linux-sg2042/drivers/irqchip/Makefile

74 lines
3.3 KiB
Makefile
Raw Normal View History

irqchip: add basic infrastructure With the recent creation of the drivers/irqchip/ directory, it is desirable to move irq controller drivers here. At the moment, the only driver here is irq-bcm2835, the driver for the irq controller found in the ARM BCM2835 SoC, present in Rasberry Pi systems. This irq controller driver was exporting its initialization function and its irq handling function through a header file in <linux/irqchip/bcm2835.h>. When proposing to also move another irq controller driver in drivers/irqchip, Rob Herring raised the very valid point that moving things to drivers/irqchip was good in order to remove more stuff from arch/arm, but if it means adding gazillions of headers files in include/linux/irqchip/, it would not be very nice. So, upon the suggestion of Rob Herring and Arnd Bergmann, this commit introduces a small infrastructure that defines a central irqchip_init() function in drivers/irqchip/irqchip.c, which is meant to be called as the ->init_irq() callback of ARM platforms. This function calls of_irq_init() with an array of match strings and init functions generated from a special linker section. Note that the irq controller driver initialization function is responsible for setting the global handle_arch_irq() variable, so that ARM platforms no longer have to define the ->handle_irq field in their DT_MACHINE structure. A global header, <linux/irqchip.h> is also added to expose the single irqchip_init() function to the reset of the kernel. A further commit moves the BCM2835 irq controller driver to this new small infrastructure, therefore removing the include/linux/irqchip/ directory. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Reviewed-by: Stephen Warren <swarren@wwwdotorg.org> Reviewed-by: Rob Herring <rob.herring@calxeda.com> Acked-by: Arnd Bergmann <arnd@arndb.de> [rob.herring: reword commit message to reflect use of linker sections.] Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-11-21 06:00:52 +08:00
obj-$(CONFIG_IRQCHIP) += irqchip.o
obj-$(CONFIG_ALPINE_MSI) += irq-alpine-msi.o
obj-$(CONFIG_ATH79) += irq-ath79-cpu.o
obj-$(CONFIG_ATH79) += irq-ath79-misc.o
obj-$(CONFIG_ARCH_BCM2835) += irq-bcm2835.o
obj-$(CONFIG_ARCH_BCM2835) += irq-bcm2836.o
obj-$(CONFIG_ARCH_EXYNOS) += exynos-combiner.o
obj-$(CONFIG_ARCH_HIP04) += irq-hip04.o
obj-$(CONFIG_ARCH_LPC32XX) += irq-lpc32xx.o
obj-$(CONFIG_ARCH_MMP) += irq-mmp.o
obj-$(CONFIG_IRQ_MXS) += irq-mxs.o
obj-$(CONFIG_ARCH_TEGRA) += irq-tegra.o
obj-$(CONFIG_ARCH_S3C24XX) += irq-s3c24xx.o
obj-$(CONFIG_DW_APB_ICTL) += irq-dw-apb-ictl.o
obj-$(CONFIG_METAG) += irq-metag-ext.o
obj-$(CONFIG_METAG_PERFCOUNTER_IRQS) += irq-metag.o
obj-$(CONFIG_ARCH_MOXART) += irq-moxart.o
obj-$(CONFIG_CLPS711X_IRQCHIP) += irq-clps711x.o
obj-$(CONFIG_OR1K_PIC) += irq-or1k-pic.o
obj-$(CONFIG_ORION_IRQCHIP) += irq-orion.o
obj-$(CONFIG_OMAP_IRQCHIP) += irq-omap-intc.o
obj-$(CONFIG_ARCH_SUNXI) += irq-sun4i.o
obj-$(CONFIG_ARCH_SUNXI) += irq-sunxi-nmi.o
obj-$(CONFIG_ARCH_SPEAR3XX) += spear-shirq.o
obj-$(CONFIG_ARM_GIC) += irq-gic.o irq-gic-common.o
irqchip/gic: Add platform driver for non-root GICs that require RPM Add a platform driver to support non-root GICs that require runtime power-management. Currently, only non-root GICs are supported because the functions, smp_cross_call() and set_handle_irq(), that need to be called for a root controller are located in the __init section and so cannot be called by the platform driver. The GIC platform driver re-uses many functions from the existing GIC driver including some functions to save and restore the GIC context during power transitions. The functions for saving and restoring the GIC context are currently only defined if CONFIG_CPU_PM is enabled and to ensure that these functions are always defined when the platform driver is enabled, a dependency on CONFIG_ARM_GIC_PM (which selects the platform driver) has been added. In order to re-use the private GIC initialisation code, a new public function, gic_of_init_child(), has been added which calls various private functions to initialise the GIC. This is different from the existing gic_of_init() because it only supports non-root GICs (ie. does not call smp_cross_call() is set_handle_irq()) and is not located in the __init section (so can be used by platform drivers). Furthermore, gic_of_init_child() dynamically allocates memory for the GIC chip data which is also different from gic_of_init(). There is no specific suspend handling for GICs registered as platform devices. Non-wakeup interrupts will be disabled by the kernel during late suspend, however, this alone will not power down the GIC if interrupts have been requested and not freed. Therefore, requestors of non-wakeup interrupts will need to free them on entering suspend in order to power-down the GIC. Signed-off-by: Jon Hunter <jonathanh@nvidia.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-06-07 23:12:34 +08:00
obj-$(CONFIG_ARM_GIC_PM) += irq-gic-pm.o
obj-$(CONFIG_REALVIEW_DT) += irq-gic-realview.o
obj-$(CONFIG_ARM_GIC_V2M) += irq-gic-v2m.o
obj-$(CONFIG_ARM_GIC_V3) += irq-gic-v3.o irq-gic-common.o
obj-$(CONFIG_ARM_GIC_V3_ITS) += irq-gic-v3-its.o irq-gic-v3-its-pci-msi.o irq-gic-v3-its-platform-msi.o
irqchip: Add per-cpu interrupt partitioning library We've unfortunately started seeing a situation where percpu interrupts are partitioned in the system: one arbitrary set of CPUs has an interrupt connected to a type of device, while another disjoint set of CPUs has the same interrupt connected to another type of device. This makes it impossible to have a device driver requesting this interrupt using the current percpu-interrupt abstraction, as the same interrupt number is now potentially claimed by at least two drivers, and we forbid interrupt sharing on per-cpu interrupt. A solution to this is to turn things upside down. Let's assume that our system describes all the possible partitions for a given interrupt, and give each of them a unique identifier. It is then possible to create a namespace where the affinity identifier itself is a form of interrupt number. At this point, it becomes easy to implement a set of partitions as a cascaded irqchip, each affinity identifier being the HW irq. This allows us to keep a number of nice properties: - Each partition results in a separate percpu-interrupt (with a restrictied affinity), which keeps drivers happy. - Because the underlying interrupt is still per-cpu, the overhead of the indirection can be kept pretty minimal. - The core code can ignore most of that crap. For that purpose, we implement a small library that deals with some of the boilerplate code, relying on platform-specific drivers to provide a description of the affinity sets and a set of callbacks. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: devicetree@vger.kernel.org Cc: Jason Cooper <jason@lakedaemon.net> Cc: Will Deacon <will.deacon@arm.com> Cc: Rob Herring <robh+dt@kernel.org> Link: http://lkml.kernel.org/r/1460365075-7316-4-git-send-email-marc.zyngier@arm.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-04-11 16:57:53 +08:00
obj-$(CONFIG_PARTITION_PERCPU) += irq-partition-percpu.o
irqchip/mgigen: Add platform device driver for mbigen device Mbigen means Message Based Interrupt Generator(MBIGEN). Its a kind of interrupt controller that collects the interrupts from external devices and generate msi interrupt. Mbigen is applied to reduce the number of wire connected interrupts. As the peripherals increasing, the interrupts lines needed is increasing much, especially on the Arm64 server SOC. Therefore, the interrupt pin in GIC is not enough to cover so many peripherals. Mbigen is designed to fix this problem. Mbigen chip locates in ITS or outside of ITS. Mbigen chip hardware structure shows as below: mbigen chip |---------------------|-------------------| mgn_node0 mgn_node1 mgn_node2 | |-------| |-------|------| dev1 dev1 dev2 dev1 dev3 dev4 Each mbigen chip contains several mbigen nodes. External devices can connect to mbigen node through wire connecting way. Because a mbigen node only can support 128 interrupt maximum, depends on the interrupt lines number of devices, a device can connects to one more mbigen nodes. Also, several different devices can connect to a same mbigen node. When devices triggered interrupt,mbigen chip detects and collects the interrupts and generates the MBI interrupts by writing the ITS Translator register. To simplify mbigen driver,I used a new conception--mbigen device. Each mbigen device is initialized as a platform device. Mbigen device presents the parts(register, pin definition etc.) in mbigen chip corresponding to a peripheral device. So from software view, the structure likes below mbigen chip |---------------------|-----------------| mbigen device1 mbigen device2 mbigen device3 | | | dev1 dev2 dev3 Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Ma Jun <majun258@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2015-12-17 19:56:35 +08:00
obj-$(CONFIG_HISILICON_IRQ_MBIGEN) += irq-mbigen.o
obj-$(CONFIG_ARM_NVIC) += irq-nvic.o
obj-$(CONFIG_ARM_VIC) += irq-vic.o
obj-$(CONFIG_ARMADA_370_XP_IRQ) += irq-armada-370-xp.o
obj-$(CONFIG_ATMEL_AIC_IRQ) += irq-atmel-aic-common.o irq-atmel-aic.o
obj-$(CONFIG_ATMEL_AIC5_IRQ) += irq-atmel-aic-common.o irq-atmel-aic5.o
obj-$(CONFIG_I8259) += irq-i8259.o
obj-$(CONFIG_IMGPDC_IRQ) += irq-imgpdc.o
obj-$(CONFIG_IRQ_MIPS_CPU) += irq-mips-cpu.o
obj-$(CONFIG_SIRF_IRQ) += irq-sirfsoc.o
obj-$(CONFIG_RENESAS_INTC_IRQPIN) += irq-renesas-intc-irqpin.o
obj-$(CONFIG_RENESAS_IRQC) += irq-renesas-irqc.o
obj-$(CONFIG_VERSATILE_FPGA_IRQ) += irq-versatile-fpga.o
obj-$(CONFIG_ARCH_NSPIRE) += irq-zevio.o
obj-$(CONFIG_ARCH_VT8500) += irq-vt8500.o
obj-$(CONFIG_ST_IRQCHIP) += irq-st.o
obj-$(CONFIG_TANGO_IRQ) += irq-tango.o
obj-$(CONFIG_TB10X_IRQC) += irq-tb10x.o
obj-$(CONFIG_TS4800_IRQ) += irq-ts4800.o
obj-$(CONFIG_XTENSA) += irq-xtensa-pic.o
obj-$(CONFIG_XTENSA_MX) += irq-xtensa-mx.o
obj-$(CONFIG_IRQ_CROSSBAR) += irq-crossbar.o
obj-$(CONFIG_SOC_VF610) += irq-vf610-mscm-ir.o
obj-$(CONFIG_BCM6345_L1_IRQ) += irq-bcm6345-l1.o
obj-$(CONFIG_BCM7038_L1_IRQ) += irq-bcm7038-l1.o
obj-$(CONFIG_BCM7120_L2_IRQ) += irq-bcm7120-l2.o
obj-$(CONFIG_BRCMSTB_L2_IRQ) += irq-brcmstb-l2.o
obj-$(CONFIG_KEYSTONE_IRQ) += irq-keystone.o
obj-$(CONFIG_MIPS_GIC) += irq-mips-gic.o
obj-$(CONFIG_ARCH_MEDIATEK) += irq-mtk-sysirq.o
obj-$(CONFIG_ARCH_DIGICOLOR) += irq-digicolor.o
obj-$(CONFIG_RENESAS_H8300H_INTC) += irq-renesas-h8300h.o
obj-$(CONFIG_RENESAS_H8S_INTC) += irq-renesas-h8s.o
obj-$(CONFIG_ARCH_SA1100) += irq-sa11x0.o
obj-$(CONFIG_INGENIC_IRQ) += irq-ingenic.o
obj-$(CONFIG_IMX_GPCV2) += irq-imx-gpcv2.o
obj-$(CONFIG_PIC32_EVIC) += irq-pic32-evic.o
obj-$(CONFIG_MVEBU_ODMI) += irq-mvebu-odmi.o
obj-$(CONFIG_LS_SCFG_MSI) += irq-ls-scfg-msi.o
obj-$(CONFIG_EZNPS_GIC) += irq-eznps.o
obj-$(CONFIG_ARCH_ASPEED) += irq-aspeed-vic.o