linux-sg2042/fs/fscache/cookie.c

965 lines
25 KiB
C
Raw Normal View History

/* netfs cookie management
*
* Copyright (C) 2004-2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
*
* See Documentation/filesystems/caching/netfs-api.txt for more information on
* the netfs API.
*/
#define FSCACHE_DEBUG_LEVEL COOKIE
#include <linux/module.h>
#include <linux/slab.h>
#include "internal.h"
struct kmem_cache *fscache_cookie_jar;
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
static atomic_t fscache_object_debug_id = ATOMIC_INIT(0);
#define fscache_cookie_hash_shift 15
static struct hlist_bl_head fscache_cookie_hash[1 << fscache_cookie_hash_shift];
static int fscache_acquire_non_index_cookie(struct fscache_cookie *cookie,
loff_t object_size);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
static int fscache_alloc_object(struct fscache_cache *cache,
struct fscache_cookie *cookie);
static int fscache_attach_object(struct fscache_cookie *cookie,
struct fscache_object *object);
static void fscache_print_cookie(struct fscache_cookie *cookie, char prefix)
{
struct hlist_node *object;
const u8 *k;
unsigned loop;
pr_err("%c-cookie c=%p [p=%p fl=%lx nc=%u na=%u]\n",
prefix, cookie, cookie->parent, cookie->flags,
atomic_read(&cookie->n_children),
atomic_read(&cookie->n_active));
pr_err("%c-cookie d=%p n=%p\n",
prefix, cookie->def, cookie->netfs_data);
object = READ_ONCE(cookie->backing_objects.first);
if (object)
pr_err("%c-cookie o=%p\n",
prefix, hlist_entry(object, struct fscache_object, cookie_link));
pr_err("%c-key=[%u] '", prefix, cookie->key_len);
k = (cookie->key_len <= sizeof(cookie->inline_key)) ?
cookie->inline_key : cookie->key;
for (loop = 0; loop < cookie->key_len; loop++)
pr_cont("%02x", k[loop]);
pr_cont("'\n");
}
void fscache_free_cookie(struct fscache_cookie *cookie)
{
if (cookie) {
BUG_ON(!hlist_empty(&cookie->backing_objects));
if (cookie->aux_len > sizeof(cookie->inline_aux))
kfree(cookie->aux);
if (cookie->key_len > sizeof(cookie->inline_key))
kfree(cookie->key);
kmem_cache_free(fscache_cookie_jar, cookie);
}
}
/*
* Set the index key in a cookie. The cookie struct has space for a 16-byte
* key plus length and hash, but if that's not big enough, it's instead a
* pointer to a buffer containing 3 bytes of hash, 1 byte of length and then
* the key data.
*/
static int fscache_set_key(struct fscache_cookie *cookie,
const void *index_key, size_t index_key_len)
{
unsigned long long h;
u32 *buf;
int bufs;
int i;
bufs = DIV_ROUND_UP(index_key_len, sizeof(*buf));
if (index_key_len > sizeof(cookie->inline_key)) {
buf = kcalloc(bufs, sizeof(*buf), GFP_KERNEL);
if (!buf)
return -ENOMEM;
cookie->key = buf;
} else {
buf = (u32 *)cookie->inline_key;
}
memcpy(buf, index_key, index_key_len);
/* Calculate a hash and combine this with the length in the first word
* or first half word
*/
h = (unsigned long)cookie->parent;
h += index_key_len + cookie->type;
for (i = 0; i < bufs; i++)
h += buf[i];
cookie->key_hash = h ^ (h >> 32);
return 0;
}
static long fscache_compare_cookie(const struct fscache_cookie *a,
const struct fscache_cookie *b)
{
const void *ka, *kb;
if (a->key_hash != b->key_hash)
return (long)a->key_hash - (long)b->key_hash;
if (a->parent != b->parent)
return (long)a->parent - (long)b->parent;
if (a->key_len != b->key_len)
return (long)a->key_len - (long)b->key_len;
if (a->type != b->type)
return (long)a->type - (long)b->type;
if (a->key_len <= sizeof(a->inline_key)) {
ka = &a->inline_key;
kb = &b->inline_key;
} else {
ka = a->key;
kb = b->key;
}
return memcmp(ka, kb, a->key_len);
}
/*
* Allocate a cookie.
*/
struct fscache_cookie *fscache_alloc_cookie(
struct fscache_cookie *parent,
const struct fscache_cookie_def *def,
const void *index_key, size_t index_key_len,
const void *aux_data, size_t aux_data_len,
void *netfs_data,
loff_t object_size)
{
struct fscache_cookie *cookie;
/* allocate and initialise a cookie */
cookie = kmem_cache_zalloc(fscache_cookie_jar, GFP_KERNEL);
if (!cookie)
return NULL;
cookie->key_len = index_key_len;
cookie->aux_len = aux_data_len;
if (fscache_set_key(cookie, index_key, index_key_len) < 0)
goto nomem;
if (cookie->aux_len <= sizeof(cookie->inline_aux)) {
memcpy(cookie->inline_aux, aux_data, cookie->aux_len);
} else {
cookie->aux = kmemdup(aux_data, cookie->aux_len, GFP_KERNEL);
if (!cookie->aux)
goto nomem;
}
atomic_set(&cookie->usage, 1);
atomic_set(&cookie->n_children, 0);
/* We keep the active count elevated until relinquishment to prevent an
* attempt to wake up every time the object operations queue quiesces.
*/
atomic_set(&cookie->n_active, 1);
cookie->def = def;
cookie->parent = parent;
cookie->netfs_data = netfs_data;
cookie->flags = (1 << FSCACHE_COOKIE_NO_DATA_YET);
cookie->type = def->type;
spin_lock_init(&cookie->lock);
spin_lock_init(&cookie->stores_lock);
INIT_HLIST_HEAD(&cookie->backing_objects);
/* radix tree insertion won't use the preallocation pool unless it's
* told it may not wait */
INIT_RADIX_TREE(&cookie->stores, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
return cookie;
nomem:
fscache_free_cookie(cookie);
return NULL;
}
/*
* Attempt to insert the new cookie into the hash. If there's a collision, we
* return the old cookie if it's not in use and an error otherwise.
*/
struct fscache_cookie *fscache_hash_cookie(struct fscache_cookie *candidate)
{
struct fscache_cookie *cursor;
struct hlist_bl_head *h;
struct hlist_bl_node *p;
unsigned int bucket;
bucket = candidate->key_hash & (ARRAY_SIZE(fscache_cookie_hash) - 1);
h = &fscache_cookie_hash[bucket];
hlist_bl_lock(h);
hlist_bl_for_each_entry(cursor, p, h, hash_link) {
if (fscache_compare_cookie(candidate, cursor) == 0)
goto collision;
}
__set_bit(FSCACHE_COOKIE_ACQUIRED, &candidate->flags);
fscache_cookie_get(candidate->parent, fscache_cookie_get_acquire_parent);
atomic_inc(&candidate->parent->n_children);
hlist_bl_add_head(&candidate->hash_link, h);
hlist_bl_unlock(h);
return candidate;
collision:
if (test_and_set_bit(FSCACHE_COOKIE_ACQUIRED, &cursor->flags)) {
trace_fscache_cookie(cursor, fscache_cookie_collision,
atomic_read(&cursor->usage));
pr_err("Duplicate cookie detected\n");
fscache_print_cookie(cursor, 'O');
fscache_print_cookie(candidate, 'N');
hlist_bl_unlock(h);
return NULL;
}
fscache_cookie_get(cursor, fscache_cookie_get_reacquire);
hlist_bl_unlock(h);
return cursor;
}
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
/*
* request a cookie to represent an object (index, datafile, xattr, etc)
* - parent specifies the parent object
* - the top level index cookie for each netfs is stored in the fscache_netfs
* struct upon registration
* - def points to the definition
* - the netfs_data will be passed to the functions pointed to in *def
* - all attached caches will be searched to see if they contain this object
* - index objects aren't stored on disk until there's a dependent file that
* needs storing
* - other objects are stored in a selected cache immediately, and all the
* indices forming the path to it are instantiated if necessary
* - we never let on to the netfs about errors
* - we may set a negative cookie pointer, but that's okay
*/
struct fscache_cookie *__fscache_acquire_cookie(
struct fscache_cookie *parent,
const struct fscache_cookie_def *def,
const void *index_key, size_t index_key_len,
const void *aux_data, size_t aux_data_len,
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
void *netfs_data,
loff_t object_size,
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
bool enable)
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
{
struct fscache_cookie *candidate, *cookie;
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
BUG_ON(!def);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
_enter("{%s},{%s},%p,%u",
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
parent ? (char *) parent->def->name : "<no-parent>",
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
def->name, netfs_data, enable);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
if (!index_key || !index_key_len || index_key_len > 255 || aux_data_len > 255)
return NULL;
if (!aux_data || !aux_data_len) {
aux_data = NULL;
aux_data_len = 0;
}
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
fscache_stat(&fscache_n_acquires);
/* if there's no parent cookie, then we don't create one here either */
if (!parent) {
fscache_stat(&fscache_n_acquires_null);
_leave(" [no parent]");
return NULL;
}
/* validate the definition */
BUG_ON(!def->name[0]);
BUG_ON(def->type == FSCACHE_COOKIE_TYPE_INDEX &&
parent->type != FSCACHE_COOKIE_TYPE_INDEX);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
candidate = fscache_alloc_cookie(parent, def,
index_key, index_key_len,
aux_data, aux_data_len,
netfs_data, object_size);
if (!candidate) {
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
fscache_stat(&fscache_n_acquires_oom);
_leave(" [ENOMEM]");
return NULL;
}
cookie = fscache_hash_cookie(candidate);
if (!cookie) {
trace_fscache_cookie(candidate, fscache_cookie_discard, 1);
goto out;
}
if (cookie == candidate)
candidate = NULL;
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
switch (cookie->type) {
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
case FSCACHE_COOKIE_TYPE_INDEX:
fscache_stat(&fscache_n_cookie_index);
break;
case FSCACHE_COOKIE_TYPE_DATAFILE:
fscache_stat(&fscache_n_cookie_data);
break;
default:
fscache_stat(&fscache_n_cookie_special);
break;
}
trace_fscache_acquire(cookie);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
if (enable) {
/* if the object is an index then we need do nothing more here
* - we create indices on disk when we need them as an index
* may exist in multiple caches */
if (cookie->type != FSCACHE_COOKIE_TYPE_INDEX) {
if (fscache_acquire_non_index_cookie(cookie, object_size) == 0) {
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
set_bit(FSCACHE_COOKIE_ENABLED, &cookie->flags);
} else {
atomic_dec(&parent->n_children);
fscache_cookie_put(cookie,
fscache_cookie_put_acquire_nobufs);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
fscache_stat(&fscache_n_acquires_nobufs);
_leave(" = NULL");
return NULL;
}
} else {
set_bit(FSCACHE_COOKIE_ENABLED, &cookie->flags);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
}
}
fscache_stat(&fscache_n_acquires_ok);
out:
fscache_free_cookie(candidate);
return cookie;
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
}
EXPORT_SYMBOL(__fscache_acquire_cookie);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
/*
* Enable a cookie to permit it to accept new operations.
*/
void __fscache_enable_cookie(struct fscache_cookie *cookie,
const void *aux_data,
loff_t object_size,
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
bool (*can_enable)(void *data),
void *data)
{
_enter("%p", cookie);
trace_fscache_enable(cookie);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
wait_on_bit_lock(&cookie->flags, FSCACHE_COOKIE_ENABLEMENT_LOCK,
sched: Remove proliferation of wait_on_bit() action functions The current "wait_on_bit" interface requires an 'action' function to be provided which does the actual waiting. There are over 20 such functions, many of them identical. Most cases can be satisfied by one of just two functions, one which uses io_schedule() and one which just uses schedule(). So: Rename wait_on_bit and wait_on_bit_lock to wait_on_bit_action and wait_on_bit_lock_action to make it explicit that they need an action function. Introduce new wait_on_bit{,_lock} and wait_on_bit{,_lock}_io which are *not* given an action function but implicitly use a standard one. The decision to error-out if a signal is pending is now made based on the 'mode' argument rather than being encoded in the action function. All instances of the old wait_on_bit and wait_on_bit_lock which can use the new version have been changed accordingly and their action functions have been discarded. wait_on_bit{_lock} does not return any specific error code in the event of a signal so the caller must check for non-zero and interpolate their own error code as appropriate. The wait_on_bit() call in __fscache_wait_on_invalidate() was ambiguous as it specified TASK_UNINTERRUPTIBLE but used fscache_wait_bit_interruptible as an action function. David Howells confirms this should be uniformly "uninterruptible" The main remaining user of wait_on_bit{,_lock}_action is NFS which needs to use a freezer-aware schedule() call. A comment in fs/gfs2/glock.c notes that having multiple 'action' functions is useful as they display differently in the 'wchan' field of 'ps'. (and /proc/$PID/wchan). As the new bit_wait{,_io} functions are tagged "__sched", they will not show up at all, but something higher in the stack. So the distinction will still be visible, only with different function names (gds2_glock_wait versus gfs2_glock_dq_wait in the gfs2/glock.c case). Since first version of this patch (against 3.15) two new action functions appeared, on in NFS and one in CIFS. CIFS also now uses an action function that makes the same freezer aware schedule call as NFS. Signed-off-by: NeilBrown <neilb@suse.de> Acked-by: David Howells <dhowells@redhat.com> (fscache, keys) Acked-by: Steven Whitehouse <swhiteho@redhat.com> (gfs2) Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Steve French <sfrench@samba.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20140707051603.28027.72349.stgit@notabene.brown Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-07 13:16:04 +08:00
TASK_UNINTERRUPTIBLE);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
fscache_update_aux(cookie, aux_data);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
if (test_bit(FSCACHE_COOKIE_ENABLED, &cookie->flags))
goto out_unlock;
if (can_enable && !can_enable(data)) {
/* The netfs decided it didn't want to enable after all */
} else if (cookie->type != FSCACHE_COOKIE_TYPE_INDEX) {
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
/* Wait for outstanding disablement to complete */
__fscache_wait_on_invalidate(cookie);
if (fscache_acquire_non_index_cookie(cookie, object_size) == 0)
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
set_bit(FSCACHE_COOKIE_ENABLED, &cookie->flags);
} else {
set_bit(FSCACHE_COOKIE_ENABLED, &cookie->flags);
}
out_unlock:
clear_bit_unlock(FSCACHE_COOKIE_ENABLEMENT_LOCK, &cookie->flags);
wake_up_bit(&cookie->flags, FSCACHE_COOKIE_ENABLEMENT_LOCK);
}
EXPORT_SYMBOL(__fscache_enable_cookie);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
/*
* acquire a non-index cookie
* - this must make sure the index chain is instantiated and instantiate the
* object representation too
*/
static int fscache_acquire_non_index_cookie(struct fscache_cookie *cookie,
loff_t object_size)
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
{
struct fscache_object *object;
struct fscache_cache *cache;
int ret;
_enter("");
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
set_bit(FSCACHE_COOKIE_UNAVAILABLE, &cookie->flags);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
/* now we need to see whether the backing objects for this cookie yet
* exist, if not there'll be nothing to search */
down_read(&fscache_addremove_sem);
if (list_empty(&fscache_cache_list)) {
up_read(&fscache_addremove_sem);
_leave(" = 0 [no caches]");
return 0;
}
/* select a cache in which to store the object */
cache = fscache_select_cache_for_object(cookie->parent);
if (!cache) {
up_read(&fscache_addremove_sem);
fscache_stat(&fscache_n_acquires_no_cache);
_leave(" = -ENOMEDIUM [no cache]");
return -ENOMEDIUM;
}
_debug("cache %s", cache->tag->name);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
set_bit(FSCACHE_COOKIE_LOOKING_UP, &cookie->flags);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
/* ask the cache to allocate objects for this cookie and its parent
* chain */
ret = fscache_alloc_object(cache, cookie);
if (ret < 0) {
up_read(&fscache_addremove_sem);
_leave(" = %d", ret);
return ret;
}
spin_lock(&cookie->lock);
if (hlist_empty(&cookie->backing_objects)) {
spin_unlock(&cookie->lock);
goto unavailable;
}
object = hlist_entry(cookie->backing_objects.first,
struct fscache_object, cookie_link);
fscache_set_store_limit(object, object_size);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
/* initiate the process of looking up all the objects in the chain
* (done by fscache_initialise_object()) */
FS-Cache: Fix object state machine to have separate work and wait states Fix object state machine to have separate work and wait states as that makes it easier to envision. There are now three kinds of state: (1) Work state. This is an execution state. No event processing is performed by a work state. The function attached to a work state returns a pointer indicating the next state to which the OSM should transition. Returning NO_TRANSIT repeats the current state, but goes back to the scheduler first. (2) Wait state. This is an event processing state. No execution is performed by a wait state. Wait states are just tables of "if event X occurs, clear it and transition to state Y". The dispatcher returns to the scheduler if none of the events in which the wait state has an interest are currently pending. (3) Out-of-band state. This is a special work state. Transitions to normal states can be overridden when an unexpected event occurs (eg. I/O error). Instead the dispatcher disables and clears the OOB event and transits to the specified work state. This then acts as an ordinary work state, though object->state points to the overridden destination. Returning NO_TRANSIT resumes the overridden transition. In addition, the states have names in their definitions, so there's no need for tables of state names. Further, the EV_REQUEUE event is no longer necessary as that is automatic for work states. Since the states are now separate structs rather than values in an enum, it's not possible to use comparisons other than (non-)equality between them, so use some object->flags to indicate what phase an object is in. The EV_RELEASE, EV_RETIRE and EV_WITHDRAW events have been squished into one (EV_KILL). An object flag now carries the information about retirement. Similarly, the RELEASING, RECYCLING and WITHDRAWING states have been merged into an KILL_OBJECT state and additional states have been added for handling waiting dependent objects (JUMPSTART_DEPS and KILL_DEPENDENTS). A state has also been added for synchronising with parent object initialisation (WAIT_FOR_PARENT) and another for initiating look up (PARENT_READY). Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Milosz Tanski <milosz@adfin.com> Acked-by: Jeff Layton <jlayton@redhat.com>
2013-05-11 02:50:26 +08:00
fscache_raise_event(object, FSCACHE_OBJECT_EV_NEW_CHILD);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
spin_unlock(&cookie->lock);
/* we may be required to wait for lookup to complete at this point */
if (!fscache_defer_lookup) {
_debug("non-deferred lookup %p", &cookie->flags);
wait_on_bit(&cookie->flags, FSCACHE_COOKIE_LOOKING_UP,
sched: Remove proliferation of wait_on_bit() action functions The current "wait_on_bit" interface requires an 'action' function to be provided which does the actual waiting. There are over 20 such functions, many of them identical. Most cases can be satisfied by one of just two functions, one which uses io_schedule() and one which just uses schedule(). So: Rename wait_on_bit and wait_on_bit_lock to wait_on_bit_action and wait_on_bit_lock_action to make it explicit that they need an action function. Introduce new wait_on_bit{,_lock} and wait_on_bit{,_lock}_io which are *not* given an action function but implicitly use a standard one. The decision to error-out if a signal is pending is now made based on the 'mode' argument rather than being encoded in the action function. All instances of the old wait_on_bit and wait_on_bit_lock which can use the new version have been changed accordingly and their action functions have been discarded. wait_on_bit{_lock} does not return any specific error code in the event of a signal so the caller must check for non-zero and interpolate their own error code as appropriate. The wait_on_bit() call in __fscache_wait_on_invalidate() was ambiguous as it specified TASK_UNINTERRUPTIBLE but used fscache_wait_bit_interruptible as an action function. David Howells confirms this should be uniformly "uninterruptible" The main remaining user of wait_on_bit{,_lock}_action is NFS which needs to use a freezer-aware schedule() call. A comment in fs/gfs2/glock.c notes that having multiple 'action' functions is useful as they display differently in the 'wchan' field of 'ps'. (and /proc/$PID/wchan). As the new bit_wait{,_io} functions are tagged "__sched", they will not show up at all, but something higher in the stack. So the distinction will still be visible, only with different function names (gds2_glock_wait versus gfs2_glock_dq_wait in the gfs2/glock.c case). Since first version of this patch (against 3.15) two new action functions appeared, on in NFS and one in CIFS. CIFS also now uses an action function that makes the same freezer aware schedule call as NFS. Signed-off-by: NeilBrown <neilb@suse.de> Acked-by: David Howells <dhowells@redhat.com> (fscache, keys) Acked-by: Steven Whitehouse <swhiteho@redhat.com> (gfs2) Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Steve French <sfrench@samba.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20140707051603.28027.72349.stgit@notabene.brown Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-07 13:16:04 +08:00
TASK_UNINTERRUPTIBLE);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
_debug("complete");
if (test_bit(FSCACHE_COOKIE_UNAVAILABLE, &cookie->flags))
goto unavailable;
}
up_read(&fscache_addremove_sem);
_leave(" = 0 [deferred]");
return 0;
unavailable:
up_read(&fscache_addremove_sem);
_leave(" = -ENOBUFS");
return -ENOBUFS;
}
/*
* recursively allocate cache object records for a cookie/cache combination
* - caller must be holding the addremove sem
*/
static int fscache_alloc_object(struct fscache_cache *cache,
struct fscache_cookie *cookie)
{
struct fscache_object *object;
int ret;
_enter("%p,%p{%s}", cache, cookie, cookie->def->name);
spin_lock(&cookie->lock);
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:06:00 +08:00
hlist_for_each_entry(object, &cookie->backing_objects,
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
cookie_link) {
if (object->cache == cache)
goto object_already_extant;
}
spin_unlock(&cookie->lock);
/* ask the cache to allocate an object (we may end up with duplicate
* objects at this stage, but we sort that out later) */
fscache_stat(&fscache_n_cop_alloc_object);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
object = cache->ops->alloc_object(cache, cookie);
fscache_stat_d(&fscache_n_cop_alloc_object);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
if (IS_ERR(object)) {
fscache_stat(&fscache_n_object_no_alloc);
ret = PTR_ERR(object);
goto error;
}
fscache: Fix reference overput in fscache_attach_object() error handling When a cookie is allocated that causes fscache_object structs to be allocated, those objects are initialised with the cookie pointer, but aren't blessed with a ref on that cookie unless the attachment is successfully completed in fscache_attach_object(). If attachment fails because the parent object was dying or there was a collision, fscache_attach_object() returns without incrementing the cookie counter - but upon failure of this function, the object is released which then puts the cookie, whether or not a ref was taken on the cookie. Fix this by taking a ref on the cookie when it is assigned in fscache_object_init(), even when we're creating a root object. Analysis from Kiran Kumar: This bug has been seen in 4.4.0-124-generic #148-Ubuntu kernel BugLink: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1776277 fscache cookie ref count updated incorrectly during fscache object allocation resulting in following Oops. kernel BUG at /build/linux-Y09MKI/linux-4.4.0/fs/fscache/internal.h:321! kernel BUG at /build/linux-Y09MKI/linux-4.4.0/fs/fscache/cookie.c:639! [Cause] Two threads are trying to do operate on a cookie and two objects. (1) One thread tries to unmount the filesystem and in process goes over a huge list of objects marking them dead and deleting the objects. cookie->usage is also decremented in following path: nfs_fscache_release_super_cookie -> __fscache_relinquish_cookie ->__fscache_cookie_put ->BUG_ON(atomic_read(&cookie->usage) <= 0); (2) A second thread tries to lookup an object for reading data in following path: fscache_alloc_object 1) cachefiles_alloc_object -> fscache_object_init -> assign cookie, but usage not bumped. 2) fscache_attach_object -> fails in cant_attach_object because the cookie's backing object or cookie's->parent object are going away 3) fscache_put_object -> cachefiles_put_object ->fscache_object_destroy ->fscache_cookie_put ->BUG_ON(atomic_read(&cookie->usage) <= 0); [NOTE from dhowells] It's unclear as to the circumstances in which (2) can take place, given that thread (1) is in nfs_kill_super(), however a conflicting NFS mount with slightly different parameters that creates a different superblock would do it. A backtrace from Kiran seems to show that this is a possibility: kernel BUG at/build/linux-Y09MKI/linux-4.4.0/fs/fscache/cookie.c:639! ... RIP: __fscache_cookie_put+0x3a/0x40 [fscache] Call Trace: __fscache_relinquish_cookie+0x87/0x120 [fscache] nfs_fscache_release_super_cookie+0x2d/0xb0 [nfs] nfs_kill_super+0x29/0x40 [nfs] deactivate_locked_super+0x48/0x80 deactivate_super+0x5c/0x60 cleanup_mnt+0x3f/0x90 __cleanup_mnt+0x12/0x20 task_work_run+0x86/0xb0 exit_to_usermode_loop+0xc2/0xd0 syscall_return_slowpath+0x4e/0x60 int_ret_from_sys_call+0x25/0x9f [Fix] Bump up the cookie usage in fscache_object_init, when it is first being assigned a cookie atomically such that the cookie is added and bumped up if its refcount is not zero. Remove the assignment in fscache_attach_object(). [Testcase] I have run ~100 hours of NFS stress tests and not seen this bug recur. [Regression Potential] - Limited to fscache/cachefiles. Fixes: ccc4fc3d11e9 ("FS-Cache: Implement the cookie management part of the netfs API") Signed-off-by: Kiran Kumar Modukuri <kiran.modukuri@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com>
2018-06-22 04:31:44 +08:00
ASSERTCMP(object->cookie, ==, cookie);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
fscache_stat(&fscache_n_object_alloc);
object->debug_id = atomic_inc_return(&fscache_object_debug_id);
_debug("ALLOC OBJ%x: %s {%lx}",
object->debug_id, cookie->def->name, object->events);
ret = fscache_alloc_object(cache, cookie->parent);
if (ret < 0)
goto error_put;
/* only attach if we managed to allocate all we needed, otherwise
* discard the object we just allocated and instead use the one
* attached to the cookie */
if (fscache_attach_object(cookie, object) < 0) {
fscache_stat(&fscache_n_cop_put_object);
cache->ops->put_object(object, fscache_obj_put_attach_fail);
fscache_stat_d(&fscache_n_cop_put_object);
}
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
_leave(" = 0");
return 0;
object_already_extant:
ret = -ENOBUFS;
if (fscache_object_is_dying(object) ||
fscache_cache_is_broken(object)) {
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
spin_unlock(&cookie->lock);
goto error;
}
spin_unlock(&cookie->lock);
_leave(" = 0 [found]");
return 0;
error_put:
fscache_stat(&fscache_n_cop_put_object);
cache->ops->put_object(object, fscache_obj_put_alloc_fail);
fscache_stat_d(&fscache_n_cop_put_object);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
error:
_leave(" = %d", ret);
return ret;
}
/*
* attach a cache object to a cookie
*/
static int fscache_attach_object(struct fscache_cookie *cookie,
struct fscache_object *object)
{
struct fscache_object *p;
struct fscache_cache *cache = object->cache;
int ret;
_enter("{%s},{OBJ%x}", cookie->def->name, object->debug_id);
fscache: Fix reference overput in fscache_attach_object() error handling When a cookie is allocated that causes fscache_object structs to be allocated, those objects are initialised with the cookie pointer, but aren't blessed with a ref on that cookie unless the attachment is successfully completed in fscache_attach_object(). If attachment fails because the parent object was dying or there was a collision, fscache_attach_object() returns without incrementing the cookie counter - but upon failure of this function, the object is released which then puts the cookie, whether or not a ref was taken on the cookie. Fix this by taking a ref on the cookie when it is assigned in fscache_object_init(), even when we're creating a root object. Analysis from Kiran Kumar: This bug has been seen in 4.4.0-124-generic #148-Ubuntu kernel BugLink: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1776277 fscache cookie ref count updated incorrectly during fscache object allocation resulting in following Oops. kernel BUG at /build/linux-Y09MKI/linux-4.4.0/fs/fscache/internal.h:321! kernel BUG at /build/linux-Y09MKI/linux-4.4.0/fs/fscache/cookie.c:639! [Cause] Two threads are trying to do operate on a cookie and two objects. (1) One thread tries to unmount the filesystem and in process goes over a huge list of objects marking them dead and deleting the objects. cookie->usage is also decremented in following path: nfs_fscache_release_super_cookie -> __fscache_relinquish_cookie ->__fscache_cookie_put ->BUG_ON(atomic_read(&cookie->usage) <= 0); (2) A second thread tries to lookup an object for reading data in following path: fscache_alloc_object 1) cachefiles_alloc_object -> fscache_object_init -> assign cookie, but usage not bumped. 2) fscache_attach_object -> fails in cant_attach_object because the cookie's backing object or cookie's->parent object are going away 3) fscache_put_object -> cachefiles_put_object ->fscache_object_destroy ->fscache_cookie_put ->BUG_ON(atomic_read(&cookie->usage) <= 0); [NOTE from dhowells] It's unclear as to the circumstances in which (2) can take place, given that thread (1) is in nfs_kill_super(), however a conflicting NFS mount with slightly different parameters that creates a different superblock would do it. A backtrace from Kiran seems to show that this is a possibility: kernel BUG at/build/linux-Y09MKI/linux-4.4.0/fs/fscache/cookie.c:639! ... RIP: __fscache_cookie_put+0x3a/0x40 [fscache] Call Trace: __fscache_relinquish_cookie+0x87/0x120 [fscache] nfs_fscache_release_super_cookie+0x2d/0xb0 [nfs] nfs_kill_super+0x29/0x40 [nfs] deactivate_locked_super+0x48/0x80 deactivate_super+0x5c/0x60 cleanup_mnt+0x3f/0x90 __cleanup_mnt+0x12/0x20 task_work_run+0x86/0xb0 exit_to_usermode_loop+0xc2/0xd0 syscall_return_slowpath+0x4e/0x60 int_ret_from_sys_call+0x25/0x9f [Fix] Bump up the cookie usage in fscache_object_init, when it is first being assigned a cookie atomically such that the cookie is added and bumped up if its refcount is not zero. Remove the assignment in fscache_attach_object(). [Testcase] I have run ~100 hours of NFS stress tests and not seen this bug recur. [Regression Potential] - Limited to fscache/cachefiles. Fixes: ccc4fc3d11e9 ("FS-Cache: Implement the cookie management part of the netfs API") Signed-off-by: Kiran Kumar Modukuri <kiran.modukuri@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com>
2018-06-22 04:31:44 +08:00
ASSERTCMP(object->cookie, ==, cookie);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
spin_lock(&cookie->lock);
/* there may be multiple initial creations of this object, but we only
* want one */
ret = -EEXIST;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:06:00 +08:00
hlist_for_each_entry(p, &cookie->backing_objects, cookie_link) {
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
if (p->cache == object->cache) {
if (fscache_object_is_dying(p))
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
ret = -ENOBUFS;
goto cant_attach_object;
}
}
/* pin the parent object */
spin_lock_nested(&cookie->parent->lock, 1);
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:06:00 +08:00
hlist_for_each_entry(p, &cookie->parent->backing_objects,
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
cookie_link) {
if (p->cache == object->cache) {
if (fscache_object_is_dying(p)) {
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
ret = -ENOBUFS;
spin_unlock(&cookie->parent->lock);
goto cant_attach_object;
}
object->parent = p;
spin_lock(&p->lock);
p->n_children++;
spin_unlock(&p->lock);
break;
}
}
spin_unlock(&cookie->parent->lock);
/* attach to the cache's object list */
if (list_empty(&object->cache_link)) {
spin_lock(&cache->object_list_lock);
list_add(&object->cache_link, &cache->object_list);
spin_unlock(&cache->object_list_lock);
}
fscache: Fix reference overput in fscache_attach_object() error handling When a cookie is allocated that causes fscache_object structs to be allocated, those objects are initialised with the cookie pointer, but aren't blessed with a ref on that cookie unless the attachment is successfully completed in fscache_attach_object(). If attachment fails because the parent object was dying or there was a collision, fscache_attach_object() returns without incrementing the cookie counter - but upon failure of this function, the object is released which then puts the cookie, whether or not a ref was taken on the cookie. Fix this by taking a ref on the cookie when it is assigned in fscache_object_init(), even when we're creating a root object. Analysis from Kiran Kumar: This bug has been seen in 4.4.0-124-generic #148-Ubuntu kernel BugLink: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1776277 fscache cookie ref count updated incorrectly during fscache object allocation resulting in following Oops. kernel BUG at /build/linux-Y09MKI/linux-4.4.0/fs/fscache/internal.h:321! kernel BUG at /build/linux-Y09MKI/linux-4.4.0/fs/fscache/cookie.c:639! [Cause] Two threads are trying to do operate on a cookie and two objects. (1) One thread tries to unmount the filesystem and in process goes over a huge list of objects marking them dead and deleting the objects. cookie->usage is also decremented in following path: nfs_fscache_release_super_cookie -> __fscache_relinquish_cookie ->__fscache_cookie_put ->BUG_ON(atomic_read(&cookie->usage) <= 0); (2) A second thread tries to lookup an object for reading data in following path: fscache_alloc_object 1) cachefiles_alloc_object -> fscache_object_init -> assign cookie, but usage not bumped. 2) fscache_attach_object -> fails in cant_attach_object because the cookie's backing object or cookie's->parent object are going away 3) fscache_put_object -> cachefiles_put_object ->fscache_object_destroy ->fscache_cookie_put ->BUG_ON(atomic_read(&cookie->usage) <= 0); [NOTE from dhowells] It's unclear as to the circumstances in which (2) can take place, given that thread (1) is in nfs_kill_super(), however a conflicting NFS mount with slightly different parameters that creates a different superblock would do it. A backtrace from Kiran seems to show that this is a possibility: kernel BUG at/build/linux-Y09MKI/linux-4.4.0/fs/fscache/cookie.c:639! ... RIP: __fscache_cookie_put+0x3a/0x40 [fscache] Call Trace: __fscache_relinquish_cookie+0x87/0x120 [fscache] nfs_fscache_release_super_cookie+0x2d/0xb0 [nfs] nfs_kill_super+0x29/0x40 [nfs] deactivate_locked_super+0x48/0x80 deactivate_super+0x5c/0x60 cleanup_mnt+0x3f/0x90 __cleanup_mnt+0x12/0x20 task_work_run+0x86/0xb0 exit_to_usermode_loop+0xc2/0xd0 syscall_return_slowpath+0x4e/0x60 int_ret_from_sys_call+0x25/0x9f [Fix] Bump up the cookie usage in fscache_object_init, when it is first being assigned a cookie atomically such that the cookie is added and bumped up if its refcount is not zero. Remove the assignment in fscache_attach_object(). [Testcase] I have run ~100 hours of NFS stress tests and not seen this bug recur. [Regression Potential] - Limited to fscache/cachefiles. Fixes: ccc4fc3d11e9 ("FS-Cache: Implement the cookie management part of the netfs API") Signed-off-by: Kiran Kumar Modukuri <kiran.modukuri@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com>
2018-06-22 04:31:44 +08:00
/* Attach to the cookie. The object already has a ref on it. */
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
hlist_add_head(&object->cookie_link, &cookie->backing_objects);
fscache_objlist_add(object);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
ret = 0;
cant_attach_object:
spin_unlock(&cookie->lock);
_leave(" = %d", ret);
return ret;
}
/*
* Invalidate an object. Callable with spinlocks held.
*/
void __fscache_invalidate(struct fscache_cookie *cookie)
{
struct fscache_object *object;
_enter("{%s}", cookie->def->name);
fscache_stat(&fscache_n_invalidates);
/* Only permit invalidation of data files. Invalidating an index will
* require the caller to release all its attachments to the tree rooted
* there, and if it's doing that, it may as well just retire the
* cookie.
*/
ASSERTCMP(cookie->type, ==, FSCACHE_COOKIE_TYPE_DATAFILE);
/* If there's an object, we tell the object state machine to handle the
* invalidation on our behalf, otherwise there's nothing to do.
*/
if (!hlist_empty(&cookie->backing_objects)) {
spin_lock(&cookie->lock);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
if (fscache_cookie_enabled(cookie) &&
!hlist_empty(&cookie->backing_objects) &&
!test_and_set_bit(FSCACHE_COOKIE_INVALIDATING,
&cookie->flags)) {
object = hlist_entry(cookie->backing_objects.first,
struct fscache_object,
cookie_link);
if (fscache_object_is_live(object))
fscache_raise_event(
object, FSCACHE_OBJECT_EV_INVALIDATE);
}
spin_unlock(&cookie->lock);
}
_leave("");
}
EXPORT_SYMBOL(__fscache_invalidate);
/*
* Wait for object invalidation to complete.
*/
void __fscache_wait_on_invalidate(struct fscache_cookie *cookie)
{
_enter("%p", cookie);
wait_on_bit(&cookie->flags, FSCACHE_COOKIE_INVALIDATING,
TASK_UNINTERRUPTIBLE);
_leave("");
}
EXPORT_SYMBOL(__fscache_wait_on_invalidate);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
/*
* update the index entries backing a cookie
*/
void __fscache_update_cookie(struct fscache_cookie *cookie, const void *aux_data)
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
{
struct fscache_object *object;
fscache_stat(&fscache_n_updates);
if (!cookie) {
fscache_stat(&fscache_n_updates_null);
_leave(" [no cookie]");
return;
}
_enter("{%s}", cookie->def->name);
spin_lock(&cookie->lock);
fscache_update_aux(cookie, aux_data);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
if (fscache_cookie_enabled(cookie)) {
/* update the index entry on disk in each cache backing this
* cookie.
*/
hlist_for_each_entry(object,
&cookie->backing_objects, cookie_link) {
fscache_raise_event(object, FSCACHE_OBJECT_EV_UPDATE);
}
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
}
spin_unlock(&cookie->lock);
_leave("");
}
EXPORT_SYMBOL(__fscache_update_cookie);
/*
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
* Disable a cookie to stop it from accepting new requests from the netfs.
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
*/
void __fscache_disable_cookie(struct fscache_cookie *cookie,
const void *aux_data,
bool invalidate)
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
{
struct fscache_object *object;
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
bool awaken = false;
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
_enter("%p,%u", cookie, invalidate);
FS-Cache: Simplify cookie retention for fscache_objects, fixing oops Simplify the way fscache cache objects retain their cookie. The way I implemented the cookie storage handling made synchronisation a pain (ie. the object state machine can't rely on the cookie actually still being there). Instead of the the object being detached from the cookie and the cookie being freed in __fscache_relinquish_cookie(), we defer both operations: (*) The detachment of the object from the list in the cookie now takes place in fscache_drop_object() and is thus governed by the object state machine (fscache_detach_from_cookie() has been removed). (*) The release of the cookie is now in fscache_object_destroy() - which is called by the cache backend just before it frees the object. This means that the fscache_cookie struct is now available to the cache all the way through from ->alloc_object() to ->drop_object() and ->put_object() - meaning that it's no longer necessary to take object->lock to guarantee access. However, __fscache_relinquish_cookie() doesn't wait for the object to go all the way through to destruction before letting the netfs proceed. That would massively slow down the netfs. Since __fscache_relinquish_cookie() leaves the cookie around, in must therefore break all attachments to the netfs - which includes ->def, ->netfs_data and any outstanding page read/writes. To handle this, struct fscache_cookie now has an n_active counter: (1) This starts off initialised to 1. (2) Any time the cache needs to get at the netfs data, it calls fscache_use_cookie() to increment it - if it is not zero. If it was zero, then access is not permitted. (3) When the cache has finished with the data, it calls fscache_unuse_cookie() to decrement it. This does a wake-up on it if it reaches 0. (4) __fscache_relinquish_cookie() decrements n_active and then waits for it to reach 0. The initialisation to 1 in step (1) ensures that we only get wake ups when we're trying to get rid of the cookie. This leaves __fscache_relinquish_cookie() a lot simpler. *** This fixes a problem in the current code whereby if fscache_invalidate() is followed sufficiently quickly by fscache_relinquish_cookie() then it is possible for __fscache_relinquish_cookie() to have detached the cookie from the object and cleared the pointer before a thread is dispatched to process the invalidation state in the object state machine. Since the pending write clearance was deferred to the invalidation state to make it asynchronous, we need to either wait in relinquishment for the stores tree to be cleared in the invalidation state or we need to handle the clearance in relinquishment. Further, if the relinquishment code does clear the tree, then the invalidation state need to make the clearance contingent on still having the cookie to hand (since that's where the tree is rooted) and we have to prevent the cookie from disappearing for the duration. This can lead to an oops like the following: BUG: unable to handle kernel NULL pointer dereference at 000000000000000c ... RIP: 0010:[<ffffffff8151023e>] _spin_lock+0xe/0x30 ... CR2: 000000000000000c ... ... Process kslowd002 (...) .... Call Trace: [<ffffffffa01c3278>] fscache_invalidate_writes+0x38/0xd0 [fscache] [<ffffffff810096f0>] ? __switch_to+0xd0/0x320 [<ffffffff8105e759>] ? find_busiest_queue+0x69/0x150 [<ffffffff8110ddd4>] ? slow_work_enqueue+0x104/0x180 [<ffffffffa01c1303>] fscache_object_slow_work_execute+0x5e3/0x9d0 [fscache] [<ffffffff81096b67>] ? bit_waitqueue+0x17/0xd0 [<ffffffff8110e233>] slow_work_execute+0x233/0x310 [<ffffffff8110e515>] slow_work_thread+0x205/0x360 [<ffffffff81096ca0>] ? autoremove_wake_function+0x0/0x40 [<ffffffff8110e310>] ? slow_work_thread+0x0/0x360 [<ffffffff81096936>] kthread+0x96/0xa0 [<ffffffff8100c0ca>] child_rip+0xa/0x20 [<ffffffff810968a0>] ? kthread+0x0/0xa0 [<ffffffff8100c0c0>] ? child_rip+0x0/0x20 The parameter to fscache_invalidate_writes() was object->cookie which is NULL. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Milosz Tanski <milosz@adfin.com> Acked-by: Jeff Layton <jlayton@redhat.com>
2013-05-11 02:50:26 +08:00
trace_fscache_disable(cookie);
FS-Cache: Simplify cookie retention for fscache_objects, fixing oops Simplify the way fscache cache objects retain their cookie. The way I implemented the cookie storage handling made synchronisation a pain (ie. the object state machine can't rely on the cookie actually still being there). Instead of the the object being detached from the cookie and the cookie being freed in __fscache_relinquish_cookie(), we defer both operations: (*) The detachment of the object from the list in the cookie now takes place in fscache_drop_object() and is thus governed by the object state machine (fscache_detach_from_cookie() has been removed). (*) The release of the cookie is now in fscache_object_destroy() - which is called by the cache backend just before it frees the object. This means that the fscache_cookie struct is now available to the cache all the way through from ->alloc_object() to ->drop_object() and ->put_object() - meaning that it's no longer necessary to take object->lock to guarantee access. However, __fscache_relinquish_cookie() doesn't wait for the object to go all the way through to destruction before letting the netfs proceed. That would massively slow down the netfs. Since __fscache_relinquish_cookie() leaves the cookie around, in must therefore break all attachments to the netfs - which includes ->def, ->netfs_data and any outstanding page read/writes. To handle this, struct fscache_cookie now has an n_active counter: (1) This starts off initialised to 1. (2) Any time the cache needs to get at the netfs data, it calls fscache_use_cookie() to increment it - if it is not zero. If it was zero, then access is not permitted. (3) When the cache has finished with the data, it calls fscache_unuse_cookie() to decrement it. This does a wake-up on it if it reaches 0. (4) __fscache_relinquish_cookie() decrements n_active and then waits for it to reach 0. The initialisation to 1 in step (1) ensures that we only get wake ups when we're trying to get rid of the cookie. This leaves __fscache_relinquish_cookie() a lot simpler. *** This fixes a problem in the current code whereby if fscache_invalidate() is followed sufficiently quickly by fscache_relinquish_cookie() then it is possible for __fscache_relinquish_cookie() to have detached the cookie from the object and cleared the pointer before a thread is dispatched to process the invalidation state in the object state machine. Since the pending write clearance was deferred to the invalidation state to make it asynchronous, we need to either wait in relinquishment for the stores tree to be cleared in the invalidation state or we need to handle the clearance in relinquishment. Further, if the relinquishment code does clear the tree, then the invalidation state need to make the clearance contingent on still having the cookie to hand (since that's where the tree is rooted) and we have to prevent the cookie from disappearing for the duration. This can lead to an oops like the following: BUG: unable to handle kernel NULL pointer dereference at 000000000000000c ... RIP: 0010:[<ffffffff8151023e>] _spin_lock+0xe/0x30 ... CR2: 000000000000000c ... ... Process kslowd002 (...) .... Call Trace: [<ffffffffa01c3278>] fscache_invalidate_writes+0x38/0xd0 [fscache] [<ffffffff810096f0>] ? __switch_to+0xd0/0x320 [<ffffffff8105e759>] ? find_busiest_queue+0x69/0x150 [<ffffffff8110ddd4>] ? slow_work_enqueue+0x104/0x180 [<ffffffffa01c1303>] fscache_object_slow_work_execute+0x5e3/0x9d0 [fscache] [<ffffffff81096b67>] ? bit_waitqueue+0x17/0xd0 [<ffffffff8110e233>] slow_work_execute+0x233/0x310 [<ffffffff8110e515>] slow_work_thread+0x205/0x360 [<ffffffff81096ca0>] ? autoremove_wake_function+0x0/0x40 [<ffffffff8110e310>] ? slow_work_thread+0x0/0x360 [<ffffffff81096936>] kthread+0x96/0xa0 [<ffffffff8100c0ca>] child_rip+0xa/0x20 [<ffffffff810968a0>] ? kthread+0x0/0xa0 [<ffffffff8100c0c0>] ? child_rip+0x0/0x20 The parameter to fscache_invalidate_writes() was object->cookie which is NULL. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Milosz Tanski <milosz@adfin.com> Acked-by: Jeff Layton <jlayton@redhat.com>
2013-05-11 02:50:26 +08:00
ASSERTCMP(atomic_read(&cookie->n_active), >, 0);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
if (atomic_read(&cookie->n_children) != 0) {
pr_err("Cookie '%s' still has children\n",
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
cookie->def->name);
BUG();
}
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
wait_on_bit_lock(&cookie->flags, FSCACHE_COOKIE_ENABLEMENT_LOCK,
sched: Remove proliferation of wait_on_bit() action functions The current "wait_on_bit" interface requires an 'action' function to be provided which does the actual waiting. There are over 20 such functions, many of them identical. Most cases can be satisfied by one of just two functions, one which uses io_schedule() and one which just uses schedule(). So: Rename wait_on_bit and wait_on_bit_lock to wait_on_bit_action and wait_on_bit_lock_action to make it explicit that they need an action function. Introduce new wait_on_bit{,_lock} and wait_on_bit{,_lock}_io which are *not* given an action function but implicitly use a standard one. The decision to error-out if a signal is pending is now made based on the 'mode' argument rather than being encoded in the action function. All instances of the old wait_on_bit and wait_on_bit_lock which can use the new version have been changed accordingly and their action functions have been discarded. wait_on_bit{_lock} does not return any specific error code in the event of a signal so the caller must check for non-zero and interpolate their own error code as appropriate. The wait_on_bit() call in __fscache_wait_on_invalidate() was ambiguous as it specified TASK_UNINTERRUPTIBLE but used fscache_wait_bit_interruptible as an action function. David Howells confirms this should be uniformly "uninterruptible" The main remaining user of wait_on_bit{,_lock}_action is NFS which needs to use a freezer-aware schedule() call. A comment in fs/gfs2/glock.c notes that having multiple 'action' functions is useful as they display differently in the 'wchan' field of 'ps'. (and /proc/$PID/wchan). As the new bit_wait{,_io} functions are tagged "__sched", they will not show up at all, but something higher in the stack. So the distinction will still be visible, only with different function names (gds2_glock_wait versus gfs2_glock_dq_wait in the gfs2/glock.c case). Since first version of this patch (against 3.15) two new action functions appeared, on in NFS and one in CIFS. CIFS also now uses an action function that makes the same freezer aware schedule call as NFS. Signed-off-by: NeilBrown <neilb@suse.de> Acked-by: David Howells <dhowells@redhat.com> (fscache, keys) Acked-by: Steven Whitehouse <swhiteho@redhat.com> (gfs2) Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Steve French <sfrench@samba.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20140707051603.28027.72349.stgit@notabene.brown Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-07 13:16:04 +08:00
TASK_UNINTERRUPTIBLE);
fscache_update_aux(cookie, aux_data);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
if (!test_and_clear_bit(FSCACHE_COOKIE_ENABLED, &cookie->flags))
goto out_unlock_enable;
/* If the cookie is being invalidated, wait for that to complete first
* so that we can reuse the flag.
*/
__fscache_wait_on_invalidate(cookie);
/* Dispose of the backing objects */
set_bit(FSCACHE_COOKIE_INVALIDATING, &cookie->flags);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
spin_lock(&cookie->lock);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
if (!hlist_empty(&cookie->backing_objects)) {
hlist_for_each_entry(object, &cookie->backing_objects, cookie_link) {
if (invalidate)
set_bit(FSCACHE_OBJECT_RETIRED, &object->flags);
clear_bit(FSCACHE_OBJECT_PENDING_WRITE, &object->flags);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
fscache_raise_event(object, FSCACHE_OBJECT_EV_KILL);
}
} else {
if (test_and_clear_bit(FSCACHE_COOKIE_INVALIDATING, &cookie->flags))
awaken = true;
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
}
FS-Cache: Simplify cookie retention for fscache_objects, fixing oops Simplify the way fscache cache objects retain their cookie. The way I implemented the cookie storage handling made synchronisation a pain (ie. the object state machine can't rely on the cookie actually still being there). Instead of the the object being detached from the cookie and the cookie being freed in __fscache_relinquish_cookie(), we defer both operations: (*) The detachment of the object from the list in the cookie now takes place in fscache_drop_object() and is thus governed by the object state machine (fscache_detach_from_cookie() has been removed). (*) The release of the cookie is now in fscache_object_destroy() - which is called by the cache backend just before it frees the object. This means that the fscache_cookie struct is now available to the cache all the way through from ->alloc_object() to ->drop_object() and ->put_object() - meaning that it's no longer necessary to take object->lock to guarantee access. However, __fscache_relinquish_cookie() doesn't wait for the object to go all the way through to destruction before letting the netfs proceed. That would massively slow down the netfs. Since __fscache_relinquish_cookie() leaves the cookie around, in must therefore break all attachments to the netfs - which includes ->def, ->netfs_data and any outstanding page read/writes. To handle this, struct fscache_cookie now has an n_active counter: (1) This starts off initialised to 1. (2) Any time the cache needs to get at the netfs data, it calls fscache_use_cookie() to increment it - if it is not zero. If it was zero, then access is not permitted. (3) When the cache has finished with the data, it calls fscache_unuse_cookie() to decrement it. This does a wake-up on it if it reaches 0. (4) __fscache_relinquish_cookie() decrements n_active and then waits for it to reach 0. The initialisation to 1 in step (1) ensures that we only get wake ups when we're trying to get rid of the cookie. This leaves __fscache_relinquish_cookie() a lot simpler. *** This fixes a problem in the current code whereby if fscache_invalidate() is followed sufficiently quickly by fscache_relinquish_cookie() then it is possible for __fscache_relinquish_cookie() to have detached the cookie from the object and cleared the pointer before a thread is dispatched to process the invalidation state in the object state machine. Since the pending write clearance was deferred to the invalidation state to make it asynchronous, we need to either wait in relinquishment for the stores tree to be cleared in the invalidation state or we need to handle the clearance in relinquishment. Further, if the relinquishment code does clear the tree, then the invalidation state need to make the clearance contingent on still having the cookie to hand (since that's where the tree is rooted) and we have to prevent the cookie from disappearing for the duration. This can lead to an oops like the following: BUG: unable to handle kernel NULL pointer dereference at 000000000000000c ... RIP: 0010:[<ffffffff8151023e>] _spin_lock+0xe/0x30 ... CR2: 000000000000000c ... ... Process kslowd002 (...) .... Call Trace: [<ffffffffa01c3278>] fscache_invalidate_writes+0x38/0xd0 [fscache] [<ffffffff810096f0>] ? __switch_to+0xd0/0x320 [<ffffffff8105e759>] ? find_busiest_queue+0x69/0x150 [<ffffffff8110ddd4>] ? slow_work_enqueue+0x104/0x180 [<ffffffffa01c1303>] fscache_object_slow_work_execute+0x5e3/0x9d0 [fscache] [<ffffffff81096b67>] ? bit_waitqueue+0x17/0xd0 [<ffffffff8110e233>] slow_work_execute+0x233/0x310 [<ffffffff8110e515>] slow_work_thread+0x205/0x360 [<ffffffff81096ca0>] ? autoremove_wake_function+0x0/0x40 [<ffffffff8110e310>] ? slow_work_thread+0x0/0x360 [<ffffffff81096936>] kthread+0x96/0xa0 [<ffffffff8100c0ca>] child_rip+0xa/0x20 [<ffffffff810968a0>] ? kthread+0x0/0xa0 [<ffffffff8100c0c0>] ? child_rip+0x0/0x20 The parameter to fscache_invalidate_writes() was object->cookie which is NULL. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Milosz Tanski <milosz@adfin.com> Acked-by: Jeff Layton <jlayton@redhat.com>
2013-05-11 02:50:26 +08:00
spin_unlock(&cookie->lock);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
if (awaken)
wake_up_bit(&cookie->flags, FSCACHE_COOKIE_INVALIDATING);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
FS-Cache: Simplify cookie retention for fscache_objects, fixing oops Simplify the way fscache cache objects retain their cookie. The way I implemented the cookie storage handling made synchronisation a pain (ie. the object state machine can't rely on the cookie actually still being there). Instead of the the object being detached from the cookie and the cookie being freed in __fscache_relinquish_cookie(), we defer both operations: (*) The detachment of the object from the list in the cookie now takes place in fscache_drop_object() and is thus governed by the object state machine (fscache_detach_from_cookie() has been removed). (*) The release of the cookie is now in fscache_object_destroy() - which is called by the cache backend just before it frees the object. This means that the fscache_cookie struct is now available to the cache all the way through from ->alloc_object() to ->drop_object() and ->put_object() - meaning that it's no longer necessary to take object->lock to guarantee access. However, __fscache_relinquish_cookie() doesn't wait for the object to go all the way through to destruction before letting the netfs proceed. That would massively slow down the netfs. Since __fscache_relinquish_cookie() leaves the cookie around, in must therefore break all attachments to the netfs - which includes ->def, ->netfs_data and any outstanding page read/writes. To handle this, struct fscache_cookie now has an n_active counter: (1) This starts off initialised to 1. (2) Any time the cache needs to get at the netfs data, it calls fscache_use_cookie() to increment it - if it is not zero. If it was zero, then access is not permitted. (3) When the cache has finished with the data, it calls fscache_unuse_cookie() to decrement it. This does a wake-up on it if it reaches 0. (4) __fscache_relinquish_cookie() decrements n_active and then waits for it to reach 0. The initialisation to 1 in step (1) ensures that we only get wake ups when we're trying to get rid of the cookie. This leaves __fscache_relinquish_cookie() a lot simpler. *** This fixes a problem in the current code whereby if fscache_invalidate() is followed sufficiently quickly by fscache_relinquish_cookie() then it is possible for __fscache_relinquish_cookie() to have detached the cookie from the object and cleared the pointer before a thread is dispatched to process the invalidation state in the object state machine. Since the pending write clearance was deferred to the invalidation state to make it asynchronous, we need to either wait in relinquishment for the stores tree to be cleared in the invalidation state or we need to handle the clearance in relinquishment. Further, if the relinquishment code does clear the tree, then the invalidation state need to make the clearance contingent on still having the cookie to hand (since that's where the tree is rooted) and we have to prevent the cookie from disappearing for the duration. This can lead to an oops like the following: BUG: unable to handle kernel NULL pointer dereference at 000000000000000c ... RIP: 0010:[<ffffffff8151023e>] _spin_lock+0xe/0x30 ... CR2: 000000000000000c ... ... Process kslowd002 (...) .... Call Trace: [<ffffffffa01c3278>] fscache_invalidate_writes+0x38/0xd0 [fscache] [<ffffffff810096f0>] ? __switch_to+0xd0/0x320 [<ffffffff8105e759>] ? find_busiest_queue+0x69/0x150 [<ffffffff8110ddd4>] ? slow_work_enqueue+0x104/0x180 [<ffffffffa01c1303>] fscache_object_slow_work_execute+0x5e3/0x9d0 [fscache] [<ffffffff81096b67>] ? bit_waitqueue+0x17/0xd0 [<ffffffff8110e233>] slow_work_execute+0x233/0x310 [<ffffffff8110e515>] slow_work_thread+0x205/0x360 [<ffffffff81096ca0>] ? autoremove_wake_function+0x0/0x40 [<ffffffff8110e310>] ? slow_work_thread+0x0/0x360 [<ffffffff81096936>] kthread+0x96/0xa0 [<ffffffff8100c0ca>] child_rip+0xa/0x20 [<ffffffff810968a0>] ? kthread+0x0/0xa0 [<ffffffff8100c0c0>] ? child_rip+0x0/0x20 The parameter to fscache_invalidate_writes() was object->cookie which is NULL. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Milosz Tanski <milosz@adfin.com> Acked-by: Jeff Layton <jlayton@redhat.com>
2013-05-11 02:50:26 +08:00
/* Wait for cessation of activity requiring access to the netfs (when
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
* n_active reaches 0). This makes sure outstanding reads and writes
* have completed.
FS-Cache: Simplify cookie retention for fscache_objects, fixing oops Simplify the way fscache cache objects retain their cookie. The way I implemented the cookie storage handling made synchronisation a pain (ie. the object state machine can't rely on the cookie actually still being there). Instead of the the object being detached from the cookie and the cookie being freed in __fscache_relinquish_cookie(), we defer both operations: (*) The detachment of the object from the list in the cookie now takes place in fscache_drop_object() and is thus governed by the object state machine (fscache_detach_from_cookie() has been removed). (*) The release of the cookie is now in fscache_object_destroy() - which is called by the cache backend just before it frees the object. This means that the fscache_cookie struct is now available to the cache all the way through from ->alloc_object() to ->drop_object() and ->put_object() - meaning that it's no longer necessary to take object->lock to guarantee access. However, __fscache_relinquish_cookie() doesn't wait for the object to go all the way through to destruction before letting the netfs proceed. That would massively slow down the netfs. Since __fscache_relinquish_cookie() leaves the cookie around, in must therefore break all attachments to the netfs - which includes ->def, ->netfs_data and any outstanding page read/writes. To handle this, struct fscache_cookie now has an n_active counter: (1) This starts off initialised to 1. (2) Any time the cache needs to get at the netfs data, it calls fscache_use_cookie() to increment it - if it is not zero. If it was zero, then access is not permitted. (3) When the cache has finished with the data, it calls fscache_unuse_cookie() to decrement it. This does a wake-up on it if it reaches 0. (4) __fscache_relinquish_cookie() decrements n_active and then waits for it to reach 0. The initialisation to 1 in step (1) ensures that we only get wake ups when we're trying to get rid of the cookie. This leaves __fscache_relinquish_cookie() a lot simpler. *** This fixes a problem in the current code whereby if fscache_invalidate() is followed sufficiently quickly by fscache_relinquish_cookie() then it is possible for __fscache_relinquish_cookie() to have detached the cookie from the object and cleared the pointer before a thread is dispatched to process the invalidation state in the object state machine. Since the pending write clearance was deferred to the invalidation state to make it asynchronous, we need to either wait in relinquishment for the stores tree to be cleared in the invalidation state or we need to handle the clearance in relinquishment. Further, if the relinquishment code does clear the tree, then the invalidation state need to make the clearance contingent on still having the cookie to hand (since that's where the tree is rooted) and we have to prevent the cookie from disappearing for the duration. This can lead to an oops like the following: BUG: unable to handle kernel NULL pointer dereference at 000000000000000c ... RIP: 0010:[<ffffffff8151023e>] _spin_lock+0xe/0x30 ... CR2: 000000000000000c ... ... Process kslowd002 (...) .... Call Trace: [<ffffffffa01c3278>] fscache_invalidate_writes+0x38/0xd0 [fscache] [<ffffffff810096f0>] ? __switch_to+0xd0/0x320 [<ffffffff8105e759>] ? find_busiest_queue+0x69/0x150 [<ffffffff8110ddd4>] ? slow_work_enqueue+0x104/0x180 [<ffffffffa01c1303>] fscache_object_slow_work_execute+0x5e3/0x9d0 [fscache] [<ffffffff81096b67>] ? bit_waitqueue+0x17/0xd0 [<ffffffff8110e233>] slow_work_execute+0x233/0x310 [<ffffffff8110e515>] slow_work_thread+0x205/0x360 [<ffffffff81096ca0>] ? autoremove_wake_function+0x0/0x40 [<ffffffff8110e310>] ? slow_work_thread+0x0/0x360 [<ffffffff81096936>] kthread+0x96/0xa0 [<ffffffff8100c0ca>] child_rip+0xa/0x20 [<ffffffff810968a0>] ? kthread+0x0/0xa0 [<ffffffff8100c0c0>] ? child_rip+0x0/0x20 The parameter to fscache_invalidate_writes() was object->cookie which is NULL. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Milosz Tanski <milosz@adfin.com> Acked-by: Jeff Layton <jlayton@redhat.com>
2013-05-11 02:50:26 +08:00
*/
if (!atomic_dec_and_test(&cookie->n_active)) {
wait_var_event(&cookie->n_active,
!atomic_read(&cookie->n_active));
}
FS-Cache: Simplify cookie retention for fscache_objects, fixing oops Simplify the way fscache cache objects retain their cookie. The way I implemented the cookie storage handling made synchronisation a pain (ie. the object state machine can't rely on the cookie actually still being there). Instead of the the object being detached from the cookie and the cookie being freed in __fscache_relinquish_cookie(), we defer both operations: (*) The detachment of the object from the list in the cookie now takes place in fscache_drop_object() and is thus governed by the object state machine (fscache_detach_from_cookie() has been removed). (*) The release of the cookie is now in fscache_object_destroy() - which is called by the cache backend just before it frees the object. This means that the fscache_cookie struct is now available to the cache all the way through from ->alloc_object() to ->drop_object() and ->put_object() - meaning that it's no longer necessary to take object->lock to guarantee access. However, __fscache_relinquish_cookie() doesn't wait for the object to go all the way through to destruction before letting the netfs proceed. That would massively slow down the netfs. Since __fscache_relinquish_cookie() leaves the cookie around, in must therefore break all attachments to the netfs - which includes ->def, ->netfs_data and any outstanding page read/writes. To handle this, struct fscache_cookie now has an n_active counter: (1) This starts off initialised to 1. (2) Any time the cache needs to get at the netfs data, it calls fscache_use_cookie() to increment it - if it is not zero. If it was zero, then access is not permitted. (3) When the cache has finished with the data, it calls fscache_unuse_cookie() to decrement it. This does a wake-up on it if it reaches 0. (4) __fscache_relinquish_cookie() decrements n_active and then waits for it to reach 0. The initialisation to 1 in step (1) ensures that we only get wake ups when we're trying to get rid of the cookie. This leaves __fscache_relinquish_cookie() a lot simpler. *** This fixes a problem in the current code whereby if fscache_invalidate() is followed sufficiently quickly by fscache_relinquish_cookie() then it is possible for __fscache_relinquish_cookie() to have detached the cookie from the object and cleared the pointer before a thread is dispatched to process the invalidation state in the object state machine. Since the pending write clearance was deferred to the invalidation state to make it asynchronous, we need to either wait in relinquishment for the stores tree to be cleared in the invalidation state or we need to handle the clearance in relinquishment. Further, if the relinquishment code does clear the tree, then the invalidation state need to make the clearance contingent on still having the cookie to hand (since that's where the tree is rooted) and we have to prevent the cookie from disappearing for the duration. This can lead to an oops like the following: BUG: unable to handle kernel NULL pointer dereference at 000000000000000c ... RIP: 0010:[<ffffffff8151023e>] _spin_lock+0xe/0x30 ... CR2: 000000000000000c ... ... Process kslowd002 (...) .... Call Trace: [<ffffffffa01c3278>] fscache_invalidate_writes+0x38/0xd0 [fscache] [<ffffffff810096f0>] ? __switch_to+0xd0/0x320 [<ffffffff8105e759>] ? find_busiest_queue+0x69/0x150 [<ffffffff8110ddd4>] ? slow_work_enqueue+0x104/0x180 [<ffffffffa01c1303>] fscache_object_slow_work_execute+0x5e3/0x9d0 [fscache] [<ffffffff81096b67>] ? bit_waitqueue+0x17/0xd0 [<ffffffff8110e233>] slow_work_execute+0x233/0x310 [<ffffffff8110e515>] slow_work_thread+0x205/0x360 [<ffffffff81096ca0>] ? autoremove_wake_function+0x0/0x40 [<ffffffff8110e310>] ? slow_work_thread+0x0/0x360 [<ffffffff81096936>] kthread+0x96/0xa0 [<ffffffff8100c0ca>] child_rip+0xa/0x20 [<ffffffff810968a0>] ? kthread+0x0/0xa0 [<ffffffff8100c0c0>] ? child_rip+0x0/0x20 The parameter to fscache_invalidate_writes() was object->cookie which is NULL. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Milosz Tanski <milosz@adfin.com> Acked-by: Jeff Layton <jlayton@redhat.com>
2013-05-11 02:50:26 +08:00
/* Make sure any pending writes are cancelled. */
if (cookie->type != FSCACHE_COOKIE_TYPE_INDEX)
fscache_invalidate_writes(cookie);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
/* Reset the cookie state if it wasn't relinquished */
if (!test_bit(FSCACHE_COOKIE_RELINQUISHED, &cookie->flags)) {
atomic_inc(&cookie->n_active);
set_bit(FSCACHE_COOKIE_NO_DATA_YET, &cookie->flags);
}
out_unlock_enable:
clear_bit_unlock(FSCACHE_COOKIE_ENABLEMENT_LOCK, &cookie->flags);
wake_up_bit(&cookie->flags, FSCACHE_COOKIE_ENABLEMENT_LOCK);
_leave("");
}
EXPORT_SYMBOL(__fscache_disable_cookie);
/*
* release a cookie back to the cache
* - the object will be marked as recyclable on disk if retire is true
* - all dependents of this cookie must have already been unregistered
* (indices/files/pages)
*/
void __fscache_relinquish_cookie(struct fscache_cookie *cookie,
const void *aux_data,
bool retire)
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
{
fscache_stat(&fscache_n_relinquishes);
if (retire)
fscache_stat(&fscache_n_relinquishes_retire);
if (!cookie) {
fscache_stat(&fscache_n_relinquishes_null);
_leave(" [no cookie]");
return;
}
_enter("%p{%s,%p,%d},%d",
cookie, cookie->def->name, cookie->netfs_data,
atomic_read(&cookie->n_active), retire);
trace_fscache_relinquish(cookie, retire);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
/* No further netfs-accessing operations on this cookie permitted */
if (test_and_set_bit(FSCACHE_COOKIE_RELINQUISHED, &cookie->flags))
BUG();
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
__fscache_disable_cookie(cookie, aux_data, retire);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
FS-Cache: Simplify cookie retention for fscache_objects, fixing oops Simplify the way fscache cache objects retain their cookie. The way I implemented the cookie storage handling made synchronisation a pain (ie. the object state machine can't rely on the cookie actually still being there). Instead of the the object being detached from the cookie and the cookie being freed in __fscache_relinquish_cookie(), we defer both operations: (*) The detachment of the object from the list in the cookie now takes place in fscache_drop_object() and is thus governed by the object state machine (fscache_detach_from_cookie() has been removed). (*) The release of the cookie is now in fscache_object_destroy() - which is called by the cache backend just before it frees the object. This means that the fscache_cookie struct is now available to the cache all the way through from ->alloc_object() to ->drop_object() and ->put_object() - meaning that it's no longer necessary to take object->lock to guarantee access. However, __fscache_relinquish_cookie() doesn't wait for the object to go all the way through to destruction before letting the netfs proceed. That would massively slow down the netfs. Since __fscache_relinquish_cookie() leaves the cookie around, in must therefore break all attachments to the netfs - which includes ->def, ->netfs_data and any outstanding page read/writes. To handle this, struct fscache_cookie now has an n_active counter: (1) This starts off initialised to 1. (2) Any time the cache needs to get at the netfs data, it calls fscache_use_cookie() to increment it - if it is not zero. If it was zero, then access is not permitted. (3) When the cache has finished with the data, it calls fscache_unuse_cookie() to decrement it. This does a wake-up on it if it reaches 0. (4) __fscache_relinquish_cookie() decrements n_active and then waits for it to reach 0. The initialisation to 1 in step (1) ensures that we only get wake ups when we're trying to get rid of the cookie. This leaves __fscache_relinquish_cookie() a lot simpler. *** This fixes a problem in the current code whereby if fscache_invalidate() is followed sufficiently quickly by fscache_relinquish_cookie() then it is possible for __fscache_relinquish_cookie() to have detached the cookie from the object and cleared the pointer before a thread is dispatched to process the invalidation state in the object state machine. Since the pending write clearance was deferred to the invalidation state to make it asynchronous, we need to either wait in relinquishment for the stores tree to be cleared in the invalidation state or we need to handle the clearance in relinquishment. Further, if the relinquishment code does clear the tree, then the invalidation state need to make the clearance contingent on still having the cookie to hand (since that's where the tree is rooted) and we have to prevent the cookie from disappearing for the duration. This can lead to an oops like the following: BUG: unable to handle kernel NULL pointer dereference at 000000000000000c ... RIP: 0010:[<ffffffff8151023e>] _spin_lock+0xe/0x30 ... CR2: 000000000000000c ... ... Process kslowd002 (...) .... Call Trace: [<ffffffffa01c3278>] fscache_invalidate_writes+0x38/0xd0 [fscache] [<ffffffff810096f0>] ? __switch_to+0xd0/0x320 [<ffffffff8105e759>] ? find_busiest_queue+0x69/0x150 [<ffffffff8110ddd4>] ? slow_work_enqueue+0x104/0x180 [<ffffffffa01c1303>] fscache_object_slow_work_execute+0x5e3/0x9d0 [fscache] [<ffffffff81096b67>] ? bit_waitqueue+0x17/0xd0 [<ffffffff8110e233>] slow_work_execute+0x233/0x310 [<ffffffff8110e515>] slow_work_thread+0x205/0x360 [<ffffffff81096ca0>] ? autoremove_wake_function+0x0/0x40 [<ffffffff8110e310>] ? slow_work_thread+0x0/0x360 [<ffffffff81096936>] kthread+0x96/0xa0 [<ffffffff8100c0ca>] child_rip+0xa/0x20 [<ffffffff810968a0>] ? kthread+0x0/0xa0 [<ffffffff8100c0c0>] ? child_rip+0x0/0x20 The parameter to fscache_invalidate_writes() was object->cookie which is NULL. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Milosz Tanski <milosz@adfin.com> Acked-by: Jeff Layton <jlayton@redhat.com>
2013-05-11 02:50:26 +08:00
/* Clear pointers back to the netfs */
cookie->netfs_data = NULL;
cookie->def = NULL;
BUG_ON(!radix_tree_empty(&cookie->stores));
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
if (cookie->parent) {
ASSERTCMP(atomic_read(&cookie->parent->usage), >, 0);
ASSERTCMP(atomic_read(&cookie->parent->n_children), >, 0);
atomic_dec(&cookie->parent->n_children);
}
FS-Cache: Simplify cookie retention for fscache_objects, fixing oops Simplify the way fscache cache objects retain their cookie. The way I implemented the cookie storage handling made synchronisation a pain (ie. the object state machine can't rely on the cookie actually still being there). Instead of the the object being detached from the cookie and the cookie being freed in __fscache_relinquish_cookie(), we defer both operations: (*) The detachment of the object from the list in the cookie now takes place in fscache_drop_object() and is thus governed by the object state machine (fscache_detach_from_cookie() has been removed). (*) The release of the cookie is now in fscache_object_destroy() - which is called by the cache backend just before it frees the object. This means that the fscache_cookie struct is now available to the cache all the way through from ->alloc_object() to ->drop_object() and ->put_object() - meaning that it's no longer necessary to take object->lock to guarantee access. However, __fscache_relinquish_cookie() doesn't wait for the object to go all the way through to destruction before letting the netfs proceed. That would massively slow down the netfs. Since __fscache_relinquish_cookie() leaves the cookie around, in must therefore break all attachments to the netfs - which includes ->def, ->netfs_data and any outstanding page read/writes. To handle this, struct fscache_cookie now has an n_active counter: (1) This starts off initialised to 1. (2) Any time the cache needs to get at the netfs data, it calls fscache_use_cookie() to increment it - if it is not zero. If it was zero, then access is not permitted. (3) When the cache has finished with the data, it calls fscache_unuse_cookie() to decrement it. This does a wake-up on it if it reaches 0. (4) __fscache_relinquish_cookie() decrements n_active and then waits for it to reach 0. The initialisation to 1 in step (1) ensures that we only get wake ups when we're trying to get rid of the cookie. This leaves __fscache_relinquish_cookie() a lot simpler. *** This fixes a problem in the current code whereby if fscache_invalidate() is followed sufficiently quickly by fscache_relinquish_cookie() then it is possible for __fscache_relinquish_cookie() to have detached the cookie from the object and cleared the pointer before a thread is dispatched to process the invalidation state in the object state machine. Since the pending write clearance was deferred to the invalidation state to make it asynchronous, we need to either wait in relinquishment for the stores tree to be cleared in the invalidation state or we need to handle the clearance in relinquishment. Further, if the relinquishment code does clear the tree, then the invalidation state need to make the clearance contingent on still having the cookie to hand (since that's where the tree is rooted) and we have to prevent the cookie from disappearing for the duration. This can lead to an oops like the following: BUG: unable to handle kernel NULL pointer dereference at 000000000000000c ... RIP: 0010:[<ffffffff8151023e>] _spin_lock+0xe/0x30 ... CR2: 000000000000000c ... ... Process kslowd002 (...) .... Call Trace: [<ffffffffa01c3278>] fscache_invalidate_writes+0x38/0xd0 [fscache] [<ffffffff810096f0>] ? __switch_to+0xd0/0x320 [<ffffffff8105e759>] ? find_busiest_queue+0x69/0x150 [<ffffffff8110ddd4>] ? slow_work_enqueue+0x104/0x180 [<ffffffffa01c1303>] fscache_object_slow_work_execute+0x5e3/0x9d0 [fscache] [<ffffffff81096b67>] ? bit_waitqueue+0x17/0xd0 [<ffffffff8110e233>] slow_work_execute+0x233/0x310 [<ffffffff8110e515>] slow_work_thread+0x205/0x360 [<ffffffff81096ca0>] ? autoremove_wake_function+0x0/0x40 [<ffffffff8110e310>] ? slow_work_thread+0x0/0x360 [<ffffffff81096936>] kthread+0x96/0xa0 [<ffffffff8100c0ca>] child_rip+0xa/0x20 [<ffffffff810968a0>] ? kthread+0x0/0xa0 [<ffffffff8100c0c0>] ? child_rip+0x0/0x20 The parameter to fscache_invalidate_writes() was object->cookie which is NULL. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Milosz Tanski <milosz@adfin.com> Acked-by: Jeff Layton <jlayton@redhat.com>
2013-05-11 02:50:26 +08:00
/* Dispose of the netfs's link to the cookie */
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
ASSERTCMP(atomic_read(&cookie->usage), >, 0);
fscache_cookie_put(cookie, fscache_cookie_put_relinquish);
FS-Cache: Implement the cookie management part of the netfs API Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:38 +08:00
_leave("");
}
EXPORT_SYMBOL(__fscache_relinquish_cookie);
/*
* Remove a cookie from the hash table.
*/
static void fscache_unhash_cookie(struct fscache_cookie *cookie)
{
struct hlist_bl_head *h;
unsigned int bucket;
bucket = cookie->key_hash & (ARRAY_SIZE(fscache_cookie_hash) - 1);
h = &fscache_cookie_hash[bucket];
hlist_bl_lock(h);
hlist_bl_del(&cookie->hash_link);
hlist_bl_unlock(h);
}
/*
* Drop a reference to a cookie.
*/
void fscache_cookie_put(struct fscache_cookie *cookie,
enum fscache_cookie_trace where)
{
struct fscache_cookie *parent;
int usage;
_enter("%p", cookie);
do {
usage = atomic_dec_return(&cookie->usage);
trace_fscache_cookie(cookie, where, usage);
if (usage > 0)
return;
BUG_ON(usage < 0);
parent = cookie->parent;
fscache_unhash_cookie(cookie);
fscache_free_cookie(cookie);
cookie = parent;
where = fscache_cookie_put_parent;
} while (cookie);
_leave("");
}
/*
* check the consistency between the netfs inode and the backing cache
*
* NOTE: it only serves no-index type
*/
int __fscache_check_consistency(struct fscache_cookie *cookie,
const void *aux_data)
{
struct fscache_operation *op;
struct fscache_object *object;
bool wake_cookie = false;
int ret;
_enter("%p,", cookie);
ASSERTCMP(cookie->type, ==, FSCACHE_COOKIE_TYPE_DATAFILE);
if (fscache_wait_for_deferred_lookup(cookie) < 0)
return -ERESTARTSYS;
if (hlist_empty(&cookie->backing_objects))
return 0;
op = kzalloc(sizeof(*op), GFP_NOIO | __GFP_NOMEMALLOC | __GFP_NORETRY);
if (!op)
return -ENOMEM;
fscache_operation_init(cookie, op, NULL, NULL, NULL);
op->flags = FSCACHE_OP_MYTHREAD |
(1 << FSCACHE_OP_WAITING) |
(1 << FSCACHE_OP_UNUSE_COOKIE);
trace_fscache_page_op(cookie, NULL, op, fscache_page_op_check_consistency);
spin_lock(&cookie->lock);
fscache_update_aux(cookie, aux_data);
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 07:09:31 +08:00
if (!fscache_cookie_enabled(cookie) ||
hlist_empty(&cookie->backing_objects))
goto inconsistent;
object = hlist_entry(cookie->backing_objects.first,
struct fscache_object, cookie_link);
if (test_bit(FSCACHE_IOERROR, &object->cache->flags))
goto inconsistent;
op->debug_id = atomic_inc_return(&fscache_op_debug_id);
__fscache_use_cookie(cookie);
if (fscache_submit_op(object, op) < 0)
goto submit_failed;
/* the work queue now carries its own ref on the object */
spin_unlock(&cookie->lock);
FS-Cache: The operation cancellation method needs calling in more places Any time an incomplete operation is cancelled, the operation cancellation function needs to be called to clean up. This is currently being passed directly to some of the functions that might want to call it, but not all. Instead, pass the cancellation method pointer to the fscache_operation_init() and have that cache it in the operation struct. Further, plug in a dummy cancellation handler if the caller declines to set one as this allows us to call the function unconditionally (the extra overhead isn't worth bothering about as we don't expect to be calling this typically). The cancellation method must thence be called everywhere the CANCELLED state is set. Note that we call it *before* setting the CANCELLED state such that the method can use the old state value to guide its operation. fscache_do_cancel_retrieval() needs moving higher up in the sources so that the init function can use it now. Without this, the following oops may be seen: FS-Cache: Assertion failed FS-Cache: 3 == 0 is false ------------[ cut here ]------------ kernel BUG at ../fs/fscache/page.c:261! ... RIP: 0010:[<ffffffffa0089c1b>] fscache_release_retrieval_op+0x77/0x100 [<ffffffffa008853d>] fscache_put_operation+0x114/0x2da [<ffffffffa008b8c2>] __fscache_read_or_alloc_pages+0x358/0x3b3 [<ffffffffa00b761f>] __nfs_readpages_from_fscache+0x59/0xbf [nfs] [<ffffffffa00b06c5>] nfs_readpages+0x10c/0x185 [nfs] [<ffffffff81124925>] ? alloc_pages_current+0x119/0x13e [<ffffffff810ee5fd>] ? __page_cache_alloc+0xfb/0x10a [<ffffffff810f87f8>] __do_page_cache_readahead+0x188/0x22c [<ffffffff810f8b3a>] ondemand_readahead+0x29e/0x2af [<ffffffff810f8c92>] page_cache_sync_readahead+0x38/0x3a [<ffffffff810ef337>] generic_file_read_iter+0x1a2/0x55a [<ffffffffa00a9dff>] ? nfs_revalidate_mapping+0xd6/0x288 [nfs] [<ffffffffa00a6a23>] nfs_file_read+0x49/0x70 [nfs] [<ffffffff811363be>] new_sync_read+0x78/0x9c [<ffffffff81137164>] __vfs_read+0x13/0x38 [<ffffffff8113721e>] vfs_read+0x95/0x121 [<ffffffff811372f6>] SyS_read+0x4c/0x8a [<ffffffff81557a52>] system_call_fastpath+0x12/0x17 The assertion is showing that the remaining number of pages (n_pages) is not 0 when the operation is being released. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>
2015-02-24 18:05:29 +08:00
ret = fscache_wait_for_operation_activation(object, op, NULL, NULL);
if (ret == 0) {
/* ask the cache to honour the operation */
ret = object->cache->ops->check_consistency(op);
fscache_op_complete(op, false);
} else if (ret == -ENOBUFS) {
ret = 0;
}
fscache_put_operation(op);
_leave(" = %d", ret);
return ret;
submit_failed:
wake_cookie = __fscache_unuse_cookie(cookie);
inconsistent:
spin_unlock(&cookie->lock);
if (wake_cookie)
__fscache_wake_unused_cookie(cookie);
kfree(op);
_leave(" = -ESTALE");
return -ESTALE;
}
EXPORT_SYMBOL(__fscache_check_consistency);