 06:45:53 +08:00
|
|
|
restore_reserve_on_error(h, vma, haddr, new_page);
|
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
|
|
|
put_page(new_page);
|
2014-08-07 07:06:47 +08:00
|
|
|
out_release_old:
|
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
|
|
|
put_page(old_page);
|
2013-09-12 05:21:57 +08:00
|
|
|
|
2014-08-07 07:06:47 +08:00
|
|
|
spin_lock(ptl); /* Caller expects lock to be held */
|
|
|
|
return ret;
|
2006-01-06 16:10:44 +08:00
|
|
|
}
|
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
/* Return the pagecache page at a given address within a VMA */
|
2008-07-24 12:27:41 +08:00
|
|
|
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
|
|
|
|
struct vm_area_struct *vma, unsigned long address)
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
{
|
|
|
|
struct address_space *mapping;
|
2008-07-24 12:27:26 +08:00
|
|
|
pgoff_t idx;
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
|
|
|
|
mapping = vma->vm_file->f_mapping;
|
2008-07-24 12:27:41 +08:00
|
|
|
idx = vma_hugecache_offset(h, vma, address);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
|
|
|
|
return find_lock_page(mapping, idx);
|
|
|
|
}
|
|
|
|
|
2009-09-22 08:03:33 +08:00
|
|
|
/*
|
|
|
|
* Return whether there is a pagecache page to back given address within VMA.
|
|
|
|
* Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
|
|
|
|
*/
|
|
|
|
static bool hugetlbfs_pagecache_present(struct hstate *h,
|
2009-09-22 08:03:27 +08:00
|
|
|
struct vm_area_struct *vma, unsigned long address)
|
|
|
|
{
|
|
|
|
struct address_space *mapping;
|
|
|
|
pgoff_t idx;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
mapping = vma->vm_file->f_mapping;
|
|
|
|
idx = vma_hugecache_offset(h, vma, address);
|
|
|
|
|
|
|
|
page = find_get_page(mapping, idx);
|
|
|
|
if (page)
|
|
|
|
put_page(page);
|
|
|
|
return page != NULL;
|
|
|
|
}
|
|
|
|
|
2015-09-09 06:01:50 +08:00
|
|
|
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
|
|
|
|
pgoff_t idx)
|
|
|
|
{
|
|
|
|
struct inode *inode = mapping->host;
|
|
|
|
struct hstate *h = hstate_inode(inode);
|
|
|
|
int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
|
|
|
|
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
ClearPagePrivate(page);
|
|
|
|
|
2018-10-27 06:10:58 +08:00
|
|
|
/*
|
|
|
|
* set page dirty so that it will not be removed from cache/file
|
|
|
|
* by non-hugetlbfs specific code paths.
|
|
|
|
*/
|
|
|
|
set_page_dirty(page);
|
|
|
|
|
2015-09-09 06:01:50 +08:00
|
|
|
spin_lock(&inode->i_lock);
|
|
|
|
inode->i_blocks += blocks_per_huge_page(h);
|
|
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-08-24 08:01:36 +08:00
|
|
|
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
|
|
|
|
struct vm_area_struct *vma,
|
|
|
|
struct address_space *mapping, pgoff_t idx,
|
|
|
|
unsigned long address, pte_t *ptep, unsigned int flags)
|
2005-10-20 23:24:28 +08:00
|
|
|
{
|
2008-07-24 12:27:41 +08:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
2018-08-24 08:01:36 +08:00
|
|
|
vm_fault_t ret = VM_FAULT_SIGBUS;
|
2012-01-21 06:34:13 +08:00
|
|
|
int anon_rmap = 0;
|
2005-10-30 09:16:46 +08:00
|
|
|
unsigned long size;
|
|
|
|
struct page *page;
|
2006-01-06 16:10:44 +08:00
|
|
|
pte_t new_pte;
|
2013-11-15 06:31:02 +08:00
|
|
|
spinlock_t *ptl;
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
unsigned long haddr = address & huge_page_mask(h);
|
hugetlbfs: fix races and page leaks during migration
hugetlb pages should only be migrated if they are 'active'. The
routines set/clear_page_huge_active() modify the active state of hugetlb
pages.
When a new hugetlb page is allocated at fault time, set_page_huge_active
is called before the page is locked. Therefore, another thread could
race and migrate the page while it is being added to page table by the
fault code. This race is somewhat hard to trigger, but can be seen by
strategically adding udelay to simulate worst case scheduling behavior.
Depending on 'how' the code races, various BUG()s could be triggered.
To address this issue, simply delay the set_page_huge_active call until
after the page is successfully added to the page table.
Hugetlb pages can also be leaked at migration time if the pages are
associated with a file in an explicitly mounted hugetlbfs filesystem.
For example, consider a two node system with 4GB worth of huge pages
available. A program mmaps a 2G file in a hugetlbfs filesystem. It
then migrates the pages associated with the file from one node to
another. When the program exits, huge page counts are as follows:
node0
1024 free_hugepages
1024 nr_hugepages
node1
0 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
That is as expected. 2G of huge pages are taken from the free_hugepages
counts, and 2G is the size of the file in the explicitly mounted
filesystem. If the file is then removed, the counts become:
node0
1024 free_hugepages
1024 nr_hugepages
node1
1024 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
Note that the filesystem still shows 2G of pages used, while there
actually are no huge pages in use. The only way to 'fix' the filesystem
accounting is to unmount the filesystem
If a hugetlb page is associated with an explicitly mounted filesystem,
this information in contained in the page_private field. At migration
time, this information is not preserved. To fix, simply transfer
page_private from old to new page at migration time if necessary.
There is a related race with removing a huge page from a file and
migration. When a huge page is removed from the pagecache, the
page_mapping() field is cleared, yet page_private remains set until the
page is actually freed by free_huge_page(). A page could be migrated
while in this state. However, since page_mapping() is not set the
hugetlbfs specific routine to transfer page_private is not called and we
leak the page count in the filesystem.
To fix that, check for this condition before migrating a huge page. If
the condition is detected, return EBUSY for the page.
Link: http://lkml.kernel.org/r/74510272-7319-7372-9ea6-ec914734c179@oracle.com
Link: http://lkml.kernel.org/r/20190212221400.3512-1-mike.kravetz@oracle.com
Fixes: bcc54222309c ("mm: hugetlb: introduce page_huge_active")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: <stable@vger.kernel.org>
[mike.kravetz@oracle.com: v2]
Link: http://lkml.kernel.org/r/7534d322-d782-8ac6-1c8d-a8dc380eb3ab@oracle.com
[mike.kravetz@oracle.com: update comment and changelog]
Link: http://lkml.kernel.org/r/420bcfd6-158b-38e4-98da-26d0cd85bd01@oracle.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-01 08:22:02 +08:00
|
|
|
bool new_page = false;
|
2005-10-30 09:16:46 +08:00
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
/*
|
|
|
|
* Currently, we are forced to kill the process in the event the
|
|
|
|
* original mapper has unmapped pages from the child due to a failed
|
2011-03-31 09:57:33 +08:00
|
|
|
* COW. Warn that such a situation has occurred as it may not be obvious
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
*/
|
|
|
|
if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
|
mm/hugetlb: hugetlb_no_page: rate-limit warning message
The warning message "killed due to inadequate hugepage pool" simply
indicates that SIGBUS was sent, not that the process was forcibly killed.
If the process has a signal handler installed does not fix the problem,
this message can rapidly spam the kernel log.
On my amd64 dev machine that does not have hugepages configured, I can
reproduce the repeated warnings easily by setting vm.nr_hugepages=2 (i.e.,
4 megabytes of huge pages) and running something that sets a signal
handler and forks, like
#include <sys/mman.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
sig_atomic_t counter = 10;
void handler(int signal)
{
if (counter-- == 0)
exit(0);
}
int main(void)
{
int status;
char *addr = mmap(NULL, 4 * 1048576, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
if (addr == MAP_FAILED) {perror("mmap"); return 1;}
*addr = 'x';
switch (fork()) {
case -1:
perror("fork"); return 1;
case 0:
signal(SIGBUS, handler);
*addr = 'x';
break;
default:
*addr = 'x';
wait(&status);
if (WIFSIGNALED(status)) {
psignal(WTERMSIG(status), "child");
}
break;
}
}
Signed-off-by: Geoffrey Thomas <geofft@ldpreload.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-10 06:08:04 +08:00
|
|
|
pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
|
2013-02-23 08:32:08 +08:00
|
|
|
current->pid);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:25 +08:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2005-10-30 09:16:46 +08:00
|
|
|
/*
|
2020-04-02 12:11:08 +08:00
|
|
|
* We can not race with truncation due to holding i_mmap_rwsem.
|
|
|
|
* i_size is modified when holding i_mmap_rwsem, so check here
|
|
|
|
* once for faults beyond end of file.
|
2005-10-30 09:16:46 +08:00
|
|
|
*/
|
2020-04-02 12:11:08 +08:00
|
|
|
size = i_size_read(mapping->host) >> huge_page_shift(h);
|
|
|
|
if (idx >= size)
|
|
|
|
goto out;
|
|
|
|
|
2006-01-06 16:10:49 +08:00
|
|
|
retry:
|
|
|
|
page = find_lock_page(mapping, idx);
|
|
|
|
if (!page) {
|
2017-02-23 07:43:01 +08:00
|
|
|
/*
|
|
|
|
* Check for page in userfault range
|
|
|
|
*/
|
|
|
|
if (userfaultfd_missing(vma)) {
|
|
|
|
u32 hash;
|
|
|
|
struct vm_fault vmf = {
|
|
|
|
.vma = vma,
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
.address = haddr,
|
2017-02-23 07:43:01 +08:00
|
|
|
.flags = flags,
|
|
|
|
/*
|
|
|
|
* Hard to debug if it ends up being
|
|
|
|
* used by a callee that assumes
|
|
|
|
* something about the other
|
|
|
|
* uninitialized fields... same as in
|
|
|
|
* memory.c
|
|
|
|
*/
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
* hugetlb_fault_mutex and i_mmap_rwsem must be
|
|
|
|
* dropped before handling userfault. Reacquire
|
|
|
|
* after handling fault to make calling code simpler.
|
2017-02-23 07:43:01 +08:00
|
|
|
*/
|
2019-12-01 09:57:02 +08:00
|
|
|
hash = hugetlb_fault_mutex_hash(mapping, idx);
|
2017-02-23 07:43:01 +08:00
|
|
|
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
i_mmap_unlock_read(mapping);
|
2017-02-23 07:43:01 +08:00
|
|
|
ret = handle_userfault(&vmf, VM_UFFD_MISSING);
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
i_mmap_lock_read(mapping);
|
2017-02-23 07:43:01 +08:00
|
|
|
mutex_lock(&hugetlb_fault_mutex_table[hash]);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
page = alloc_huge_page(vma, haddr, 0);
|
2007-11-15 08:59:39 +08:00
|
|
|
if (IS_ERR(page)) {
|
hugetlbfs: fix hugetlb page migration/fault race causing SIGBUS
Li Wang discovered that LTP/move_page12 V2 sometimes triggers SIGBUS in
the kernel-v5.2.3 testing. This is caused by a race between hugetlb
page migration and page fault.
If a hugetlb page can not be allocated to satisfy a page fault, the task
is sent SIGBUS. This is normal hugetlbfs behavior. A hugetlb fault
mutex exists to prevent two tasks from trying to instantiate the same
page. This protects against the situation where there is only one
hugetlb page, and both tasks would try to allocate. Without the mutex,
one would fail and SIGBUS even though the other fault would be
successful.
There is a similar race between hugetlb page migration and fault.
Migration code will allocate a page for the target of the migration. It
will then unmap the original page from all page tables. It does this
unmap by first clearing the pte and then writing a migration entry. The
page table lock is held for the duration of this clear and write
operation. However, the beginnings of the hugetlb page fault code
optimistically checks the pte without taking the page table lock. If
clear (as it can be during the migration unmap operation), a hugetlb
page allocation is attempted to satisfy the fault. Note that the page
which will eventually satisfy this fault was already allocated by the
migration code. However, the allocation within the fault path could
fail which would result in the task incorrectly being sent SIGBUS.
Ideally, we could take the hugetlb fault mutex in the migration code
when modifying the page tables. However, locks must be taken in the
order of hugetlb fault mutex, page lock, page table lock. This would
require significant rework of the migration code. Instead, the issue is
addressed in the hugetlb fault code. After failing to allocate a huge
page, take the page table lock and check for huge_pte_none before
returning an error. This is the same check that must be made further in
the code even if page allocation is successful.
Link: http://lkml.kernel.org/r/20190808000533.7701-1-mike.kravetz@oracle.com
Fixes: 290408d4a250 ("hugetlb: hugepage migration core")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Li Wang <liwang@redhat.com>
Tested-by: Li Wang <liwang@redhat.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Cyril Hrubis <chrubis@suse.cz>
Cc: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-14 06:38:00 +08:00
|
|
|
/*
|
|
|
|
* Returning error will result in faulting task being
|
|
|
|
* sent SIGBUS. The hugetlb fault mutex prevents two
|
|
|
|
* tasks from racing to fault in the same page which
|
|
|
|
* could result in false unable to allocate errors.
|
|
|
|
* Page migration does not take the fault mutex, but
|
|
|
|
* does a clear then write of pte's under page table
|
|
|
|
* lock. Page fault code could race with migration,
|
|
|
|
* notice the clear pte and try to allocate a page
|
|
|
|
* here. Before returning error, get ptl and make
|
|
|
|
* sure there really is no pte entry.
|
|
|
|
*/
|
|
|
|
ptl = huge_pte_lock(h, mm, ptep);
|
|
|
|
if (!huge_pte_none(huge_ptep_get(ptep))) {
|
|
|
|
ret = 0;
|
|
|
|
spin_unlock(ptl);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
spin_unlock(ptl);
|
2018-08-24 08:01:36 +08:00
|
|
|
ret = vmf_error(PTR_ERR(page));
|
2006-01-06 16:10:49 +08:00
|
|
|
goto out;
|
|
|
|
}
|
2011-01-14 07:46:47 +08:00
|
|
|
clear_huge_page(page, address, pages_per_huge_page(h));
|
mm: fix PageUptodate data race
After running SetPageUptodate, preceeding stores to the page contents to
actually bring it uptodate may not be ordered with the store to set the
page uptodate.
Therefore, another CPU which checks PageUptodate is true, then reads the
page contents can get stale data.
Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after
PageUptodate.
Many places that test PageUptodate, do so with the page locked, and this
would be enough to ensure memory ordering in those places if
SetPageUptodate were only called while the page is locked. Unfortunately
that is not always the case for some filesystems, but it could be an idea
for the future.
Also bring the handling of anonymous page uptodateness in line with that of
file backed page management, by marking anon pages as uptodate when they
_are_ uptodate, rather than when our implementation requires that they be
marked as such. Doing allows us to get rid of the smp_wmb's in the page
copying functions, which were especially added for anonymous pages for an
analogous memory ordering problem. Both file and anonymous pages are
handled with the same barriers.
FAQ:
Q. Why not do this in flush_dcache_page?
A. Firstly, flush_dcache_page handles only one side (the smb side) of the
ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away
memory barriers in a completely unrelated function is nasty; at least in the
PageUptodate macros, they are located together with (half) the operations
involved in the ordering. Thirdly, the smp_wmb is only required when first
bringing the page uptodate, wheras flush_dcache_page should be called each time
it is written to through the kernel mapping. It is logically the wrong place to
put it.
Q. Why does this increase my text size / reduce my performance / etc.
A. Because it is adding the necessary instructions to eliminate the data-race.
Q. Can it be improved?
A. Yes, eg. if you were to create a rule that all SetPageUptodate operations
run under the page lock, we could avoid the smp_rmb places where PageUptodate
is queried under the page lock. Requires audit of all filesystems and at least
some would need reworking. That's great you're interested, I'm eagerly awaiting
your patches.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:34 +08:00
|
|
|
__SetPageUptodate(page);
|
hugetlbfs: fix races and page leaks during migration
hugetlb pages should only be migrated if they are 'active'. The
routines set/clear_page_huge_active() modify the active state of hugetlb
pages.
When a new hugetlb page is allocated at fault time, set_page_huge_active
is called before the page is locked. Therefore, another thread could
race and migrate the page while it is being added to page table by the
fault code. This race is somewhat hard to trigger, but can be seen by
strategically adding udelay to simulate worst case scheduling behavior.
Depending on 'how' the code races, various BUG()s could be triggered.
To address this issue, simply delay the set_page_huge_active call until
after the page is successfully added to the page table.
Hugetlb pages can also be leaked at migration time if the pages are
associated with a file in an explicitly mounted hugetlbfs filesystem.
For example, consider a two node system with 4GB worth of huge pages
available. A program mmaps a 2G file in a hugetlbfs filesystem. It
then migrates the pages associated with the file from one node to
another. When the program exits, huge page counts are as follows:
node0
1024 free_hugepages
1024 nr_hugepages
node1
0 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
That is as expected. 2G of huge pages are taken from the free_hugepages
counts, and 2G is the size of the file in the explicitly mounted
filesystem. If the file is then removed, the counts become:
node0
1024 free_hugepages
1024 nr_hugepages
node1
1024 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
Note that the filesystem still shows 2G of pages used, while there
actually are no huge pages in use. The only way to 'fix' the filesystem
accounting is to unmount the filesystem
If a hugetlb page is associated with an explicitly mounted filesystem,
this information in contained in the page_private field. At migration
time, this information is not preserved. To fix, simply transfer
page_private from old to new page at migration time if necessary.
There is a related race with removing a huge page from a file and
migration. When a huge page is removed from the pagecache, the
page_mapping() field is cleared, yet page_private remains set until the
page is actually freed by free_huge_page(). A page could be migrated
while in this state. However, since page_mapping() is not set the
hugetlbfs specific routine to transfer page_private is not called and we
leak the page count in the filesystem.
To fix that, check for this condition before migrating a huge page. If
the condition is detected, return EBUSY for the page.
Link: http://lkml.kernel.org/r/74510272-7319-7372-9ea6-ec914734c179@oracle.com
Link: http://lkml.kernel.org/r/20190212221400.3512-1-mike.kravetz@oracle.com
Fixes: bcc54222309c ("mm: hugetlb: introduce page_huge_active")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: <stable@vger.kernel.org>
[mike.kravetz@oracle.com: v2]
Link: http://lkml.kernel.org/r/7534d322-d782-8ac6-1c8d-a8dc380eb3ab@oracle.com
[mike.kravetz@oracle.com: update comment and changelog]
Link: http://lkml.kernel.org/r/420bcfd6-158b-38e4-98da-26d0cd85bd01@oracle.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-01 08:22:02 +08:00
|
|
|
new_page = true;
|
2005-10-20 23:24:28 +08:00
|
|
|
|
2009-05-29 05:34:40 +08:00
|
|
|
if (vma->vm_flags & VM_MAYSHARE) {
|
2015-09-09 06:01:50 +08:00
|
|
|
int err = huge_add_to_page_cache(page, mapping, idx);
|
2006-01-06 16:10:49 +08:00
|
|
|
if (err) {
|
|
|
|
put_page(page);
|
|
|
|
if (err == -EEXIST)
|
|
|
|
goto retry;
|
|
|
|
goto out;
|
|
|
|
}
|
2010-04-24 01:17:56 +08:00
|
|
|
} else {
|
2006-01-06 16:10:49 +08:00
|
|
|
lock_page(page);
|
2010-05-28 08:29:16 +08:00
|
|
|
if (unlikely(anon_vma_prepare(vma))) {
|
|
|
|
ret = VM_FAULT_OOM;
|
|
|
|
goto backout_unlocked;
|
|
|
|
}
|
2012-01-21 06:34:13 +08:00
|
|
|
anon_rmap = 1;
|
2010-04-24 01:17:56 +08:00
|
|
|
}
|
2010-05-28 08:29:16 +08:00
|
|
|
} else {
|
2010-09-08 09:19:32 +08:00
|
|
|
/*
|
|
|
|
* If memory error occurs between mmap() and fault, some process
|
|
|
|
* don't have hwpoisoned swap entry for errored virtual address.
|
|
|
|
* So we need to block hugepage fault by PG_hwpoison bit check.
|
|
|
|
*/
|
|
|
|
if (unlikely(PageHWPoison(page))) {
|
2011-07-26 08:12:14 +08:00
|
|
|
ret = VM_FAULT_HWPOISON |
|
2012-08-01 07:42:00 +08:00
|
|
|
VM_FAULT_SET_HINDEX(hstate_index(h));
|
2010-09-08 09:19:32 +08:00
|
|
|
goto backout_unlocked;
|
|
|
|
}
|
2006-01-06 16:10:49 +08:00
|
|
|
}
|
2006-01-06 16:10:44 +08:00
|
|
|
|
2008-08-13 06:08:47 +08:00
|
|
|
/*
|
|
|
|
* If we are going to COW a private mapping later, we examine the
|
|
|
|
* pending reservations for this page now. This will ensure that
|
|
|
|
* any allocations necessary to record that reservation occur outside
|
|
|
|
* the spinlock.
|
|
|
|
*/
|
2015-09-09 06:01:28 +08:00
|
|
|
if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
if (vma_needs_reservation(h, vma, haddr) < 0) {
|
2008-08-13 06:08:49 +08:00
|
|
|
ret = VM_FAULT_OOM;
|
|
|
|
goto backout_unlocked;
|
|
|
|
}
|
2015-09-09 06:01:28 +08:00
|
|
|
/* Just decrements count, does not deallocate */
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
vma_end_reservation(h, vma, haddr);
|
2015-09-09 06:01:28 +08:00
|
|
|
}
|
2008-08-13 06:08:47 +08:00
|
|
|
|
2016-12-13 08:41:59 +08:00
|
|
|
ptl = huge_pte_lock(h, mm, ptep);
|
2007-07-19 16:47:05 +08:00
|
|
|
ret = 0;
|
2008-04-28 17:13:29 +08:00
|
|
|
if (!huge_pte_none(huge_ptep_get(ptep)))
|
2005-10-30 09:16:46 +08:00
|
|
|
goto backout;
|
|
|
|
|
2013-09-12 05:21:58 +08:00
|
|
|
if (anon_rmap) {
|
|
|
|
ClearPagePrivate(page);
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
hugepage_add_new_anon_rmap(page, vma, haddr);
|
2014-04-08 06:37:36 +08:00
|
|
|
} else
|
2016-01-16 08:53:42 +08:00
|
|
|
page_dup_rmap(page, true);
|
2006-01-06 16:10:44 +08:00
|
|
|
new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
|
|
|
|
&& (vma->vm_flags & VM_SHARED)));
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
set_huge_pte_at(mm, haddr, ptep, new_pte);
|
2006-01-06 16:10:44 +08:00
|
|
|
|
2015-11-06 10:47:14 +08:00
|
|
|
hugetlb_count_add(pages_per_huge_page(h), mm);
|
2009-06-23 20:49:05 +08:00
|
|
|
if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
|
2006-01-06 16:10:44 +08:00
|
|
|
/* Optimization, do the COW without a second fault */
|
2018-08-18 06:45:57 +08:00
|
|
|
ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
|
2006-01-06 16:10:44 +08:00
|
|
|
}
|
|
|
|
|
2013-11-15 06:31:02 +08:00
|
|
|
spin_unlock(ptl);
|
hugetlbfs: fix races and page leaks during migration
hugetlb pages should only be migrated if they are 'active'. The
routines set/clear_page_huge_active() modify the active state of hugetlb
pages.
When a new hugetlb page is allocated at fault time, set_page_huge_active
is called before the page is locked. Therefore, another thread could
race and migrate the page while it is being added to page table by the
fault code. This race is somewhat hard to trigger, but can be seen by
strategically adding udelay to simulate worst case scheduling behavior.
Depending on 'how' the code races, various BUG()s could be triggered.
To address this issue, simply delay the set_page_huge_active call until
after the page is successfully added to the page table.
Hugetlb pages can also be leaked at migration time if the pages are
associated with a file in an explicitly mounted hugetlbfs filesystem.
For example, consider a two node system with 4GB worth of huge pages
available. A program mmaps a 2G file in a hugetlbfs filesystem. It
then migrates the pages associated with the file from one node to
another. When the program exits, huge page counts are as follows:
node0
1024 free_hugepages
1024 nr_hugepages
node1
0 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
That is as expected. 2G of huge pages are taken from the free_hugepages
counts, and 2G is the size of the file in the explicitly mounted
filesystem. If the file is then removed, the counts become:
node0
1024 free_hugepages
1024 nr_hugepages
node1
1024 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
Note that the filesystem still shows 2G of pages used, while there
actually are no huge pages in use. The only way to 'fix' the filesystem
accounting is to unmount the filesystem
If a hugetlb page is associated with an explicitly mounted filesystem,
this information in contained in the page_private field. At migration
time, this information is not preserved. To fix, simply transfer
page_private from old to new page at migration time if necessary.
There is a related race with removing a huge page from a file and
migration. When a huge page is removed from the pagecache, the
page_mapping() field is cleared, yet page_private remains set until the
page is actually freed by free_huge_page(). A page could be migrated
while in this state. However, since page_mapping() is not set the
hugetlbfs specific routine to transfer page_private is not called and we
leak the page count in the filesystem.
To fix that, check for this condition before migrating a huge page. If
the condition is detected, return EBUSY for the page.
Link: http://lkml.kernel.org/r/74510272-7319-7372-9ea6-ec914734c179@oracle.com
Link: http://lkml.kernel.org/r/20190212221400.3512-1-mike.kravetz@oracle.com
Fixes: bcc54222309c ("mm: hugetlb: introduce page_huge_active")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: <stable@vger.kernel.org>
[mike.kravetz@oracle.com: v2]
Link: http://lkml.kernel.org/r/7534d322-d782-8ac6-1c8d-a8dc380eb3ab@oracle.com
[mike.kravetz@oracle.com: update comment and changelog]
Link: http://lkml.kernel.org/r/420bcfd6-158b-38e4-98da-26d0cd85bd01@oracle.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-01 08:22:02 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Only make newly allocated pages active. Existing pages found
|
|
|
|
* in the pagecache could be !page_huge_active() if they have been
|
|
|
|
* isolated for migration.
|
|
|
|
*/
|
|
|
|
if (new_page)
|
|
|
|
set_page_huge_active(page);
|
|
|
|
|
2005-10-30 09:16:46 +08:00
|
|
|
unlock_page(page);
|
|
|
|
out:
|
2005-10-20 23:24:28 +08:00
|
|
|
return ret;
|
2005-10-30 09:16:46 +08:00
|
|
|
|
|
|
|
backout:
|
2013-11-15 06:31:02 +08:00
|
|
|
spin_unlock(ptl);
|
2008-08-13 06:08:49 +08:00
|
|
|
backout_unlocked:
|
2005-10-30 09:16:46 +08:00
|
|
|
unlock_page(page);
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
restore_reserve_on_error(h, vma, haddr, page);
|
2005-10-30 09:16:46 +08:00
|
|
|
put_page(page);
|
|
|
|
goto out;
|
2005-10-20 23:24:28 +08:00
|
|
|
}
|
|
|
|
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
#ifdef CONFIG_SMP
|
2019-12-01 09:57:02 +08:00
|
|
|
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
{
|
|
|
|
unsigned long key[2];
|
|
|
|
u32 hash;
|
|
|
|
|
2019-05-14 08:19:41 +08:00
|
|
|
key[0] = (unsigned long) mapping;
|
|
|
|
key[1] = idx;
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
|
2019-12-01 09:56:30 +08:00
|
|
|
hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
|
|
|
|
return hash & (num_fault_mutexes - 1);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
/*
|
|
|
|
* For uniprocesor systems we always use a single mutex, so just
|
|
|
|
* return 0 and avoid the hashing overhead.
|
|
|
|
*/
|
2019-12-01 09:57:02 +08:00
|
|
|
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2018-08-24 08:01:36 +08:00
|
|
|
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
2009-06-23 20:49:05 +08:00
|
|
|
unsigned long address, unsigned int flags)
|
2006-01-06 16:10:43 +08:00
|
|
|
{
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
pte_t *ptep, entry;
|
2013-11-15 06:31:02 +08:00
|
|
|
spinlock_t *ptl;
|
2018-08-24 08:01:36 +08:00
|
|
|
vm_fault_t ret;
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
u32 hash;
|
|
|
|
pgoff_t idx;
|
2010-05-28 08:29:16 +08:00
|
|
|
struct page *page = NULL;
|
2008-08-13 06:08:47 +08:00
|
|
|
struct page *pagecache_page = NULL;
|
2008-07-24 12:27:41 +08:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
struct address_space *mapping;
|
2015-02-12 07:25:25 +08:00
|
|
|
int need_wait_lock = 0;
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
unsigned long haddr = address & huge_page_mask(h);
|
2006-01-06 16:10:43 +08:00
|
|
|
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
|
2010-05-28 08:29:21 +08:00
|
|
|
if (ptep) {
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
/*
|
|
|
|
* Since we hold no locks, ptep could be stale. That is
|
|
|
|
* OK as we are only making decisions based on content and
|
|
|
|
* not actually modifying content here.
|
|
|
|
*/
|
2010-05-28 08:29:21 +08:00
|
|
|
entry = huge_ptep_get(ptep);
|
2010-09-08 09:19:35 +08:00
|
|
|
if (unlikely(is_hugetlb_entry_migration(entry))) {
|
2013-11-15 06:31:02 +08:00
|
|
|
migration_entry_wait_huge(vma, mm, ptep);
|
2010-09-08 09:19:35 +08:00
|
|
|
return 0;
|
|
|
|
} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
|
2011-07-26 08:12:14 +08:00
|
|
|
return VM_FAULT_HWPOISON_LARGE |
|
2012-08-01 07:42:00 +08:00
|
|
|
VM_FAULT_SET_HINDEX(hstate_index(h));
|
2019-01-09 07:23:36 +08:00
|
|
|
} else {
|
|
|
|
ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
|
|
|
|
if (!ptep)
|
|
|
|
return VM_FAULT_OOM;
|
2010-05-28 08:29:21 +08:00
|
|
|
}
|
|
|
|
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
/*
|
|
|
|
* Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
|
2020-04-02 12:11:08 +08:00
|
|
|
* until finished with ptep. This serves two purposes:
|
|
|
|
* 1) It prevents huge_pmd_unshare from being called elsewhere
|
|
|
|
* and making the ptep no longer valid.
|
|
|
|
* 2) It synchronizes us with i_size modifications during truncation.
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
*
|
|
|
|
* ptep could have already be assigned via huge_pte_offset. That
|
|
|
|
* is OK, as huge_pte_alloc will return the same value unless
|
|
|
|
* something has changed.
|
|
|
|
*/
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
mapping = vma->vm_file->f_mapping;
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
i_mmap_lock_read(mapping);
|
|
|
|
ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
|
|
|
|
if (!ptep) {
|
|
|
|
i_mmap_unlock_read(mapping);
|
|
|
|
return VM_FAULT_OOM;
|
|
|
|
}
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
|
[PATCH] hugepage: serialize hugepage allocation and instantiation
Currently, no lock or mutex is held between allocating a hugepage and
inserting it into the pagetables / page cache. When we do go to insert the
page into pagetables or page cache, we recheck and may free the newly
allocated hugepage. However, since the number of hugepages in the system
is strictly limited, and it's usualy to want to use all of them, this can
still lead to spurious allocation failures.
For example, suppose two processes are both mapping (MAP_SHARED) the same
hugepage file, large enough to consume the entire available hugepage pool.
If they race instantiating the last page in the mapping, they will both
attempt to allocate the last available hugepage. One will fail, of course,
returning OOM from the fault and thus causing the process to be killed,
despite the fact that the entire mapping can, in fact, be instantiated.
The patch fixes this race by the simple method of adding a (sleeping) mutex
to serialize the hugepage fault path between allocation and insertion into
pagetables and/or page cache. It would be possible to avoid the
serialization by catching the allocation failures, waiting on some
condition, then rechecking to see if someone else has instantiated the page
for us. Given the likely frequency of hugepage instantiations, it seems
very doubtful it's worth the extra complexity.
This patch causes no regression on the libhugetlbfs testsuite, and one
test, which can trigger this race now passes where it previously failed.
Actually, the test still sometimes fails, though less often and only as a
shmat() failure, rather processes getting OOM killed by the VM. The dodgy
heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage
space aren't protected by the new mutex, and would be ugly to do so, so
there's still a race there. Another patch to replace those tests with
something saner for this reason as well as others coming...
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 16:08:53 +08:00
|
|
|
/*
|
|
|
|
* Serialize hugepage allocation and instantiation, so that we don't
|
|
|
|
* get spurious allocation failures if two CPUs race to instantiate
|
|
|
|
* the same page in the page cache.
|
|
|
|
*/
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
idx = vma_hugecache_offset(h, vma, haddr);
|
2019-12-01 09:57:02 +08:00
|
|
|
hash = hugetlb_fault_mutex_hash(mapping, idx);
|
2015-09-09 06:01:35 +08:00
|
|
|
mutex_lock(&hugetlb_fault_mutex_table[hash]);
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
|
2008-04-28 17:13:29 +08:00
|
|
|
entry = huge_ptep_get(ptep);
|
|
|
|
if (huge_pte_none(entry)) {
|
mm, hugetlb: improve page-fault scalability
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:31 +08:00
|
|
|
ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
|
2008-10-16 13:01:11 +08:00
|
|
|
goto out_mutex;
|
[PATCH] hugepage: serialize hugepage allocation and instantiation
Currently, no lock or mutex is held between allocating a hugepage and
inserting it into the pagetables / page cache. When we do go to insert the
page into pagetables or page cache, we recheck and may free the newly
allocated hugepage. However, since the number of hugepages in the system
is strictly limited, and it's usualy to want to use all of them, this can
still lead to spurious allocation failures.
For example, suppose two processes are both mapping (MAP_SHARED) the same
hugepage file, large enough to consume the entire available hugepage pool.
If they race instantiating the last page in the mapping, they will both
attempt to allocate the last available hugepage. One will fail, of course,
returning OOM from the fault and thus causing the process to be killed,
despite the fact that the entire mapping can, in fact, be instantiated.
The patch fixes this race by the simple method of adding a (sleeping) mutex
to serialize the hugepage fault path between allocation and insertion into
pagetables and/or page cache. It would be possible to avoid the
serialization by catching the allocation failures, waiting on some
condition, then rechecking to see if someone else has instantiated the page
for us. Given the likely frequency of hugepage instantiations, it seems
very doubtful it's worth the extra complexity.
This patch causes no regression on the libhugetlbfs testsuite, and one
test, which can trigger this race now passes where it previously failed.
Actually, the test still sometimes fails, though less often and only as a
shmat() failure, rather processes getting OOM killed by the VM. The dodgy
heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage
space aren't protected by the new mutex, and would be ugly to do so, so
there's still a race there. Another patch to replace those tests with
something saner for this reason as well as others coming...
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 16:08:53 +08:00
|
|
|
}
|
2006-01-06 16:10:43 +08:00
|
|
|
|
2007-07-19 16:47:05 +08:00
|
|
|
ret = 0;
|
2006-01-06 16:10:44 +08:00
|
|
|
|
2015-02-12 07:25:25 +08:00
|
|
|
/*
|
|
|
|
* entry could be a migration/hwpoison entry at this point, so this
|
|
|
|
* check prevents the kernel from going below assuming that we have
|
|
|
|
* a active hugepage in pagecache. This goto expects the 2nd page fault,
|
|
|
|
* and is_hugetlb_entry_(migration|hwpoisoned) check will properly
|
|
|
|
* handle it.
|
|
|
|
*/
|
|
|
|
if (!pte_present(entry))
|
|
|
|
goto out_mutex;
|
|
|
|
|
2008-08-13 06:08:47 +08:00
|
|
|
/*
|
|
|
|
* If we are going to COW the mapping later, we examine the pending
|
|
|
|
* reservations for this page now. This will ensure that any
|
|
|
|
* allocations necessary to record that reservation occur outside the
|
|
|
|
* spinlock. For private mappings, we also lookup the pagecache
|
|
|
|
* page now as it is used to determine if a reservation has been
|
|
|
|
* consumed.
|
|
|
|
*/
|
2013-04-30 06:07:23 +08:00
|
|
|
if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
if (vma_needs_reservation(h, vma, haddr) < 0) {
|
2008-08-13 06:08:49 +08:00
|
|
|
ret = VM_FAULT_OOM;
|
2008-10-16 13:01:11 +08:00
|
|
|
goto out_mutex;
|
2008-08-13 06:08:49 +08:00
|
|
|
}
|
2015-09-09 06:01:28 +08:00
|
|
|
/* Just decrements count, does not deallocate */
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
vma_end_reservation(h, vma, haddr);
|
2008-08-13 06:08:47 +08:00
|
|
|
|
2009-05-29 05:34:40 +08:00
|
|
|
if (!(vma->vm_flags & VM_MAYSHARE))
|
2008-08-13 06:08:47 +08:00
|
|
|
pagecache_page = hugetlbfs_pagecache_page(h,
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
vma, haddr);
|
2008-08-13 06:08:47 +08:00
|
|
|
}
|
|
|
|
|
2015-02-12 07:25:25 +08:00
|
|
|
ptl = huge_pte_lock(h, mm, ptep);
|
|
|
|
|
|
|
|
/* Check for a racing update before calling hugetlb_cow */
|
|
|
|
if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
|
|
|
|
goto out_ptl;
|
|
|
|
|
2010-09-10 12:23:04 +08:00
|
|
|
/*
|
|
|
|
* hugetlb_cow() requires page locks of pte_page(entry) and
|
|
|
|
* pagecache_page, so here we need take the former one
|
|
|
|
* when page != pagecache_page or !pagecache_page.
|
|
|
|
*/
|
|
|
|
page = pte_page(entry);
|
|
|
|
if (page != pagecache_page)
|
2015-02-12 07:25:25 +08:00
|
|
|
if (!trylock_page(page)) {
|
|
|
|
need_wait_lock = 1;
|
|
|
|
goto out_ptl;
|
|
|
|
}
|
2008-10-16 13:01:11 +08:00
|
|
|
|
2015-02-12 07:25:25 +08:00
|
|
|
get_page(page);
|
2008-10-16 13:01:11 +08:00
|
|
|
|
2009-06-23 20:49:05 +08:00
|
|
|
if (flags & FAULT_FLAG_WRITE) {
|
2013-04-30 06:07:23 +08:00
|
|
|
if (!huge_pte_write(entry)) {
|
2018-08-18 06:45:57 +08:00
|
|
|
ret = hugetlb_cow(mm, vma, address, ptep,
|
2016-12-13 08:41:56 +08:00
|
|
|
pagecache_page, ptl);
|
2015-02-12 07:25:25 +08:00
|
|
|
goto out_put_page;
|
2008-10-16 13:01:11 +08:00
|
|
|
}
|
2013-04-30 06:07:23 +08:00
|
|
|
entry = huge_pte_mkdirty(entry);
|
2008-10-16 13:01:11 +08:00
|
|
|
}
|
|
|
|
entry = pte_mkyoung(entry);
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
|
2009-06-23 20:49:05 +08:00
|
|
|
flags & FAULT_FLAG_WRITE))
|
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.
In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages. This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page. So the hugetlbfs no page fault handler is changed to pass
that information. This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.
With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads). The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin. For each process, other processes could
be seen as other workload which generates heavy cache pressure. At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.
Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:08:08 +08:00
|
|
|
update_mmu_cache(vma, haddr, ptep);
|
2015-02-12 07:25:25 +08:00
|
|
|
out_put_page:
|
|
|
|
if (page != pagecache_page)
|
|
|
|
unlock_page(page);
|
|
|
|
put_page(page);
|
2013-11-15 06:31:02 +08:00
|
|
|
out_ptl:
|
|
|
|
spin_unlock(ptl);
|
2008-08-13 06:08:47 +08:00
|
|
|
|
|
|
|
if (pagecache_page) {
|
|
|
|
unlock_page(pagecache_page);
|
|
|
|
put_page(pagecache_page);
|
|
|
|
}
|
2008-10-16 13:01:11 +08:00
|
|
|
out_mutex:
|
2015-09-09 06:01:35 +08:00
|
|
|
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
i_mmap_unlock_read(mapping);
|
2015-02-12 07:25:25 +08:00
|
|
|
/*
|
|
|
|
* Generally it's safe to hold refcount during waiting page lock. But
|
|
|
|
* here we just wait to defer the next page fault to avoid busy loop and
|
|
|
|
* the page is not used after unlocked before returning from the current
|
|
|
|
* page fault. So we are safe from accessing freed page, even if we wait
|
|
|
|
* here without taking refcount.
|
|
|
|
*/
|
|
|
|
if (need_wait_lock)
|
|
|
|
wait_on_page_locked(page);
|
2006-01-06 16:10:44 +08:00
|
|
|
return ret;
|
2006-01-06 16:10:43 +08:00
|
|
|
}
|
|
|
|
|
2017-02-23 07:42:52 +08:00
|
|
|
/*
|
|
|
|
* Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
|
|
|
|
* modifications for huge pages.
|
|
|
|
*/
|
|
|
|
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
|
|
|
|
pte_t *dst_pte,
|
|
|
|
struct vm_area_struct *dst_vma,
|
|
|
|
unsigned long dst_addr,
|
|
|
|
unsigned long src_addr,
|
|
|
|
struct page **pagep)
|
|
|
|
{
|
2017-11-03 06:59:29 +08:00
|
|
|
struct address_space *mapping;
|
|
|
|
pgoff_t idx;
|
|
|
|
unsigned long size;
|
2017-02-23 07:43:43 +08:00
|
|
|
int vm_shared = dst_vma->vm_flags & VM_SHARED;
|
2017-02-23 07:42:52 +08:00
|
|
|
struct hstate *h = hstate_vma(dst_vma);
|
|
|
|
pte_t _dst_pte;
|
|
|
|
spinlock_t *ptl;
|
|
|
|
int ret;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
if (!*pagep) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
page = alloc_huge_page(dst_vma, dst_addr, 0);
|
|
|
|
if (IS_ERR(page))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ret = copy_huge_page_from_user(page,
|
|
|
|
(const void __user *) src_addr,
|
2017-02-23 07:42:58 +08:00
|
|
|
pages_per_huge_page(h), false);
|
2017-02-23 07:42:52 +08:00
|
|
|
|
|
|
|
/* fallback to copy_from_user outside mmap_sem */
|
|
|
|
if (unlikely(ret)) {
|
2018-12-01 06:09:25 +08:00
|
|
|
ret = -ENOENT;
|
2017-02-23 07:42:52 +08:00
|
|
|
*pagep = page;
|
|
|
|
/* don't free the page */
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
page = *pagep;
|
|
|
|
*pagep = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The memory barrier inside __SetPageUptodate makes sure that
|
|
|
|
* preceding stores to the page contents become visible before
|
|
|
|
* the set_pte_at() write.
|
|
|
|
*/
|
|
|
|
__SetPageUptodate(page);
|
|
|
|
|
2017-11-03 06:59:29 +08:00
|
|
|
mapping = dst_vma->vm_file->f_mapping;
|
|
|
|
idx = vma_hugecache_offset(h, dst_vma, dst_addr);
|
|
|
|
|
2017-02-23 07:43:43 +08:00
|
|
|
/*
|
|
|
|
* If shared, add to page cache
|
|
|
|
*/
|
|
|
|
if (vm_shared) {
|
2017-11-03 06:59:29 +08:00
|
|
|
size = i_size_read(mapping->host) >> huge_page_shift(h);
|
|
|
|
ret = -EFAULT;
|
|
|
|
if (idx >= size)
|
|
|
|
goto out_release_nounlock;
|
2017-02-23 07:43:43 +08:00
|
|
|
|
2017-11-03 06:59:29 +08:00
|
|
|
/*
|
|
|
|
* Serialization between remove_inode_hugepages() and
|
|
|
|
* huge_add_to_page_cache() below happens through the
|
|
|
|
* hugetlb_fault_mutex_table that here must be hold by
|
|
|
|
* the caller.
|
|
|
|
*/
|
2017-02-23 07:43:43 +08:00
|
|
|
ret = huge_add_to_page_cache(page, mapping, idx);
|
|
|
|
if (ret)
|
|
|
|
goto out_release_nounlock;
|
|
|
|
}
|
|
|
|
|
2017-02-23 07:42:52 +08:00
|
|
|
ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
|
|
|
|
spin_lock(ptl);
|
|
|
|
|
2017-11-03 06:59:29 +08:00
|
|
|
/*
|
|
|
|
* Recheck the i_size after holding PT lock to make sure not
|
|
|
|
* to leave any page mapped (as page_mapped()) beyond the end
|
|
|
|
* of the i_size (remove_inode_hugepages() is strict about
|
|
|
|
* enforcing that). If we bail out here, we'll also leave a
|
|
|
|
* page in the radix tree in the vm_shared case beyond the end
|
|
|
|
* of the i_size, but remove_inode_hugepages() will take care
|
|
|
|
* of it as soon as we drop the hugetlb_fault_mutex_table.
|
|
|
|
*/
|
|
|
|
size = i_size_read(mapping->host) >> huge_page_shift(h);
|
|
|
|
ret = -EFAULT;
|
|
|
|
if (idx >= size)
|
|
|
|
goto out_release_unlock;
|
|
|
|
|
2017-02-23 07:42:52 +08:00
|
|
|
ret = -EEXIST;
|
|
|
|
if (!huge_pte_none(huge_ptep_get(dst_pte)))
|
|
|
|
goto out_release_unlock;
|
|
|
|
|
2017-02-23 07:43:43 +08:00
|
|
|
if (vm_shared) {
|
|
|
|
page_dup_rmap(page, true);
|
|
|
|
} else {
|
|
|
|
ClearPagePrivate(page);
|
|
|
|
hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
|
|
|
|
}
|
2017-02-23 07:42:52 +08:00
|
|
|
|
|
|
|
_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
|
|
|
|
if (dst_vma->vm_flags & VM_WRITE)
|
|
|
|
_dst_pte = huge_pte_mkdirty(_dst_pte);
|
|
|
|
_dst_pte = pte_mkyoung(_dst_pte);
|
|
|
|
|
|
|
|
set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
|
|
|
|
|
|
|
|
(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
|
|
|
|
dst_vma->vm_flags & VM_WRITE);
|
|
|
|
hugetlb_count_add(pages_per_huge_page(h), dst_mm);
|
|
|
|
|
|
|
|
/* No need to invalidate - it was non-present before */
|
|
|
|
update_mmu_cache(dst_vma, dst_addr, dst_pte);
|
|
|
|
|
|
|
|
spin_unlock(ptl);
|
hugetlbfs: fix races and page leaks during migration
hugetlb pages should only be migrated if they are 'active'. The
routines set/clear_page_huge_active() modify the active state of hugetlb
pages.
When a new hugetlb page is allocated at fault time, set_page_huge_active
is called before the page is locked. Therefore, another thread could
race and migrate the page while it is being added to page table by the
fault code. This race is somewhat hard to trigger, but can be seen by
strategically adding udelay to simulate worst case scheduling behavior.
Depending on 'how' the code races, various BUG()s could be triggered.
To address this issue, simply delay the set_page_huge_active call until
after the page is successfully added to the page table.
Hugetlb pages can also be leaked at migration time if the pages are
associated with a file in an explicitly mounted hugetlbfs filesystem.
For example, consider a two node system with 4GB worth of huge pages
available. A program mmaps a 2G file in a hugetlbfs filesystem. It
then migrates the pages associated with the file from one node to
another. When the program exits, huge page counts are as follows:
node0
1024 free_hugepages
1024 nr_hugepages
node1
0 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
That is as expected. 2G of huge pages are taken from the free_hugepages
counts, and 2G is the size of the file in the explicitly mounted
filesystem. If the file is then removed, the counts become:
node0
1024 free_hugepages
1024 nr_hugepages
node1
1024 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
Note that the filesystem still shows 2G of pages used, while there
actually are no huge pages in use. The only way to 'fix' the filesystem
accounting is to unmount the filesystem
If a hugetlb page is associated with an explicitly mounted filesystem,
this information in contained in the page_private field. At migration
time, this information is not preserved. To fix, simply transfer
page_private from old to new page at migration time if necessary.
There is a related race with removing a huge page from a file and
migration. When a huge page is removed from the pagecache, the
page_mapping() field is cleared, yet page_private remains set until the
page is actually freed by free_huge_page(). A page could be migrated
while in this state. However, since page_mapping() is not set the
hugetlbfs specific routine to transfer page_private is not called and we
leak the page count in the filesystem.
To fix that, check for this condition before migrating a huge page. If
the condition is detected, return EBUSY for the page.
Link: http://lkml.kernel.org/r/74510272-7319-7372-9ea6-ec914734c179@oracle.com
Link: http://lkml.kernel.org/r/20190212221400.3512-1-mike.kravetz@oracle.com
Fixes: bcc54222309c ("mm: hugetlb: introduce page_huge_active")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: <stable@vger.kernel.org>
[mike.kravetz@oracle.com: v2]
Link: http://lkml.kernel.org/r/7534d322-d782-8ac6-1c8d-a8dc380eb3ab@oracle.com
[mike.kravetz@oracle.com: update comment and changelog]
Link: http://lkml.kernel.org/r/420bcfd6-158b-38e4-98da-26d0cd85bd01@oracle.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-01 08:22:02 +08:00
|
|
|
set_page_huge_active(page);
|
2017-02-23 07:43:43 +08:00
|
|
|
if (vm_shared)
|
|
|
|
unlock_page(page);
|
2017-02-23 07:42:52 +08:00
|
|
|
ret = 0;
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
out_release_unlock:
|
|
|
|
spin_unlock(ptl);
|
2017-02-23 07:43:43 +08:00
|
|
|
if (vm_shared)
|
|
|
|
unlock_page(page);
|
2017-08-11 06:23:38 +08:00
|
|
|
out_release_nounlock:
|
2017-02-23 07:42:52 +08:00
|
|
|
put_page(page);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2013-02-23 08:35:55 +08:00
|
|
|
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
|
|
struct page **pages, struct vm_area_struct **vmas,
|
|
|
|
unsigned long *position, unsigned long *nr_pages,
|
mm/gup: rename "nonblocking" to "locked" where proper
Patch series "mm: Page fault enhancements", v6.
This series contains cleanups and enhancements to current page fault
logic. The whole idea comes from the discussion between Andrea and Linus
on the bug reported by syzbot here:
https://lkml.org/lkml/2017/11/2/833
Basically it does two things:
(a) Allows the page fault logic to be more interactive on not only
SIGKILL, but also the rest of userspace signals, and,
(b) Allows the page fault retry (VM_FAULT_RETRY) to happen for more
than once.
For (a): with the changes we should be able to react faster when page
faults are working in parallel with userspace signals like SIGSTOP and
SIGCONT (and more), and with that we can remove the buggy part in
userfaultfd and benefit the whole page fault mechanism on faster signal
processing to reach the userspace.
For (b), we should be able to allow the page fault handler to loop for
even more than twice. Some context: for now since we have
FAULT_FLAG_ALLOW_RETRY we can allow to retry the page fault once with the
same interrupt context, however never more than twice. This can be not
only a potential cleanup to remove this assumption since AFAIU the code
itself doesn't really have this twice-only limitation (though that should
be a protective approach in the past), at the same time it'll greatly
simplify future works like userfaultfd write-protect where it's possible
to retry for more than twice (please have a look at [1] below for a
possible user that might require the page fault to be handled for a third
time; if we can remove the retry limitation we can simply drop that patch
and those complexity).
This patch (of 16):
There's plenty of places around __get_user_pages() that has a parameter
"nonblocking" which does not really mean that "it won't block" (because it
can really block) but instead it shows whether the mmap_sem is released by
up_read() during the page fault handling mostly when VM_FAULT_RETRY is
returned.
We have the correct naming in e.g. get_user_pages_locked() or
get_user_pages_remote() as "locked", however there're still many places
that are using the "nonblocking" as name.
Renaming the places to "locked" where proper to better suite the
functionality of the variable. While at it, fixing up some of the
comments accordingly.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Brian Geffon <bgeffon@google.com>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Link: http://lkml.kernel.org/r/20200220155353.8676-2-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:07:58 +08:00
|
|
|
long i, unsigned int flags, int *locked)
|
2005-06-22 08:14:44 +08:00
|
|
|
{
|
2006-03-22 16:09:03 +08:00
|
|
|
unsigned long pfn_offset;
|
|
|
|
unsigned long vaddr = *position;
|
2013-02-23 08:35:55 +08:00
|
|
|
unsigned long remainder = *nr_pages;
|
2008-07-24 12:27:41 +08:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
mm/hugetlb.c: __get_user_pages ignores certain follow_hugetlb_page errors
Commit 9a291a7c9428 ("mm/hugetlb: report -EHWPOISON not -EFAULT when
FOLL_HWPOISON is specified") causes __get_user_pages to ignore certain
errors from follow_hugetlb_page. After such error, __get_user_pages
subsequently calls faultin_page on the same VMA and start address that
follow_hugetlb_page failed on instead of returning the error immediately
as it should.
In follow_hugetlb_page, when hugetlb_fault returns a value covered under
VM_FAULT_ERROR, follow_hugetlb_page returns it without setting nr_pages
to 0 as __get_user_pages expects in this case, which causes the
following to happen in __get_user_pages: the "while (nr_pages)" check
succeeds, we skip the "if (!vma..." check because we got a VMA the last
time around, we find no page with follow_page_mask, and we call
faultin_page, which calls hugetlb_fault for the second time.
This issue also slightly changes how __get_user_pages works. Before, it
only returned error if it had made no progress (i = 0). But now,
follow_hugetlb_page can clobber "i" with an error code since its new
return path doesn't check for progress. So if "i" is nonzero before a
failing call to follow_hugetlb_page, that indication of progress is lost
and __get_user_pages can return error even if some pages were
successfully pinned.
To fix this, change follow_hugetlb_page so that it updates nr_pages,
allowing __get_user_pages to fail immediately and restoring the "error
only if no progress" behavior to __get_user_pages.
Tested that __get_user_pages returns when expected on error from
hugetlb_fault in follow_hugetlb_page.
Fixes: 9a291a7c9428 ("mm/hugetlb: report -EHWPOISON not -EFAULT when FOLL_HWPOISON is specified")
Link: http://lkml.kernel.org/r/1500406795-58462-1-git-send-email-daniel.m.jordan@oracle.com
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: James Morse <james.morse@arm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: <stable@vger.kernel.org> [4.12.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-03 04:31:47 +08:00
|
|
|
int err = -EFAULT;
|
2005-06-22 08:14:44 +08:00
|
|
|
|
|
|
|
while (vaddr < vma->vm_end && remainder) {
|
2005-10-30 09:16:46 +08:00
|
|
|
pte_t *pte;
|
2013-11-15 06:31:02 +08:00
|
|
|
spinlock_t *ptl = NULL;
|
2009-09-22 08:03:27 +08:00
|
|
|
int absent;
|
2005-10-30 09:16:46 +08:00
|
|
|
struct page *page;
|
2005-06-22 08:14:44 +08:00
|
|
|
|
2015-04-15 06:48:24 +08:00
|
|
|
/*
|
|
|
|
* If we have a pending SIGKILL, don't keep faulting pages and
|
|
|
|
* potentially allocating memory.
|
|
|
|
*/
|
2019-01-04 07:28:55 +08:00
|
|
|
if (fatal_signal_pending(current)) {
|
2015-04-15 06:48:24 +08:00
|
|
|
remainder = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2005-10-30 09:16:46 +08:00
|
|
|
/*
|
|
|
|
* Some archs (sparc64, sh*) have multiple pte_ts to
|
2009-09-22 08:03:27 +08:00
|
|
|
* each hugepage. We have to make sure we get the
|
2005-10-30 09:16:46 +08:00
|
|
|
* first, for the page indexing below to work.
|
2013-11-15 06:31:02 +08:00
|
|
|
*
|
|
|
|
* Note that page table lock is not held when pte is null.
|
2005-10-30 09:16:46 +08:00
|
|
|
*/
|
2017-07-07 06:39:42 +08:00
|
|
|
pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
|
|
|
|
huge_page_size(h));
|
2013-11-15 06:31:02 +08:00
|
|
|
if (pte)
|
|
|
|
ptl = huge_pte_lock(h, mm, pte);
|
2009-09-22 08:03:27 +08:00
|
|
|
absent = !pte || huge_pte_none(huge_ptep_get(pte));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When coredumping, it suits get_dump_page if we just return
|
2009-09-22 08:03:33 +08:00
|
|
|
* an error where there's an empty slot with no huge pagecache
|
|
|
|
* to back it. This way, we avoid allocating a hugepage, and
|
|
|
|
* the sparse dumpfile avoids allocating disk blocks, but its
|
|
|
|
* huge holes still show up with zeroes where they need to be.
|
2009-09-22 08:03:27 +08:00
|
|
|
*/
|
2009-09-22 08:03:33 +08:00
|
|
|
if (absent && (flags & FOLL_DUMP) &&
|
|
|
|
!hugetlbfs_pagecache_present(h, vma, vaddr)) {
|
2013-11-15 06:31:02 +08:00
|
|
|
if (pte)
|
|
|
|
spin_unlock(ptl);
|
2009-09-22 08:03:27 +08:00
|
|
|
remainder = 0;
|
|
|
|
break;
|
|
|
|
}
|
2005-06-22 08:14:44 +08:00
|
|
|
|
2013-04-18 06:58:30 +08:00
|
|
|
/*
|
|
|
|
* We need call hugetlb_fault for both hugepages under migration
|
|
|
|
* (in which case hugetlb_fault waits for the migration,) and
|
|
|
|
* hwpoisoned hugepages (in which case we need to prevent the
|
|
|
|
* caller from accessing to them.) In order to do this, we use
|
|
|
|
* here is_swap_pte instead of is_hugetlb_entry_migration and
|
|
|
|
* is_hugetlb_entry_hwpoisoned. This is because it simply covers
|
|
|
|
* both cases, and because we can't follow correct pages
|
|
|
|
* directly from any kind of swap entries.
|
|
|
|
*/
|
|
|
|
if (absent || is_swap_pte(huge_ptep_get(pte)) ||
|
2013-04-30 06:07:23 +08:00
|
|
|
((flags & FOLL_WRITE) &&
|
|
|
|
!huge_pte_write(huge_ptep_get(pte)))) {
|
2018-08-24 08:01:36 +08:00
|
|
|
vm_fault_t ret;
|
2017-02-23 07:43:13 +08:00
|
|
|
unsigned int fault_flags = 0;
|
2005-06-22 08:14:44 +08:00
|
|
|
|
2013-11-15 06:31:02 +08:00
|
|
|
if (pte)
|
|
|
|
spin_unlock(ptl);
|
2017-02-23 07:43:13 +08:00
|
|
|
if (flags & FOLL_WRITE)
|
|
|
|
fault_flags |= FAULT_FLAG_WRITE;
|
mm/gup: rename "nonblocking" to "locked" where proper
Patch series "mm: Page fault enhancements", v6.
This series contains cleanups and enhancements to current page fault
logic. The whole idea comes from the discussion between Andrea and Linus
on the bug reported by syzbot here:
https://lkml.org/lkml/2017/11/2/833
Basically it does two things:
(a) Allows the page fault logic to be more interactive on not only
SIGKILL, but also the rest of userspace signals, and,
(b) Allows the page fault retry (VM_FAULT_RETRY) to happen for more
than once.
For (a): with the changes we should be able to react faster when page
faults are working in parallel with userspace signals like SIGSTOP and
SIGCONT (and more), and with that we can remove the buggy part in
userfaultfd and benefit the whole page fault mechanism on faster signal
processing to reach the userspace.
For (b), we should be able to allow the page fault handler to loop for
even more than twice. Some context: for now since we have
FAULT_FLAG_ALLOW_RETRY we can allow to retry the page fault once with the
same interrupt context, however never more than twice. This can be not
only a potential cleanup to remove this assumption since AFAIU the code
itself doesn't really have this twice-only limitation (though that should
be a protective approach in the past), at the same time it'll greatly
simplify future works like userfaultfd write-protect where it's possible
to retry for more than twice (please have a look at [1] below for a
possible user that might require the page fault to be handled for a third
time; if we can remove the retry limitation we can simply drop that patch
and those complexity).
This patch (of 16):
There's plenty of places around __get_user_pages() that has a parameter
"nonblocking" which does not really mean that "it won't block" (because it
can really block) but instead it shows whether the mmap_sem is released by
up_read() during the page fault handling mostly when VM_FAULT_RETRY is
returned.
We have the correct naming in e.g. get_user_pages_locked() or
get_user_pages_remote() as "locked", however there're still many places
that are using the "nonblocking" as name.
Renaming the places to "locked" where proper to better suite the
functionality of the variable. While at it, fixing up some of the
comments accordingly.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Brian Geffon <bgeffon@google.com>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Link: http://lkml.kernel.org/r/20200220155353.8676-2-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:07:58 +08:00
|
|
|
if (locked)
|
2020-04-02 12:08:53 +08:00
|
|
|
fault_flags |= FAULT_FLAG_ALLOW_RETRY |
|
|
|
|
FAULT_FLAG_KILLABLE;
|
2017-02-23 07:43:13 +08:00
|
|
|
if (flags & FOLL_NOWAIT)
|
|
|
|
fault_flags |= FAULT_FLAG_ALLOW_RETRY |
|
|
|
|
FAULT_FLAG_RETRY_NOWAIT;
|
|
|
|
if (flags & FOLL_TRIED) {
|
2020-04-02 12:08:49 +08:00
|
|
|
/*
|
|
|
|
* Note: FAULT_FLAG_ALLOW_RETRY and
|
|
|
|
* FAULT_FLAG_TRIED can co-exist
|
|
|
|
*/
|
2017-02-23 07:43:13 +08:00
|
|
|
fault_flags |= FAULT_FLAG_TRIED;
|
|
|
|
}
|
|
|
|
ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
|
|
|
|
if (ret & VM_FAULT_ERROR) {
|
mm/hugetlb.c: __get_user_pages ignores certain follow_hugetlb_page errors
Commit 9a291a7c9428 ("mm/hugetlb: report -EHWPOISON not -EFAULT when
FOLL_HWPOISON is specified") causes __get_user_pages to ignore certain
errors from follow_hugetlb_page. After such error, __get_user_pages
subsequently calls faultin_page on the same VMA and start address that
follow_hugetlb_page failed on instead of returning the error immediately
as it should.
In follow_hugetlb_page, when hugetlb_fault returns a value covered under
VM_FAULT_ERROR, follow_hugetlb_page returns it without setting nr_pages
to 0 as __get_user_pages expects in this case, which causes the
following to happen in __get_user_pages: the "while (nr_pages)" check
succeeds, we skip the "if (!vma..." check because we got a VMA the last
time around, we find no page with follow_page_mask, and we call
faultin_page, which calls hugetlb_fault for the second time.
This issue also slightly changes how __get_user_pages works. Before, it
only returned error if it had made no progress (i = 0). But now,
follow_hugetlb_page can clobber "i" with an error code since its new
return path doesn't check for progress. So if "i" is nonzero before a
failing call to follow_hugetlb_page, that indication of progress is lost
and __get_user_pages can return error even if some pages were
successfully pinned.
To fix this, change follow_hugetlb_page so that it updates nr_pages,
allowing __get_user_pages to fail immediately and restoring the "error
only if no progress" behavior to __get_user_pages.
Tested that __get_user_pages returns when expected on error from
hugetlb_fault in follow_hugetlb_page.
Fixes: 9a291a7c9428 ("mm/hugetlb: report -EHWPOISON not -EFAULT when FOLL_HWPOISON is specified")
Link: http://lkml.kernel.org/r/1500406795-58462-1-git-send-email-daniel.m.jordan@oracle.com
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: James Morse <james.morse@arm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: <stable@vger.kernel.org> [4.12.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-03 04:31:47 +08:00
|
|
|
err = vm_fault_to_errno(ret, flags);
|
2017-02-23 07:43:13 +08:00
|
|
|
remainder = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (ret & VM_FAULT_RETRY) {
|
mm/gup: rename "nonblocking" to "locked" where proper
Patch series "mm: Page fault enhancements", v6.
This series contains cleanups and enhancements to current page fault
logic. The whole idea comes from the discussion between Andrea and Linus
on the bug reported by syzbot here:
https://lkml.org/lkml/2017/11/2/833
Basically it does two things:
(a) Allows the page fault logic to be more interactive on not only
SIGKILL, but also the rest of userspace signals, and,
(b) Allows the page fault retry (VM_FAULT_RETRY) to happen for more
than once.
For (a): with the changes we should be able to react faster when page
faults are working in parallel with userspace signals like SIGSTOP and
SIGCONT (and more), and with that we can remove the buggy part in
userfaultfd and benefit the whole page fault mechanism on faster signal
processing to reach the userspace.
For (b), we should be able to allow the page fault handler to loop for
even more than twice. Some context: for now since we have
FAULT_FLAG_ALLOW_RETRY we can allow to retry the page fault once with the
same interrupt context, however never more than twice. This can be not
only a potential cleanup to remove this assumption since AFAIU the code
itself doesn't really have this twice-only limitation (though that should
be a protective approach in the past), at the same time it'll greatly
simplify future works like userfaultfd write-protect where it's possible
to retry for more than twice (please have a look at [1] below for a
possible user that might require the page fault to be handled for a third
time; if we can remove the retry limitation we can simply drop that patch
and those complexity).
This patch (of 16):
There's plenty of places around __get_user_pages() that has a parameter
"nonblocking" which does not really mean that "it won't block" (because it
can really block) but instead it shows whether the mmap_sem is released by
up_read() during the page fault handling mostly when VM_FAULT_RETRY is
returned.
We have the correct naming in e.g. get_user_pages_locked() or
get_user_pages_remote() as "locked", however there're still many places
that are using the "nonblocking" as name.
Renaming the places to "locked" where proper to better suite the
functionality of the variable. While at it, fixing up some of the
comments accordingly.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Brian Geffon <bgeffon@google.com>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Link: http://lkml.kernel.org/r/20200220155353.8676-2-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:07:58 +08:00
|
|
|
if (locked &&
|
2019-02-02 06:20:16 +08:00
|
|
|
!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
|
mm/gup: rename "nonblocking" to "locked" where proper
Patch series "mm: Page fault enhancements", v6.
This series contains cleanups and enhancements to current page fault
logic. The whole idea comes from the discussion between Andrea and Linus
on the bug reported by syzbot here:
https://lkml.org/lkml/2017/11/2/833
Basically it does two things:
(a) Allows the page fault logic to be more interactive on not only
SIGKILL, but also the rest of userspace signals, and,
(b) Allows the page fault retry (VM_FAULT_RETRY) to happen for more
than once.
For (a): with the changes we should be able to react faster when page
faults are working in parallel with userspace signals like SIGSTOP and
SIGCONT (and more), and with that we can remove the buggy part in
userfaultfd and benefit the whole page fault mechanism on faster signal
processing to reach the userspace.
For (b), we should be able to allow the page fault handler to loop for
even more than twice. Some context: for now since we have
FAULT_FLAG_ALLOW_RETRY we can allow to retry the page fault once with the
same interrupt context, however never more than twice. This can be not
only a potential cleanup to remove this assumption since AFAIU the code
itself doesn't really have this twice-only limitation (though that should
be a protective approach in the past), at the same time it'll greatly
simplify future works like userfaultfd write-protect where it's possible
to retry for more than twice (please have a look at [1] below for a
possible user that might require the page fault to be handled for a third
time; if we can remove the retry limitation we can simply drop that patch
and those complexity).
This patch (of 16):
There's plenty of places around __get_user_pages() that has a parameter
"nonblocking" which does not really mean that "it won't block" (because it
can really block) but instead it shows whether the mmap_sem is released by
up_read() during the page fault handling mostly when VM_FAULT_RETRY is
returned.
We have the correct naming in e.g. get_user_pages_locked() or
get_user_pages_remote() as "locked", however there're still many places
that are using the "nonblocking" as name.
Renaming the places to "locked" where proper to better suite the
functionality of the variable. While at it, fixing up some of the
comments accordingly.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Brian Geffon <bgeffon@google.com>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Link: http://lkml.kernel.org/r/20200220155353.8676-2-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:07:58 +08:00
|
|
|
*locked = 0;
|
2017-02-23 07:43:13 +08:00
|
|
|
*nr_pages = 0;
|
|
|
|
/*
|
|
|
|
* VM_FAULT_RETRY must not return an
|
|
|
|
* error, it will return zero
|
|
|
|
* instead.
|
|
|
|
*
|
|
|
|
* No need to update "position" as the
|
|
|
|
* caller will not check it after
|
|
|
|
* *nr_pages is set to 0.
|
|
|
|
*/
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
continue;
|
2005-10-30 09:16:46 +08:00
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:41 +08:00
|
|
|
pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
|
2008-04-28 17:13:29 +08:00
|
|
|
page = pte_page(huge_ptep_get(pte));
|
2019-04-12 01:49:19 +08:00
|
|
|
|
2019-12-01 09:57:06 +08:00
|
|
|
/*
|
|
|
|
* If subpage information not requested, update counters
|
|
|
|
* and skip the same_page loop below.
|
|
|
|
*/
|
|
|
|
if (!pages && !vmas && !pfn_offset &&
|
|
|
|
(vaddr + huge_page_size(h) < vma->vm_end) &&
|
|
|
|
(remainder >= pages_per_huge_page(h))) {
|
|
|
|
vaddr += huge_page_size(h);
|
|
|
|
remainder -= pages_per_huge_page(h);
|
|
|
|
i += pages_per_huge_page(h);
|
|
|
|
spin_unlock(ptl);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2006-03-22 16:09:03 +08:00
|
|
|
same_page:
|
2006-03-31 18:29:57 +08:00
|
|
|
if (pages) {
|
2009-09-22 08:03:27 +08:00
|
|
|
pages[i] = mem_map_offset(page, pfn_offset);
|
mm/gup: track FOLL_PIN pages
Add tracking of pages that were pinned via FOLL_PIN. This tracking is
implemented via overloading of page->_refcount: pins are added by adding
GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy
indication of pinning, and it can have false positives (and that's OK).
Please see the pre-existing Documentation/core-api/pin_user_pages.rst for
details.
As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN
(typically via pin_user_pages*()) are required to ultimately free such
pages via unpin_user_page().
Please also note the limitation, discussed in pin_user_pages.rst under the
"TODO: for 1GB and larger huge pages" section. (That limitation will be
removed in a following patch.)
The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be
thought of as "FOLL_GET for DIO and/or RDMA use".
Pages that have been pinned via FOLL_PIN are identifiable via a new
function call:
bool page_maybe_dma_pinned(struct page *page);
What to do in response to encountering such a page, is left to later
patchsets. There is discussion about this in [1], [2], [3], and [4].
This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask().
[1] Some slow progress on get_user_pages() (Apr 2, 2019):
https://lwn.net/Articles/784574/
[2] DMA and get_user_pages() (LPC: Dec 12, 2018):
https://lwn.net/Articles/774411/
[3] The trouble with get_user_pages() (Apr 30, 2018):
https://lwn.net/Articles/753027/
[4] LWN kernel index: get_user_pages():
https://lwn.net/Kernel/Index/#Memory_management-get_user_pages
[jhubbard@nvidia.com: add kerneldoc]
Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com
[imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough]
Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com
[akpm@linux-foundation.org: fix put_compound_head defined but not used]
Suggested-by: Jan Kara <jack@suse.cz>
Suggested-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:29 +08:00
|
|
|
/*
|
|
|
|
* try_grab_page() should always succeed here, because:
|
|
|
|
* a) we hold the ptl lock, and b) we've just checked
|
|
|
|
* that the huge page is present in the page tables. If
|
|
|
|
* the huge page is present, then the tail pages must
|
|
|
|
* also be present. The ptl prevents the head page and
|
|
|
|
* tail pages from being rearranged in any way. So this
|
|
|
|
* page must be available at this point, unless the page
|
|
|
|
* refcount overflowed:
|
|
|
|
*/
|
|
|
|
if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
|
|
|
|
spin_unlock(ptl);
|
|
|
|
remainder = 0;
|
|
|
|
err = -ENOMEM;
|
|
|
|
break;
|
|
|
|
}
|
2006-03-31 18:29:57 +08:00
|
|
|
}
|
2005-06-22 08:14:44 +08:00
|
|
|
|
|
|
|
if (vmas)
|
|
|
|
vmas[i] = vma;
|
|
|
|
|
|
|
|
vaddr += PAGE_SIZE;
|
2006-03-22 16:09:03 +08:00
|
|
|
++pfn_offset;
|
2005-06-22 08:14:44 +08:00
|
|
|
--remainder;
|
|
|
|
++i;
|
2006-03-22 16:09:03 +08:00
|
|
|
if (vaddr < vma->vm_end && remainder &&
|
2008-07-24 12:27:41 +08:00
|
|
|
pfn_offset < pages_per_huge_page(h)) {
|
2006-03-22 16:09:03 +08:00
|
|
|
/*
|
|
|
|
* We use pfn_offset to avoid touching the pageframes
|
|
|
|
* of this compound page.
|
|
|
|
*/
|
|
|
|
goto same_page;
|
|
|
|
}
|
2013-11-15 06:31:02 +08:00
|
|
|
spin_unlock(ptl);
|
2005-06-22 08:14:44 +08:00
|
|
|
}
|
2013-02-23 08:35:55 +08:00
|
|
|
*nr_pages = remainder;
|
2017-02-23 07:43:13 +08:00
|
|
|
/*
|
|
|
|
* setting position is actually required only if remainder is
|
|
|
|
* not zero but it's faster not to add a "if (remainder)"
|
|
|
|
* branch.
|
|
|
|
*/
|
2005-06-22 08:14:44 +08:00
|
|
|
*position = vaddr;
|
|
|
|
|
mm/hugetlb.c: __get_user_pages ignores certain follow_hugetlb_page errors
Commit 9a291a7c9428 ("mm/hugetlb: report -EHWPOISON not -EFAULT when
FOLL_HWPOISON is specified") causes __get_user_pages to ignore certain
errors from follow_hugetlb_page. After such error, __get_user_pages
subsequently calls faultin_page on the same VMA and start address that
follow_hugetlb_page failed on instead of returning the error immediately
as it should.
In follow_hugetlb_page, when hugetlb_fault returns a value covered under
VM_FAULT_ERROR, follow_hugetlb_page returns it without setting nr_pages
to 0 as __get_user_pages expects in this case, which causes the
following to happen in __get_user_pages: the "while (nr_pages)" check
succeeds, we skip the "if (!vma..." check because we got a VMA the last
time around, we find no page with follow_page_mask, and we call
faultin_page, which calls hugetlb_fault for the second time.
This issue also slightly changes how __get_user_pages works. Before, it
only returned error if it had made no progress (i = 0). But now,
follow_hugetlb_page can clobber "i" with an error code since its new
return path doesn't check for progress. So if "i" is nonzero before a
failing call to follow_hugetlb_page, that indication of progress is lost
and __get_user_pages can return error even if some pages were
successfully pinned.
To fix this, change follow_hugetlb_page so that it updates nr_pages,
allowing __get_user_pages to fail immediately and restoring the "error
only if no progress" behavior to __get_user_pages.
Tested that __get_user_pages returns when expected on error from
hugetlb_fault in follow_hugetlb_page.
Fixes: 9a291a7c9428 ("mm/hugetlb: report -EHWPOISON not -EFAULT when FOLL_HWPOISON is specified")
Link: http://lkml.kernel.org/r/1500406795-58462-1-git-send-email-daniel.m.jordan@oracle.com
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: James Morse <james.morse@arm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: <stable@vger.kernel.org> [4.12.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-03 04:31:47 +08:00
|
|
|
return i ? i : err;
|
2005-06-22 08:14:44 +08:00
|
|
|
}
|
2006-03-22 16:08:50 +08:00
|
|
|
|
2016-07-13 17:36:43 +08:00
|
|
|
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
|
|
|
|
/*
|
|
|
|
* ARCHes with special requirements for evicting HUGETLB backing TLB entries can
|
|
|
|
* implement this.
|
|
|
|
*/
|
|
|
|
#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
|
|
|
|
#endif
|
|
|
|
|
2012-11-19 10:14:23 +08:00
|
|
|
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
|
2006-03-22 16:08:50 +08:00
|
|
|
unsigned long address, unsigned long end, pgprot_t newprot)
|
|
|
|
{
|
|
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
unsigned long start = address;
|
|
|
|
pte_t *ptep;
|
|
|
|
pte_t pte;
|
2008-07-24 12:27:41 +08:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
2012-11-19 10:14:23 +08:00
|
|
|
unsigned long pages = 0;
|
2018-10-06 06:51:33 +08:00
|
|
|
bool shared_pmd = false;
|
2018-12-28 16:38:09 +08:00
|
|
|
struct mmu_notifier_range range;
|
2018-10-06 06:51:33 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* In the case of shared PMDs, the area to flush could be beyond
|
2018-12-28 16:38:09 +08:00
|
|
|
* start/end. Set range.start/range.end to cover the maximum possible
|
2018-10-06 06:51:33 +08:00
|
|
|
* range if PMD sharing is possible.
|
|
|
|
*/
|
2019-05-14 08:20:53 +08:00
|
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
|
|
|
|
0, vma, mm, start, end);
|
2018-12-28 16:38:09 +08:00
|
|
|
adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
|
2006-03-22 16:08:50 +08:00
|
|
|
|
|
|
|
BUG_ON(address >= end);
|
2018-12-28 16:38:09 +08:00
|
|
|
flush_cache_range(vma, range.start, range.end);
|
2006-03-22 16:08:50 +08:00
|
|
|
|
2018-12-28 16:38:09 +08:00
|
|
|
mmu_notifier_invalidate_range_start(&range);
|
2014-12-13 08:54:21 +08:00
|
|
|
i_mmap_lock_write(vma->vm_file->f_mapping);
|
2008-07-24 12:27:41 +08:00
|
|
|
for (; address < end; address += huge_page_size(h)) {
|
2013-11-15 06:31:02 +08:00
|
|
|
spinlock_t *ptl;
|
2017-07-07 06:39:42 +08:00
|
|
|
ptep = huge_pte_offset(mm, address, huge_page_size(h));
|
2006-03-22 16:08:50 +08:00
|
|
|
if (!ptep)
|
|
|
|
continue;
|
2013-11-15 06:31:02 +08:00
|
|
|
ptl = huge_pte_lock(h, mm, ptep);
|
2012-11-19 10:14:23 +08:00
|
|
|
if (huge_pmd_unshare(mm, &address, ptep)) {
|
|
|
|
pages++;
|
2013-11-15 06:31:02 +08:00
|
|
|
spin_unlock(ptl);
|
2018-10-06 06:51:33 +08:00
|
|
|
shared_pmd = true;
|
2006-12-07 12:32:03 +08:00
|
|
|
continue;
|
2012-11-19 10:14:23 +08:00
|
|
|
}
|
2015-02-12 07:25:28 +08:00
|
|
|
pte = huge_ptep_get(ptep);
|
|
|
|
if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
|
|
|
|
spin_unlock(ptl);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (unlikely(is_hugetlb_entry_migration(pte))) {
|
|
|
|
swp_entry_t entry = pte_to_swp_entry(pte);
|
|
|
|
|
|
|
|
if (is_write_migration_entry(entry)) {
|
|
|
|
pte_t newpte;
|
|
|
|
|
|
|
|
make_migration_entry_read(&entry);
|
|
|
|
newpte = swp_entry_to_pte(entry);
|
2017-07-07 06:39:50 +08:00
|
|
|
set_huge_swap_pte_at(mm, address, ptep,
|
|
|
|
newpte, huge_page_size(h));
|
2015-02-12 07:25:28 +08:00
|
|
|
pages++;
|
|
|
|
}
|
|
|
|
spin_unlock(ptl);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (!huge_pte_none(pte)) {
|
2019-03-06 07:46:37 +08:00
|
|
|
pte_t old_pte;
|
|
|
|
|
|
|
|
old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
|
|
|
|
pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
|
2013-02-05 06:28:46 +08:00
|
|
|
pte = arch_make_huge_pte(pte, vma, NULL, 0);
|
2019-03-06 07:46:37 +08:00
|
|
|
huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
|
2012-11-19 10:14:23 +08:00
|
|
|
pages++;
|
2006-03-22 16:08:50 +08:00
|
|
|
}
|
2013-11-15 06:31:02 +08:00
|
|
|
spin_unlock(ptl);
|
2006-03-22 16:08:50 +08:00
|
|
|
}
|
mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables
If a process creates a large hugetlbfs mapping that is eligible for page
table sharing and forks heavily with children some of whom fault and
others which destroy the mapping then it is possible for page tables to
get corrupted. Some teardowns of the mapping encounter a "bad pmd" and
output a message to the kernel log. The final teardown will trigger a
BUG_ON in mm/filemap.c.
This was reproduced in 3.4 but is known to have existed for a long time
and goes back at least as far as 2.6.37. It was probably was introduced
in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages
look like this;
[ ..........] Lots of bad pmd messages followed by this
[ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7).
[ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7).
[ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7).
[ 127.186778] ------------[ cut here ]------------
[ 127.186781] kernel BUG at mm/filemap.c:134!
[ 127.186782] invalid opcode: 0000 [#1] SMP
[ 127.186783] CPU 7
[ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod
[ 127.186801]
[ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR
[ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002
[ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0
[ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00
[ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003
[ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8
[ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8
[ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000
[ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0
[ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
[ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0)
[ 127.186821] Stack:
[ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b
[ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98
[ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000
[ 127.186827] Call Trace:
[ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80
[ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220
[ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30
[ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0
[ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0
[ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50
[ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130
[ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0
[ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230
[ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150
[ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30
[ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80
[ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360
[ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170
[ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b
[ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0
[ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186870] RSP <ffff8804144b5c08>
[ 127.186871] ---[ end trace 7cbac5d1db69f426 ]---
The bug is a race and not always easy to reproduce. To reproduce it I was
doing the following on a single socket I7-based machine with 16G of RAM.
$ hugeadm --pool-pages-max DEFAULT:13G
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall
$ for i in `seq 1 9000`; do ./hugetlbfs-test; done
On my particular machine, it usually triggers within 10 minutes but
enabling debug options can change the timing such that it never hits.
Once the bug is triggered, the machine is in trouble and needs to be
rebooted. The machine will respond but processes accessing proc like "ps
aux" will hang due to the BUG_ON. shutdown will also hang and needs a
hard reset or a sysrq-b.
The basic problem is a race between page table sharing and teardown. For
the most part page table sharing depends on i_mmap_mutex. In some cases,
it is also taking the mm->page_table_lock for the PTE updates but with
shared page tables, it is the i_mmap_mutex that is more important.
Unfortunately it appears to be also insufficient. Consider the following
situation
Process A Process B
--------- ---------
hugetlb_fault shmdt
LockWrite(mmap_sem)
do_munmap
unmap_region
unmap_vmas
unmap_single_vma
unmap_hugepage_range
Lock(i_mmap_mutex)
Lock(mm->page_table_lock)
huge_pmd_unshare/unmap tables <--- (1)
Unlock(mm->page_table_lock)
Unlock(i_mmap_mutex)
huge_pte_alloc ...
Lock(i_mmap_mutex) ...
vma_prio_walk, find svma, spte ...
Lock(mm->page_table_lock) ...
share spte ...
Unlock(mm->page_table_lock) ...
Unlock(i_mmap_mutex) ...
hugetlb_no_page <--- (2)
free_pgtables
unlink_file_vma
hugetlb_free_pgd_range
remove_vma_list
In this scenario, it is possible for Process A to share page tables with
Process B that is trying to tear them down. The i_mmap_mutex on its own
does not prevent Process A walking Process B's page tables. At (1) above,
the page tables are not shared yet so it unmaps the PMDs. Process A sets
up page table sharing and at (2) faults a new entry. Process B then trips
up on it in free_pgtables.
This patch fixes the problem by adding a new function
__unmap_hugepage_range_final that is only called when the VMA is about to
be destroyed. This function clears VM_MAYSHARE during
unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA
ineligible for sharing and avoids the race. Superficially this looks like
it would then be vunerable to truncate and madvise issues but hugetlbfs
has its own truncate handlers so does not use unmap_mapping_range() and
does not support madvise(DONTNEED).
This should be treated as a -stable candidate if it is merged.
Test program is as follows. The test case was mostly written by Michal
Hocko with a few minor changes to reproduce this bug.
==== CUT HERE ====
static size_t huge_page_size = (2UL << 20);
static size_t nr_huge_page_A = 512;
static size_t nr_huge_page_B = 5632;
unsigned int get_random(unsigned int max)
{
struct timeval tv;
gettimeofday(&tv, NULL);
srandom(tv.tv_usec);
return random() % max;
}
static void play(void *addr, size_t size)
{
unsigned char *start = addr,
*end = start + size,
*a;
start += get_random(size/2);
/* we could itterate on huge pages but let's give it more time. */
for (a = start; a < end; a += 4096)
*a = 0;
}
int main(int argc, char **argv)
{
key_t key = IPC_PRIVATE;
size_t sizeA = nr_huge_page_A * huge_page_size;
size_t sizeB = nr_huge_page_B * huge_page_size;
int shmidA, shmidB;
void *addrA = NULL, *addrB = NULL;
int nr_children = 300, n = 0;
if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
fork_child:
switch(fork()) {
case 0:
switch (n%3) {
case 0:
play(addrA, sizeA);
break;
case 1:
play(addrB, sizeB);
break;
case 2:
break;
}
break;
case -1:
perror("fork:");
break;
default:
if (++n < nr_children)
goto fork_child;
play(addrA, sizeA);
break;
}
shmdt(addrA);
shmdt(addrB);
do {
wait(NULL);
} while (--n > 0);
shmctl(shmidA, IPC_RMID, NULL);
shmctl(shmidB, IPC_RMID, NULL);
return 0;
}
[akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build]
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 07:46:20 +08:00
|
|
|
/*
|
2014-12-13 08:54:24 +08:00
|
|
|
* Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
|
mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables
If a process creates a large hugetlbfs mapping that is eligible for page
table sharing and forks heavily with children some of whom fault and
others which destroy the mapping then it is possible for page tables to
get corrupted. Some teardowns of the mapping encounter a "bad pmd" and
output a message to the kernel log. The final teardown will trigger a
BUG_ON in mm/filemap.c.
This was reproduced in 3.4 but is known to have existed for a long time
and goes back at least as far as 2.6.37. It was probably was introduced
in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages
look like this;
[ ..........] Lots of bad pmd messages followed by this
[ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7).
[ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7).
[ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7).
[ 127.186778] ------------[ cut here ]------------
[ 127.186781] kernel BUG at mm/filemap.c:134!
[ 127.186782] invalid opcode: 0000 [#1] SMP
[ 127.186783] CPU 7
[ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod
[ 127.186801]
[ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR
[ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002
[ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0
[ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00
[ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003
[ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8
[ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8
[ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000
[ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0
[ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
[ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0)
[ 127.186821] Stack:
[ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b
[ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98
[ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000
[ 127.186827] Call Trace:
[ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80
[ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220
[ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30
[ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0
[ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0
[ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50
[ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130
[ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0
[ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230
[ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150
[ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30
[ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80
[ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360
[ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170
[ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b
[ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0
[ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186870] RSP <ffff8804144b5c08>
[ 127.186871] ---[ end trace 7cbac5d1db69f426 ]---
The bug is a race and not always easy to reproduce. To reproduce it I was
doing the following on a single socket I7-based machine with 16G of RAM.
$ hugeadm --pool-pages-max DEFAULT:13G
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall
$ for i in `seq 1 9000`; do ./hugetlbfs-test; done
On my particular machine, it usually triggers within 10 minutes but
enabling debug options can change the timing such that it never hits.
Once the bug is triggered, the machine is in trouble and needs to be
rebooted. The machine will respond but processes accessing proc like "ps
aux" will hang due to the BUG_ON. shutdown will also hang and needs a
hard reset or a sysrq-b.
The basic problem is a race between page table sharing and teardown. For
the most part page table sharing depends on i_mmap_mutex. In some cases,
it is also taking the mm->page_table_lock for the PTE updates but with
shared page tables, it is the i_mmap_mutex that is more important.
Unfortunately it appears to be also insufficient. Consider the following
situation
Process A Process B
--------- ---------
hugetlb_fault shmdt
LockWrite(mmap_sem)
do_munmap
unmap_region
unmap_vmas
unmap_single_vma
unmap_hugepage_range
Lock(i_mmap_mutex)
Lock(mm->page_table_lock)
huge_pmd_unshare/unmap tables <--- (1)
Unlock(mm->page_table_lock)
Unlock(i_mmap_mutex)
huge_pte_alloc ...
Lock(i_mmap_mutex) ...
vma_prio_walk, find svma, spte ...
Lock(mm->page_table_lock) ...
share spte ...
Unlock(mm->page_table_lock) ...
Unlock(i_mmap_mutex) ...
hugetlb_no_page <--- (2)
free_pgtables
unlink_file_vma
hugetlb_free_pgd_range
remove_vma_list
In this scenario, it is possible for Process A to share page tables with
Process B that is trying to tear them down. The i_mmap_mutex on its own
does not prevent Process A walking Process B's page tables. At (1) above,
the page tables are not shared yet so it unmaps the PMDs. Process A sets
up page table sharing and at (2) faults a new entry. Process B then trips
up on it in free_pgtables.
This patch fixes the problem by adding a new function
__unmap_hugepage_range_final that is only called when the VMA is about to
be destroyed. This function clears VM_MAYSHARE during
unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA
ineligible for sharing and avoids the race. Superficially this looks like
it would then be vunerable to truncate and madvise issues but hugetlbfs
has its own truncate handlers so does not use unmap_mapping_range() and
does not support madvise(DONTNEED).
This should be treated as a -stable candidate if it is merged.
Test program is as follows. The test case was mostly written by Michal
Hocko with a few minor changes to reproduce this bug.
==== CUT HERE ====
static size_t huge_page_size = (2UL << 20);
static size_t nr_huge_page_A = 512;
static size_t nr_huge_page_B = 5632;
unsigned int get_random(unsigned int max)
{
struct timeval tv;
gettimeofday(&tv, NULL);
srandom(tv.tv_usec);
return random() % max;
}
static void play(void *addr, size_t size)
{
unsigned char *start = addr,
*end = start + size,
*a;
start += get_random(size/2);
/* we could itterate on huge pages but let's give it more time. */
for (a = start; a < end; a += 4096)
*a = 0;
}
int main(int argc, char **argv)
{
key_t key = IPC_PRIVATE;
size_t sizeA = nr_huge_page_A * huge_page_size;
size_t sizeB = nr_huge_page_B * huge_page_size;
int shmidA, shmidB;
void *addrA = NULL, *addrB = NULL;
int nr_children = 300, n = 0;
if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
fork_child:
switch(fork()) {
case 0:
switch (n%3) {
case 0:
play(addrA, sizeA);
break;
case 1:
play(addrB, sizeB);
break;
case 2:
break;
}
break;
case -1:
perror("fork:");
break;
default:
if (++n < nr_children)
goto fork_child;
play(addrA, sizeA);
break;
}
shmdt(addrA);
shmdt(addrB);
do {
wait(NULL);
} while (--n > 0);
shmctl(shmidA, IPC_RMID, NULL);
shmctl(shmidB, IPC_RMID, NULL);
return 0;
}
[akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build]
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 07:46:20 +08:00
|
|
|
* may have cleared our pud entry and done put_page on the page table:
|
2014-12-13 08:54:24 +08:00
|
|
|
* once we release i_mmap_rwsem, another task can do the final put_page
|
2018-10-06 06:51:33 +08:00
|
|
|
* and that page table be reused and filled with junk. If we actually
|
|
|
|
* did unshare a page of pmds, flush the range corresponding to the pud.
|
mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables
If a process creates a large hugetlbfs mapping that is eligible for page
table sharing and forks heavily with children some of whom fault and
others which destroy the mapping then it is possible for page tables to
get corrupted. Some teardowns of the mapping encounter a "bad pmd" and
output a message to the kernel log. The final teardown will trigger a
BUG_ON in mm/filemap.c.
This was reproduced in 3.4 but is known to have existed for a long time
and goes back at least as far as 2.6.37. It was probably was introduced
in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages
look like this;
[ ..........] Lots of bad pmd messages followed by this
[ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7).
[ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7).
[ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7).
[ 127.186778] ------------[ cut here ]------------
[ 127.186781] kernel BUG at mm/filemap.c:134!
[ 127.186782] invalid opcode: 0000 [#1] SMP
[ 127.186783] CPU 7
[ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod
[ 127.186801]
[ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR
[ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002
[ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0
[ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00
[ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003
[ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8
[ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8
[ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000
[ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0
[ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
[ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0)
[ 127.186821] Stack:
[ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b
[ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98
[ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000
[ 127.186827] Call Trace:
[ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80
[ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220
[ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30
[ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0
[ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0
[ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50
[ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130
[ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0
[ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230
[ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150
[ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30
[ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80
[ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360
[ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170
[ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b
[ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0
[ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186870] RSP <ffff8804144b5c08>
[ 127.186871] ---[ end trace 7cbac5d1db69f426 ]---
The bug is a race and not always easy to reproduce. To reproduce it I was
doing the following on a single socket I7-based machine with 16G of RAM.
$ hugeadm --pool-pages-max DEFAULT:13G
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall
$ for i in `seq 1 9000`; do ./hugetlbfs-test; done
On my particular machine, it usually triggers within 10 minutes but
enabling debug options can change the timing such that it never hits.
Once the bug is triggered, the machine is in trouble and needs to be
rebooted. The machine will respond but processes accessing proc like "ps
aux" will hang due to the BUG_ON. shutdown will also hang and needs a
hard reset or a sysrq-b.
The basic problem is a race between page table sharing and teardown. For
the most part page table sharing depends on i_mmap_mutex. In some cases,
it is also taking the mm->page_table_lock for the PTE updates but with
shared page tables, it is the i_mmap_mutex that is more important.
Unfortunately it appears to be also insufficient. Consider the following
situation
Process A Process B
--------- ---------
hugetlb_fault shmdt
LockWrite(mmap_sem)
do_munmap
unmap_region
unmap_vmas
unmap_single_vma
unmap_hugepage_range
Lock(i_mmap_mutex)
Lock(mm->page_table_lock)
huge_pmd_unshare/unmap tables <--- (1)
Unlock(mm->page_table_lock)
Unlock(i_mmap_mutex)
huge_pte_alloc ...
Lock(i_mmap_mutex) ...
vma_prio_walk, find svma, spte ...
Lock(mm->page_table_lock) ...
share spte ...
Unlock(mm->page_table_lock) ...
Unlock(i_mmap_mutex) ...
hugetlb_no_page <--- (2)
free_pgtables
unlink_file_vma
hugetlb_free_pgd_range
remove_vma_list
In this scenario, it is possible for Process A to share page tables with
Process B that is trying to tear them down. The i_mmap_mutex on its own
does not prevent Process A walking Process B's page tables. At (1) above,
the page tables are not shared yet so it unmaps the PMDs. Process A sets
up page table sharing and at (2) faults a new entry. Process B then trips
up on it in free_pgtables.
This patch fixes the problem by adding a new function
__unmap_hugepage_range_final that is only called when the VMA is about to
be destroyed. This function clears VM_MAYSHARE during
unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA
ineligible for sharing and avoids the race. Superficially this looks like
it would then be vunerable to truncate and madvise issues but hugetlbfs
has its own truncate handlers so does not use unmap_mapping_range() and
does not support madvise(DONTNEED).
This should be treated as a -stable candidate if it is merged.
Test program is as follows. The test case was mostly written by Michal
Hocko with a few minor changes to reproduce this bug.
==== CUT HERE ====
static size_t huge_page_size = (2UL << 20);
static size_t nr_huge_page_A = 512;
static size_t nr_huge_page_B = 5632;
unsigned int get_random(unsigned int max)
{
struct timeval tv;
gettimeofday(&tv, NULL);
srandom(tv.tv_usec);
return random() % max;
}
static void play(void *addr, size_t size)
{
unsigned char *start = addr,
*end = start + size,
*a;
start += get_random(size/2);
/* we could itterate on huge pages but let's give it more time. */
for (a = start; a < end; a += 4096)
*a = 0;
}
int main(int argc, char **argv)
{
key_t key = IPC_PRIVATE;
size_t sizeA = nr_huge_page_A * huge_page_size;
size_t sizeB = nr_huge_page_B * huge_page_size;
int shmidA, shmidB;
void *addrA = NULL, *addrB = NULL;
int nr_children = 300, n = 0;
if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
fork_child:
switch(fork()) {
case 0:
switch (n%3) {
case 0:
play(addrA, sizeA);
break;
case 1:
play(addrB, sizeB);
break;
case 2:
break;
}
break;
case -1:
perror("fork:");
break;
default:
if (++n < nr_children)
goto fork_child;
play(addrA, sizeA);
break;
}
shmdt(addrA);
shmdt(addrB);
do {
wait(NULL);
} while (--n > 0);
shmctl(shmidA, IPC_RMID, NULL);
shmctl(shmidB, IPC_RMID, NULL);
return 0;
}
[akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build]
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 07:46:20 +08:00
|
|
|
*/
|
2018-10-06 06:51:33 +08:00
|
|
|
if (shared_pmd)
|
2018-12-28 16:38:09 +08:00
|
|
|
flush_hugetlb_tlb_range(vma, range.start, range.end);
|
2018-10-06 06:51:33 +08:00
|
|
|
else
|
|
|
|
flush_hugetlb_tlb_range(vma, start, end);
|
2017-11-16 09:34:07 +08:00
|
|
|
/*
|
|
|
|
* No need to call mmu_notifier_invalidate_range() we are downgrading
|
|
|
|
* page table protection not changing it to point to a new page.
|
|
|
|
*
|
2018-03-22 03:22:47 +08:00
|
|
|
* See Documentation/vm/mmu_notifier.rst
|
2017-11-16 09:34:07 +08:00
|
|
|
*/
|
2014-12-13 08:54:21 +08:00
|
|
|
i_mmap_unlock_write(vma->vm_file->f_mapping);
|
2018-12-28 16:38:09 +08:00
|
|
|
mmu_notifier_invalidate_range_end(&range);
|
2012-11-19 10:14:23 +08:00
|
|
|
|
|
|
|
return pages << h->order;
|
2006-03-22 16:08:50 +08:00
|
|
|
}
|
|
|
|
|
2008-07-24 12:27:23 +08:00
|
|
|
int hugetlb_reserve_pages(struct inode *inode,
|
|
|
|
long from, long to,
|
2009-02-10 22:02:27 +08:00
|
|
|
struct vm_area_struct *vma,
|
2011-05-26 18:16:19 +08:00
|
|
|
vm_flags_t vm_flags)
|
2007-10-16 16:26:19 +08:00
|
|
|
{
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
long ret, chg, add = -1;
|
2008-07-24 12:27:41 +08:00
|
|
|
struct hstate *h = hstate_inode(inode);
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
struct hugepage_subpool *spool = subpool_inode(inode);
|
mm, hugetlb: unify region structure handling
Currently, to track reserved and allocated regions, we use two different
ways, depending on the mapping. For MAP_SHARED, we use
address_mapping's private_list and, while for MAP_PRIVATE, we use a
resv_map.
Now, we are preparing to change a coarse grained lock which protect a
region structure to fine grained lock, and this difference hinder it.
So, before changing it, unify region structure handling, consistently
using a resv_map regardless of the kind of mapping.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:25 +08:00
|
|
|
struct resv_map *resv_map;
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
struct hugetlb_cgroup *h_cg = NULL;
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
long gbl_reserve, regions_needed = 0;
|
2007-10-16 16:26:19 +08:00
|
|
|
|
hugetlbfs: check for pgoff value overflow
A vma with vm_pgoff large enough to overflow a loff_t type when
converted to a byte offset can be passed via the remap_file_pages system
call. The hugetlbfs mmap routine uses the byte offset to calculate
reservations and file size.
A sequence such as:
mmap(0x20a00000, 0x600000, 0, 0x66033, -1, 0);
remap_file_pages(0x20a00000, 0x600000, 0, 0x20000000000000, 0);
will result in the following when task exits/file closed,
kernel BUG at mm/hugetlb.c:749!
Call Trace:
hugetlbfs_evict_inode+0x2f/0x40
evict+0xcb/0x190
__dentry_kill+0xcb/0x150
__fput+0x164/0x1e0
task_work_run+0x84/0xa0
exit_to_usermode_loop+0x7d/0x80
do_syscall_64+0x18b/0x190
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
The overflowed pgoff value causes hugetlbfs to try to set up a mapping
with a negative range (end < start) that leaves invalid state which
causes the BUG.
The previous overflow fix to this code was incomplete and did not take
the remap_file_pages system call into account.
[mike.kravetz@oracle.com: v3]
Link: http://lkml.kernel.org/r/20180309002726.7248-1-mike.kravetz@oracle.com
[akpm@linux-foundation.org: include mmdebug.h]
[akpm@linux-foundation.org: fix -ve left shift count on sh]
Link: http://lkml.kernel.org/r/20180308210502.15952-1-mike.kravetz@oracle.com
Fixes: 045c7a3f53d9 ("hugetlbfs: fix offset overflow in hugetlbfs mmap")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Nic Losby <blurbdust@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-23 07:17:13 +08:00
|
|
|
/* This should never happen */
|
|
|
|
if (from > to) {
|
|
|
|
VM_WARN(1, "%s called with a negative range\n", __func__);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2009-02-12 00:34:16 +08:00
|
|
|
/*
|
|
|
|
* Only apply hugepage reservation if asked. At fault time, an
|
|
|
|
* attempt will be made for VM_NORESERVE to allocate a page
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
* without using reserves
|
2009-02-12 00:34:16 +08:00
|
|
|
*/
|
2011-05-26 18:16:19 +08:00
|
|
|
if (vm_flags & VM_NORESERVE)
|
2009-02-12 00:34:16 +08:00
|
|
|
return 0;
|
|
|
|
|
2008-07-24 12:27:23 +08:00
|
|
|
/*
|
|
|
|
* Shared mappings base their reservation on the number of pages that
|
|
|
|
* are already allocated on behalf of the file. Private mappings need
|
|
|
|
* to reserve the full area even if read-only as mprotect() may be
|
|
|
|
* called to make the mapping read-write. Assume !vma is a shm mapping
|
|
|
|
*/
|
mm, hugetlb: unify region structure handling
Currently, to track reserved and allocated regions, we use two different
ways, depending on the mapping. For MAP_SHARED, we use
address_mapping's private_list and, while for MAP_PRIVATE, we use a
resv_map.
Now, we are preparing to change a coarse grained lock which protect a
region structure to fine grained lock, and this difference hinder it.
So, before changing it, unify region structure handling, consistently
using a resv_map regardless of the kind of mapping.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:25 +08:00
|
|
|
if (!vma || vma->vm_flags & VM_MAYSHARE) {
|
2019-05-14 08:22:55 +08:00
|
|
|
/*
|
|
|
|
* resv_map can not be NULL as hugetlb_reserve_pages is only
|
|
|
|
* called for inodes for which resv_maps were created (see
|
|
|
|
* hugetlbfs_get_inode).
|
|
|
|
*/
|
2014-04-04 05:47:30 +08:00
|
|
|
resv_map = inode_resv_map(inode);
|
mm, hugetlb: unify region structure handling
Currently, to track reserved and allocated regions, we use two different
ways, depending on the mapping. For MAP_SHARED, we use
address_mapping's private_list and, while for MAP_PRIVATE, we use a
resv_map.
Now, we are preparing to change a coarse grained lock which protect a
region structure to fine grained lock, and this difference hinder it.
So, before changing it, unify region structure handling, consistently
using a resv_map regardless of the kind of mapping.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:25 +08:00
|
|
|
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
chg = region_chg(resv_map, from, to, ®ions_needed);
|
mm, hugetlb: unify region structure handling
Currently, to track reserved and allocated regions, we use two different
ways, depending on the mapping. For MAP_SHARED, we use
address_mapping's private_list and, while for MAP_PRIVATE, we use a
resv_map.
Now, we are preparing to change a coarse grained lock which protect a
region structure to fine grained lock, and this difference hinder it.
So, before changing it, unify region structure handling, consistently
using a resv_map regardless of the kind of mapping.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:25 +08:00
|
|
|
|
|
|
|
} else {
|
2020-04-02 12:11:21 +08:00
|
|
|
/* Private mapping. */
|
mm, hugetlb: unify region structure handling
Currently, to track reserved and allocated regions, we use two different
ways, depending on the mapping. For MAP_SHARED, we use
address_mapping's private_list and, while for MAP_PRIVATE, we use a
resv_map.
Now, we are preparing to change a coarse grained lock which protect a
region structure to fine grained lock, and this difference hinder it.
So, before changing it, unify region structure handling, consistently
using a resv_map regardless of the kind of mapping.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:25 +08:00
|
|
|
resv_map = resv_map_alloc();
|
2009-02-12 00:34:16 +08:00
|
|
|
if (!resv_map)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2008-07-24 12:27:23 +08:00
|
|
|
chg = to - from;
|
2008-07-24 12:27:32 +08:00
|
|
|
|
2009-02-12 00:34:16 +08:00
|
|
|
set_vma_resv_map(vma, resv_map);
|
|
|
|
set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
|
|
|
|
}
|
|
|
|
|
2012-05-30 06:06:46 +08:00
|
|
|
if (chg < 0) {
|
|
|
|
ret = chg;
|
|
|
|
goto out_err;
|
|
|
|
}
|
2007-05-09 17:33:34 +08:00
|
|
|
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
ret = hugetlb_cgroup_charge_cgroup_rsvd(
|
|
|
|
hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
|
|
|
|
|
|
|
|
if (ret < 0) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto out_err;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
|
|
|
|
/* For private mappings, the hugetlb_cgroup uncharge info hangs
|
|
|
|
* of the resv_map.
|
|
|
|
*/
|
|
|
|
resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
|
|
|
|
}
|
|
|
|
|
2015-04-16 07:13:39 +08:00
|
|
|
/*
|
|
|
|
* There must be enough pages in the subpool for the mapping. If
|
|
|
|
* the subpool has a minimum size, there may be some global
|
|
|
|
* reservations already in place (gbl_reserve).
|
|
|
|
*/
|
|
|
|
gbl_reserve = hugepage_subpool_get_pages(spool, chg);
|
|
|
|
if (gbl_reserve < 0) {
|
2012-05-30 06:06:46 +08:00
|
|
|
ret = -ENOSPC;
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
goto out_uncharge_cgroup;
|
2012-05-30 06:06:46 +08:00
|
|
|
}
|
2009-02-10 22:02:27 +08:00
|
|
|
|
|
|
|
/*
|
2009-02-12 00:34:16 +08:00
|
|
|
* Check enough hugepages are available for the reservation.
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
* Hand the pages back to the subpool if there are not
|
2009-02-10 22:02:27 +08:00
|
|
|
*/
|
2015-04-16 07:13:39 +08:00
|
|
|
ret = hugetlb_acct_memory(h, gbl_reserve);
|
2008-01-14 16:55:19 +08:00
|
|
|
if (ret < 0) {
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
goto out_put_pages;
|
2008-01-14 16:55:19 +08:00
|
|
|
}
|
2009-02-12 00:34:16 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Account for the reservations made. Shared mappings record regions
|
|
|
|
* that have reservations as they are shared by multiple VMAs.
|
|
|
|
* When the last VMA disappears, the region map says how much
|
|
|
|
* the reservation was and the page cache tells how much of
|
|
|
|
* the reservation was consumed. Private mappings are per-VMA and
|
|
|
|
* only the consumed reservations are tracked. When the VMA
|
|
|
|
* disappears, the original reservation is the VMA size and the
|
|
|
|
* consumed reservations are stored in the map. Hence, nothing
|
|
|
|
* else has to be done for private mappings here
|
|
|
|
*/
|
2015-06-25 07:57:58 +08:00
|
|
|
if (!vma || vma->vm_flags & VM_MAYSHARE) {
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
add = region_add(resv_map, from, to, regions_needed, h, h_cg);
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
|
|
|
|
if (unlikely(add < 0)) {
|
|
|
|
hugetlb_acct_memory(h, -gbl_reserve);
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
goto out_put_pages;
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
} else if (unlikely(chg > add)) {
|
2015-06-25 07:57:58 +08:00
|
|
|
/*
|
|
|
|
* pages in this range were added to the reserve
|
|
|
|
* map between region_chg and region_add. This
|
|
|
|
* indicates a race with alloc_huge_page. Adjust
|
|
|
|
* the subpool and reserve counts modified above
|
|
|
|
* based on the difference.
|
|
|
|
*/
|
|
|
|
long rsv_adjust;
|
|
|
|
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
hugetlb_cgroup_uncharge_cgroup_rsvd(
|
|
|
|
hstate_index(h),
|
|
|
|
(chg - add) * pages_per_huge_page(h), h_cg);
|
|
|
|
|
2015-06-25 07:57:58 +08:00
|
|
|
rsv_adjust = hugepage_subpool_put_pages(spool,
|
|
|
|
chg - add);
|
|
|
|
hugetlb_acct_memory(h, -rsv_adjust);
|
|
|
|
}
|
|
|
|
}
|
2006-06-23 17:03:15 +08:00
|
|
|
return 0;
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:28 +08:00
|
|
|
out_put_pages:
|
|
|
|
/* put back original number of pages, chg */
|
|
|
|
(void)hugepage_subpool_put_pages(spool, chg);
|
|
|
|
out_uncharge_cgroup:
|
|
|
|
hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
|
|
|
|
chg * pages_per_huge_page(h), h_cg);
|
2012-05-30 06:06:46 +08:00
|
|
|
out_err:
|
2015-09-09 06:01:28 +08:00
|
|
|
if (!vma || vma->vm_flags & VM_MAYSHARE)
|
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:25 +08:00
|
|
|
/* Only call region_abort if the region_chg succeeded but the
|
|
|
|
* region_add failed or didn't run.
|
|
|
|
*/
|
|
|
|
if (chg >= 0 && add < 0)
|
|
|
|
region_abort(resv_map, from, to, regions_needed);
|
2014-04-04 05:47:28 +08:00
|
|
|
if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
|
|
|
|
kref_put(&resv_map->refs, resv_map_release);
|
2012-05-30 06:06:46 +08:00
|
|
|
return ret;
|
2006-06-23 17:03:15 +08:00
|
|
|
}
|
|
|
|
|
2015-09-09 06:01:41 +08:00
|
|
|
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
|
|
|
|
long freed)
|
2006-06-23 17:03:15 +08:00
|
|
|
{
|
2008-07-24 12:27:41 +08:00
|
|
|
struct hstate *h = hstate_inode(inode);
|
2014-04-04 05:47:30 +08:00
|
|
|
struct resv_map *resv_map = inode_resv_map(inode);
|
mm, hugetlb: unify region structure handling
Currently, to track reserved and allocated regions, we use two different
ways, depending on the mapping. For MAP_SHARED, we use
address_mapping's private_list and, while for MAP_PRIVATE, we use a
resv_map.
Now, we are preparing to change a coarse grained lock which protect a
region structure to fine grained lock, and this difference hinder it.
So, before changing it, unify region structure handling, consistently
using a resv_map regardless of the kind of mapping.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:25 +08:00
|
|
|
long chg = 0;
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:12 +08:00
|
|
|
struct hugepage_subpool *spool = subpool_inode(inode);
|
2015-04-16 07:13:39 +08:00
|
|
|
long gbl_reserve;
|
2007-11-15 08:59:44 +08:00
|
|
|
|
2019-05-14 08:22:55 +08:00
|
|
|
/*
|
|
|
|
* Since this routine can be called in the evict inode path for all
|
|
|
|
* hugetlbfs inodes, resv_map could be NULL.
|
|
|
|
*/
|
2015-09-09 06:01:41 +08:00
|
|
|
if (resv_map) {
|
|
|
|
chg = region_del(resv_map, start, end);
|
|
|
|
/*
|
|
|
|
* region_del() can fail in the rare case where a region
|
|
|
|
* must be split and another region descriptor can not be
|
|
|
|
* allocated. If end == LONG_MAX, it will not fail.
|
|
|
|
*/
|
|
|
|
if (chg < 0)
|
|
|
|
return chg;
|
|
|
|
}
|
|
|
|
|
2007-11-15 08:59:44 +08:00
|
|
|
spin_lock(&inode->i_lock);
|
2009-07-30 06:02:16 +08:00
|
|
|
inode->i_blocks -= (blocks_per_huge_page(h) * freed);
|
2007-11-15 08:59:44 +08:00
|
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
|
2015-04-16 07:13:39 +08:00
|
|
|
/*
|
|
|
|
* If the subpool has a minimum size, the number of global
|
|
|
|
* reservations to be released may be adjusted.
|
|
|
|
*/
|
|
|
|
gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
|
|
|
|
hugetlb_acct_memory(h, -gbl_reserve);
|
2015-09-09 06:01:41 +08:00
|
|
|
|
|
|
|
return 0;
|
2006-06-23 17:03:15 +08:00
|
|
|
}
|
2010-05-28 08:29:20 +08:00
|
|
|
|
2013-04-23 19:35:02 +08:00
|
|
|
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
|
|
|
|
static unsigned long page_table_shareable(struct vm_area_struct *svma,
|
|
|
|
struct vm_area_struct *vma,
|
|
|
|
unsigned long addr, pgoff_t idx)
|
|
|
|
{
|
|
|
|
unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
|
|
|
|
svma->vm_start;
|
|
|
|
unsigned long sbase = saddr & PUD_MASK;
|
|
|
|
unsigned long s_end = sbase + PUD_SIZE;
|
|
|
|
|
|
|
|
/* Allow segments to share if only one is marked locked */
|
2015-11-06 10:51:36 +08:00
|
|
|
unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
|
|
|
|
unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
|
2013-04-23 19:35:02 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* match the virtual addresses, permission and the alignment of the
|
|
|
|
* page table page.
|
|
|
|
*/
|
|
|
|
if (pmd_index(addr) != pmd_index(saddr) ||
|
|
|
|
vm_flags != svm_flags ||
|
|
|
|
sbase < svma->vm_start || svma->vm_end < s_end)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return saddr;
|
|
|
|
}
|
|
|
|
|
2015-09-05 06:47:58 +08:00
|
|
|
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
|
2013-04-23 19:35:02 +08:00
|
|
|
{
|
|
|
|
unsigned long base = addr & PUD_MASK;
|
|
|
|
unsigned long end = base + PUD_SIZE;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* check on proper vm_flags and page table alignment
|
|
|
|
*/
|
2018-10-06 06:51:29 +08:00
|
|
|
if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
|
2015-09-05 06:47:58 +08:00
|
|
|
return true;
|
|
|
|
return false;
|
2013-04-23 19:35:02 +08:00
|
|
|
}
|
|
|
|
|
2018-10-06 06:51:29 +08:00
|
|
|
/*
|
|
|
|
* Determine if start,end range within vma could be mapped by shared pmd.
|
|
|
|
* If yes, adjust start and end to cover range associated with possible
|
|
|
|
* shared pmd mappings.
|
|
|
|
*/
|
|
|
|
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
|
|
|
|
unsigned long *start, unsigned long *end)
|
|
|
|
{
|
2020-04-02 12:11:45 +08:00
|
|
|
unsigned long check_addr;
|
2018-10-06 06:51:29 +08:00
|
|
|
|
|
|
|
if (!(vma->vm_flags & VM_MAYSHARE))
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
|
|
|
|
unsigned long a_start = check_addr & PUD_MASK;
|
|
|
|
unsigned long a_end = a_start + PUD_SIZE;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If sharing is possible, adjust start/end if necessary.
|
|
|
|
*/
|
|
|
|
if (range_in_vma(vma, a_start, a_end)) {
|
|
|
|
if (a_start < *start)
|
|
|
|
*start = a_start;
|
|
|
|
if (a_end > *end)
|
|
|
|
*end = a_end;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-04-23 19:35:02 +08:00
|
|
|
/*
|
|
|
|
* Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
|
|
|
|
* and returns the corresponding pte. While this is not necessary for the
|
|
|
|
* !shared pmd case because we can allocate the pmd later as well, it makes the
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
* code much cleaner.
|
|
|
|
*
|
|
|
|
* This routine must be called with i_mmap_rwsem held in at least read mode.
|
|
|
|
* For hugetlbfs, this prevents removal of any page table entries associated
|
|
|
|
* with the address space. This is important as we are setting up sharing
|
|
|
|
* based on existing page table entries (mappings).
|
2013-04-23 19:35:02 +08:00
|
|
|
*/
|
|
|
|
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
|
|
|
|
{
|
|
|
|
struct vm_area_struct *vma = find_vma(mm, addr);
|
|
|
|
struct address_space *mapping = vma->vm_file->f_mapping;
|
|
|
|
pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
|
|
|
|
vma->vm_pgoff;
|
|
|
|
struct vm_area_struct *svma;
|
|
|
|
unsigned long saddr;
|
|
|
|
pte_t *spte = NULL;
|
|
|
|
pte_t *pte;
|
2013-11-15 06:31:02 +08:00
|
|
|
spinlock_t *ptl;
|
2013-04-23 19:35:02 +08:00
|
|
|
|
|
|
|
if (!vma_shareable(vma, addr))
|
|
|
|
return (pte_t *)pmd_alloc(mm, pud, addr);
|
|
|
|
|
|
|
|
vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
|
|
|
|
if (svma == vma)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
saddr = page_table_shareable(svma, vma, addr, idx);
|
|
|
|
if (saddr) {
|
2017-07-07 06:39:42 +08:00
|
|
|
spte = huge_pte_offset(svma->vm_mm, saddr,
|
|
|
|
vma_mmu_pagesize(svma));
|
2013-04-23 19:35:02 +08:00
|
|
|
if (spte) {
|
|
|
|
get_page(virt_to_page(spte));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!spte)
|
|
|
|
goto out;
|
|
|
|
|
2016-12-13 08:41:59 +08:00
|
|
|
ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
|
mm: account pmd page tables to the process
Dave noticed that unprivileged process can allocate significant amount of
memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
memory cgroup. The trick is to allocate a lot of PMD page tables. Linux
kernel doesn't account PMD tables to the process, only PTE.
The use-cases below use few tricks to allocate a lot of PMD page tables
while keeping VmRSS and VmPTE low. oom_score for the process will be 0.
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#define PUD_SIZE (1UL << 30)
#define PMD_SIZE (1UL << 21)
#define NR_PUD 130000
int main(void)
{
char *addr = NULL;
unsigned long i;
prctl(PR_SET_THP_DISABLE);
for (i = 0; i < NR_PUD ; i++) {
addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
break;
}
*addr = 'x';
munmap(addr, PMD_SIZE);
mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
if (addr == MAP_FAILED)
perror("re-mmap"), exit(1);
}
printf("PID %d consumed %lu KiB in PMD page tables\n",
getpid(), i * 4096 >> 10);
return pause();
}
The patch addresses the issue by account PMD tables to the process the
same way we account PTE.
The main place where PMD tables is accounted is __pmd_alloc() and
free_pmd_range(). But there're few corner cases:
- HugeTLB can share PMD page tables. The patch handles by accounting
the table to all processes who share it.
- x86 PAE pre-allocates few PMD tables on fork.
- Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
check on exit(2).
Accounting only happens on configuration where PMD page table's level is
present (PMD is not folded). As with nr_ptes we use per-mm counter. The
counter value is used to calculate baseline for badness score by
oom-killer.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: David Rientjes <rientjes@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:26:50 +08:00
|
|
|
if (pud_none(*pud)) {
|
2013-04-23 19:35:02 +08:00
|
|
|
pud_populate(mm, pud,
|
|
|
|
(pmd_t *)((unsigned long)spte & PAGE_MASK));
|
2016-06-25 05:49:51 +08:00
|
|
|
mm_inc_nr_pmds(mm);
|
mm: account pmd page tables to the process
Dave noticed that unprivileged process can allocate significant amount of
memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
memory cgroup. The trick is to allocate a lot of PMD page tables. Linux
kernel doesn't account PMD tables to the process, only PTE.
The use-cases below use few tricks to allocate a lot of PMD page tables
while keeping VmRSS and VmPTE low. oom_score for the process will be 0.
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#define PUD_SIZE (1UL << 30)
#define PMD_SIZE (1UL << 21)
#define NR_PUD 130000
int main(void)
{
char *addr = NULL;
unsigned long i;
prctl(PR_SET_THP_DISABLE);
for (i = 0; i < NR_PUD ; i++) {
addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
break;
}
*addr = 'x';
munmap(addr, PMD_SIZE);
mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
if (addr == MAP_FAILED)
perror("re-mmap"), exit(1);
}
printf("PID %d consumed %lu KiB in PMD page tables\n",
getpid(), i * 4096 >> 10);
return pause();
}
The patch addresses the issue by account PMD tables to the process the
same way we account PTE.
The main place where PMD tables is accounted is __pmd_alloc() and
free_pmd_range(). But there're few corner cases:
- HugeTLB can share PMD page tables. The patch handles by accounting
the table to all processes who share it.
- x86 PAE pre-allocates few PMD tables on fork.
- Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
check on exit(2).
Accounting only happens on configuration where PMD page table's level is
present (PMD is not folded). As with nr_ptes we use per-mm counter. The
counter value is used to calculate baseline for badness score by
oom-killer.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: David Rientjes <rientjes@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:26:50 +08:00
|
|
|
} else {
|
2013-04-23 19:35:02 +08:00
|
|
|
put_page(virt_to_page(spte));
|
mm: account pmd page tables to the process
Dave noticed that unprivileged process can allocate significant amount of
memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
memory cgroup. The trick is to allocate a lot of PMD page tables. Linux
kernel doesn't account PMD tables to the process, only PTE.
The use-cases below use few tricks to allocate a lot of PMD page tables
while keeping VmRSS and VmPTE low. oom_score for the process will be 0.
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#define PUD_SIZE (1UL << 30)
#define PMD_SIZE (1UL << 21)
#define NR_PUD 130000
int main(void)
{
char *addr = NULL;
unsigned long i;
prctl(PR_SET_THP_DISABLE);
for (i = 0; i < NR_PUD ; i++) {
addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
break;
}
*addr = 'x';
munmap(addr, PMD_SIZE);
mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
if (addr == MAP_FAILED)
perror("re-mmap"), exit(1);
}
printf("PID %d consumed %lu KiB in PMD page tables\n",
getpid(), i * 4096 >> 10);
return pause();
}
The patch addresses the issue by account PMD tables to the process the
same way we account PTE.
The main place where PMD tables is accounted is __pmd_alloc() and
free_pmd_range(). But there're few corner cases:
- HugeTLB can share PMD page tables. The patch handles by accounting
the table to all processes who share it.
- x86 PAE pre-allocates few PMD tables on fork.
- Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
check on exit(2).
Accounting only happens on configuration where PMD page table's level is
present (PMD is not folded). As with nr_ptes we use per-mm counter. The
counter value is used to calculate baseline for badness score by
oom-killer.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: David Rientjes <rientjes@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:26:50 +08:00
|
|
|
}
|
2013-11-15 06:31:02 +08:00
|
|
|
spin_unlock(ptl);
|
2013-04-23 19:35:02 +08:00
|
|
|
out:
|
|
|
|
pte = (pte_t *)pmd_alloc(mm, pud, addr);
|
|
|
|
return pte;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* unmap huge page backed by shared pte.
|
|
|
|
*
|
|
|
|
* Hugetlb pte page is ref counted at the time of mapping. If pte is shared
|
|
|
|
* indicated by page_count > 1, unmap is achieved by clearing pud and
|
|
|
|
* decrementing the ref count. If count == 1, the pte page is not shared.
|
|
|
|
*
|
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:11:05 +08:00
|
|
|
* Called with page table lock held and i_mmap_rwsem held in write mode.
|
2013-04-23 19:35:02 +08:00
|
|
|
*
|
|
|
|
* returns: 1 successfully unmapped a shared pte page
|
|
|
|
* 0 the underlying pte page is not shared, or it is the last user
|
|
|
|
*/
|
|
|
|
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
|
|
|
|
{
|
|
|
|
pgd_t *pgd = pgd_offset(mm, *addr);
|
2017-03-09 22:24:07 +08:00
|
|
|
p4d_t *p4d = p4d_offset(pgd, *addr);
|
|
|
|
pud_t *pud = pud_offset(p4d, *addr);
|
2013-04-23 19:35:02 +08:00
|
|
|
|
|
|
|
BUG_ON(page_count(virt_to_page(ptep)) == 0);
|
|
|
|
if (page_count(virt_to_page(ptep)) == 1)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
pud_clear(pud);
|
|
|
|
put_page(virt_to_page(ptep));
|
mm: account pmd page tables to the process
Dave noticed that unprivileged process can allocate significant amount of
memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
memory cgroup. The trick is to allocate a lot of PMD page tables. Linux
kernel doesn't account PMD tables to the process, only PTE.
The use-cases below use few tricks to allocate a lot of PMD page tables
while keeping VmRSS and VmPTE low. oom_score for the process will be 0.
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#define PUD_SIZE (1UL << 30)
#define PMD_SIZE (1UL << 21)
#define NR_PUD 130000
int main(void)
{
char *addr = NULL;
unsigned long i;
prctl(PR_SET_THP_DISABLE);
for (i = 0; i < NR_PUD ; i++) {
addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
break;
}
*addr = 'x';
munmap(addr, PMD_SIZE);
mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
if (addr == MAP_FAILED)
perror("re-mmap"), exit(1);
}
printf("PID %d consumed %lu KiB in PMD page tables\n",
getpid(), i * 4096 >> 10);
return pause();
}
The patch addresses the issue by account PMD tables to the process the
same way we account PTE.
The main place where PMD tables is accounted is __pmd_alloc() and
free_pmd_range(). But there're few corner cases:
- HugeTLB can share PMD page tables. The patch handles by accounting
the table to all processes who share it.
- x86 PAE pre-allocates few PMD tables on fork.
- Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
check on exit(2).
Accounting only happens on configuration where PMD page table's level is
present (PMD is not folded). As with nr_ptes we use per-mm counter. The
counter value is used to calculate baseline for badness score by
oom-killer.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: David Rientjes <rientjes@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:26:50 +08:00
|
|
|
mm_dec_nr_pmds(mm);
|
2013-04-23 19:35:02 +08:00
|
|
|
*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
|
|
|
|
return 1;
|
|
|
|
}
|
2013-04-30 15:02:03 +08:00
|
|
|
#define want_pmd_share() (1)
|
|
|
|
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
|
|
|
|
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
|
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
2015-06-25 07:56:13 +08:00
|
|
|
|
|
|
|
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2018-10-06 06:51:29 +08:00
|
|
|
|
|
|
|
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
|
|
|
|
unsigned long *start, unsigned long *end)
|
|
|
|
{
|
|
|
|
}
|
2013-04-30 15:02:03 +08:00
|
|
|
#define want_pmd_share() (0)
|
2013-04-23 19:35:02 +08:00
|
|
|
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
|
|
|
|
|
2013-04-30 15:02:03 +08:00
|
|
|
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
|
|
|
|
pte_t *huge_pte_alloc(struct mm_struct *mm,
|
|
|
|
unsigned long addr, unsigned long sz)
|
|
|
|
{
|
|
|
|
pgd_t *pgd;
|
2017-03-09 22:24:07 +08:00
|
|
|
p4d_t *p4d;
|
2013-04-30 15:02:03 +08:00
|
|
|
pud_t *pud;
|
|
|
|
pte_t *pte = NULL;
|
|
|
|
|
|
|
|
pgd = pgd_offset(mm, addr);
|
2017-11-30 08:11:30 +08:00
|
|
|
p4d = p4d_alloc(mm, pgd, addr);
|
|
|
|
if (!p4d)
|
|
|
|
return NULL;
|
2017-03-09 22:24:07 +08:00
|
|
|
pud = pud_alloc(mm, p4d, addr);
|
2013-04-30 15:02:03 +08:00
|
|
|
if (pud) {
|
|
|
|
if (sz == PUD_SIZE) {
|
|
|
|
pte = (pte_t *)pud;
|
|
|
|
} else {
|
|
|
|
BUG_ON(sz != PMD_SIZE);
|
|
|
|
if (want_pmd_share() && pud_none(*pud))
|
|
|
|
pte = huge_pmd_share(mm, addr, pud);
|
|
|
|
else
|
|
|
|
pte = (pte_t *)pmd_alloc(mm, pud, addr);
|
|
|
|
}
|
|
|
|
}
|
2016-08-03 05:02:34 +08:00
|
|
|
BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
|
2013-04-30 15:02:03 +08:00
|
|
|
|
|
|
|
return pte;
|
|
|
|
}
|
|
|
|
|
2017-09-07 07:21:01 +08:00
|
|
|
/*
|
|
|
|
* huge_pte_offset() - Walk the page table to resolve the hugepage
|
|
|
|
* entry at address @addr
|
|
|
|
*
|
|
|
|
* Return: Pointer to page table or swap entry (PUD or PMD) for
|
|
|
|
* address @addr, or NULL if a p*d_none() entry is encountered and the
|
|
|
|
* size @sz doesn't match the hugepage size at this level of the page
|
|
|
|
* table.
|
|
|
|
*/
|
2017-07-07 06:39:42 +08:00
|
|
|
pte_t *huge_pte_offset(struct mm_struct *mm,
|
|
|
|
unsigned long addr, unsigned long sz)
|
2013-04-30 15:02:03 +08:00
|
|
|
{
|
|
|
|
pgd_t *pgd;
|
2017-03-09 22:24:07 +08:00
|
|
|
p4d_t *p4d;
|
2020-04-21 09:13:51 +08:00
|
|
|
pud_t *pud, pud_entry;
|
|
|
|
pmd_t *pmd, pmd_entry;
|
2013-04-30 15:02:03 +08:00
|
|
|
|
|
|
|
pgd = pgd_offset(mm, addr);
|
2017-03-09 22:24:07 +08:00
|
|
|
if (!pgd_present(*pgd))
|
|
|
|
return NULL;
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
|
|
if (!p4d_present(*p4d))
|
|
|
|
return NULL;
|
2017-09-07 07:21:01 +08:00
|
|
|
|
2017-03-09 22:24:07 +08:00
|
|
|
pud = pud_offset(p4d, addr);
|
2020-04-21 09:13:51 +08:00
|
|
|
pud_entry = READ_ONCE(*pud);
|
|
|
|
if (sz != PUD_SIZE && pud_none(pud_entry))
|
2017-03-09 22:24:07 +08:00
|
|
|
return NULL;
|
2017-09-07 07:21:01 +08:00
|
|
|
/* hugepage or swap? */
|
2020-04-21 09:13:51 +08:00
|
|
|
if (pud_huge(pud_entry) || !pud_present(pud_entry))
|
2017-03-09 22:24:07 +08:00
|
|
|
return (pte_t *)pud;
|
2017-09-07 07:21:01 +08:00
|
|
|
|
2017-03-09 22:24:07 +08:00
|
|
|
pmd = pmd_offset(pud, addr);
|
2020-04-21 09:13:51 +08:00
|
|
|
pmd_entry = READ_ONCE(*pmd);
|
|
|
|
if (sz != PMD_SIZE && pmd_none(pmd_entry))
|
2017-09-07 07:21:01 +08:00
|
|
|
return NULL;
|
|
|
|
/* hugepage or swap? */
|
2020-04-21 09:13:51 +08:00
|
|
|
if (pmd_huge(pmd_entry) || !pmd_present(pmd_entry))
|
2017-09-07 07:21:01 +08:00
|
|
|
return (pte_t *)pmd;
|
|
|
|
|
|
|
|
return NULL;
|
2013-04-30 15:02:03 +08:00
|
|
|
}
|
|
|
|
|
mm/hugetlb: reduce arch dependent code around follow_huge_*
Currently we have many duplicates in definitions around
follow_huge_addr(), follow_huge_pmd(), and follow_huge_pud(), so this
patch tries to remove the m. The basic idea is to put the default
implementation for these functions in mm/hugetlb.c as weak symbols
(regardless of CONFIG_ARCH_WANT_GENERAL_HUGETL B), and to implement
arch-specific code only when the arch needs it.
For follow_huge_addr(), only powerpc and ia64 have their own
implementation, and in all other architectures this function just returns
ERR_PTR(-EINVAL). So this patch sets returning ERR_PTR(-EINVAL) as
default.
As for follow_huge_(pmd|pud)(), if (pmd|pud)_huge() is implemented to
always return 0 in your architecture (like in ia64 or sparc,) it's never
called (the callsite is optimized away) no matter how implemented it is.
So in such architectures, we don't need arch-specific implementation.
In some architecture (like mips, s390 and tile,) their current
arch-specific follow_huge_(pmd|pud)() are effectively identical with the
common code, so this patch lets these architecture use the common code.
One exception is metag, where pmd_huge() could return non-zero but it
expects follow_huge_pmd() to always return NULL. This means that we need
arch-specific implementation which returns NULL. This behavior looks
strange to me (because non-zero pmd_huge() implies that the architecture
supports PMD-based hugepage, so follow_huge_pmd() can/should return some
relevant value,) but that's beyond this cleanup patch, so let's keep it.
Justification of non-trivial changes:
- in s390, follow_huge_pmd() checks !MACHINE_HAS_HPAGE at first, and this
patch removes the check. This is OK because we can assume MACHINE_HAS_HPAGE
is true when follow_huge_pmd() can be called (note that pmd_huge() has
the same check and always returns 0 for !MACHINE_HAS_HPAGE.)
- in s390 and mips, we use HPAGE_MASK instead of PMD_MASK as done in common
code. This patch forces these archs use PMD_MASK, but it's OK because
they are identical in both archs.
In s390, both of HPAGE_SHIFT and PMD_SHIFT are 20.
In mips, HPAGE_SHIFT is defined as (PAGE_SHIFT + PAGE_SHIFT - 3) and
PMD_SHIFT is define as (PAGE_SHIFT + PAGE_SHIFT + PTE_ORDER - 3), but
PTE_ORDER is always 0, so these are identical.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:25:15 +08:00
|
|
|
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These functions are overwritable if your architecture needs its own
|
|
|
|
* behavior.
|
|
|
|
*/
|
|
|
|
struct page * __weak
|
|
|
|
follow_huge_addr(struct mm_struct *mm, unsigned long address,
|
|
|
|
int write)
|
|
|
|
{
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
}
|
|
|
|
|
2017-07-07 06:38:56 +08:00
|
|
|
struct page * __weak
|
|
|
|
follow_huge_pd(struct vm_area_struct *vma,
|
|
|
|
unsigned long address, hugepd_t hpd, int flags, int pdshift)
|
|
|
|
{
|
|
|
|
WARN(1, "hugepd follow called with no support for hugepage directory format\n");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
mm/hugetlb: reduce arch dependent code around follow_huge_*
Currently we have many duplicates in definitions around
follow_huge_addr(), follow_huge_pmd(), and follow_huge_pud(), so this
patch tries to remove the m. The basic idea is to put the default
implementation for these functions in mm/hugetlb.c as weak symbols
(regardless of CONFIG_ARCH_WANT_GENERAL_HUGETL B), and to implement
arch-specific code only when the arch needs it.
For follow_huge_addr(), only powerpc and ia64 have their own
implementation, and in all other architectures this function just returns
ERR_PTR(-EINVAL). So this patch sets returning ERR_PTR(-EINVAL) as
default.
As for follow_huge_(pmd|pud)(), if (pmd|pud)_huge() is implemented to
always return 0 in your architecture (like in ia64 or sparc,) it's never
called (the callsite is optimized away) no matter how implemented it is.
So in such architectures, we don't need arch-specific implementation.
In some architecture (like mips, s390 and tile,) their current
arch-specific follow_huge_(pmd|pud)() are effectively identical with the
common code, so this patch lets these architecture use the common code.
One exception is metag, where pmd_huge() could return non-zero but it
expects follow_huge_pmd() to always return NULL. This means that we need
arch-specific implementation which returns NULL. This behavior looks
strange to me (because non-zero pmd_huge() implies that the architecture
supports PMD-based hugepage, so follow_huge_pmd() can/should return some
relevant value,) but that's beyond this cleanup patch, so let's keep it.
Justification of non-trivial changes:
- in s390, follow_huge_pmd() checks !MACHINE_HAS_HPAGE at first, and this
patch removes the check. This is OK because we can assume MACHINE_HAS_HPAGE
is true when follow_huge_pmd() can be called (note that pmd_huge() has
the same check and always returns 0 for !MACHINE_HAS_HPAGE.)
- in s390 and mips, we use HPAGE_MASK instead of PMD_MASK as done in common
code. This patch forces these archs use PMD_MASK, but it's OK because
they are identical in both archs.
In s390, both of HPAGE_SHIFT and PMD_SHIFT are 20.
In mips, HPAGE_SHIFT is defined as (PAGE_SHIFT + PAGE_SHIFT - 3) and
PMD_SHIFT is define as (PAGE_SHIFT + PAGE_SHIFT + PTE_ORDER - 3), but
PTE_ORDER is always 0, so these are identical.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:25:15 +08:00
|
|
|
struct page * __weak
|
2013-04-30 15:02:03 +08:00
|
|
|
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
|
mm/hugetlb: take page table lock in follow_huge_pmd()
We have a race condition between move_pages() and freeing hugepages, where
move_pages() calls follow_page(FOLL_GET) for hugepages internally and
tries to get its refcount without preventing concurrent freeing. This
race crashes the kernel, so this patch fixes it by moving FOLL_GET code
for hugepages into follow_huge_pmd() with taking the page table lock.
This patch intentionally removes page==NULL check after pte_page.
This is justified because pte_page() never returns NULL for any
architectures or configurations.
This patch changes the behavior of follow_huge_pmd() for tail pages and
then tail pages can be pinned/returned. So the caller must be changed to
properly handle the returned tail pages.
We could have a choice to add the similar locking to
follow_huge_(addr|pud) for consistency, but it's not necessary because
currently these functions don't support FOLL_GET flag, so let's leave it
for future development.
Here is the reproducer:
$ cat movepages.c
#include <stdio.h>
#include <stdlib.h>
#include <numaif.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
#define PS 0x1000
int main(int argc, char *argv[]) {
int i;
int nr_hp = strtol(argv[1], NULL, 0);
int nr_p = nr_hp * HPS / PS;
int ret;
void **addrs;
int *status;
int *nodes;
pid_t pid;
pid = strtol(argv[2], NULL, 0);
addrs = malloc(sizeof(char *) * nr_p + 1);
status = malloc(sizeof(char *) * nr_p + 1);
nodes = malloc(sizeof(char *) * nr_p + 1);
while (1) {
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 1;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 0;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
}
return 0;
}
$ cat hugepage.c
#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
int main(int argc, char *argv[]) {
int nr_hp = strtol(argv[1], NULL, 0);
char *p;
while (1) {
p = mmap((void *)ADDR_INPUT, nr_hp * HPS, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
if (p != (void *)ADDR_INPUT) {
perror("mmap");
break;
}
memset(p, 0, nr_hp * HPS);
munmap(p, nr_hp * HPS);
}
}
$ sysctl vm.nr_hugepages=40
$ ./hugepage 10 &
$ ./movepages 10 $(pgrep -f hugepage)
Fixes: e632a938d914 ("mm: migrate: add hugepage migration code to move_pages()")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:25:22 +08:00
|
|
|
pmd_t *pmd, int flags)
|
2013-04-30 15:02:03 +08:00
|
|
|
{
|
mm/hugetlb: take page table lock in follow_huge_pmd()
We have a race condition between move_pages() and freeing hugepages, where
move_pages() calls follow_page(FOLL_GET) for hugepages internally and
tries to get its refcount without preventing concurrent freeing. This
race crashes the kernel, so this patch fixes it by moving FOLL_GET code
for hugepages into follow_huge_pmd() with taking the page table lock.
This patch intentionally removes page==NULL check after pte_page.
This is justified because pte_page() never returns NULL for any
architectures or configurations.
This patch changes the behavior of follow_huge_pmd() for tail pages and
then tail pages can be pinned/returned. So the caller must be changed to
properly handle the returned tail pages.
We could have a choice to add the similar locking to
follow_huge_(addr|pud) for consistency, but it's not necessary because
currently these functions don't support FOLL_GET flag, so let's leave it
for future development.
Here is the reproducer:
$ cat movepages.c
#include <stdio.h>
#include <stdlib.h>
#include <numaif.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
#define PS 0x1000
int main(int argc, char *argv[]) {
int i;
int nr_hp = strtol(argv[1], NULL, 0);
int nr_p = nr_hp * HPS / PS;
int ret;
void **addrs;
int *status;
int *nodes;
pid_t pid;
pid = strtol(argv[2], NULL, 0);
addrs = malloc(sizeof(char *) * nr_p + 1);
status = malloc(sizeof(char *) * nr_p + 1);
nodes = malloc(sizeof(char *) * nr_p + 1);
while (1) {
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 1;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 0;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
}
return 0;
}
$ cat hugepage.c
#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
int main(int argc, char *argv[]) {
int nr_hp = strtol(argv[1], NULL, 0);
char *p;
while (1) {
p = mmap((void *)ADDR_INPUT, nr_hp * HPS, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
if (p != (void *)ADDR_INPUT) {
perror("mmap");
break;
}
memset(p, 0, nr_hp * HPS);
munmap(p, nr_hp * HPS);
}
}
$ sysctl vm.nr_hugepages=40
$ ./hugepage 10 &
$ ./movepages 10 $(pgrep -f hugepage)
Fixes: e632a938d914 ("mm: migrate: add hugepage migration code to move_pages()")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:25:22 +08:00
|
|
|
struct page *page = NULL;
|
|
|
|
spinlock_t *ptl;
|
2017-04-01 06:11:55 +08:00
|
|
|
pte_t pte;
|
mm/gup: track FOLL_PIN pages
Add tracking of pages that were pinned via FOLL_PIN. This tracking is
implemented via overloading of page->_refcount: pins are added by adding
GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy
indication of pinning, and it can have false positives (and that's OK).
Please see the pre-existing Documentation/core-api/pin_user_pages.rst for
details.
As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN
(typically via pin_user_pages*()) are required to ultimately free such
pages via unpin_user_page().
Please also note the limitation, discussed in pin_user_pages.rst under the
"TODO: for 1GB and larger huge pages" section. (That limitation will be
removed in a following patch.)
The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be
thought of as "FOLL_GET for DIO and/or RDMA use".
Pages that have been pinned via FOLL_PIN are identifiable via a new
function call:
bool page_maybe_dma_pinned(struct page *page);
What to do in response to encountering such a page, is left to later
patchsets. There is discussion about this in [1], [2], [3], and [4].
This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask().
[1] Some slow progress on get_user_pages() (Apr 2, 2019):
https://lwn.net/Articles/784574/
[2] DMA and get_user_pages() (LPC: Dec 12, 2018):
https://lwn.net/Articles/774411/
[3] The trouble with get_user_pages() (Apr 30, 2018):
https://lwn.net/Articles/753027/
[4] LWN kernel index: get_user_pages():
https://lwn.net/Kernel/Index/#Memory_management-get_user_pages
[jhubbard@nvidia.com: add kerneldoc]
Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com
[imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough]
Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com
[akpm@linux-foundation.org: fix put_compound_head defined but not used]
Suggested-by: Jan Kara <jack@suse.cz>
Suggested-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:29 +08:00
|
|
|
|
|
|
|
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
|
|
|
|
if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
|
|
|
|
(FOLL_PIN | FOLL_GET)))
|
|
|
|
return NULL;
|
|
|
|
|
mm/hugetlb: take page table lock in follow_huge_pmd()
We have a race condition between move_pages() and freeing hugepages, where
move_pages() calls follow_page(FOLL_GET) for hugepages internally and
tries to get its refcount without preventing concurrent freeing. This
race crashes the kernel, so this patch fixes it by moving FOLL_GET code
for hugepages into follow_huge_pmd() with taking the page table lock.
This patch intentionally removes page==NULL check after pte_page.
This is justified because pte_page() never returns NULL for any
architectures or configurations.
This patch changes the behavior of follow_huge_pmd() for tail pages and
then tail pages can be pinned/returned. So the caller must be changed to
properly handle the returned tail pages.
We could have a choice to add the similar locking to
follow_huge_(addr|pud) for consistency, but it's not necessary because
currently these functions don't support FOLL_GET flag, so let's leave it
for future development.
Here is the reproducer:
$ cat movepages.c
#include <stdio.h>
#include <stdlib.h>
#include <numaif.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
#define PS 0x1000
int main(int argc, char *argv[]) {
int i;
int nr_hp = strtol(argv[1], NULL, 0);
int nr_p = nr_hp * HPS / PS;
int ret;
void **addrs;
int *status;
int *nodes;
pid_t pid;
pid = strtol(argv[2], NULL, 0);
addrs = malloc(sizeof(char *) * nr_p + 1);
status = malloc(sizeof(char *) * nr_p + 1);
nodes = malloc(sizeof(char *) * nr_p + 1);
while (1) {
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 1;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 0;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
}
return 0;
}
$ cat hugepage.c
#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
int main(int argc, char *argv[]) {
int nr_hp = strtol(argv[1], NULL, 0);
char *p;
while (1) {
p = mmap((void *)ADDR_INPUT, nr_hp * HPS, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
if (p != (void *)ADDR_INPUT) {
perror("mmap");
break;
}
memset(p, 0, nr_hp * HPS);
munmap(p, nr_hp * HPS);
}
}
$ sysctl vm.nr_hugepages=40
$ ./hugepage 10 &
$ ./movepages 10 $(pgrep -f hugepage)
Fixes: e632a938d914 ("mm: migrate: add hugepage migration code to move_pages()")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:25:22 +08:00
|
|
|
retry:
|
|
|
|
ptl = pmd_lockptr(mm, pmd);
|
|
|
|
spin_lock(ptl);
|
|
|
|
/*
|
|
|
|
* make sure that the address range covered by this pmd is not
|
|
|
|
* unmapped from other threads.
|
|
|
|
*/
|
|
|
|
if (!pmd_huge(*pmd))
|
|
|
|
goto out;
|
2017-04-01 06:11:55 +08:00
|
|
|
pte = huge_ptep_get((pte_t *)pmd);
|
|
|
|
if (pte_present(pte)) {
|
2015-04-15 06:42:30 +08:00
|
|
|
page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
|
mm/gup: track FOLL_PIN pages
Add tracking of pages that were pinned via FOLL_PIN. This tracking is
implemented via overloading of page->_refcount: pins are added by adding
GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy
indication of pinning, and it can have false positives (and that's OK).
Please see the pre-existing Documentation/core-api/pin_user_pages.rst for
details.
As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN
(typically via pin_user_pages*()) are required to ultimately free such
pages via unpin_user_page().
Please also note the limitation, discussed in pin_user_pages.rst under the
"TODO: for 1GB and larger huge pages" section. (That limitation will be
removed in a following patch.)
The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be
thought of as "FOLL_GET for DIO and/or RDMA use".
Pages that have been pinned via FOLL_PIN are identifiable via a new
function call:
bool page_maybe_dma_pinned(struct page *page);
What to do in response to encountering such a page, is left to later
patchsets. There is discussion about this in [1], [2], [3], and [4].
This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask().
[1] Some slow progress on get_user_pages() (Apr 2, 2019):
https://lwn.net/Articles/784574/
[2] DMA and get_user_pages() (LPC: Dec 12, 2018):
https://lwn.net/Articles/774411/
[3] The trouble with get_user_pages() (Apr 30, 2018):
https://lwn.net/Articles/753027/
[4] LWN kernel index: get_user_pages():
https://lwn.net/Kernel/Index/#Memory_management-get_user_pages
[jhubbard@nvidia.com: add kerneldoc]
Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com
[imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough]
Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com
[akpm@linux-foundation.org: fix put_compound_head defined but not used]
Suggested-by: Jan Kara <jack@suse.cz>
Suggested-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:29 +08:00
|
|
|
/*
|
|
|
|
* try_grab_page() should always succeed here, because: a) we
|
|
|
|
* hold the pmd (ptl) lock, and b) we've just checked that the
|
|
|
|
* huge pmd (head) page is present in the page tables. The ptl
|
|
|
|
* prevents the head page and tail pages from being rearranged
|
|
|
|
* in any way. So this page must be available at this point,
|
|
|
|
* unless the page refcount overflowed:
|
|
|
|
*/
|
|
|
|
if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
|
|
|
|
page = NULL;
|
|
|
|
goto out;
|
|
|
|
}
|
mm/hugetlb: take page table lock in follow_huge_pmd()
We have a race condition between move_pages() and freeing hugepages, where
move_pages() calls follow_page(FOLL_GET) for hugepages internally and
tries to get its refcount without preventing concurrent freeing. This
race crashes the kernel, so this patch fixes it by moving FOLL_GET code
for hugepages into follow_huge_pmd() with taking the page table lock.
This patch intentionally removes page==NULL check after pte_page.
This is justified because pte_page() never returns NULL for any
architectures or configurations.
This patch changes the behavior of follow_huge_pmd() for tail pages and
then tail pages can be pinned/returned. So the caller must be changed to
properly handle the returned tail pages.
We could have a choice to add the similar locking to
follow_huge_(addr|pud) for consistency, but it's not necessary because
currently these functions don't support FOLL_GET flag, so let's leave it
for future development.
Here is the reproducer:
$ cat movepages.c
#include <stdio.h>
#include <stdlib.h>
#include <numaif.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
#define PS 0x1000
int main(int argc, char *argv[]) {
int i;
int nr_hp = strtol(argv[1], NULL, 0);
int nr_p = nr_hp * HPS / PS;
int ret;
void **addrs;
int *status;
int *nodes;
pid_t pid;
pid = strtol(argv[2], NULL, 0);
addrs = malloc(sizeof(char *) * nr_p + 1);
status = malloc(sizeof(char *) * nr_p + 1);
nodes = malloc(sizeof(char *) * nr_p + 1);
while (1) {
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 1;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 0;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
}
return 0;
}
$ cat hugepage.c
#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
int main(int argc, char *argv[]) {
int nr_hp = strtol(argv[1], NULL, 0);
char *p;
while (1) {
p = mmap((void *)ADDR_INPUT, nr_hp * HPS, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
if (p != (void *)ADDR_INPUT) {
perror("mmap");
break;
}
memset(p, 0, nr_hp * HPS);
munmap(p, nr_hp * HPS);
}
}
$ sysctl vm.nr_hugepages=40
$ ./hugepage 10 &
$ ./movepages 10 $(pgrep -f hugepage)
Fixes: e632a938d914 ("mm: migrate: add hugepage migration code to move_pages()")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:25:22 +08:00
|
|
|
} else {
|
2017-04-01 06:11:55 +08:00
|
|
|
if (is_hugetlb_entry_migration(pte)) {
|
mm/hugetlb: take page table lock in follow_huge_pmd()
We have a race condition between move_pages() and freeing hugepages, where
move_pages() calls follow_page(FOLL_GET) for hugepages internally and
tries to get its refcount without preventing concurrent freeing. This
race crashes the kernel, so this patch fixes it by moving FOLL_GET code
for hugepages into follow_huge_pmd() with taking the page table lock.
This patch intentionally removes page==NULL check after pte_page.
This is justified because pte_page() never returns NULL for any
architectures or configurations.
This patch changes the behavior of follow_huge_pmd() for tail pages and
then tail pages can be pinned/returned. So the caller must be changed to
properly handle the returned tail pages.
We could have a choice to add the similar locking to
follow_huge_(addr|pud) for consistency, but it's not necessary because
currently these functions don't support FOLL_GET flag, so let's leave it
for future development.
Here is the reproducer:
$ cat movepages.c
#include <stdio.h>
#include <stdlib.h>
#include <numaif.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
#define PS 0x1000
int main(int argc, char *argv[]) {
int i;
int nr_hp = strtol(argv[1], NULL, 0);
int nr_p = nr_hp * HPS / PS;
int ret;
void **addrs;
int *status;
int *nodes;
pid_t pid;
pid = strtol(argv[2], NULL, 0);
addrs = malloc(sizeof(char *) * nr_p + 1);
status = malloc(sizeof(char *) * nr_p + 1);
nodes = malloc(sizeof(char *) * nr_p + 1);
while (1) {
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 1;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 0;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
}
return 0;
}
$ cat hugepage.c
#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
int main(int argc, char *argv[]) {
int nr_hp = strtol(argv[1], NULL, 0);
char *p;
while (1) {
p = mmap((void *)ADDR_INPUT, nr_hp * HPS, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
if (p != (void *)ADDR_INPUT) {
perror("mmap");
break;
}
memset(p, 0, nr_hp * HPS);
munmap(p, nr_hp * HPS);
}
}
$ sysctl vm.nr_hugepages=40
$ ./hugepage 10 &
$ ./movepages 10 $(pgrep -f hugepage)
Fixes: e632a938d914 ("mm: migrate: add hugepage migration code to move_pages()")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:25:22 +08:00
|
|
|
spin_unlock(ptl);
|
|
|
|
__migration_entry_wait(mm, (pte_t *)pmd, ptl);
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* hwpoisoned entry is treated as no_page_table in
|
|
|
|
* follow_page_mask().
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
spin_unlock(ptl);
|
2013-04-30 15:02:03 +08:00
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
mm/hugetlb: reduce arch dependent code around follow_huge_*
Currently we have many duplicates in definitions around
follow_huge_addr(), follow_huge_pmd(), and follow_huge_pud(), so this
patch tries to remove the m. The basic idea is to put the default
implementation for these functions in mm/hugetlb.c as weak symbols
(regardless of CONFIG_ARCH_WANT_GENERAL_HUGETL B), and to implement
arch-specific code only when the arch needs it.
For follow_huge_addr(), only powerpc and ia64 have their own
implementation, and in all other architectures this function just returns
ERR_PTR(-EINVAL). So this patch sets returning ERR_PTR(-EINVAL) as
default.
As for follow_huge_(pmd|pud)(), if (pmd|pud)_huge() is implemented to
always return 0 in your architecture (like in ia64 or sparc,) it's never
called (the callsite is optimized away) no matter how implemented it is.
So in such architectures, we don't need arch-specific implementation.
In some architecture (like mips, s390 and tile,) their current
arch-specific follow_huge_(pmd|pud)() are effectively identical with the
common code, so this patch lets these architecture use the common code.
One exception is metag, where pmd_huge() could return non-zero but it
expects follow_huge_pmd() to always return NULL. This means that we need
arch-specific implementation which returns NULL. This behavior looks
strange to me (because non-zero pmd_huge() implies that the architecture
supports PMD-based hugepage, so follow_huge_pmd() can/should return some
relevant value,) but that's beyond this cleanup patch, so let's keep it.
Justification of non-trivial changes:
- in s390, follow_huge_pmd() checks !MACHINE_HAS_HPAGE at first, and this
patch removes the check. This is OK because we can assume MACHINE_HAS_HPAGE
is true when follow_huge_pmd() can be called (note that pmd_huge() has
the same check and always returns 0 for !MACHINE_HAS_HPAGE.)
- in s390 and mips, we use HPAGE_MASK instead of PMD_MASK as done in common
code. This patch forces these archs use PMD_MASK, but it's OK because
they are identical in both archs.
In s390, both of HPAGE_SHIFT and PMD_SHIFT are 20.
In mips, HPAGE_SHIFT is defined as (PAGE_SHIFT + PAGE_SHIFT - 3) and
PMD_SHIFT is define as (PAGE_SHIFT + PAGE_SHIFT + PTE_ORDER - 3), but
PTE_ORDER is always 0, so these are identical.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:25:15 +08:00
|
|
|
struct page * __weak
|
2013-04-30 15:02:03 +08:00
|
|
|
follow_huge_pud(struct mm_struct *mm, unsigned long address,
|
mm/hugetlb: take page table lock in follow_huge_pmd()
We have a race condition between move_pages() and freeing hugepages, where
move_pages() calls follow_page(FOLL_GET) for hugepages internally and
tries to get its refcount without preventing concurrent freeing. This
race crashes the kernel, so this patch fixes it by moving FOLL_GET code
for hugepages into follow_huge_pmd() with taking the page table lock.
This patch intentionally removes page==NULL check after pte_page.
This is justified because pte_page() never returns NULL for any
architectures or configurations.
This patch changes the behavior of follow_huge_pmd() for tail pages and
then tail pages can be pinned/returned. So the caller must be changed to
properly handle the returned tail pages.
We could have a choice to add the similar locking to
follow_huge_(addr|pud) for consistency, but it's not necessary because
currently these functions don't support FOLL_GET flag, so let's leave it
for future development.
Here is the reproducer:
$ cat movepages.c
#include <stdio.h>
#include <stdlib.h>
#include <numaif.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
#define PS 0x1000
int main(int argc, char *argv[]) {
int i;
int nr_hp = strtol(argv[1], NULL, 0);
int nr_p = nr_hp * HPS / PS;
int ret;
void **addrs;
int *status;
int *nodes;
pid_t pid;
pid = strtol(argv[2], NULL, 0);
addrs = malloc(sizeof(char *) * nr_p + 1);
status = malloc(sizeof(char *) * nr_p + 1);
nodes = malloc(sizeof(char *) * nr_p + 1);
while (1) {
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 1;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 0;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
}
return 0;
}
$ cat hugepage.c
#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
int main(int argc, char *argv[]) {
int nr_hp = strtol(argv[1], NULL, 0);
char *p;
while (1) {
p = mmap((void *)ADDR_INPUT, nr_hp * HPS, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
if (p != (void *)ADDR_INPUT) {
perror("mmap");
break;
}
memset(p, 0, nr_hp * HPS);
munmap(p, nr_hp * HPS);
}
}
$ sysctl vm.nr_hugepages=40
$ ./hugepage 10 &
$ ./movepages 10 $(pgrep -f hugepage)
Fixes: e632a938d914 ("mm: migrate: add hugepage migration code to move_pages()")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:25:22 +08:00
|
|
|
pud_t *pud, int flags)
|
2013-04-30 15:02:03 +08:00
|
|
|
{
|
mm/gup: track FOLL_PIN pages
Add tracking of pages that were pinned via FOLL_PIN. This tracking is
implemented via overloading of page->_refcount: pins are added by adding
GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy
indication of pinning, and it can have false positives (and that's OK).
Please see the pre-existing Documentation/core-api/pin_user_pages.rst for
details.
As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN
(typically via pin_user_pages*()) are required to ultimately free such
pages via unpin_user_page().
Please also note the limitation, discussed in pin_user_pages.rst under the
"TODO: for 1GB and larger huge pages" section. (That limitation will be
removed in a following patch.)
The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be
thought of as "FOLL_GET for DIO and/or RDMA use".
Pages that have been pinned via FOLL_PIN are identifiable via a new
function call:
bool page_maybe_dma_pinned(struct page *page);
What to do in response to encountering such a page, is left to later
patchsets. There is discussion about this in [1], [2], [3], and [4].
This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask().
[1] Some slow progress on get_user_pages() (Apr 2, 2019):
https://lwn.net/Articles/784574/
[2] DMA and get_user_pages() (LPC: Dec 12, 2018):
https://lwn.net/Articles/774411/
[3] The trouble with get_user_pages() (Apr 30, 2018):
https://lwn.net/Articles/753027/
[4] LWN kernel index: get_user_pages():
https://lwn.net/Kernel/Index/#Memory_management-get_user_pages
[jhubbard@nvidia.com: add kerneldoc]
Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com
[imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough]
Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com
[akpm@linux-foundation.org: fix put_compound_head defined but not used]
Suggested-by: Jan Kara <jack@suse.cz>
Suggested-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:29 +08:00
|
|
|
if (flags & (FOLL_GET | FOLL_PIN))
|
mm/hugetlb: take page table lock in follow_huge_pmd()
We have a race condition between move_pages() and freeing hugepages, where
move_pages() calls follow_page(FOLL_GET) for hugepages internally and
tries to get its refcount without preventing concurrent freeing. This
race crashes the kernel, so this patch fixes it by moving FOLL_GET code
for hugepages into follow_huge_pmd() with taking the page table lock.
This patch intentionally removes page==NULL check after pte_page.
This is justified because pte_page() never returns NULL for any
architectures or configurations.
This patch changes the behavior of follow_huge_pmd() for tail pages and
then tail pages can be pinned/returned. So the caller must be changed to
properly handle the returned tail pages.
We could have a choice to add the similar locking to
follow_huge_(addr|pud) for consistency, but it's not necessary because
currently these functions don't support FOLL_GET flag, so let's leave it
for future development.
Here is the reproducer:
$ cat movepages.c
#include <stdio.h>
#include <stdlib.h>
#include <numaif.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
#define PS 0x1000
int main(int argc, char *argv[]) {
int i;
int nr_hp = strtol(argv[1], NULL, 0);
int nr_p = nr_hp * HPS / PS;
int ret;
void **addrs;
int *status;
int *nodes;
pid_t pid;
pid = strtol(argv[2], NULL, 0);
addrs = malloc(sizeof(char *) * nr_p + 1);
status = malloc(sizeof(char *) * nr_p + 1);
nodes = malloc(sizeof(char *) * nr_p + 1);
while (1) {
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 1;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 0;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
}
return 0;
}
$ cat hugepage.c
#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
int main(int argc, char *argv[]) {
int nr_hp = strtol(argv[1], NULL, 0);
char *p;
while (1) {
p = mmap((void *)ADDR_INPUT, nr_hp * HPS, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
if (p != (void *)ADDR_INPUT) {
perror("mmap");
break;
}
memset(p, 0, nr_hp * HPS);
munmap(p, nr_hp * HPS);
}
}
$ sysctl vm.nr_hugepages=40
$ ./hugepage 10 &
$ ./movepages 10 $(pgrep -f hugepage)
Fixes: e632a938d914 ("mm: migrate: add hugepage migration code to move_pages()")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:25:22 +08:00
|
|
|
return NULL;
|
2013-04-30 15:02:03 +08:00
|
|
|
|
mm/hugetlb: take page table lock in follow_huge_pmd()
We have a race condition between move_pages() and freeing hugepages, where
move_pages() calls follow_page(FOLL_GET) for hugepages internally and
tries to get its refcount without preventing concurrent freeing. This
race crashes the kernel, so this patch fixes it by moving FOLL_GET code
for hugepages into follow_huge_pmd() with taking the page table lock.
This patch intentionally removes page==NULL check after pte_page.
This is justified because pte_page() never returns NULL for any
architectures or configurations.
This patch changes the behavior of follow_huge_pmd() for tail pages and
then tail pages can be pinned/returned. So the caller must be changed to
properly handle the returned tail pages.
We could have a choice to add the similar locking to
follow_huge_(addr|pud) for consistency, but it's not necessary because
currently these functions don't support FOLL_GET flag, so let's leave it
for future development.
Here is the reproducer:
$ cat movepages.c
#include <stdio.h>
#include <stdlib.h>
#include <numaif.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
#define PS 0x1000
int main(int argc, char *argv[]) {
int i;
int nr_hp = strtol(argv[1], NULL, 0);
int nr_p = nr_hp * HPS / PS;
int ret;
void **addrs;
int *status;
int *nodes;
pid_t pid;
pid = strtol(argv[2], NULL, 0);
addrs = malloc(sizeof(char *) * nr_p + 1);
status = malloc(sizeof(char *) * nr_p + 1);
nodes = malloc(sizeof(char *) * nr_p + 1);
while (1) {
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 1;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 0;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
}
return 0;
}
$ cat hugepage.c
#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
int main(int argc, char *argv[]) {
int nr_hp = strtol(argv[1], NULL, 0);
char *p;
while (1) {
p = mmap((void *)ADDR_INPUT, nr_hp * HPS, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
if (p != (void *)ADDR_INPUT) {
perror("mmap");
break;
}
memset(p, 0, nr_hp * HPS);
munmap(p, nr_hp * HPS);
}
}
$ sysctl vm.nr_hugepages=40
$ ./hugepage 10 &
$ ./movepages 10 $(pgrep -f hugepage)
Fixes: e632a938d914 ("mm: migrate: add hugepage migration code to move_pages()")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 07:25:22 +08:00
|
|
|
return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
|
2013-04-30 15:02:03 +08:00
|
|
|
}
|
|
|
|
|
2017-07-07 06:38:50 +08:00
|
|
|
struct page * __weak
|
|
|
|
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
|
|
|
|
{
|
mm/gup: track FOLL_PIN pages
Add tracking of pages that were pinned via FOLL_PIN. This tracking is
implemented via overloading of page->_refcount: pins are added by adding
GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy
indication of pinning, and it can have false positives (and that's OK).
Please see the pre-existing Documentation/core-api/pin_user_pages.rst for
details.
As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN
(typically via pin_user_pages*()) are required to ultimately free such
pages via unpin_user_page().
Please also note the limitation, discussed in pin_user_pages.rst under the
"TODO: for 1GB and larger huge pages" section. (That limitation will be
removed in a following patch.)
The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be
thought of as "FOLL_GET for DIO and/or RDMA use".
Pages that have been pinned via FOLL_PIN are identifiable via a new
function call:
bool page_maybe_dma_pinned(struct page *page);
What to do in response to encountering such a page, is left to later
patchsets. There is discussion about this in [1], [2], [3], and [4].
This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask().
[1] Some slow progress on get_user_pages() (Apr 2, 2019):
https://lwn.net/Articles/784574/
[2] DMA and get_user_pages() (LPC: Dec 12, 2018):
https://lwn.net/Articles/774411/
[3] The trouble with get_user_pages() (Apr 30, 2018):
https://lwn.net/Articles/753027/
[4] LWN kernel index: get_user_pages():
https://lwn.net/Kernel/Index/#Memory_management-get_user_pages
[jhubbard@nvidia.com: add kerneldoc]
Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com
[imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough]
Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com
[akpm@linux-foundation.org: fix put_compound_head defined but not used]
Suggested-by: Jan Kara <jack@suse.cz>
Suggested-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:29 +08:00
|
|
|
if (flags & (FOLL_GET | FOLL_PIN))
|
2017-07-07 06:38:50 +08:00
|
|
|
return NULL;
|
|
|
|
|
|
|
|
return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
|
|
|
|
}
|
|
|
|
|
mm: migrate: make core migration code aware of hugepage
Currently hugepage migration is available only for soft offlining, but
it's also useful for some other users of page migration (clearly because
users of hugepage can enjoy the benefit of mempolicy and memory hotplug.)
So this patchset tries to extend such users to support hugepage migration.
The target of this patchset is to enable hugepage migration for NUMA
related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and
memory hotplug.
This patchset does not add hugepage migration for memory compaction,
because users of memory compaction mainly expect to construct thp by
arranging raw pages, and there's little or no need to compact hugepages.
CMA, another user of page migration, can have benefit from hugepage
migration, but is not enabled to support it for now (just because of lack
of testing and expertise in CMA.)
Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in
x86_64, or hugepages in architectures like ia64) is not enabled for now
(again, because of lack of testing.)
As for how these are achived, I extended the API (migrate_pages()) to
handle hugepage (with patch 1 and 2) and adjusted code of each caller to
check and collect movable hugepages (with patch 3-7). Remaining 2 patches
are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is
about making sure that we only migrate pmd-based hugepages. And patch 9
is about choosing appropriate zone for hugepage allocation.
My test is mainly functional one, simply kicking hugepage migration via
each entry point and confirm that migration is done correctly. Test code
is available here:
git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git
And I always run libhugetlbfs test when changing hugetlbfs's code. With
this patchset, no regression was found in the test.
This patch (of 9):
Before enabling each user of page migration to support hugepage,
this patch enables the list of pages for migration to link not only
LRU pages, but also hugepages. As a result, putback_movable_pages()
and migrate_pages() can handle both of LRU pages and hugepages.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:21:59 +08:00
|
|
|
bool isolate_huge_page(struct page *page, struct list_head *list)
|
|
|
|
{
|
2015-04-16 07:14:38 +08:00
|
|
|
bool ret = true;
|
|
|
|
|
2014-01-24 07:52:54 +08:00
|
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
mm: migrate: make core migration code aware of hugepage
Currently hugepage migration is available only for soft offlining, but
it's also useful for some other users of page migration (clearly because
users of hugepage can enjoy the benefit of mempolicy and memory hotplug.)
So this patchset tries to extend such users to support hugepage migration.
The target of this patchset is to enable hugepage migration for NUMA
related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and
memory hotplug.
This patchset does not add hugepage migration for memory compaction,
because users of memory compaction mainly expect to construct thp by
arranging raw pages, and there's little or no need to compact hugepages.
CMA, another user of page migration, can have benefit from hugepage
migration, but is not enabled to support it for now (just because of lack
of testing and expertise in CMA.)
Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in
x86_64, or hugepages in architectures like ia64) is not enabled for now
(again, because of lack of testing.)
As for how these are achived, I extended the API (migrate_pages()) to
handle hugepage (with patch 1 and 2) and adjusted code of each caller to
check and collect movable hugepages (with patch 3-7). Remaining 2 patches
are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is
about making sure that we only migrate pmd-based hugepages. And patch 9
is about choosing appropriate zone for hugepage allocation.
My test is mainly functional one, simply kicking hugepage migration via
each entry point and confirm that migration is done correctly. Test code
is available here:
git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git
And I always run libhugetlbfs test when changing hugetlbfs's code. With
this patchset, no regression was found in the test.
This patch (of 9):
Before enabling each user of page migration to support hugepage,
this patch enables the list of pages for migration to link not only
LRU pages, but also hugepages. As a result, putback_movable_pages()
and migrate_pages() can handle both of LRU pages and hugepages.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:21:59 +08:00
|
|
|
spin_lock(&hugetlb_lock);
|
2015-04-16 07:14:38 +08:00
|
|
|
if (!page_huge_active(page) || !get_page_unless_zero(page)) {
|
|
|
|
ret = false;
|
|
|
|
goto unlock;
|
|
|
|
}
|
|
|
|
clear_page_huge_active(page);
|
mm: migrate: make core migration code aware of hugepage
Currently hugepage migration is available only for soft offlining, but
it's also useful for some other users of page migration (clearly because
users of hugepage can enjoy the benefit of mempolicy and memory hotplug.)
So this patchset tries to extend such users to support hugepage migration.
The target of this patchset is to enable hugepage migration for NUMA
related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and
memory hotplug.
This patchset does not add hugepage migration for memory compaction,
because users of memory compaction mainly expect to construct thp by
arranging raw pages, and there's little or no need to compact hugepages.
CMA, another user of page migration, can have benefit from hugepage
migration, but is not enabled to support it for now (just because of lack
of testing and expertise in CMA.)
Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in
x86_64, or hugepages in architectures like ia64) is not enabled for now
(again, because of lack of testing.)
As for how these are achived, I extended the API (migrate_pages()) to
handle hugepage (with patch 1 and 2) and adjusted code of each caller to
check and collect movable hugepages (with patch 3-7). Remaining 2 patches
are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is
about making sure that we only migrate pmd-based hugepages. And patch 9
is about choosing appropriate zone for hugepage allocation.
My test is mainly functional one, simply kicking hugepage migration via
each entry point and confirm that migration is done correctly. Test code
is available here:
git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git
And I always run libhugetlbfs test when changing hugetlbfs's code. With
this patchset, no regression was found in the test.
This patch (of 9):
Before enabling each user of page migration to support hugepage,
this patch enables the list of pages for migration to link not only
LRU pages, but also hugepages. As a result, putback_movable_pages()
and migrate_pages() can handle both of LRU pages and hugepages.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:21:59 +08:00
|
|
|
list_move_tail(&page->lru, list);
|
2015-04-16 07:14:38 +08:00
|
|
|
unlock:
|
mm: migrate: make core migration code aware of hugepage
Currently hugepage migration is available only for soft offlining, but
it's also useful for some other users of page migration (clearly because
users of hugepage can enjoy the benefit of mempolicy and memory hotplug.)
So this patchset tries to extend such users to support hugepage migration.
The target of this patchset is to enable hugepage migration for NUMA
related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and
memory hotplug.
This patchset does not add hugepage migration for memory compaction,
because users of memory compaction mainly expect to construct thp by
arranging raw pages, and there's little or no need to compact hugepages.
CMA, another user of page migration, can have benefit from hugepage
migration, but is not enabled to support it for now (just because of lack
of testing and expertise in CMA.)
Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in
x86_64, or hugepages in architectures like ia64) is not enabled for now
(again, because of lack of testing.)
As for how these are achived, I extended the API (migrate_pages()) to
handle hugepage (with patch 1 and 2) and adjusted code of each caller to
check and collect movable hugepages (with patch 3-7). Remaining 2 patches
are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is
about making sure that we only migrate pmd-based hugepages. And patch 9
is about choosing appropriate zone for hugepage allocation.
My test is mainly functional one, simply kicking hugepage migration via
each entry point and confirm that migration is done correctly. Test code
is available here:
git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git
And I always run libhugetlbfs test when changing hugetlbfs's code. With
this patchset, no regression was found in the test.
This patch (of 9):
Before enabling each user of page migration to support hugepage,
this patch enables the list of pages for migration to link not only
LRU pages, but also hugepages. As a result, putback_movable_pages()
and migrate_pages() can handle both of LRU pages and hugepages.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:21:59 +08:00
|
|
|
spin_unlock(&hugetlb_lock);
|
2015-04-16 07:14:38 +08:00
|
|
|
return ret;
|
mm: migrate: make core migration code aware of hugepage
Currently hugepage migration is available only for soft offlining, but
it's also useful for some other users of page migration (clearly because
users of hugepage can enjoy the benefit of mempolicy and memory hotplug.)
So this patchset tries to extend such users to support hugepage migration.
The target of this patchset is to enable hugepage migration for NUMA
related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and
memory hotplug.
This patchset does not add hugepage migration for memory compaction,
because users of memory compaction mainly expect to construct thp by
arranging raw pages, and there's little or no need to compact hugepages.
CMA, another user of page migration, can have benefit from hugepage
migration, but is not enabled to support it for now (just because of lack
of testing and expertise in CMA.)
Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in
x86_64, or hugepages in architectures like ia64) is not enabled for now
(again, because of lack of testing.)
As for how these are achived, I extended the API (migrate_pages()) to
handle hugepage (with patch 1 and 2) and adjusted code of each caller to
check and collect movable hugepages (with patch 3-7). Remaining 2 patches
are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is
about making sure that we only migrate pmd-based hugepages. And patch 9
is about choosing appropriate zone for hugepage allocation.
My test is mainly functional one, simply kicking hugepage migration via
each entry point and confirm that migration is done correctly. Test code
is available here:
git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git
And I always run libhugetlbfs test when changing hugetlbfs's code. With
this patchset, no regression was found in the test.
This patch (of 9):
Before enabling each user of page migration to support hugepage,
this patch enables the list of pages for migration to link not only
LRU pages, but also hugepages. As a result, putback_movable_pages()
and migrate_pages() can handle both of LRU pages and hugepages.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:21:59 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void putback_active_hugepage(struct page *page)
|
|
|
|
{
|
2014-01-24 07:52:54 +08:00
|
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
mm: migrate: make core migration code aware of hugepage
Currently hugepage migration is available only for soft offlining, but
it's also useful for some other users of page migration (clearly because
users of hugepage can enjoy the benefit of mempolicy and memory hotplug.)
So this patchset tries to extend such users to support hugepage migration.
The target of this patchset is to enable hugepage migration for NUMA
related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and
memory hotplug.
This patchset does not add hugepage migration for memory compaction,
because users of memory compaction mainly expect to construct thp by
arranging raw pages, and there's little or no need to compact hugepages.
CMA, another user of page migration, can have benefit from hugepage
migration, but is not enabled to support it for now (just because of lack
of testing and expertise in CMA.)
Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in
x86_64, or hugepages in architectures like ia64) is not enabled for now
(again, because of lack of testing.)
As for how these are achived, I extended the API (migrate_pages()) to
handle hugepage (with patch 1 and 2) and adjusted code of each caller to
check and collect movable hugepages (with patch 3-7). Remaining 2 patches
are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is
about making sure that we only migrate pmd-based hugepages. And patch 9
is about choosing appropriate zone for hugepage allocation.
My test is mainly functional one, simply kicking hugepage migration via
each entry point and confirm that migration is done correctly. Test code
is available here:
git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git
And I always run libhugetlbfs test when changing hugetlbfs's code. With
this patchset, no regression was found in the test.
This patch (of 9):
Before enabling each user of page migration to support hugepage,
this patch enables the list of pages for migration to link not only
LRU pages, but also hugepages. As a result, putback_movable_pages()
and migrate_pages() can handle both of LRU pages and hugepages.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:21:59 +08:00
|
|
|
spin_lock(&hugetlb_lock);
|
2015-04-16 07:14:38 +08:00
|
|
|
set_page_huge_active(page);
|
mm: migrate: make core migration code aware of hugepage
Currently hugepage migration is available only for soft offlining, but
it's also useful for some other users of page migration (clearly because
users of hugepage can enjoy the benefit of mempolicy and memory hotplug.)
So this patchset tries to extend such users to support hugepage migration.
The target of this patchset is to enable hugepage migration for NUMA
related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and
memory hotplug.
This patchset does not add hugepage migration for memory compaction,
because users of memory compaction mainly expect to construct thp by
arranging raw pages, and there's little or no need to compact hugepages.
CMA, another user of page migration, can have benefit from hugepage
migration, but is not enabled to support it for now (just because of lack
of testing and expertise in CMA.)
Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in
x86_64, or hugepages in architectures like ia64) is not enabled for now
(again, because of lack of testing.)
As for how these are achived, I extended the API (migrate_pages()) to
handle hugepage (with patch 1 and 2) and adjusted code of each caller to
check and collect movable hugepages (with patch 3-7). Remaining 2 patches
are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is
about making sure that we only migrate pmd-based hugepages. And patch 9
is about choosing appropriate zone for hugepage allocation.
My test is mainly functional one, simply kicking hugepage migration via
each entry point and confirm that migration is done correctly. Test code
is available here:
git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git
And I always run libhugetlbfs test when changing hugetlbfs's code. With
this patchset, no regression was found in the test.
This patch (of 9):
Before enabling each user of page migration to support hugepage,
this patch enables the list of pages for migration to link not only
LRU pages, but also hugepages. As a result, putback_movable_pages()
and migrate_pages() can handle both of LRU pages and hugepages.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:21:59 +08:00
|
|
|
list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
put_page(page);
|
|
|
|
}
|
2018-02-01 08:20:48 +08:00
|
|
|
|
|
|
|
void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
|
|
|
|
{
|
|
|
|
struct hstate *h = page_hstate(oldpage);
|
|
|
|
|
|
|
|
hugetlb_cgroup_migrate(oldpage, newpage);
|
|
|
|
set_page_owner_migrate_reason(newpage, reason);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* transfer temporary state of the new huge page. This is
|
|
|
|
* reverse to other transitions because the newpage is going to
|
|
|
|
* be final while the old one will be freed so it takes over
|
|
|
|
* the temporary status.
|
|
|
|
*
|
|
|
|
* Also note that we have to transfer the per-node surplus state
|
|
|
|
* here as well otherwise the global surplus count will not match
|
|
|
|
* the per-node's.
|
|
|
|
*/
|
|
|
|
if (PageHugeTemporary(newpage)) {
|
|
|
|
int old_nid = page_to_nid(oldpage);
|
|
|
|
int new_nid = page_to_nid(newpage);
|
|
|
|
|
|
|
|
SetPageHugeTemporary(oldpage);
|
|
|
|
ClearPageHugeTemporary(newpage);
|
|
|
|
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
if (h->surplus_huge_pages_node[old_nid]) {
|
|
|
|
h->surplus_huge_pages_node[old_nid]--;
|
|
|
|
h->surplus_huge_pages_node[new_nid]++;
|
|
|
|
}
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
}
|
|
|
|
}
|
mm: hugetlb: optionally allocate gigantic hugepages using cma
Commit 944d9fec8d7a ("hugetlb: add support for gigantic page allocation
at runtime") has added the run-time allocation of gigantic pages.
However it actually works only at early stages of the system loading,
when the majority of memory is free. After some time the memory gets
fragmented by non-movable pages, so the chances to find a contiguous 1GB
block are getting close to zero. Even dropping caches manually doesn't
help a lot.
At large scale rebooting servers in order to allocate gigantic hugepages
is quite expensive and complex. At the same time keeping some constant
percentage of memory in reserved hugepages even if the workload isn't
using it is a big waste: not all workloads can benefit from using 1 GB
pages.
The following solution can solve the problem:
1) On boot time a dedicated cma area* is reserved. The size is passed
as a kernel argument.
2) Run-time allocations of gigantic hugepages are performed using the
cma allocator and the dedicated cma area
In this case gigantic hugepages can be allocated successfully with a
high probability, however the memory isn't completely wasted if nobody
is using 1GB hugepages: it can be used for pagecache, anon memory, THPs,
etc.
* On a multi-node machine a per-node cma area is allocated on each node.
Following gigantic hugetlb allocation are using the first available
numa node if the mask isn't specified by a user.
Usage:
1) configure the kernel to allocate a cma area for hugetlb allocations:
pass hugetlb_cma=10G as a kernel argument
2) allocate hugetlb pages as usual, e.g.
echo 10 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
If the option isn't enabled or the allocation of the cma area failed,
the current behavior of the system is preserved.
x86 and arm-64 are covered by this patch, other architectures can be
trivially added later.
The patch contains clean-ups and fixes proposed and implemented by Aslan
Bakirov and Randy Dunlap. It also contains ideas and suggestions
proposed by Rik van Riel, Michal Hocko and Mike Kravetz. Thanks!
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Andreas Schaufler <andreas.schaufler@gmx.de>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Aslan Bakirov <aslan@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200407163840.92263-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-11 05:32:45 +08:00
|
|
|
|
|
|
|
#ifdef CONFIG_CMA
|
|
|
|
static unsigned long hugetlb_cma_size __initdata;
|
|
|
|
static bool cma_reserve_called __initdata;
|
|
|
|
|
|
|
|
static int __init cmdline_parse_hugetlb_cma(char *p)
|
|
|
|
{
|
|
|
|
hugetlb_cma_size = memparse(p, &p);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
|
|
|
|
|
|
|
|
void __init hugetlb_cma_reserve(int order)
|
|
|
|
{
|
|
|
|
unsigned long size, reserved, per_node;
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
cma_reserve_called = true;
|
|
|
|
|
|
|
|
if (!hugetlb_cma_size)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (hugetlb_cma_size < (PAGE_SIZE << order)) {
|
|
|
|
pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
|
|
|
|
(PAGE_SIZE << order) / SZ_1M);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If 3 GB area is requested on a machine with 4 numa nodes,
|
|
|
|
* let's allocate 1 GB on first three nodes and ignore the last one.
|
|
|
|
*/
|
|
|
|
per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
|
|
|
|
pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
|
|
|
|
hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
|
|
|
|
|
|
|
|
reserved = 0;
|
|
|
|
for_each_node_state(nid, N_ONLINE) {
|
|
|
|
int res;
|
|
|
|
|
|
|
|
size = min(per_node, hugetlb_cma_size - reserved);
|
|
|
|
size = round_up(size, PAGE_SIZE << order);
|
|
|
|
|
|
|
|
res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
|
|
|
|
0, false, "hugetlb",
|
|
|
|
&hugetlb_cma[nid], nid);
|
|
|
|
if (res) {
|
|
|
|
pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
|
|
|
|
res, nid);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
reserved += size;
|
|
|
|
pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
|
|
|
|
size / SZ_1M, nid);
|
|
|
|
|
|
|
|
if (reserved >= hugetlb_cma_size)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void __init hugetlb_cma_check(void)
|
|
|
|
{
|
|
|
|
if (!hugetlb_cma_size || cma_reserve_called)
|
|
|
|
return;
|
|
|
|
|
|
|
|
pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* CONFIG_CMA */
|