linux-sg2042/fs/f2fs/verity.c

248 lines
6.6 KiB
C
Raw Normal View History

f2fs: add fs-verity support Add fs-verity support to f2fs. fs-verity is a filesystem feature that enables transparent integrity protection and authentication of read-only files. It uses a dm-verity like mechanism at the file level: a Merkle tree is used to verify any block in the file in log(filesize) time. It is implemented mainly by helper functions in fs/verity/. See Documentation/filesystems/fsverity.rst for the full documentation. The f2fs support for fs-verity consists of: - Adding a filesystem feature flag and an inode flag for fs-verity. - Implementing the fsverity_operations to support enabling verity on an inode and reading/writing the verity metadata. - Updating ->readpages() to verify data as it's read from verity files and to support reading verity metadata pages. - Updating ->write_begin(), ->write_end(), and ->writepages() to support writing verity metadata pages. - Calling the fs-verity hooks for ->open(), ->setattr(), and ->ioctl(). Like ext4, f2fs stores the verity metadata (Merkle tree and fsverity_descriptor) past the end of the file, starting at the first 64K boundary beyond i_size. This approach works because (a) verity files are readonly, and (b) pages fully beyond i_size aren't visible to userspace but can be read/written internally by f2fs with only some relatively small changes to f2fs. Extended attributes cannot be used because (a) f2fs limits the total size of an inode's xattr entries to 4096 bytes, which wouldn't be enough for even a single Merkle tree block, and (b) f2fs encryption doesn't encrypt xattrs, yet the verity metadata *must* be encrypted when the file is because it contains hashes of the plaintext data. Acked-by: Jaegeuk Kim <jaegeuk@kernel.org> Acked-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-07-23 00:26:24 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/verity.c: fs-verity support for f2fs
*
* Copyright 2019 Google LLC
*/
/*
* Implementation of fsverity_operations for f2fs.
*
* Like ext4, f2fs stores the verity metadata (Merkle tree and
* fsverity_descriptor) past the end of the file, starting at the first 64K
* boundary beyond i_size. This approach works because (a) verity files are
* readonly, and (b) pages fully beyond i_size aren't visible to userspace but
* can be read/written internally by f2fs with only some relatively small
* changes to f2fs. Extended attributes cannot be used because (a) f2fs limits
* the total size of an inode's xattr entries to 4096 bytes, which wouldn't be
* enough for even a single Merkle tree block, and (b) f2fs encryption doesn't
* encrypt xattrs, yet the verity metadata *must* be encrypted when the file is
* because it contains hashes of the plaintext data.
*
* Using a 64K boundary rather than a 4K one keeps things ready for
* architectures with 64K pages, and it doesn't necessarily waste space on-disk
* since there can be a hole between i_size and the start of the Merkle tree.
*/
#include <linux/f2fs_fs.h>
#include "f2fs.h"
#include "xattr.h"
static inline loff_t f2fs_verity_metadata_pos(const struct inode *inode)
{
return round_up(inode->i_size, 65536);
}
/*
* Read some verity metadata from the inode. __vfs_read() can't be used because
* we need to read beyond i_size.
*/
static int pagecache_read(struct inode *inode, void *buf, size_t count,
loff_t pos)
{
while (count) {
size_t n = min_t(size_t, count,
PAGE_SIZE - offset_in_page(pos));
struct page *page;
void *addr;
page = read_mapping_page(inode->i_mapping, pos >> PAGE_SHIFT,
NULL);
if (IS_ERR(page))
return PTR_ERR(page);
addr = kmap_atomic(page);
memcpy(buf, addr + offset_in_page(pos), n);
kunmap_atomic(addr);
put_page(page);
buf += n;
pos += n;
count -= n;
}
return 0;
}
/*
* Write some verity metadata to the inode for FS_IOC_ENABLE_VERITY.
* kernel_write() can't be used because the file descriptor is readonly.
*/
static int pagecache_write(struct inode *inode, const void *buf, size_t count,
loff_t pos)
{
if (pos + count > inode->i_sb->s_maxbytes)
return -EFBIG;
while (count) {
size_t n = min_t(size_t, count,
PAGE_SIZE - offset_in_page(pos));
struct page *page;
void *fsdata;
void *addr;
int res;
res = pagecache_write_begin(NULL, inode->i_mapping, pos, n, 0,
&page, &fsdata);
if (res)
return res;
addr = kmap_atomic(page);
memcpy(addr + offset_in_page(pos), buf, n);
kunmap_atomic(addr);
res = pagecache_write_end(NULL, inode->i_mapping, pos, n, n,
page, fsdata);
if (res < 0)
return res;
if (res != n)
return -EIO;
buf += n;
pos += n;
count -= n;
}
return 0;
}
/*
* Format of f2fs verity xattr. This points to the location of the verity
* descriptor within the file data rather than containing it directly because
* the verity descriptor *must* be encrypted when f2fs encryption is used. But,
* f2fs encryption does not encrypt xattrs.
*/
struct fsverity_descriptor_location {
__le32 version;
__le32 size;
__le64 pos;
};
static int f2fs_begin_enable_verity(struct file *filp)
{
struct inode *inode = file_inode(filp);
int err;
if (f2fs_verity_in_progress(inode))
return -EBUSY;
if (f2fs_is_atomic_file(inode) || f2fs_is_volatile_file(inode))
return -EOPNOTSUPP;
/*
* Since the file was opened readonly, we have to initialize the quotas
* here and not rely on ->open() doing it. This must be done before
* evicting the inline data.
*/
err = dquot_initialize(inode);
if (err)
return err;
err = f2fs_convert_inline_inode(inode);
if (err)
return err;
set_inode_flag(inode, FI_VERITY_IN_PROGRESS);
return 0;
}
static int f2fs_end_enable_verity(struct file *filp, const void *desc,
size_t desc_size, u64 merkle_tree_size)
{
struct inode *inode = file_inode(filp);
u64 desc_pos = f2fs_verity_metadata_pos(inode) + merkle_tree_size;
struct fsverity_descriptor_location dloc = {
.version = cpu_to_le32(1),
.size = cpu_to_le32(desc_size),
.pos = cpu_to_le64(desc_pos),
};
int err = 0;
if (desc != NULL) {
/* Succeeded; write the verity descriptor. */
err = pagecache_write(inode, desc, desc_size, desc_pos);
/* Write all pages before clearing FI_VERITY_IN_PROGRESS. */
if (!err)
err = filemap_write_and_wait(inode->i_mapping);
}
/* If we failed, truncate anything we wrote past i_size. */
if (desc == NULL || err)
f2fs_truncate(inode);
clear_inode_flag(inode, FI_VERITY_IN_PROGRESS);
if (desc != NULL && !err) {
err = f2fs_setxattr(inode, F2FS_XATTR_INDEX_VERITY,
F2FS_XATTR_NAME_VERITY, &dloc, sizeof(dloc),
NULL, XATTR_CREATE);
if (!err) {
file_set_verity(inode);
f2fs_set_inode_flags(inode);
f2fs_mark_inode_dirty_sync(inode, true);
}
}
return err;
}
static int f2fs_get_verity_descriptor(struct inode *inode, void *buf,
size_t buf_size)
{
struct fsverity_descriptor_location dloc;
int res;
u32 size;
u64 pos;
/* Get the descriptor location */
res = f2fs_getxattr(inode, F2FS_XATTR_INDEX_VERITY,
F2FS_XATTR_NAME_VERITY, &dloc, sizeof(dloc), NULL);
if (res < 0 && res != -ERANGE)
return res;
if (res != sizeof(dloc) || dloc.version != cpu_to_le32(1)) {
f2fs_warn(F2FS_I_SB(inode), "unknown verity xattr format");
return -EINVAL;
}
size = le32_to_cpu(dloc.size);
pos = le64_to_cpu(dloc.pos);
/* Get the descriptor */
if (pos + size < pos || pos + size > inode->i_sb->s_maxbytes ||
pos < f2fs_verity_metadata_pos(inode) || size > INT_MAX) {
f2fs_warn(F2FS_I_SB(inode), "invalid verity xattr");
return -EFSCORRUPTED;
}
if (buf_size) {
if (size > buf_size)
return -ERANGE;
res = pagecache_read(inode, buf, size, pos);
if (res)
return res;
}
return size;
}
static struct page *f2fs_read_merkle_tree_page(struct inode *inode,
pgoff_t index)
{
index += f2fs_verity_metadata_pos(inode) >> PAGE_SHIFT;
return read_mapping_page(inode->i_mapping, index, NULL);
}
static int f2fs_write_merkle_tree_block(struct inode *inode, const void *buf,
u64 index, int log_blocksize)
{
loff_t pos = f2fs_verity_metadata_pos(inode) + (index << log_blocksize);
return pagecache_write(inode, buf, 1 << log_blocksize, pos);
}
const struct fsverity_operations f2fs_verityops = {
.begin_enable_verity = f2fs_begin_enable_verity,
.end_enable_verity = f2fs_end_enable_verity,
.get_verity_descriptor = f2fs_get_verity_descriptor,
.read_merkle_tree_page = f2fs_read_merkle_tree_page,
.write_merkle_tree_block = f2fs_write_merkle_tree_block,
};