linux-sg2042/arch/powerpc/kvm/book3s_hv_rm_mmu.c

371 lines
9.9 KiB
C
Raw Normal View History

KVM: PPC: Handle some PAPR hcalls in the kernel This adds the infrastructure for handling PAPR hcalls in the kernel, either early in the guest exit path while we are still in real mode, or later once the MMU has been turned back on and we are in the full kernel context. The advantage of handling hcalls in real mode if possible is that we avoid two partition switches -- and this will become more important when we support SMT4 guests, since a partition switch means we have to pull all of the threads in the core out of the guest. The disadvantage is that we can only access the kernel linear mapping, not anything vmalloced or ioremapped, since the MMU is off. This also adds code to handle the following hcalls in real mode: H_ENTER Add an HPTE to the hashed page table H_REMOVE Remove an HPTE from the hashed page table H_READ Read HPTEs from the hashed page table H_PROTECT Change the protection bits in an HPTE H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table H_SET_DABR Set the data address breakpoint register Plus code to handle the following hcalls in the kernel: H_CEDE Idle the vcpu until an interrupt or H_PROD hcall arrives H_PROD Wake up a ceded vcpu H_REGISTER_VPA Register a virtual processor area (VPA) The code that runs in real mode has to be in the base kernel, not in the module, if KVM is compiled as a module. The real-mode code can only access the kernel linear mapping, not vmalloc or ioremap space. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:22:05 +08:00
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/hugetlb.h>
#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash64.h>
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>
/* For now use fixed-size 16MB page table */
#define HPT_ORDER 24
#define HPT_NPTEG (1ul << (HPT_ORDER - 7)) /* 128B per pteg */
#define HPT_HASH_MASK (HPT_NPTEG - 1)
#define HPTE_V_HVLOCK 0x40UL
static inline long lock_hpte(unsigned long *hpte, unsigned long bits)
{
unsigned long tmp, old;
asm volatile(" ldarx %0,0,%2\n"
" and. %1,%0,%3\n"
" bne 2f\n"
" ori %0,%0,%4\n"
" stdcx. %0,0,%2\n"
" beq+ 2f\n"
" li %1,%3\n"
"2: isync"
: "=&r" (tmp), "=&r" (old)
: "r" (hpte), "r" (bits), "i" (HPTE_V_HVLOCK)
: "cc", "memory");
return old == 0;
}
long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
long pte_index, unsigned long pteh, unsigned long ptel)
{
unsigned long porder;
struct kvm *kvm = vcpu->kvm;
unsigned long i, lpn, pa;
unsigned long *hpte;
/* only handle 4k, 64k and 16M pages for now */
porder = 12;
if (pteh & HPTE_V_LARGE) {
KVM: PPC: book3s_hv: Add support for PPC970-family processors This adds support for running KVM guests in supervisor mode on those PPC970 processors that have a usable hypervisor mode. Unfortunately, Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to 1), but the YDL PowerStation does have a usable hypervisor mode. There are several differences between the PPC970 and POWER7 in how guests are managed. These differences are accommodated using the CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature bits. Notably, on PPC970: * The LPCR, LPID or RMOR registers don't exist, and the functions of those registers are provided by bits in HID4 and one bit in HID0. * External interrupts can be directed to the hypervisor, but unlike POWER7 they are masked by MSR[EE] in non-hypervisor modes and use SRR0/1 not HSRR0/1. * There is no virtual RMA (VRMA) mode; the guest must use an RMO (real mode offset) area. * The TLB entries are not tagged with the LPID, so it is necessary to flush the whole TLB on partition switch. Furthermore, when switching partitions we have to ensure that no other CPU is executing the tlbie or tlbsync instructions in either the old or the new partition, otherwise undefined behaviour can occur. * The PMU has 8 counters (PMC registers) rather than 6. * The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist. * The SLB has 64 entries rather than 32. * There is no mediated external interrupt facility, so if we switch to a guest that has a virtual external interrupt pending but the guest has MSR[EE] = 0, we have to arrange to have an interrupt pending for it so that we can get control back once it re-enables interrupts. We do that by sending ourselves an IPI with smp_send_reschedule after hard-disabling interrupts. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:40:08 +08:00
if (cpu_has_feature(CPU_FTR_ARCH_206) &&
(ptel & 0xf000) == 0x1000) {
KVM: PPC: Handle some PAPR hcalls in the kernel This adds the infrastructure for handling PAPR hcalls in the kernel, either early in the guest exit path while we are still in real mode, or later once the MMU has been turned back on and we are in the full kernel context. The advantage of handling hcalls in real mode if possible is that we avoid two partition switches -- and this will become more important when we support SMT4 guests, since a partition switch means we have to pull all of the threads in the core out of the guest. The disadvantage is that we can only access the kernel linear mapping, not anything vmalloced or ioremapped, since the MMU is off. This also adds code to handle the following hcalls in real mode: H_ENTER Add an HPTE to the hashed page table H_REMOVE Remove an HPTE from the hashed page table H_READ Read HPTEs from the hashed page table H_PROTECT Change the protection bits in an HPTE H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table H_SET_DABR Set the data address breakpoint register Plus code to handle the following hcalls in the kernel: H_CEDE Idle the vcpu until an interrupt or H_PROD hcall arrives H_PROD Wake up a ceded vcpu H_REGISTER_VPA Register a virtual processor area (VPA) The code that runs in real mode has to be in the base kernel, not in the module, if KVM is compiled as a module. The real-mode code can only access the kernel linear mapping, not vmalloc or ioremap space. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:22:05 +08:00
/* 64k page */
porder = 16;
} else if ((ptel & 0xff000) == 0) {
/* 16M page */
porder = 24;
/* lowest AVA bit must be 0 for 16M pages */
if (pteh & 0x80)
return H_PARAMETER;
} else
return H_PARAMETER;
}
lpn = (ptel & HPTE_R_RPN) >> kvm->arch.ram_porder;
if (lpn >= kvm->arch.ram_npages || porder > kvm->arch.ram_porder)
return H_PARAMETER;
pa = kvm->arch.ram_pginfo[lpn].pfn << PAGE_SHIFT;
if (!pa)
return H_PARAMETER;
/* Check WIMG */
if ((ptel & HPTE_R_WIMG) != HPTE_R_M &&
(ptel & HPTE_R_WIMG) != (HPTE_R_W | HPTE_R_I | HPTE_R_M))
return H_PARAMETER;
pteh &= ~0x60UL;
ptel &= ~(HPTE_R_PP0 - kvm->arch.ram_psize);
ptel |= pa;
if (pte_index >= (HPT_NPTEG << 3))
return H_PARAMETER;
if (likely((flags & H_EXACT) == 0)) {
pte_index &= ~7UL;
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
for (i = 0; ; ++i) {
if (i == 8)
return H_PTEG_FULL;
if ((*hpte & HPTE_V_VALID) == 0 &&
lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID))
break;
hpte += 2;
}
} else {
i = 0;
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
if (!lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID))
return H_PTEG_FULL;
}
hpte[1] = ptel;
eieio();
hpte[0] = pteh;
asm volatile("ptesync" : : : "memory");
atomic_inc(&kvm->arch.ram_pginfo[lpn].refcnt);
vcpu->arch.gpr[4] = pte_index + i;
return H_SUCCESS;
}
static unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
unsigned long pte_index)
{
unsigned long rb, va_low;
rb = (v & ~0x7fUL) << 16; /* AVA field */
va_low = pte_index >> 3;
if (v & HPTE_V_SECONDARY)
va_low = ~va_low;
/* xor vsid from AVA */
if (!(v & HPTE_V_1TB_SEG))
va_low ^= v >> 12;
else
va_low ^= v >> 24;
va_low &= 0x7ff;
if (v & HPTE_V_LARGE) {
rb |= 1; /* L field */
KVM: PPC: book3s_hv: Add support for PPC970-family processors This adds support for running KVM guests in supervisor mode on those PPC970 processors that have a usable hypervisor mode. Unfortunately, Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to 1), but the YDL PowerStation does have a usable hypervisor mode. There are several differences between the PPC970 and POWER7 in how guests are managed. These differences are accommodated using the CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature bits. Notably, on PPC970: * The LPCR, LPID or RMOR registers don't exist, and the functions of those registers are provided by bits in HID4 and one bit in HID0. * External interrupts can be directed to the hypervisor, but unlike POWER7 they are masked by MSR[EE] in non-hypervisor modes and use SRR0/1 not HSRR0/1. * There is no virtual RMA (VRMA) mode; the guest must use an RMO (real mode offset) area. * The TLB entries are not tagged with the LPID, so it is necessary to flush the whole TLB on partition switch. Furthermore, when switching partitions we have to ensure that no other CPU is executing the tlbie or tlbsync instructions in either the old or the new partition, otherwise undefined behaviour can occur. * The PMU has 8 counters (PMC registers) rather than 6. * The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist. * The SLB has 64 entries rather than 32. * There is no mediated external interrupt facility, so if we switch to a guest that has a virtual external interrupt pending but the guest has MSR[EE] = 0, we have to arrange to have an interrupt pending for it so that we can get control back once it re-enables interrupts. We do that by sending ourselves an IPI with smp_send_reschedule after hard-disabling interrupts. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:40:08 +08:00
if (cpu_has_feature(CPU_FTR_ARCH_206) &&
(r & 0xff000)) {
KVM: PPC: Handle some PAPR hcalls in the kernel This adds the infrastructure for handling PAPR hcalls in the kernel, either early in the guest exit path while we are still in real mode, or later once the MMU has been turned back on and we are in the full kernel context. The advantage of handling hcalls in real mode if possible is that we avoid two partition switches -- and this will become more important when we support SMT4 guests, since a partition switch means we have to pull all of the threads in the core out of the guest. The disadvantage is that we can only access the kernel linear mapping, not anything vmalloced or ioremapped, since the MMU is off. This also adds code to handle the following hcalls in real mode: H_ENTER Add an HPTE to the hashed page table H_REMOVE Remove an HPTE from the hashed page table H_READ Read HPTEs from the hashed page table H_PROTECT Change the protection bits in an HPTE H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table H_SET_DABR Set the data address breakpoint register Plus code to handle the following hcalls in the kernel: H_CEDE Idle the vcpu until an interrupt or H_PROD hcall arrives H_PROD Wake up a ceded vcpu H_REGISTER_VPA Register a virtual processor area (VPA) The code that runs in real mode has to be in the base kernel, not in the module, if KVM is compiled as a module. The real-mode code can only access the kernel linear mapping, not vmalloc or ioremap space. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:22:05 +08:00
/* non-16MB large page, must be 64k */
/* (masks depend on page size) */
rb |= 0x1000; /* page encoding in LP field */
rb |= (va_low & 0x7f) << 16; /* 7b of VA in AVA/LP field */
rb |= (va_low & 0xfe); /* AVAL field (P7 doesn't seem to care) */
}
} else {
/* 4kB page */
rb |= (va_low & 0x7ff) << 12; /* remaining 11b of VA */
}
rb |= (v >> 54) & 0x300; /* B field */
return rb;
}
#define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
static inline int try_lock_tlbie(unsigned int *lock)
{
unsigned int tmp, old;
unsigned int token = LOCK_TOKEN;
asm volatile("1:lwarx %1,0,%2\n"
" cmpwi cr0,%1,0\n"
" bne 2f\n"
" stwcx. %3,0,%2\n"
" bne- 1b\n"
" isync\n"
"2:"
: "=&r" (tmp), "=&r" (old)
: "r" (lock), "r" (token)
: "cc", "memory");
return old == 0;
}
long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
unsigned long pte_index, unsigned long avpn,
unsigned long va)
{
struct kvm *kvm = vcpu->kvm;
unsigned long *hpte;
unsigned long v, r, rb;
if (pte_index >= (HPT_NPTEG << 3))
return H_PARAMETER;
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
while (!lock_hpte(hpte, HPTE_V_HVLOCK))
cpu_relax();
if ((hpte[0] & HPTE_V_VALID) == 0 ||
((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
hpte[0] &= ~HPTE_V_HVLOCK;
return H_NOT_FOUND;
}
if (atomic_read(&kvm->online_vcpus) == 1)
flags |= H_LOCAL;
vcpu->arch.gpr[4] = v = hpte[0] & ~HPTE_V_HVLOCK;
vcpu->arch.gpr[5] = r = hpte[1];
rb = compute_tlbie_rb(v, r, pte_index);
hpte[0] = 0;
if (!(flags & H_LOCAL)) {
while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
cpu_relax();
asm volatile("ptesync" : : : "memory");
asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
: : "r" (rb), "r" (kvm->arch.lpid));
asm volatile("ptesync" : : : "memory");
kvm->arch.tlbie_lock = 0;
} else {
asm volatile("ptesync" : : : "memory");
asm volatile("tlbiel %0" : : "r" (rb));
asm volatile("ptesync" : : : "memory");
}
return H_SUCCESS;
}
long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
unsigned long *args = &vcpu->arch.gpr[4];
unsigned long *hp, tlbrb[4];
long int i, found;
long int n_inval = 0;
unsigned long flags, req, pte_index;
long int local = 0;
long int ret = H_SUCCESS;
if (atomic_read(&kvm->online_vcpus) == 1)
local = 1;
for (i = 0; i < 4; ++i) {
pte_index = args[i * 2];
flags = pte_index >> 56;
pte_index &= ((1ul << 56) - 1);
req = flags >> 6;
flags &= 3;
if (req == 3)
break;
if (req != 1 || flags == 3 ||
pte_index >= (HPT_NPTEG << 3)) {
/* parameter error */
args[i * 2] = ((0xa0 | flags) << 56) + pte_index;
ret = H_PARAMETER;
break;
}
hp = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
while (!lock_hpte(hp, HPTE_V_HVLOCK))
cpu_relax();
found = 0;
if (hp[0] & HPTE_V_VALID) {
switch (flags & 3) {
case 0: /* absolute */
found = 1;
break;
case 1: /* andcond */
if (!(hp[0] & args[i * 2 + 1]))
found = 1;
break;
case 2: /* AVPN */
if ((hp[0] & ~0x7fUL) == args[i * 2 + 1])
found = 1;
break;
}
}
if (!found) {
hp[0] &= ~HPTE_V_HVLOCK;
args[i * 2] = ((0x90 | flags) << 56) + pte_index;
continue;
}
/* insert R and C bits from PTE */
flags |= (hp[1] >> 5) & 0x0c;
args[i * 2] = ((0x80 | flags) << 56) + pte_index;
tlbrb[n_inval++] = compute_tlbie_rb(hp[0], hp[1], pte_index);
hp[0] = 0;
}
if (n_inval == 0)
return ret;
if (!local) {
while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
cpu_relax();
asm volatile("ptesync" : : : "memory");
for (i = 0; i < n_inval; ++i)
asm volatile(PPC_TLBIE(%1,%0)
: : "r" (tlbrb[i]), "r" (kvm->arch.lpid));
asm volatile("eieio; tlbsync; ptesync" : : : "memory");
kvm->arch.tlbie_lock = 0;
} else {
asm volatile("ptesync" : : : "memory");
for (i = 0; i < n_inval; ++i)
asm volatile("tlbiel %0" : : "r" (tlbrb[i]));
asm volatile("ptesync" : : : "memory");
}
return ret;
}
long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
unsigned long pte_index, unsigned long avpn,
unsigned long va)
{
struct kvm *kvm = vcpu->kvm;
unsigned long *hpte;
unsigned long v, r, rb;
if (pte_index >= (HPT_NPTEG << 3))
return H_PARAMETER;
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
while (!lock_hpte(hpte, HPTE_V_HVLOCK))
cpu_relax();
if ((hpte[0] & HPTE_V_VALID) == 0 ||
((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
hpte[0] &= ~HPTE_V_HVLOCK;
return H_NOT_FOUND;
}
if (atomic_read(&kvm->online_vcpus) == 1)
flags |= H_LOCAL;
v = hpte[0];
r = hpte[1] & ~(HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
HPTE_R_KEY_HI | HPTE_R_KEY_LO);
r |= (flags << 55) & HPTE_R_PP0;
r |= (flags << 48) & HPTE_R_KEY_HI;
r |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
rb = compute_tlbie_rb(v, r, pte_index);
hpte[0] = v & ~HPTE_V_VALID;
if (!(flags & H_LOCAL)) {
while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
cpu_relax();
asm volatile("ptesync" : : : "memory");
asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
: : "r" (rb), "r" (kvm->arch.lpid));
asm volatile("ptesync" : : : "memory");
kvm->arch.tlbie_lock = 0;
} else {
asm volatile("ptesync" : : : "memory");
asm volatile("tlbiel %0" : : "r" (rb));
asm volatile("ptesync" : : : "memory");
}
hpte[1] = r;
eieio();
hpte[0] = v & ~HPTE_V_HVLOCK;
asm volatile("ptesync" : : : "memory");
return H_SUCCESS;
}
static unsigned long reverse_xlate(struct kvm *kvm, unsigned long realaddr)
{
long int i;
unsigned long offset, rpn;
offset = realaddr & (kvm->arch.ram_psize - 1);
rpn = (realaddr - offset) >> PAGE_SHIFT;
for (i = 0; i < kvm->arch.ram_npages; ++i)
if (rpn == kvm->arch.ram_pginfo[i].pfn)
return (i << PAGE_SHIFT) + offset;
return HPTE_R_RPN; /* all 1s in the RPN field */
}
long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
unsigned long pte_index)
{
struct kvm *kvm = vcpu->kvm;
unsigned long *hpte, r;
int i, n = 1;
if (pte_index >= (HPT_NPTEG << 3))
return H_PARAMETER;
if (flags & H_READ_4) {
pte_index &= ~3;
n = 4;
}
for (i = 0; i < n; ++i, ++pte_index) {
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
r = hpte[1];
if ((flags & H_R_XLATE) && (hpte[0] & HPTE_V_VALID))
r = reverse_xlate(kvm, r & HPTE_R_RPN) |
(r & ~HPTE_R_RPN);
vcpu->arch.gpr[4 + i * 2] = hpte[0];
vcpu->arch.gpr[5 + i * 2] = r;
}
return H_SUCCESS;
}