linux-sg2042/net/sched/sch_choke.c

524 lines
13 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* net/sched/sch_choke.c CHOKE scheduler
*
* Copyright (c) 2011 Stephen Hemminger <shemminger@vyatta.com>
* Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/vmalloc.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/inet_ecn.h>
#include <net/red.h>
#include <net/flow_dissector.h>
/*
CHOKe stateless AQM for fair bandwidth allocation
=================================================
CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for
unresponsive flows) is a variant of RED that penalizes misbehaving flows but
maintains no flow state. The difference from RED is an additional step
during the enqueuing process. If average queue size is over the
low threshold (qmin), a packet is chosen at random from the queue.
If both the new and chosen packet are from the same flow, both
are dropped. Unlike RED, CHOKe is not really a "classful" qdisc because it
needs to access packets in queue randomly. It has a minimal class
interface to allow overriding the builtin flow classifier with
filters.
Source:
R. Pan, B. Prabhakar, and K. Psounis, "CHOKe, A Stateless
Active Queue Management Scheme for Approximating Fair Bandwidth Allocation",
IEEE INFOCOM, 2000.
A. Tang, J. Wang, S. Low, "Understanding CHOKe: Throughput and Spatial
Characteristics", IEEE/ACM Transactions on Networking, 2004
*/
/* Upper bound on size of sk_buff table (packets) */
#define CHOKE_MAX_QUEUE (128*1024 - 1)
struct choke_sched_data {
/* Parameters */
u32 limit;
unsigned char flags;
struct red_parms parms;
/* Variables */
struct red_vars vars;
struct {
u32 prob_drop; /* Early probability drops */
u32 prob_mark; /* Early probability marks */
u32 forced_drop; /* Forced drops, qavg > max_thresh */
u32 forced_mark; /* Forced marks, qavg > max_thresh */
u32 pdrop; /* Drops due to queue limits */
u32 other; /* Drops due to drop() calls */
u32 matched; /* Drops to flow match */
} stats;
unsigned int head;
unsigned int tail;
unsigned int tab_mask; /* size - 1 */
struct sk_buff **tab;
};
/* number of elements in queue including holes */
static unsigned int choke_len(const struct choke_sched_data *q)
{
return (q->tail - q->head) & q->tab_mask;
}
/* Is ECN parameter configured */
static int use_ecn(const struct choke_sched_data *q)
{
return q->flags & TC_RED_ECN;
}
/* Should packets over max just be dropped (versus marked) */
static int use_harddrop(const struct choke_sched_data *q)
{
return q->flags & TC_RED_HARDDROP;
}
/* Move head pointer forward to skip over holes */
static void choke_zap_head_holes(struct choke_sched_data *q)
{
do {
q->head = (q->head + 1) & q->tab_mask;
if (q->head == q->tail)
break;
} while (q->tab[q->head] == NULL);
}
/* Move tail pointer backwards to reuse holes */
static void choke_zap_tail_holes(struct choke_sched_data *q)
{
do {
q->tail = (q->tail - 1) & q->tab_mask;
if (q->head == q->tail)
break;
} while (q->tab[q->tail] == NULL);
}
/* Drop packet from queue array by creating a "hole" */
static void choke_drop_by_idx(struct Qdisc *sch, unsigned int idx,
struct sk_buff **to_free)
{
struct choke_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb = q->tab[idx];
q->tab[idx] = NULL;
if (idx == q->head)
choke_zap_head_holes(q);
if (idx == q->tail)
choke_zap_tail_holes(q);
qdisc_qstats_backlog_dec(sch, skb);
qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
qdisc_drop(skb, sch, to_free);
--sch->q.qlen;
}
struct choke_skb_cb {
u16 classid;
u8 keys_valid;
struct flow_keys_digest keys;
};
static inline struct choke_skb_cb *choke_skb_cb(const struct sk_buff *skb)
{
qdisc_cb_private_validate(skb, sizeof(struct choke_skb_cb));
return (struct choke_skb_cb *)qdisc_skb_cb(skb)->data;
}
static inline void choke_set_classid(struct sk_buff *skb, u16 classid)
{
choke_skb_cb(skb)->classid = classid;
}
/*
* Compare flow of two packets
* Returns true only if source and destination address and port match.
* false for special cases
*/
static bool choke_match_flow(struct sk_buff *skb1,
struct sk_buff *skb2)
{
struct flow_keys temp;
if (skb1->protocol != skb2->protocol)
return false;
if (!choke_skb_cb(skb1)->keys_valid) {
choke_skb_cb(skb1)->keys_valid = 1;
skb_flow_dissect_flow_keys(skb1, &temp, 0);
make_flow_keys_digest(&choke_skb_cb(skb1)->keys, &temp);
}
if (!choke_skb_cb(skb2)->keys_valid) {
choke_skb_cb(skb2)->keys_valid = 1;
skb_flow_dissect_flow_keys(skb2, &temp, 0);
make_flow_keys_digest(&choke_skb_cb(skb2)->keys, &temp);
}
return !memcmp(&choke_skb_cb(skb1)->keys,
&choke_skb_cb(skb2)->keys,
sizeof(choke_skb_cb(skb1)->keys));
}
/*
* Select a packet at random from queue
* HACK: since queue can have holes from previous deletion; retry several
* times to find a random skb but then just give up and return the head
* Will return NULL if queue is empty (q->head == q->tail)
*/
static struct sk_buff *choke_peek_random(const struct choke_sched_data *q,
unsigned int *pidx)
{
struct sk_buff *skb;
int retrys = 3;
do {
*pidx = (q->head + prandom_u32_max(choke_len(q))) & q->tab_mask;
skb = q->tab[*pidx];
if (skb)
return skb;
} while (--retrys > 0);
return q->tab[*pidx = q->head];
}
/*
* Compare new packet with random packet in queue
* returns true if matched and sets *pidx
*/
static bool choke_match_random(const struct choke_sched_data *q,
struct sk_buff *nskb,
unsigned int *pidx)
{
struct sk_buff *oskb;
if (q->head == q->tail)
return false;
oskb = choke_peek_random(q, pidx);
return choke_match_flow(oskb, nskb);
}
static int choke_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct choke_sched_data *q = qdisc_priv(sch);
const struct red_parms *p = &q->parms;
choke_skb_cb(skb)->keys_valid = 0;
/* Compute average queue usage (see RED) */
q->vars.qavg = red_calc_qavg(p, &q->vars, sch->q.qlen);
if (red_is_idling(&q->vars))
red_end_of_idle_period(&q->vars);
/* Is queue small? */
if (q->vars.qavg <= p->qth_min)
q->vars.qcount = -1;
else {
unsigned int idx;
/* Draw a packet at random from queue and compare flow */
if (choke_match_random(q, skb, &idx)) {
q->stats.matched++;
choke_drop_by_idx(sch, idx, to_free);
goto congestion_drop;
}
/* Queue is large, always mark/drop */
if (q->vars.qavg > p->qth_max) {
q->vars.qcount = -1;
qdisc_qstats_overlimit(sch);
if (use_harddrop(q) || !use_ecn(q) ||
!INET_ECN_set_ce(skb)) {
q->stats.forced_drop++;
goto congestion_drop;
}
q->stats.forced_mark++;
} else if (++q->vars.qcount) {
if (red_mark_probability(p, &q->vars, q->vars.qavg)) {
q->vars.qcount = 0;
q->vars.qR = red_random(p);
qdisc_qstats_overlimit(sch);
if (!use_ecn(q) || !INET_ECN_set_ce(skb)) {
q->stats.prob_drop++;
goto congestion_drop;
}
q->stats.prob_mark++;
}
} else
q->vars.qR = red_random(p);
}
/* Admit new packet */
if (sch->q.qlen < q->limit) {
q->tab[q->tail] = skb;
q->tail = (q->tail + 1) & q->tab_mask;
++sch->q.qlen;
qdisc_qstats_backlog_inc(sch, skb);
return NET_XMIT_SUCCESS;
}
q->stats.pdrop++;
return qdisc_drop(skb, sch, to_free);
congestion_drop:
qdisc_drop(skb, sch, to_free);
return NET_XMIT_CN;
}
static struct sk_buff *choke_dequeue(struct Qdisc *sch)
{
struct choke_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb;
if (q->head == q->tail) {
if (!red_is_idling(&q->vars))
red_start_of_idle_period(&q->vars);
return NULL;
}
skb = q->tab[q->head];
q->tab[q->head] = NULL;
choke_zap_head_holes(q);
--sch->q.qlen;
qdisc_qstats_backlog_dec(sch, skb);
qdisc_bstats_update(sch, skb);
return skb;
}
static void choke_reset(struct Qdisc *sch)
{
struct choke_sched_data *q = qdisc_priv(sch);
while (q->head != q->tail) {
struct sk_buff *skb = q->tab[q->head];
q->head = (q->head + 1) & q->tab_mask;
if (!skb)
continue;
rtnl_qdisc_drop(skb, sch);
}
sch->q.qlen = 0;
sch->qstats.backlog = 0;
memset(q->tab, 0, (q->tab_mask + 1) * sizeof(struct sk_buff *));
q->head = q->tail = 0;
red_restart(&q->vars);
}
static const struct nla_policy choke_policy[TCA_CHOKE_MAX + 1] = {
[TCA_CHOKE_PARMS] = { .len = sizeof(struct tc_red_qopt) },
[TCA_CHOKE_STAB] = { .len = RED_STAB_SIZE },
[TCA_CHOKE_MAX_P] = { .type = NLA_U32 },
};
static void choke_free(void *addr)
{
kvfree(addr);
}
static int choke_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct choke_sched_data *q = qdisc_priv(sch);
struct nlattr *tb[TCA_CHOKE_MAX + 1];
const struct tc_red_qopt *ctl;
int err;
struct sk_buff **old = NULL;
unsigned int mask;
u32 max_P;
if (opt == NULL)
return -EINVAL;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 20:07:28 +08:00
err = nla_parse_nested_deprecated(tb, TCA_CHOKE_MAX, opt,
choke_policy, NULL);
if (err < 0)
return err;
if (tb[TCA_CHOKE_PARMS] == NULL ||
tb[TCA_CHOKE_STAB] == NULL)
return -EINVAL;
max_P = tb[TCA_CHOKE_MAX_P] ? nla_get_u32(tb[TCA_CHOKE_MAX_P]) : 0;
ctl = nla_data(tb[TCA_CHOKE_PARMS]);
if (!red_check_params(ctl->qth_min, ctl->qth_max, ctl->Wlog))
return -EINVAL;
if (ctl->limit > CHOKE_MAX_QUEUE)
return -EINVAL;
mask = roundup_pow_of_two(ctl->limit + 1) - 1;
if (mask != q->tab_mask) {
struct sk_buff **ntab;
treewide: use kv[mz]alloc* rather than opencoded variants There are many code paths opencoding kvmalloc. Let's use the helper instead. The main difference to kvmalloc is that those users are usually not considering all the aspects of the memory allocator. E.g. allocation requests <= 32kB (with 4kB pages) are basically never failing and invoke OOM killer to satisfy the allocation. This sounds too disruptive for something that has a reasonable fallback - the vmalloc. On the other hand those requests might fallback to vmalloc even when the memory allocator would succeed after several more reclaim/compaction attempts previously. There is no guarantee something like that happens though. This patch converts many of those places to kv[mz]alloc* helpers because they are more conservative. Link: http://lkml.kernel.org/r/20170306103327.2766-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> # Xen bits Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Andreas Dilger <andreas.dilger@intel.com> # Lustre Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> # KVM/s390 Acked-by: Dan Williams <dan.j.williams@intel.com> # nvdim Acked-by: David Sterba <dsterba@suse.com> # btrfs Acked-by: Ilya Dryomov <idryomov@gmail.com> # Ceph Acked-by: Tariq Toukan <tariqt@mellanox.com> # mlx4 Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx5 Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Tony Luck <tony.luck@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Santosh Raspatur <santosh@chelsio.com> Cc: Hariprasad S <hariprasad@chelsio.com> Cc: Yishai Hadas <yishaih@mellanox.com> Cc: Oleg Drokin <oleg.drokin@intel.com> Cc: "Yan, Zheng" <zyan@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-09 06:57:27 +08:00
ntab = kvmalloc_array((mask + 1), sizeof(struct sk_buff *), GFP_KERNEL | __GFP_ZERO);
if (!ntab)
return -ENOMEM;
sch_tree_lock(sch);
old = q->tab;
if (old) {
unsigned int oqlen = sch->q.qlen, tail = 0;
unsigned dropped = 0;
while (q->head != q->tail) {
struct sk_buff *skb = q->tab[q->head];
q->head = (q->head + 1) & q->tab_mask;
if (!skb)
continue;
if (tail < mask) {
ntab[tail++] = skb;
continue;
}
dropped += qdisc_pkt_len(skb);
qdisc_qstats_backlog_dec(sch, skb);
--sch->q.qlen;
rtnl_qdisc_drop(skb, sch);
}
qdisc_tree_reduce_backlog(sch, oqlen - sch->q.qlen, dropped);
q->head = 0;
q->tail = tail;
}
q->tab_mask = mask;
q->tab = ntab;
} else
sch_tree_lock(sch);
q->flags = ctl->flags;
q->limit = ctl->limit;
red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog,
ctl->Plog, ctl->Scell_log,
nla_data(tb[TCA_CHOKE_STAB]),
max_P);
red_set_vars(&q->vars);
if (q->head == q->tail)
red_end_of_idle_period(&q->vars);
sch_tree_unlock(sch);
choke_free(old);
return 0;
}
static int choke_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
return choke_change(sch, opt, extack);
}
static int choke_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct choke_sched_data *q = qdisc_priv(sch);
struct nlattr *opts = NULL;
struct tc_red_qopt opt = {
.limit = q->limit,
.flags = q->flags,
.qth_min = q->parms.qth_min >> q->parms.Wlog,
.qth_max = q->parms.qth_max >> q->parms.Wlog,
.Wlog = q->parms.Wlog,
.Plog = q->parms.Plog,
.Scell_log = q->parms.Scell_log,
};
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (opts == NULL)
goto nla_put_failure;
if (nla_put(skb, TCA_CHOKE_PARMS, sizeof(opt), &opt) ||
nla_put_u32(skb, TCA_CHOKE_MAX_P, q->parms.max_P))
goto nla_put_failure;
return nla_nest_end(skb, opts);
nla_put_failure:
nla_nest_cancel(skb, opts);
return -EMSGSIZE;
}
static int choke_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
struct choke_sched_data *q = qdisc_priv(sch);
struct tc_choke_xstats st = {
.early = q->stats.prob_drop + q->stats.forced_drop,
.marked = q->stats.prob_mark + q->stats.forced_mark,
.pdrop = q->stats.pdrop,
.other = q->stats.other,
.matched = q->stats.matched,
};
return gnet_stats_copy_app(d, &st, sizeof(st));
}
static void choke_destroy(struct Qdisc *sch)
{
struct choke_sched_data *q = qdisc_priv(sch);
choke_free(q->tab);
}
static struct sk_buff *choke_peek_head(struct Qdisc *sch)
{
struct choke_sched_data *q = qdisc_priv(sch);
return (q->head != q->tail) ? q->tab[q->head] : NULL;
}
static struct Qdisc_ops choke_qdisc_ops __read_mostly = {
.id = "choke",
.priv_size = sizeof(struct choke_sched_data),
.enqueue = choke_enqueue,
.dequeue = choke_dequeue,
.peek = choke_peek_head,
.init = choke_init,
.destroy = choke_destroy,
.reset = choke_reset,
.change = choke_change,
.dump = choke_dump,
.dump_stats = choke_dump_stats,
.owner = THIS_MODULE,
};
static int __init choke_module_init(void)
{
return register_qdisc(&choke_qdisc_ops);
}
static void __exit choke_module_exit(void)
{
unregister_qdisc(&choke_qdisc_ops);
}
module_init(choke_module_init)
module_exit(choke_module_exit)
MODULE_LICENSE("GPL");