linux-sg2042/drivers/isdn/hisax/icc.c

683 lines
18 KiB
C
Raw Normal View History

/* $Id: icc.c,v 1.8.2.3 2004/01/13 14:31:25 keil Exp $
*
* ICC specific routines
*
* Author Matt Henderson & Guy Ellis
* Copyright by Traverse Technologies Pty Ltd, www.travers.com.au
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* 1999.6.25 Initial implementation of routines for Siemens ISDN
* Communication Controller PEB 2070 based on the ISAC routines
* written by Karsten Keil.
*
*/
#include <linux/init.h>
#include "hisax.h"
#include "icc.h"
// #include "arcofi.h"
#include "isdnl1.h"
#include <linux/interrupt.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#define DBUSY_TIMER_VALUE 80
#define ARCOFI_USE 0
static char *ICCVer[] =
{"2070 A1/A3", "2070 B1", "2070 B2/B3", "2070 V2.4"};
void
ICCVersion(struct IsdnCardState *cs, char *s)
{
int val;
val = cs->readisac(cs, ICC_RBCH);
printk(KERN_INFO "%s ICC version (%x): %s\n", s, val, ICCVer[(val >> 5) & 3]);
}
static void
ph_command(struct IsdnCardState *cs, unsigned int command)
{
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ph_command %x", command);
cs->writeisac(cs, ICC_CIX0, (command << 2) | 3);
}
static void
icc_new_ph(struct IsdnCardState *cs)
{
switch (cs->dc.icc.ph_state) {
case (ICC_IND_EI1):
ph_command(cs, ICC_CMD_DI);
l1_msg(cs, HW_RESET | INDICATION, NULL);
break;
case (ICC_IND_DC):
l1_msg(cs, HW_DEACTIVATE | CONFIRM, NULL);
break;
case (ICC_IND_DR):
l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
break;
case (ICC_IND_PU):
l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
break;
case (ICC_IND_FJ):
l1_msg(cs, HW_RSYNC | INDICATION, NULL);
break;
case (ICC_IND_AR):
l1_msg(cs, HW_INFO2 | INDICATION, NULL);
break;
case (ICC_IND_AI):
l1_msg(cs, HW_INFO4 | INDICATION, NULL);
break;
default:
break;
}
}
static void
icc_bh(struct work_struct *work)
{
struct IsdnCardState *cs =
container_of(work, struct IsdnCardState, tqueue);
struct PStack *stptr;
if (test_and_clear_bit(D_CLEARBUSY, &cs->event)) {
if (cs->debug)
debugl1(cs, "D-Channel Busy cleared");
stptr = cs->stlist;
while (stptr != NULL) {
stptr->l1.l1l2(stptr, PH_PAUSE | CONFIRM, NULL);
stptr = stptr->next;
}
}
if (test_and_clear_bit(D_L1STATECHANGE, &cs->event))
icc_new_ph(cs);
if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
DChannel_proc_rcv(cs);
if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
DChannel_proc_xmt(cs);
#if ARCOFI_USE
if (!test_bit(HW_ARCOFI, &cs->HW_Flags))
return;
if (test_and_clear_bit(D_RX_MON1, &cs->event))
arcofi_fsm(cs, ARCOFI_RX_END, NULL);
if (test_and_clear_bit(D_TX_MON1, &cs->event))
arcofi_fsm(cs, ARCOFI_TX_END, NULL);
#endif
}
static void
icc_empty_fifo(struct IsdnCardState *cs, int count)
{
u_char *ptr;
if ((cs->debug & L1_DEB_ISAC) && !(cs->debug & L1_DEB_ISAC_FIFO))
debugl1(cs, "icc_empty_fifo");
if ((cs->rcvidx + count) >= MAX_DFRAME_LEN_L1) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "icc_empty_fifo overrun %d",
cs->rcvidx + count);
cs->writeisac(cs, ICC_CMDR, 0x80);
cs->rcvidx = 0;
return;
}
ptr = cs->rcvbuf + cs->rcvidx;
cs->rcvidx += count;
cs->readisacfifo(cs, ptr, count);
cs->writeisac(cs, ICC_CMDR, 0x80);
if (cs->debug & L1_DEB_ISAC_FIFO) {
char *t = cs->dlog;
t += sprintf(t, "icc_empty_fifo cnt %d", count);
QuickHex(t, ptr, count);
debugl1(cs, "%s", cs->dlog);
}
}
static void
icc_fill_fifo(struct IsdnCardState *cs)
{
int count, more;
u_char *ptr;
if ((cs->debug & L1_DEB_ISAC) && !(cs->debug & L1_DEB_ISAC_FIFO))
debugl1(cs, "icc_fill_fifo");
if (!cs->tx_skb)
return;
count = cs->tx_skb->len;
if (count <= 0)
return;
more = 0;
if (count > 32) {
more = !0;
count = 32;
}
ptr = cs->tx_skb->data;
skb_pull(cs->tx_skb, count);
cs->tx_cnt += count;
cs->writeisacfifo(cs, ptr, count);
cs->writeisac(cs, ICC_CMDR, more ? 0x8 : 0xa);
if (test_and_set_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) {
debugl1(cs, "icc_fill_fifo dbusytimer running");
del_timer(&cs->dbusytimer);
}
init_timer(&cs->dbusytimer);
cs->dbusytimer.expires = jiffies + ((DBUSY_TIMER_VALUE * HZ)/1000);
add_timer(&cs->dbusytimer);
if (cs->debug & L1_DEB_ISAC_FIFO) {
char *t = cs->dlog;
t += sprintf(t, "icc_fill_fifo cnt %d", count);
QuickHex(t, ptr, count);
debugl1(cs, "%s", cs->dlog);
}
}
void
icc_interrupt(struct IsdnCardState *cs, u_char val)
{
u_char exval, v1;
struct sk_buff *skb;
unsigned int count;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ICC interrupt %x", val);
if (val & 0x80) { /* RME */
exval = cs->readisac(cs, ICC_RSTA);
if ((exval & 0x70) != 0x20) {
if (exval & 0x40) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ICC RDO");
#ifdef ERROR_STATISTIC
cs->err_rx++;
#endif
}
if (!(exval & 0x20)) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ICC CRC error");
#ifdef ERROR_STATISTIC
cs->err_crc++;
#endif
}
cs->writeisac(cs, ICC_CMDR, 0x80);
} else {
count = cs->readisac(cs, ICC_RBCL) & 0x1f;
if (count == 0)
count = 32;
icc_empty_fifo(cs, count);
if ((count = cs->rcvidx) > 0) {
cs->rcvidx = 0;
if (!(skb = alloc_skb(count, GFP_ATOMIC)))
printk(KERN_WARNING "HiSax: D receive out of memory\n");
else {
memcpy(skb_put(skb, count), cs->rcvbuf, count);
skb_queue_tail(&cs->rq, skb);
}
}
}
cs->rcvidx = 0;
schedule_event(cs, D_RCVBUFREADY);
}
if (val & 0x40) { /* RPF */
icc_empty_fifo(cs, 32);
}
if (val & 0x20) { /* RSC */
/* never */
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ICC RSC interrupt");
}
if (val & 0x10) { /* XPR */
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
if (cs->tx_skb) {
if (cs->tx_skb->len) {
icc_fill_fifo(cs);
goto afterXPR;
} else {
dev_kfree_skb_irq(cs->tx_skb);
cs->tx_cnt = 0;
cs->tx_skb = NULL;
}
}
if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
cs->tx_cnt = 0;
icc_fill_fifo(cs);
} else
schedule_event(cs, D_XMTBUFREADY);
}
afterXPR:
if (val & 0x04) { /* CISQ */
exval = cs->readisac(cs, ICC_CIR0);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ICC CIR0 %02X", exval);
if (exval & 2) {
cs->dc.icc.ph_state = (exval >> 2) & 0xf;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ph_state change %x", cs->dc.icc.ph_state);
schedule_event(cs, D_L1STATECHANGE);
}
if (exval & 1) {
exval = cs->readisac(cs, ICC_CIR1);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ICC CIR1 %02X", exval);
}
}
if (val & 0x02) { /* SIN */
/* never */
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ICC SIN interrupt");
}
if (val & 0x01) { /* EXI */
exval = cs->readisac(cs, ICC_EXIR);
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ICC EXIR %02x", exval);
if (exval & 0x80) { /* XMR */
debugl1(cs, "ICC XMR");
printk(KERN_WARNING "HiSax: ICC XMR\n");
}
if (exval & 0x40) { /* XDU */
debugl1(cs, "ICC XDU");
printk(KERN_WARNING "HiSax: ICC XDU\n");
#ifdef ERROR_STATISTIC
cs->err_tx++;
#endif
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
if (cs->tx_skb) { /* Restart frame */
skb_push(cs->tx_skb, cs->tx_cnt);
cs->tx_cnt = 0;
icc_fill_fifo(cs);
} else {
printk(KERN_WARNING "HiSax: ICC XDU no skb\n");
debugl1(cs, "ICC XDU no skb");
}
}
if (exval & 0x04) { /* MOS */
v1 = cs->readisac(cs, ICC_MOSR);
if (cs->debug & L1_DEB_MONITOR)
debugl1(cs, "ICC MOSR %02x", v1);
#if ARCOFI_USE
if (v1 & 0x08) {
if (!cs->dc.icc.mon_rx) {
if (!(cs->dc.icc.mon_rx = kmalloc(MAX_MON_FRAME, GFP_ATOMIC))) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ICC MON RX out of memory!");
cs->dc.icc.mocr &= 0xf0;
cs->dc.icc.mocr |= 0x0a;
cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
goto afterMONR0;
} else
cs->dc.icc.mon_rxp = 0;
}
if (cs->dc.icc.mon_rxp >= MAX_MON_FRAME) {
cs->dc.icc.mocr &= 0xf0;
cs->dc.icc.mocr |= 0x0a;
cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
cs->dc.icc.mon_rxp = 0;
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ICC MON RX overflow!");
goto afterMONR0;
}
cs->dc.icc.mon_rx[cs->dc.icc.mon_rxp++] = cs->readisac(cs, ICC_MOR0);
if (cs->debug & L1_DEB_MONITOR)
debugl1(cs, "ICC MOR0 %02x", cs->dc.icc.mon_rx[cs->dc.icc.mon_rxp - 1]);
if (cs->dc.icc.mon_rxp == 1) {
cs->dc.icc.mocr |= 0x04;
cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
}
}
afterMONR0:
if (v1 & 0x80) {
if (!cs->dc.icc.mon_rx) {
if (!(cs->dc.icc.mon_rx = kmalloc(MAX_MON_FRAME, GFP_ATOMIC))) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ICC MON RX out of memory!");
cs->dc.icc.mocr &= 0x0f;
cs->dc.icc.mocr |= 0xa0;
cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
goto afterMONR1;
} else
cs->dc.icc.mon_rxp = 0;
}
if (cs->dc.icc.mon_rxp >= MAX_MON_FRAME) {
cs->dc.icc.mocr &= 0x0f;
cs->dc.icc.mocr |= 0xa0;
cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
cs->dc.icc.mon_rxp = 0;
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ICC MON RX overflow!");
goto afterMONR1;
}
cs->dc.icc.mon_rx[cs->dc.icc.mon_rxp++] = cs->readisac(cs, ICC_MOR1);
if (cs->debug & L1_DEB_MONITOR)
debugl1(cs, "ICC MOR1 %02x", cs->dc.icc.mon_rx[cs->dc.icc.mon_rxp - 1]);
cs->dc.icc.mocr |= 0x40;
cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
}
afterMONR1:
if (v1 & 0x04) {
cs->dc.icc.mocr &= 0xf0;
cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
cs->dc.icc.mocr |= 0x0a;
cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
schedule_event(cs, D_RX_MON0);
}
if (v1 & 0x40) {
cs->dc.icc.mocr &= 0x0f;
cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
cs->dc.icc.mocr |= 0xa0;
cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
schedule_event(cs, D_RX_MON1);
}
if (v1 & 0x02) {
if ((!cs->dc.icc.mon_tx) || (cs->dc.icc.mon_txc &&
(cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc) &&
!(v1 & 0x08))) {
cs->dc.icc.mocr &= 0xf0;
cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
cs->dc.icc.mocr |= 0x0a;
cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
if (cs->dc.icc.mon_txc &&
(cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc))
schedule_event(cs, D_TX_MON0);
goto AfterMOX0;
}
if (cs->dc.icc.mon_txc && (cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc)) {
schedule_event(cs, D_TX_MON0);
goto AfterMOX0;
}
cs->writeisac(cs, ICC_MOX0,
cs->dc.icc.mon_tx[cs->dc.icc.mon_txp++]);
if (cs->debug & L1_DEB_MONITOR)
debugl1(cs, "ICC %02x -> MOX0", cs->dc.icc.mon_tx[cs->dc.icc.mon_txp - 1]);
}
AfterMOX0:
if (v1 & 0x20) {
if ((!cs->dc.icc.mon_tx) || (cs->dc.icc.mon_txc &&
(cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc) &&
!(v1 & 0x80))) {
cs->dc.icc.mocr &= 0x0f;
cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
cs->dc.icc.mocr |= 0xa0;
cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
if (cs->dc.icc.mon_txc &&
(cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc))
schedule_event(cs, D_TX_MON1);
goto AfterMOX1;
}
if (cs->dc.icc.mon_txc && (cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc)) {
schedule_event(cs, D_TX_MON1);
goto AfterMOX1;
}
cs->writeisac(cs, ICC_MOX1,
cs->dc.icc.mon_tx[cs->dc.icc.mon_txp++]);
if (cs->debug & L1_DEB_MONITOR)
debugl1(cs, "ICC %02x -> MOX1", cs->dc.icc.mon_tx[cs->dc.icc.mon_txp - 1]);
}
AfterMOX1: ;
#endif
}
}
}
static void
ICC_l1hw(struct PStack *st, int pr, void *arg)
{
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
struct sk_buff *skb = arg;
u_long flags;
int val;
switch (pr) {
case (PH_DATA | REQUEST):
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
} else {
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
icc_fill_fifo(cs);
}
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
skb_queue_tail(&cs->sq, skb);
spin_unlock_irqrestore(&cs->lock, flags);
break;
}
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
icc_fill_fifo(cs);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
debugl1(cs, "-> PH_REQUEST_PULL");
#endif
if (!cs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (HW_RESET | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
if ((cs->dc.icc.ph_state == ICC_IND_EI1) ||
(cs->dc.icc.ph_state == ICC_IND_DR))
ph_command(cs, ICC_CMD_DI);
else
ph_command(cs, ICC_CMD_RES);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_ENABLE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
ph_command(cs, ICC_CMD_DI);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_INFO1 | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
ph_command(cs, ICC_CMD_AR);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_INFO3 | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
ph_command(cs, ICC_CMD_AI);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_TESTLOOP | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
val = 0;
if (1 & (long) arg)
val |= 0x0c;
if (2 & (long) arg)
val |= 0x3;
if (test_bit(HW_IOM1, &cs->HW_Flags)) {
/* IOM 1 Mode */
if (!val) {
cs->writeisac(cs, ICC_SPCR, 0xa);
cs->writeisac(cs, ICC_ADF1, 0x2);
} else {
cs->writeisac(cs, ICC_SPCR, val);
cs->writeisac(cs, ICC_ADF1, 0xa);
}
} else {
/* IOM 2 Mode */
cs->writeisac(cs, ICC_SPCR, val);
if (val)
cs->writeisac(cs, ICC_ADF1, 0x8);
else
cs->writeisac(cs, ICC_ADF1, 0x0);
}
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_DEACTIVATE | RESPONSE):
skb_queue_purge(&cs->rq);
skb_queue_purge(&cs->sq);
if (cs->tx_skb) {
dev_kfree_skb_any(cs->tx_skb);
cs->tx_skb = NULL;
}
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
break;
default:
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "icc_l1hw unknown %04x", pr);
break;
}
}
static void
setstack_icc(struct PStack *st, struct IsdnCardState *cs)
{
st->l1.l1hw = ICC_l1hw;
}
static void
DC_Close_icc(struct IsdnCardState *cs) {
kfree(cs->dc.icc.mon_rx);
cs->dc.icc.mon_rx = NULL;
kfree(cs->dc.icc.mon_tx);
cs->dc.icc.mon_tx = NULL;
}
static void
dbusy_timer_handler(struct IsdnCardState *cs)
{
struct PStack *stptr;
int rbch, star;
if (test_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) {
rbch = cs->readisac(cs, ICC_RBCH);
star = cs->readisac(cs, ICC_STAR);
if (cs->debug)
debugl1(cs, "D-Channel Busy RBCH %02x STAR %02x",
rbch, star);
if (rbch & ICC_RBCH_XAC) { /* D-Channel Busy */
test_and_set_bit(FLG_L1_DBUSY, &cs->HW_Flags);
stptr = cs->stlist;
while (stptr != NULL) {
stptr->l1.l1l2(stptr, PH_PAUSE | INDICATION, NULL);
stptr = stptr->next;
}
} else {
/* discard frame; reset transceiver */
test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags);
if (cs->tx_skb) {
dev_kfree_skb_any(cs->tx_skb);
cs->tx_cnt = 0;
cs->tx_skb = NULL;
} else {
printk(KERN_WARNING "HiSax: ICC D-Channel Busy no skb\n");
debugl1(cs, "D-Channel Busy no skb");
}
cs->writeisac(cs, ICC_CMDR, 0x01); /* Transmitter reset */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
cs->irq_func(cs->irq, cs);
}
}
}
void
initicc(struct IsdnCardState *cs)
{
cs->setstack_d = setstack_icc;
cs->DC_Close = DC_Close_icc;
cs->dc.icc.mon_tx = NULL;
cs->dc.icc.mon_rx = NULL;
cs->writeisac(cs, ICC_MASK, 0xff);
cs->dc.icc.mocr = 0xaa;
if (test_bit(HW_IOM1, &cs->HW_Flags)) {
/* IOM 1 Mode */
cs->writeisac(cs, ICC_ADF2, 0x0);
cs->writeisac(cs, ICC_SPCR, 0xa);
cs->writeisac(cs, ICC_ADF1, 0x2);
cs->writeisac(cs, ICC_STCR, 0x70);
cs->writeisac(cs, ICC_MODE, 0xc9);
} else {
/* IOM 2 Mode */
if (!cs->dc.icc.adf2)
cs->dc.icc.adf2 = 0x80;
cs->writeisac(cs, ICC_ADF2, cs->dc.icc.adf2);
cs->writeisac(cs, ICC_SQXR, 0xa0);
cs->writeisac(cs, ICC_SPCR, 0x20);
cs->writeisac(cs, ICC_STCR, 0x70);
cs->writeisac(cs, ICC_MODE, 0xca);
cs->writeisac(cs, ICC_TIMR, 0x00);
cs->writeisac(cs, ICC_ADF1, 0x20);
}
ph_command(cs, ICC_CMD_RES);
cs->writeisac(cs, ICC_MASK, 0x0);
ph_command(cs, ICC_CMD_DI);
}
void
clear_pending_icc_ints(struct IsdnCardState *cs)
{
int val, eval;
val = cs->readisac(cs, ICC_STAR);
debugl1(cs, "ICC STAR %x", val);
val = cs->readisac(cs, ICC_MODE);
debugl1(cs, "ICC MODE %x", val);
val = cs->readisac(cs, ICC_ADF2);
debugl1(cs, "ICC ADF2 %x", val);
val = cs->readisac(cs, ICC_ISTA);
debugl1(cs, "ICC ISTA %x", val);
if (val & 0x01) {
eval = cs->readisac(cs, ICC_EXIR);
debugl1(cs, "ICC EXIR %x", eval);
}
val = cs->readisac(cs, ICC_CIR0);
debugl1(cs, "ICC CIR0 %x", val);
cs->dc.icc.ph_state = (val >> 2) & 0xf;
schedule_event(cs, D_L1STATECHANGE);
/* Disable all IRQ */
cs->writeisac(cs, ICC_MASK, 0xFF);
}
void setup_icc(struct IsdnCardState *cs)
{
INIT_WORK(&cs->tqueue, icc_bh);
cs->dbusytimer.function = (void *) dbusy_timer_handler;
cs->dbusytimer.data = (long) cs;
init_timer(&cs->dbusytimer);
}