linux-sg2042/net/sunrpc/xprtrdma/verbs.c

1916 lines
50 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* verbs.c
*
* Encapsulates the major functions managing:
* o adapters
* o endpoints
* o connections
* o buffer memory
*/
#include <linux/pci.h> /* for Tavor hack below */
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include "xprt_rdma.h"
/*
* Globals/Macros
*/
#ifdef RPC_DEBUG
# define RPCDBG_FACILITY RPCDBG_TRANS
#endif
/*
* internal functions
*/
/*
* handle replies in tasklet context, using a single, global list
* rdma tasklet function -- just turn around and call the func
* for all replies on the list
*/
static DEFINE_SPINLOCK(rpcrdma_tk_lock_g);
static LIST_HEAD(rpcrdma_tasklets_g);
static void
rpcrdma_run_tasklet(unsigned long data)
{
struct rpcrdma_rep *rep;
void (*func)(struct rpcrdma_rep *);
unsigned long flags;
data = data;
spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
while (!list_empty(&rpcrdma_tasklets_g)) {
rep = list_entry(rpcrdma_tasklets_g.next,
struct rpcrdma_rep, rr_list);
list_del(&rep->rr_list);
func = rep->rr_func;
rep->rr_func = NULL;
spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
if (func)
func(rep);
else
rpcrdma_recv_buffer_put(rep);
spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
}
spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
}
static DECLARE_TASKLET(rpcrdma_tasklet_g, rpcrdma_run_tasklet, 0UL);
static inline void
rpcrdma_schedule_tasklet(struct rpcrdma_rep *rep)
{
unsigned long flags;
spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
list_add_tail(&rep->rr_list, &rpcrdma_tasklets_g);
spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
tasklet_schedule(&rpcrdma_tasklet_g);
}
static void
rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context)
{
struct rpcrdma_ep *ep = context;
dprintk("RPC: %s: QP error %X on device %s ep %p\n",
__func__, event->event, event->device->name, context);
if (ep->rep_connected == 1) {
ep->rep_connected = -EIO;
ep->rep_func(ep);
wake_up_all(&ep->rep_connect_wait);
}
}
static void
rpcrdma_cq_async_error_upcall(struct ib_event *event, void *context)
{
struct rpcrdma_ep *ep = context;
dprintk("RPC: %s: CQ error %X on device %s ep %p\n",
__func__, event->event, event->device->name, context);
if (ep->rep_connected == 1) {
ep->rep_connected = -EIO;
ep->rep_func(ep);
wake_up_all(&ep->rep_connect_wait);
}
}
static inline
void rpcrdma_event_process(struct ib_wc *wc)
{
struct rpcrdma_rep *rep =
(struct rpcrdma_rep *)(unsigned long) wc->wr_id;
dprintk("RPC: %s: event rep %p status %X opcode %X length %u\n",
__func__, rep, wc->status, wc->opcode, wc->byte_len);
if (!rep) /* send or bind completion that we don't care about */
return;
if (IB_WC_SUCCESS != wc->status) {
dprintk("RPC: %s: %s WC status %X, connection lost\n",
__func__, (wc->opcode & IB_WC_RECV) ? "recv" : "send",
wc->status);
rep->rr_len = ~0U;
rpcrdma_schedule_tasklet(rep);
return;
}
switch (wc->opcode) {
case IB_WC_RECV:
rep->rr_len = wc->byte_len;
ib_dma_sync_single_for_cpu(
rdmab_to_ia(rep->rr_buffer)->ri_id->device,
rep->rr_iov.addr, rep->rr_len, DMA_FROM_DEVICE);
/* Keep (only) the most recent credits, after check validity */
if (rep->rr_len >= 16) {
struct rpcrdma_msg *p =
(struct rpcrdma_msg *) rep->rr_base;
unsigned int credits = ntohl(p->rm_credit);
if (credits == 0) {
dprintk("RPC: %s: server"
" dropped credits to 0!\n", __func__);
/* don't deadlock */
credits = 1;
} else if (credits > rep->rr_buffer->rb_max_requests) {
dprintk("RPC: %s: server"
" over-crediting: %d (%d)\n",
__func__, credits,
rep->rr_buffer->rb_max_requests);
credits = rep->rr_buffer->rb_max_requests;
}
atomic_set(&rep->rr_buffer->rb_credits, credits);
}
/* fall through */
case IB_WC_BIND_MW:
rpcrdma_schedule_tasklet(rep);
break;
default:
dprintk("RPC: %s: unexpected WC event %X\n",
__func__, wc->opcode);
break;
}
}
static inline int
rpcrdma_cq_poll(struct ib_cq *cq)
{
struct ib_wc wc;
int rc;
for (;;) {
rc = ib_poll_cq(cq, 1, &wc);
if (rc < 0) {
dprintk("RPC: %s: ib_poll_cq failed %i\n",
__func__, rc);
return rc;
}
if (rc == 0)
break;
rpcrdma_event_process(&wc);
}
return 0;
}
/*
* rpcrdma_cq_event_upcall
*
* This upcall handles recv, send, bind and unbind events.
* It is reentrant but processes single events in order to maintain
* ordering of receives to keep server credits.
*
* It is the responsibility of the scheduled tasklet to return
* recv buffers to the pool. NOTE: this affects synchronization of
* connection shutdown. That is, the structures required for
* the completion of the reply handler must remain intact until
* all memory has been reclaimed.
*
* Note that send events are suppressed and do not result in an upcall.
*/
static void
rpcrdma_cq_event_upcall(struct ib_cq *cq, void *context)
{
int rc;
rc = rpcrdma_cq_poll(cq);
if (rc)
return;
rc = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
if (rc) {
dprintk("RPC: %s: ib_req_notify_cq failed %i\n",
__func__, rc);
return;
}
rpcrdma_cq_poll(cq);
}
#ifdef RPC_DEBUG
static const char * const conn[] = {
"address resolved",
"address error",
"route resolved",
"route error",
"connect request",
"connect response",
"connect error",
"unreachable",
"rejected",
"established",
"disconnected",
"device removal"
};
#endif
static int
rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event)
{
struct rpcrdma_xprt *xprt = id->context;
struct rpcrdma_ia *ia = &xprt->rx_ia;
struct rpcrdma_ep *ep = &xprt->rx_ep;
#ifdef RPC_DEBUG
struct sockaddr_in *addr = (struct sockaddr_in *) &ep->rep_remote_addr;
#endif
struct ib_qp_attr attr;
struct ib_qp_init_attr iattr;
int connstate = 0;
switch (event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
case RDMA_CM_EVENT_ROUTE_RESOLVED:
ia->ri_async_rc = 0;
complete(&ia->ri_done);
break;
case RDMA_CM_EVENT_ADDR_ERROR:
ia->ri_async_rc = -EHOSTUNREACH;
dprintk("RPC: %s: CM address resolution error, ep 0x%p\n",
__func__, ep);
complete(&ia->ri_done);
break;
case RDMA_CM_EVENT_ROUTE_ERROR:
ia->ri_async_rc = -ENETUNREACH;
dprintk("RPC: %s: CM route resolution error, ep 0x%p\n",
__func__, ep);
complete(&ia->ri_done);
break;
case RDMA_CM_EVENT_ESTABLISHED:
connstate = 1;
ib_query_qp(ia->ri_id->qp, &attr,
IB_QP_MAX_QP_RD_ATOMIC | IB_QP_MAX_DEST_RD_ATOMIC,
&iattr);
dprintk("RPC: %s: %d responder resources"
" (%d initiator)\n",
__func__, attr.max_dest_rd_atomic, attr.max_rd_atomic);
goto connected;
case RDMA_CM_EVENT_CONNECT_ERROR:
connstate = -ENOTCONN;
goto connected;
case RDMA_CM_EVENT_UNREACHABLE:
connstate = -ENETDOWN;
goto connected;
case RDMA_CM_EVENT_REJECTED:
connstate = -ECONNREFUSED;
goto connected;
case RDMA_CM_EVENT_DISCONNECTED:
connstate = -ECONNABORTED;
goto connected;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
connstate = -ENODEV;
connected:
dprintk("RPC: %s: %s: %pI4:%u (ep 0x%p event 0x%x)\n",
__func__,
(event->event <= 11) ? conn[event->event] :
"unknown connection error",
&addr->sin_addr.s_addr,
ntohs(addr->sin_port),
ep, event->event);
atomic_set(&rpcx_to_rdmax(ep->rep_xprt)->rx_buf.rb_credits, 1);
dprintk("RPC: %s: %sconnected\n",
__func__, connstate > 0 ? "" : "dis");
ep->rep_connected = connstate;
ep->rep_func(ep);
wake_up_all(&ep->rep_connect_wait);
break;
default:
dprintk("RPC: %s: unexpected CM event %d\n",
__func__, event->event);
break;
}
#ifdef RPC_DEBUG
if (connstate == 1) {
int ird = attr.max_dest_rd_atomic;
int tird = ep->rep_remote_cma.responder_resources;
printk(KERN_INFO "rpcrdma: connection to %pI4:%u "
"on %s, memreg %d slots %d ird %d%s\n",
&addr->sin_addr.s_addr,
ntohs(addr->sin_port),
ia->ri_id->device->name,
ia->ri_memreg_strategy,
xprt->rx_buf.rb_max_requests,
ird, ird < 4 && ird < tird / 2 ? " (low!)" : "");
} else if (connstate < 0) {
printk(KERN_INFO "rpcrdma: connection to %pI4:%u closed (%d)\n",
&addr->sin_addr.s_addr,
ntohs(addr->sin_port),
connstate);
}
#endif
return 0;
}
static struct rdma_cm_id *
rpcrdma_create_id(struct rpcrdma_xprt *xprt,
struct rpcrdma_ia *ia, struct sockaddr *addr)
{
struct rdma_cm_id *id;
int rc;
init_completion(&ia->ri_done);
id = rdma_create_id(rpcrdma_conn_upcall, xprt, RDMA_PS_TCP);
if (IS_ERR(id)) {
rc = PTR_ERR(id);
dprintk("RPC: %s: rdma_create_id() failed %i\n",
__func__, rc);
return id;
}
ia->ri_async_rc = -ETIMEDOUT;
rc = rdma_resolve_addr(id, NULL, addr, RDMA_RESOLVE_TIMEOUT);
if (rc) {
dprintk("RPC: %s: rdma_resolve_addr() failed %i\n",
__func__, rc);
goto out;
}
wait_for_completion_interruptible_timeout(&ia->ri_done,
msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1);
rc = ia->ri_async_rc;
if (rc)
goto out;
ia->ri_async_rc = -ETIMEDOUT;
rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
if (rc) {
dprintk("RPC: %s: rdma_resolve_route() failed %i\n",
__func__, rc);
goto out;
}
wait_for_completion_interruptible_timeout(&ia->ri_done,
msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1);
rc = ia->ri_async_rc;
if (rc)
goto out;
return id;
out:
rdma_destroy_id(id);
return ERR_PTR(rc);
}
/*
* Drain any cq, prior to teardown.
*/
static void
rpcrdma_clean_cq(struct ib_cq *cq)
{
struct ib_wc wc;
int count = 0;
while (1 == ib_poll_cq(cq, 1, &wc))
++count;
if (count)
dprintk("RPC: %s: flushed %d events (last 0x%x)\n",
__func__, count, wc.opcode);
}
/*
* Exported functions.
*/
/*
* Open and initialize an Interface Adapter.
* o initializes fields of struct rpcrdma_ia, including
* interface and provider attributes and protection zone.
*/
int
rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg)
{
int rc, mem_priv;
struct ib_device_attr devattr;
struct rpcrdma_ia *ia = &xprt->rx_ia;
ia->ri_id = rpcrdma_create_id(xprt, ia, addr);
if (IS_ERR(ia->ri_id)) {
rc = PTR_ERR(ia->ri_id);
goto out1;
}
ia->ri_pd = ib_alloc_pd(ia->ri_id->device);
if (IS_ERR(ia->ri_pd)) {
rc = PTR_ERR(ia->ri_pd);
dprintk("RPC: %s: ib_alloc_pd() failed %i\n",
__func__, rc);
goto out2;
}
/*
* Query the device to determine if the requested memory
* registration strategy is supported. If it isn't, set the
* strategy to a globally supported model.
*/
rc = ib_query_device(ia->ri_id->device, &devattr);
if (rc) {
dprintk("RPC: %s: ib_query_device failed %d\n",
__func__, rc);
goto out2;
}
if (devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) {
ia->ri_have_dma_lkey = 1;
ia->ri_dma_lkey = ia->ri_id->device->local_dma_lkey;
}
switch (memreg) {
case RPCRDMA_MEMWINDOWS:
case RPCRDMA_MEMWINDOWS_ASYNC:
if (!(devattr.device_cap_flags & IB_DEVICE_MEM_WINDOW)) {
dprintk("RPC: %s: MEMWINDOWS registration "
"specified but not supported by adapter, "
"using slower RPCRDMA_REGISTER\n",
__func__);
memreg = RPCRDMA_REGISTER;
}
break;
case RPCRDMA_MTHCAFMR:
if (!ia->ri_id->device->alloc_fmr) {
#if RPCRDMA_PERSISTENT_REGISTRATION
dprintk("RPC: %s: MTHCAFMR registration "
"specified but not supported by adapter, "
"using riskier RPCRDMA_ALLPHYSICAL\n",
__func__);
memreg = RPCRDMA_ALLPHYSICAL;
#else
dprintk("RPC: %s: MTHCAFMR registration "
"specified but not supported by adapter, "
"using slower RPCRDMA_REGISTER\n",
__func__);
memreg = RPCRDMA_REGISTER;
#endif
}
break;
case RPCRDMA_FRMR:
/* Requires both frmr reg and local dma lkey */
if ((devattr.device_cap_flags &
(IB_DEVICE_MEM_MGT_EXTENSIONS|IB_DEVICE_LOCAL_DMA_LKEY)) !=
(IB_DEVICE_MEM_MGT_EXTENSIONS|IB_DEVICE_LOCAL_DMA_LKEY)) {
#if RPCRDMA_PERSISTENT_REGISTRATION
dprintk("RPC: %s: FRMR registration "
"specified but not supported by adapter, "
"using riskier RPCRDMA_ALLPHYSICAL\n",
__func__);
memreg = RPCRDMA_ALLPHYSICAL;
#else
dprintk("RPC: %s: FRMR registration "
"specified but not supported by adapter, "
"using slower RPCRDMA_REGISTER\n",
__func__);
memreg = RPCRDMA_REGISTER;
#endif
}
break;
}
/*
* Optionally obtain an underlying physical identity mapping in
* order to do a memory window-based bind. This base registration
* is protected from remote access - that is enabled only by binding
* for the specific bytes targeted during each RPC operation, and
* revoked after the corresponding completion similar to a storage
* adapter.
*/
switch (memreg) {
case RPCRDMA_BOUNCEBUFFERS:
case RPCRDMA_REGISTER:
case RPCRDMA_FRMR:
break;
#if RPCRDMA_PERSISTENT_REGISTRATION
case RPCRDMA_ALLPHYSICAL:
mem_priv = IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_READ;
goto register_setup;
#endif
case RPCRDMA_MEMWINDOWS_ASYNC:
case RPCRDMA_MEMWINDOWS:
mem_priv = IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_MW_BIND;
goto register_setup;
case RPCRDMA_MTHCAFMR:
if (ia->ri_have_dma_lkey)
break;
mem_priv = IB_ACCESS_LOCAL_WRITE;
register_setup:
ia->ri_bind_mem = ib_get_dma_mr(ia->ri_pd, mem_priv);
if (IS_ERR(ia->ri_bind_mem)) {
printk(KERN_ALERT "%s: ib_get_dma_mr for "
"phys register failed with %lX\n\t"
"Will continue with degraded performance\n",
__func__, PTR_ERR(ia->ri_bind_mem));
memreg = RPCRDMA_REGISTER;
ia->ri_bind_mem = NULL;
}
break;
default:
printk(KERN_ERR "%s: invalid memory registration mode %d\n",
__func__, memreg);
rc = -EINVAL;
goto out2;
}
dprintk("RPC: %s: memory registration strategy is %d\n",
__func__, memreg);
/* Else will do memory reg/dereg for each chunk */
ia->ri_memreg_strategy = memreg;
return 0;
out2:
rdma_destroy_id(ia->ri_id);
ia->ri_id = NULL;
out1:
return rc;
}
/*
* Clean up/close an IA.
* o if event handles and PD have been initialized, free them.
* o close the IA
*/
void
rpcrdma_ia_close(struct rpcrdma_ia *ia)
{
int rc;
dprintk("RPC: %s: entering\n", __func__);
if (ia->ri_bind_mem != NULL) {
rc = ib_dereg_mr(ia->ri_bind_mem);
dprintk("RPC: %s: ib_dereg_mr returned %i\n",
__func__, rc);
}
if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) {
if (ia->ri_id->qp)
rdma_destroy_qp(ia->ri_id);
rdma_destroy_id(ia->ri_id);
ia->ri_id = NULL;
}
if (ia->ri_pd != NULL && !IS_ERR(ia->ri_pd)) {
rc = ib_dealloc_pd(ia->ri_pd);
dprintk("RPC: %s: ib_dealloc_pd returned %i\n",
__func__, rc);
}
}
/*
* Create unconnected endpoint.
*/
int
rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia,
struct rpcrdma_create_data_internal *cdata)
{
struct ib_device_attr devattr;
int rc, err;
rc = ib_query_device(ia->ri_id->device, &devattr);
if (rc) {
dprintk("RPC: %s: ib_query_device failed %d\n",
__func__, rc);
return rc;
}
/* check provider's send/recv wr limits */
if (cdata->max_requests > devattr.max_qp_wr)
cdata->max_requests = devattr.max_qp_wr;
ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall;
ep->rep_attr.qp_context = ep;
/* send_cq and recv_cq initialized below */
ep->rep_attr.srq = NULL;
ep->rep_attr.cap.max_send_wr = cdata->max_requests;
switch (ia->ri_memreg_strategy) {
case RPCRDMA_FRMR:
/* Add room for frmr register and invalidate WRs.
* 1. FRMR reg WR for head
* 2. FRMR invalidate WR for head
* 3. FRMR reg WR for pagelist
* 4. FRMR invalidate WR for pagelist
* 5. FRMR reg WR for tail
* 6. FRMR invalidate WR for tail
* 7. The RDMA_SEND WR
*/
ep->rep_attr.cap.max_send_wr *= 7;
if (ep->rep_attr.cap.max_send_wr > devattr.max_qp_wr) {
cdata->max_requests = devattr.max_qp_wr / 7;
if (!cdata->max_requests)
return -EINVAL;
ep->rep_attr.cap.max_send_wr = cdata->max_requests * 7;
}
break;
case RPCRDMA_MEMWINDOWS_ASYNC:
case RPCRDMA_MEMWINDOWS:
/* Add room for mw_binds+unbinds - overkill! */
ep->rep_attr.cap.max_send_wr++;
ep->rep_attr.cap.max_send_wr *= (2 * RPCRDMA_MAX_SEGS);
if (ep->rep_attr.cap.max_send_wr > devattr.max_qp_wr)
return -EINVAL;
break;
default:
break;
}
ep->rep_attr.cap.max_recv_wr = cdata->max_requests;
ep->rep_attr.cap.max_send_sge = (cdata->padding ? 4 : 2);
ep->rep_attr.cap.max_recv_sge = 1;
ep->rep_attr.cap.max_inline_data = 0;
ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
ep->rep_attr.qp_type = IB_QPT_RC;
ep->rep_attr.port_num = ~0;
dprintk("RPC: %s: requested max: dtos: send %d recv %d; "
"iovs: send %d recv %d\n",
__func__,
ep->rep_attr.cap.max_send_wr,
ep->rep_attr.cap.max_recv_wr,
ep->rep_attr.cap.max_send_sge,
ep->rep_attr.cap.max_recv_sge);
/* set trigger for requesting send completion */
ep->rep_cqinit = ep->rep_attr.cap.max_send_wr/2 /* - 1*/;
switch (ia->ri_memreg_strategy) {
case RPCRDMA_MEMWINDOWS_ASYNC:
case RPCRDMA_MEMWINDOWS:
ep->rep_cqinit -= RPCRDMA_MAX_SEGS;
break;
default:
break;
}
if (ep->rep_cqinit <= 2)
ep->rep_cqinit = 0;
INIT_CQCOUNT(ep);
ep->rep_ia = ia;
init_waitqueue_head(&ep->rep_connect_wait);
/*
* Create a single cq for receive dto and mw_bind (only ever
* care about unbind, really). Send completions are suppressed.
* Use single threaded tasklet upcalls to maintain ordering.
*/
ep->rep_cq = ib_create_cq(ia->ri_id->device, rpcrdma_cq_event_upcall,
rpcrdma_cq_async_error_upcall, NULL,
ep->rep_attr.cap.max_recv_wr +
ep->rep_attr.cap.max_send_wr + 1, 0);
if (IS_ERR(ep->rep_cq)) {
rc = PTR_ERR(ep->rep_cq);
dprintk("RPC: %s: ib_create_cq failed: %i\n",
__func__, rc);
goto out1;
}
rc = ib_req_notify_cq(ep->rep_cq, IB_CQ_NEXT_COMP);
if (rc) {
dprintk("RPC: %s: ib_req_notify_cq failed: %i\n",
__func__, rc);
goto out2;
}
ep->rep_attr.send_cq = ep->rep_cq;
ep->rep_attr.recv_cq = ep->rep_cq;
/* Initialize cma parameters */
/* RPC/RDMA does not use private data */
ep->rep_remote_cma.private_data = NULL;
ep->rep_remote_cma.private_data_len = 0;
/* Client offers RDMA Read but does not initiate */
ep->rep_remote_cma.initiator_depth = 0;
if (ia->ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS)
ep->rep_remote_cma.responder_resources = 0;
else if (devattr.max_qp_rd_atom > 32) /* arbitrary but <= 255 */
ep->rep_remote_cma.responder_resources = 32;
else
ep->rep_remote_cma.responder_resources = devattr.max_qp_rd_atom;
ep->rep_remote_cma.retry_count = 7;
ep->rep_remote_cma.flow_control = 0;
ep->rep_remote_cma.rnr_retry_count = 0;
return 0;
out2:
err = ib_destroy_cq(ep->rep_cq);
if (err)
dprintk("RPC: %s: ib_destroy_cq returned %i\n",
__func__, err);
out1:
return rc;
}
/*
* rpcrdma_ep_destroy
*
* Disconnect and destroy endpoint. After this, the only
* valid operations on the ep are to free it (if dynamically
* allocated) or re-create it.
*
* The caller's error handling must be sure to not leak the endpoint
* if this function fails.
*/
int
rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
{
int rc;
dprintk("RPC: %s: entering, connected is %d\n",
__func__, ep->rep_connected);
if (ia->ri_id->qp) {
rc = rpcrdma_ep_disconnect(ep, ia);
if (rc)
dprintk("RPC: %s: rpcrdma_ep_disconnect"
" returned %i\n", __func__, rc);
rdma_destroy_qp(ia->ri_id);
ia->ri_id->qp = NULL;
}
/* padding - could be done in rpcrdma_buffer_destroy... */
if (ep->rep_pad_mr) {
rpcrdma_deregister_internal(ia, ep->rep_pad_mr, &ep->rep_pad);
ep->rep_pad_mr = NULL;
}
rpcrdma_clean_cq(ep->rep_cq);
rc = ib_destroy_cq(ep->rep_cq);
if (rc)
dprintk("RPC: %s: ib_destroy_cq returned %i\n",
__func__, rc);
return rc;
}
/*
* Connect unconnected endpoint.
*/
int
rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
{
struct rdma_cm_id *id;
int rc = 0;
int retry_count = 0;
if (ep->rep_connected != 0) {
struct rpcrdma_xprt *xprt;
retry:
rc = rpcrdma_ep_disconnect(ep, ia);
if (rc && rc != -ENOTCONN)
dprintk("RPC: %s: rpcrdma_ep_disconnect"
" status %i\n", __func__, rc);
rpcrdma_clean_cq(ep->rep_cq);
xprt = container_of(ia, struct rpcrdma_xprt, rx_ia);
id = rpcrdma_create_id(xprt, ia,
(struct sockaddr *)&xprt->rx_data.addr);
if (IS_ERR(id)) {
rc = PTR_ERR(id);
goto out;
}
/* TEMP TEMP TEMP - fail if new device:
* Deregister/remarshal *all* requests!
* Close and recreate adapter, pd, etc!
* Re-determine all attributes still sane!
* More stuff I haven't thought of!
* Rrrgh!
*/
if (ia->ri_id->device != id->device) {
printk("RPC: %s: can't reconnect on "
"different device!\n", __func__);
rdma_destroy_id(id);
rc = -ENETDOWN;
goto out;
}
/* END TEMP */
rdma_destroy_qp(ia->ri_id);
rdma_destroy_id(ia->ri_id);
ia->ri_id = id;
}
rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
if (rc) {
dprintk("RPC: %s: rdma_create_qp failed %i\n",
__func__, rc);
goto out;
}
/* XXX Tavor device performs badly with 2K MTU! */
if (strnicmp(ia->ri_id->device->dma_device->bus->name, "pci", 3) == 0) {
struct pci_dev *pcid = to_pci_dev(ia->ri_id->device->dma_device);
if (pcid->device == PCI_DEVICE_ID_MELLANOX_TAVOR &&
(pcid->vendor == PCI_VENDOR_ID_MELLANOX ||
pcid->vendor == PCI_VENDOR_ID_TOPSPIN)) {
struct ib_qp_attr attr = {
.path_mtu = IB_MTU_1024
};
rc = ib_modify_qp(ia->ri_id->qp, &attr, IB_QP_PATH_MTU);
}
}
ep->rep_connected = 0;
rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
if (rc) {
dprintk("RPC: %s: rdma_connect() failed with %i\n",
__func__, rc);
goto out;
}
wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
/*
* Check state. A non-peer reject indicates no listener
* (ECONNREFUSED), which may be a transient state. All
* others indicate a transport condition which has already
* undergone a best-effort.
*/
if (ep->rep_connected == -ECONNREFUSED &&
++retry_count <= RDMA_CONNECT_RETRY_MAX) {
dprintk("RPC: %s: non-peer_reject, retry\n", __func__);
goto retry;
}
if (ep->rep_connected <= 0) {
/* Sometimes, the only way to reliably connect to remote
* CMs is to use same nonzero values for ORD and IRD. */
if (retry_count++ <= RDMA_CONNECT_RETRY_MAX + 1 &&
(ep->rep_remote_cma.responder_resources == 0 ||
ep->rep_remote_cma.initiator_depth !=
ep->rep_remote_cma.responder_resources)) {
if (ep->rep_remote_cma.responder_resources == 0)
ep->rep_remote_cma.responder_resources = 1;
ep->rep_remote_cma.initiator_depth =
ep->rep_remote_cma.responder_resources;
goto retry;
}
rc = ep->rep_connected;
} else {
dprintk("RPC: %s: connected\n", __func__);
}
out:
if (rc)
ep->rep_connected = rc;
return rc;
}
/*
* rpcrdma_ep_disconnect
*
* This is separate from destroy to facilitate the ability
* to reconnect without recreating the endpoint.
*
* This call is not reentrant, and must not be made in parallel
* on the same endpoint.
*/
int
rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
{
int rc;
rpcrdma_clean_cq(ep->rep_cq);
rc = rdma_disconnect(ia->ri_id);
if (!rc) {
/* returns without wait if not connected */
wait_event_interruptible(ep->rep_connect_wait,
ep->rep_connected != 1);
dprintk("RPC: %s: after wait, %sconnected\n", __func__,
(ep->rep_connected == 1) ? "still " : "dis");
} else {
dprintk("RPC: %s: rdma_disconnect %i\n", __func__, rc);
ep->rep_connected = rc;
}
return rc;
}
/*
* Initialize buffer memory
*/
int
rpcrdma_buffer_create(struct rpcrdma_buffer *buf, struct rpcrdma_ep *ep,
struct rpcrdma_ia *ia, struct rpcrdma_create_data_internal *cdata)
{
char *p;
size_t len;
int i, rc;
struct rpcrdma_mw *r;
buf->rb_max_requests = cdata->max_requests;
spin_lock_init(&buf->rb_lock);
atomic_set(&buf->rb_credits, 1);
/* Need to allocate:
* 1. arrays for send and recv pointers
* 2. arrays of struct rpcrdma_req to fill in pointers
* 3. array of struct rpcrdma_rep for replies
* 4. padding, if any
* 5. mw's, fmr's or frmr's, if any
* Send/recv buffers in req/rep need to be registered
*/
len = buf->rb_max_requests *
(sizeof(struct rpcrdma_req *) + sizeof(struct rpcrdma_rep *));
len += cdata->padding;
switch (ia->ri_memreg_strategy) {
case RPCRDMA_FRMR:
len += buf->rb_max_requests * RPCRDMA_MAX_SEGS *
sizeof(struct rpcrdma_mw);
break;
case RPCRDMA_MTHCAFMR:
/* TBD we are perhaps overallocating here */
len += (buf->rb_max_requests + 1) * RPCRDMA_MAX_SEGS *
sizeof(struct rpcrdma_mw);
break;
case RPCRDMA_MEMWINDOWS_ASYNC:
case RPCRDMA_MEMWINDOWS:
len += (buf->rb_max_requests + 1) * RPCRDMA_MAX_SEGS *
sizeof(struct rpcrdma_mw);
break;
default:
break;
}
/* allocate 1, 4 and 5 in one shot */
p = kzalloc(len, GFP_KERNEL);
if (p == NULL) {
dprintk("RPC: %s: req_t/rep_t/pad kzalloc(%zd) failed\n",
__func__, len);
rc = -ENOMEM;
goto out;
}
buf->rb_pool = p; /* for freeing it later */
buf->rb_send_bufs = (struct rpcrdma_req **) p;
p = (char *) &buf->rb_send_bufs[buf->rb_max_requests];
buf->rb_recv_bufs = (struct rpcrdma_rep **) p;
p = (char *) &buf->rb_recv_bufs[buf->rb_max_requests];
/*
* Register the zeroed pad buffer, if any.
*/
if (cdata->padding) {
rc = rpcrdma_register_internal(ia, p, cdata->padding,
&ep->rep_pad_mr, &ep->rep_pad);
if (rc)
goto out;
}
p += cdata->padding;
/*
* Allocate the fmr's, or mw's for mw_bind chunk registration.
* We "cycle" the mw's in order to minimize rkey reuse,
* and also reduce unbind-to-bind collision.
*/
INIT_LIST_HEAD(&buf->rb_mws);
r = (struct rpcrdma_mw *)p;
switch (ia->ri_memreg_strategy) {
case RPCRDMA_FRMR:
for (i = buf->rb_max_requests * RPCRDMA_MAX_SEGS; i; i--) {
r->r.frmr.fr_mr = ib_alloc_fast_reg_mr(ia->ri_pd,
RPCRDMA_MAX_SEGS);
if (IS_ERR(r->r.frmr.fr_mr)) {
rc = PTR_ERR(r->r.frmr.fr_mr);
dprintk("RPC: %s: ib_alloc_fast_reg_mr"
" failed %i\n", __func__, rc);
goto out;
}
r->r.frmr.fr_pgl =
ib_alloc_fast_reg_page_list(ia->ri_id->device,
RPCRDMA_MAX_SEGS);
if (IS_ERR(r->r.frmr.fr_pgl)) {
rc = PTR_ERR(r->r.frmr.fr_pgl);
dprintk("RPC: %s: "
"ib_alloc_fast_reg_page_list "
"failed %i\n", __func__, rc);
goto out;
}
list_add(&r->mw_list, &buf->rb_mws);
++r;
}
break;
case RPCRDMA_MTHCAFMR:
/* TBD we are perhaps overallocating here */
for (i = (buf->rb_max_requests+1) * RPCRDMA_MAX_SEGS; i; i--) {
static struct ib_fmr_attr fa =
{ RPCRDMA_MAX_DATA_SEGS, 1, PAGE_SHIFT };
r->r.fmr = ib_alloc_fmr(ia->ri_pd,
IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ,
&fa);
if (IS_ERR(r->r.fmr)) {
rc = PTR_ERR(r->r.fmr);
dprintk("RPC: %s: ib_alloc_fmr"
" failed %i\n", __func__, rc);
goto out;
}
list_add(&r->mw_list, &buf->rb_mws);
++r;
}
break;
case RPCRDMA_MEMWINDOWS_ASYNC:
case RPCRDMA_MEMWINDOWS:
/* Allocate one extra request's worth, for full cycling */
for (i = (buf->rb_max_requests+1) * RPCRDMA_MAX_SEGS; i; i--) {
r->r.mw = ib_alloc_mw(ia->ri_pd);
if (IS_ERR(r->r.mw)) {
rc = PTR_ERR(r->r.mw);
dprintk("RPC: %s: ib_alloc_mw"
" failed %i\n", __func__, rc);
goto out;
}
list_add(&r->mw_list, &buf->rb_mws);
++r;
}
break;
default:
break;
}
/*
* Allocate/init the request/reply buffers. Doing this
* using kmalloc for now -- one for each buf.
*/
for (i = 0; i < buf->rb_max_requests; i++) {
struct rpcrdma_req *req;
struct rpcrdma_rep *rep;
len = cdata->inline_wsize + sizeof(struct rpcrdma_req);
/* RPC layer requests *double* size + 1K RPC_SLACK_SPACE! */
/* Typical ~2400b, so rounding up saves work later */
if (len < 4096)
len = 4096;
req = kmalloc(len, GFP_KERNEL);
if (req == NULL) {
dprintk("RPC: %s: request buffer %d alloc"
" failed\n", __func__, i);
rc = -ENOMEM;
goto out;
}
memset(req, 0, sizeof(struct rpcrdma_req));
buf->rb_send_bufs[i] = req;
buf->rb_send_bufs[i]->rl_buffer = buf;
rc = rpcrdma_register_internal(ia, req->rl_base,
len - offsetof(struct rpcrdma_req, rl_base),
&buf->rb_send_bufs[i]->rl_handle,
&buf->rb_send_bufs[i]->rl_iov);
if (rc)
goto out;
buf->rb_send_bufs[i]->rl_size = len-sizeof(struct rpcrdma_req);
len = cdata->inline_rsize + sizeof(struct rpcrdma_rep);
rep = kmalloc(len, GFP_KERNEL);
if (rep == NULL) {
dprintk("RPC: %s: reply buffer %d alloc failed\n",
__func__, i);
rc = -ENOMEM;
goto out;
}
memset(rep, 0, sizeof(struct rpcrdma_rep));
buf->rb_recv_bufs[i] = rep;
buf->rb_recv_bufs[i]->rr_buffer = buf;
init_waitqueue_head(&rep->rr_unbind);
rc = rpcrdma_register_internal(ia, rep->rr_base,
len - offsetof(struct rpcrdma_rep, rr_base),
&buf->rb_recv_bufs[i]->rr_handle,
&buf->rb_recv_bufs[i]->rr_iov);
if (rc)
goto out;
}
dprintk("RPC: %s: max_requests %d\n",
__func__, buf->rb_max_requests);
/* done */
return 0;
out:
rpcrdma_buffer_destroy(buf);
return rc;
}
/*
* Unregister and destroy buffer memory. Need to deal with
* partial initialization, so it's callable from failed create.
* Must be called before destroying endpoint, as registrations
* reference it.
*/
void
rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
{
int rc, i;
struct rpcrdma_ia *ia = rdmab_to_ia(buf);
struct rpcrdma_mw *r;
/* clean up in reverse order from create
* 1. recv mr memory (mr free, then kfree)
* 1a. bind mw memory
* 2. send mr memory (mr free, then kfree)
* 3. padding (if any) [moved to rpcrdma_ep_destroy]
* 4. arrays
*/
dprintk("RPC: %s: entering\n", __func__);
for (i = 0; i < buf->rb_max_requests; i++) {
if (buf->rb_recv_bufs && buf->rb_recv_bufs[i]) {
rpcrdma_deregister_internal(ia,
buf->rb_recv_bufs[i]->rr_handle,
&buf->rb_recv_bufs[i]->rr_iov);
kfree(buf->rb_recv_bufs[i]);
}
if (buf->rb_send_bufs && buf->rb_send_bufs[i]) {
while (!list_empty(&buf->rb_mws)) {
r = list_entry(buf->rb_mws.next,
struct rpcrdma_mw, mw_list);
list_del(&r->mw_list);
switch (ia->ri_memreg_strategy) {
case RPCRDMA_FRMR:
rc = ib_dereg_mr(r->r.frmr.fr_mr);
if (rc)
dprintk("RPC: %s:"
" ib_dereg_mr"
" failed %i\n",
__func__, rc);
ib_free_fast_reg_page_list(r->r.frmr.fr_pgl);
break;
case RPCRDMA_MTHCAFMR:
rc = ib_dealloc_fmr(r->r.fmr);
if (rc)
dprintk("RPC: %s:"
" ib_dealloc_fmr"
" failed %i\n",
__func__, rc);
break;
case RPCRDMA_MEMWINDOWS_ASYNC:
case RPCRDMA_MEMWINDOWS:
rc = ib_dealloc_mw(r->r.mw);
if (rc)
dprintk("RPC: %s:"
" ib_dealloc_mw"
" failed %i\n",
__func__, rc);
break;
default:
break;
}
}
rpcrdma_deregister_internal(ia,
buf->rb_send_bufs[i]->rl_handle,
&buf->rb_send_bufs[i]->rl_iov);
kfree(buf->rb_send_bufs[i]);
}
}
kfree(buf->rb_pool);
}
/*
* Get a set of request/reply buffers.
*
* Reply buffer (if needed) is attached to send buffer upon return.
* Rule:
* rb_send_index and rb_recv_index MUST always be pointing to the
* *next* available buffer (non-NULL). They are incremented after
* removing buffers, and decremented *before* returning them.
*/
struct rpcrdma_req *
rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
{
struct rpcrdma_req *req;
unsigned long flags;
int i;
struct rpcrdma_mw *r;
spin_lock_irqsave(&buffers->rb_lock, flags);
if (buffers->rb_send_index == buffers->rb_max_requests) {
spin_unlock_irqrestore(&buffers->rb_lock, flags);
dprintk("RPC: %s: out of request buffers\n", __func__);
return ((struct rpcrdma_req *)NULL);
}
req = buffers->rb_send_bufs[buffers->rb_send_index];
if (buffers->rb_send_index < buffers->rb_recv_index) {
dprintk("RPC: %s: %d extra receives outstanding (ok)\n",
__func__,
buffers->rb_recv_index - buffers->rb_send_index);
req->rl_reply = NULL;
} else {
req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index];
buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL;
}
buffers->rb_send_bufs[buffers->rb_send_index++] = NULL;
if (!list_empty(&buffers->rb_mws)) {
i = RPCRDMA_MAX_SEGS - 1;
do {
r = list_entry(buffers->rb_mws.next,
struct rpcrdma_mw, mw_list);
list_del(&r->mw_list);
req->rl_segments[i].mr_chunk.rl_mw = r;
} while (--i >= 0);
}
spin_unlock_irqrestore(&buffers->rb_lock, flags);
return req;
}
/*
* Put request/reply buffers back into pool.
* Pre-decrement counter/array index.
*/
void
rpcrdma_buffer_put(struct rpcrdma_req *req)
{
struct rpcrdma_buffer *buffers = req->rl_buffer;
struct rpcrdma_ia *ia = rdmab_to_ia(buffers);
int i;
unsigned long flags;
BUG_ON(req->rl_nchunks != 0);
spin_lock_irqsave(&buffers->rb_lock, flags);
buffers->rb_send_bufs[--buffers->rb_send_index] = req;
req->rl_niovs = 0;
if (req->rl_reply) {
buffers->rb_recv_bufs[--buffers->rb_recv_index] = req->rl_reply;
init_waitqueue_head(&req->rl_reply->rr_unbind);
req->rl_reply->rr_func = NULL;
req->rl_reply = NULL;
}
switch (ia->ri_memreg_strategy) {
case RPCRDMA_FRMR:
case RPCRDMA_MTHCAFMR:
case RPCRDMA_MEMWINDOWS_ASYNC:
case RPCRDMA_MEMWINDOWS:
/*
* Cycle mw's back in reverse order, and "spin" them.
* This delays and scrambles reuse as much as possible.
*/
i = 1;
do {
struct rpcrdma_mw **mw;
mw = &req->rl_segments[i].mr_chunk.rl_mw;
list_add_tail(&(*mw)->mw_list, &buffers->rb_mws);
*mw = NULL;
} while (++i < RPCRDMA_MAX_SEGS);
list_add_tail(&req->rl_segments[0].mr_chunk.rl_mw->mw_list,
&buffers->rb_mws);
req->rl_segments[0].mr_chunk.rl_mw = NULL;
break;
default:
break;
}
spin_unlock_irqrestore(&buffers->rb_lock, flags);
}
/*
* Recover reply buffers from pool.
* This happens when recovering from error conditions.
* Post-increment counter/array index.
*/
void
rpcrdma_recv_buffer_get(struct rpcrdma_req *req)
{
struct rpcrdma_buffer *buffers = req->rl_buffer;
unsigned long flags;
if (req->rl_iov.length == 0) /* special case xprt_rdma_allocate() */
buffers = ((struct rpcrdma_req *) buffers)->rl_buffer;
spin_lock_irqsave(&buffers->rb_lock, flags);
if (buffers->rb_recv_index < buffers->rb_max_requests) {
req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index];
buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL;
}
spin_unlock_irqrestore(&buffers->rb_lock, flags);
}
/*
* Put reply buffers back into pool when not attached to
* request. This happens in error conditions, and when
* aborting unbinds. Pre-decrement counter/array index.
*/
void
rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
{
struct rpcrdma_buffer *buffers = rep->rr_buffer;
unsigned long flags;
rep->rr_func = NULL;
spin_lock_irqsave(&buffers->rb_lock, flags);
buffers->rb_recv_bufs[--buffers->rb_recv_index] = rep;
spin_unlock_irqrestore(&buffers->rb_lock, flags);
}
/*
* Wrappers for internal-use kmalloc memory registration, used by buffer code.
*/
int
rpcrdma_register_internal(struct rpcrdma_ia *ia, void *va, int len,
struct ib_mr **mrp, struct ib_sge *iov)
{
struct ib_phys_buf ipb;
struct ib_mr *mr;
int rc;
/*
* All memory passed here was kmalloc'ed, therefore phys-contiguous.
*/
iov->addr = ib_dma_map_single(ia->ri_id->device,
va, len, DMA_BIDIRECTIONAL);
iov->length = len;
if (ia->ri_have_dma_lkey) {
*mrp = NULL;
iov->lkey = ia->ri_dma_lkey;
return 0;
} else if (ia->ri_bind_mem != NULL) {
*mrp = NULL;
iov->lkey = ia->ri_bind_mem->lkey;
return 0;
}
ipb.addr = iov->addr;
ipb.size = iov->length;
mr = ib_reg_phys_mr(ia->ri_pd, &ipb, 1,
IB_ACCESS_LOCAL_WRITE, &iov->addr);
dprintk("RPC: %s: phys convert: 0x%llx "
"registered 0x%llx length %d\n",
__func__, (unsigned long long)ipb.addr,
(unsigned long long)iov->addr, len);
if (IS_ERR(mr)) {
*mrp = NULL;
rc = PTR_ERR(mr);
dprintk("RPC: %s: failed with %i\n", __func__, rc);
} else {
*mrp = mr;
iov->lkey = mr->lkey;
rc = 0;
}
return rc;
}
int
rpcrdma_deregister_internal(struct rpcrdma_ia *ia,
struct ib_mr *mr, struct ib_sge *iov)
{
int rc;
ib_dma_unmap_single(ia->ri_id->device,
iov->addr, iov->length, DMA_BIDIRECTIONAL);
if (NULL == mr)
return 0;
rc = ib_dereg_mr(mr);
if (rc)
dprintk("RPC: %s: ib_dereg_mr failed %i\n", __func__, rc);
return rc;
}
/*
* Wrappers for chunk registration, shared by read/write chunk code.
*/
static void
rpcrdma_map_one(struct rpcrdma_ia *ia, struct rpcrdma_mr_seg *seg, int writing)
{
seg->mr_dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
seg->mr_dmalen = seg->mr_len;
if (seg->mr_page)
seg->mr_dma = ib_dma_map_page(ia->ri_id->device,
seg->mr_page, offset_in_page(seg->mr_offset),
seg->mr_dmalen, seg->mr_dir);
else
seg->mr_dma = ib_dma_map_single(ia->ri_id->device,
seg->mr_offset,
seg->mr_dmalen, seg->mr_dir);
}
static void
rpcrdma_unmap_one(struct rpcrdma_ia *ia, struct rpcrdma_mr_seg *seg)
{
if (seg->mr_page)
ib_dma_unmap_page(ia->ri_id->device,
seg->mr_dma, seg->mr_dmalen, seg->mr_dir);
else
ib_dma_unmap_single(ia->ri_id->device,
seg->mr_dma, seg->mr_dmalen, seg->mr_dir);
}
static int
rpcrdma_register_frmr_external(struct rpcrdma_mr_seg *seg,
int *nsegs, int writing, struct rpcrdma_ia *ia,
struct rpcrdma_xprt *r_xprt)
{
struct rpcrdma_mr_seg *seg1 = seg;
struct ib_send_wr frmr_wr, *bad_wr;
u8 key;
int len, pageoff;
int i, rc;
pageoff = offset_in_page(seg1->mr_offset);
seg1->mr_offset -= pageoff; /* start of page */
seg1->mr_len += pageoff;
len = -pageoff;
if (*nsegs > RPCRDMA_MAX_DATA_SEGS)
*nsegs = RPCRDMA_MAX_DATA_SEGS;
for (i = 0; i < *nsegs;) {
rpcrdma_map_one(ia, seg, writing);
seg1->mr_chunk.rl_mw->r.frmr.fr_pgl->page_list[i] = seg->mr_dma;
len += seg->mr_len;
++seg;
++i;
/* Check for holes */
if ((i < *nsegs && offset_in_page(seg->mr_offset)) ||
offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
break;
}
dprintk("RPC: %s: Using frmr %p to map %d segments\n",
__func__, seg1->mr_chunk.rl_mw, i);
/* Bump the key */
key = (u8)(seg1->mr_chunk.rl_mw->r.frmr.fr_mr->rkey & 0x000000FF);
ib_update_fast_reg_key(seg1->mr_chunk.rl_mw->r.frmr.fr_mr, ++key);
/* Prepare FRMR WR */
memset(&frmr_wr, 0, sizeof frmr_wr);
frmr_wr.opcode = IB_WR_FAST_REG_MR;
frmr_wr.send_flags = 0; /* unsignaled */
frmr_wr.wr.fast_reg.iova_start = seg1->mr_dma;
frmr_wr.wr.fast_reg.page_list = seg1->mr_chunk.rl_mw->r.frmr.fr_pgl;
frmr_wr.wr.fast_reg.page_list_len = i;
frmr_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
frmr_wr.wr.fast_reg.length = i << PAGE_SHIFT;
frmr_wr.wr.fast_reg.access_flags = (writing ?
IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
IB_ACCESS_REMOTE_READ);
frmr_wr.wr.fast_reg.rkey = seg1->mr_chunk.rl_mw->r.frmr.fr_mr->rkey;
DECR_CQCOUNT(&r_xprt->rx_ep);
rc = ib_post_send(ia->ri_id->qp, &frmr_wr, &bad_wr);
if (rc) {
dprintk("RPC: %s: failed ib_post_send for register,"
" status %i\n", __func__, rc);
while (i--)
rpcrdma_unmap_one(ia, --seg);
} else {
seg1->mr_rkey = seg1->mr_chunk.rl_mw->r.frmr.fr_mr->rkey;
seg1->mr_base = seg1->mr_dma + pageoff;
seg1->mr_nsegs = i;
seg1->mr_len = len;
}
*nsegs = i;
return rc;
}
static int
rpcrdma_deregister_frmr_external(struct rpcrdma_mr_seg *seg,
struct rpcrdma_ia *ia, struct rpcrdma_xprt *r_xprt)
{
struct rpcrdma_mr_seg *seg1 = seg;
struct ib_send_wr invalidate_wr, *bad_wr;
int rc;
while (seg1->mr_nsegs--)
rpcrdma_unmap_one(ia, seg++);
memset(&invalidate_wr, 0, sizeof invalidate_wr);
invalidate_wr.opcode = IB_WR_LOCAL_INV;
invalidate_wr.send_flags = 0; /* unsignaled */
invalidate_wr.ex.invalidate_rkey = seg1->mr_chunk.rl_mw->r.frmr.fr_mr->rkey;
DECR_CQCOUNT(&r_xprt->rx_ep);
rc = ib_post_send(ia->ri_id->qp, &invalidate_wr, &bad_wr);
if (rc)
dprintk("RPC: %s: failed ib_post_send for invalidate,"
" status %i\n", __func__, rc);
return rc;
}
static int
rpcrdma_register_fmr_external(struct rpcrdma_mr_seg *seg,
int *nsegs, int writing, struct rpcrdma_ia *ia)
{
struct rpcrdma_mr_seg *seg1 = seg;
u64 physaddrs[RPCRDMA_MAX_DATA_SEGS];
int len, pageoff, i, rc;
pageoff = offset_in_page(seg1->mr_offset);
seg1->mr_offset -= pageoff; /* start of page */
seg1->mr_len += pageoff;
len = -pageoff;
if (*nsegs > RPCRDMA_MAX_DATA_SEGS)
*nsegs = RPCRDMA_MAX_DATA_SEGS;
for (i = 0; i < *nsegs;) {
rpcrdma_map_one(ia, seg, writing);
physaddrs[i] = seg->mr_dma;
len += seg->mr_len;
++seg;
++i;
/* Check for holes */
if ((i < *nsegs && offset_in_page(seg->mr_offset)) ||
offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
break;
}
rc = ib_map_phys_fmr(seg1->mr_chunk.rl_mw->r.fmr,
physaddrs, i, seg1->mr_dma);
if (rc) {
dprintk("RPC: %s: failed ib_map_phys_fmr "
"%u@0x%llx+%i (%d)... status %i\n", __func__,
len, (unsigned long long)seg1->mr_dma,
pageoff, i, rc);
while (i--)
rpcrdma_unmap_one(ia, --seg);
} else {
seg1->mr_rkey = seg1->mr_chunk.rl_mw->r.fmr->rkey;
seg1->mr_base = seg1->mr_dma + pageoff;
seg1->mr_nsegs = i;
seg1->mr_len = len;
}
*nsegs = i;
return rc;
}
static int
rpcrdma_deregister_fmr_external(struct rpcrdma_mr_seg *seg,
struct rpcrdma_ia *ia)
{
struct rpcrdma_mr_seg *seg1 = seg;
LIST_HEAD(l);
int rc;
list_add(&seg1->mr_chunk.rl_mw->r.fmr->list, &l);
rc = ib_unmap_fmr(&l);
while (seg1->mr_nsegs--)
rpcrdma_unmap_one(ia, seg++);
if (rc)
dprintk("RPC: %s: failed ib_unmap_fmr,"
" status %i\n", __func__, rc);
return rc;
}
static int
rpcrdma_register_memwin_external(struct rpcrdma_mr_seg *seg,
int *nsegs, int writing, struct rpcrdma_ia *ia,
struct rpcrdma_xprt *r_xprt)
{
int mem_priv = (writing ? IB_ACCESS_REMOTE_WRITE :
IB_ACCESS_REMOTE_READ);
struct ib_mw_bind param;
int rc;
*nsegs = 1;
rpcrdma_map_one(ia, seg, writing);
param.mr = ia->ri_bind_mem;
param.wr_id = 0ULL; /* no send cookie */
param.addr = seg->mr_dma;
param.length = seg->mr_len;
param.send_flags = 0;
param.mw_access_flags = mem_priv;
DECR_CQCOUNT(&r_xprt->rx_ep);
rc = ib_bind_mw(ia->ri_id->qp, seg->mr_chunk.rl_mw->r.mw, &param);
if (rc) {
dprintk("RPC: %s: failed ib_bind_mw "
"%u@0x%llx status %i\n",
__func__, seg->mr_len,
(unsigned long long)seg->mr_dma, rc);
rpcrdma_unmap_one(ia, seg);
} else {
seg->mr_rkey = seg->mr_chunk.rl_mw->r.mw->rkey;
seg->mr_base = param.addr;
seg->mr_nsegs = 1;
}
return rc;
}
static int
rpcrdma_deregister_memwin_external(struct rpcrdma_mr_seg *seg,
struct rpcrdma_ia *ia,
struct rpcrdma_xprt *r_xprt, void **r)
{
struct ib_mw_bind param;
LIST_HEAD(l);
int rc;
BUG_ON(seg->mr_nsegs != 1);
param.mr = ia->ri_bind_mem;
param.addr = 0ULL; /* unbind */
param.length = 0;
param.mw_access_flags = 0;
if (*r) {
param.wr_id = (u64) (unsigned long) *r;
param.send_flags = IB_SEND_SIGNALED;
INIT_CQCOUNT(&r_xprt->rx_ep);
} else {
param.wr_id = 0ULL;
param.send_flags = 0;
DECR_CQCOUNT(&r_xprt->rx_ep);
}
rc = ib_bind_mw(ia->ri_id->qp, seg->mr_chunk.rl_mw->r.mw, &param);
rpcrdma_unmap_one(ia, seg);
if (rc)
dprintk("RPC: %s: failed ib_(un)bind_mw,"
" status %i\n", __func__, rc);
else
*r = NULL; /* will upcall on completion */
return rc;
}
static int
rpcrdma_register_default_external(struct rpcrdma_mr_seg *seg,
int *nsegs, int writing, struct rpcrdma_ia *ia)
{
int mem_priv = (writing ? IB_ACCESS_REMOTE_WRITE :
IB_ACCESS_REMOTE_READ);
struct rpcrdma_mr_seg *seg1 = seg;
struct ib_phys_buf ipb[RPCRDMA_MAX_DATA_SEGS];
int len, i, rc = 0;
if (*nsegs > RPCRDMA_MAX_DATA_SEGS)
*nsegs = RPCRDMA_MAX_DATA_SEGS;
for (len = 0, i = 0; i < *nsegs;) {
rpcrdma_map_one(ia, seg, writing);
ipb[i].addr = seg->mr_dma;
ipb[i].size = seg->mr_len;
len += seg->mr_len;
++seg;
++i;
/* Check for holes */
if ((i < *nsegs && offset_in_page(seg->mr_offset)) ||
offset_in_page((seg-1)->mr_offset+(seg-1)->mr_len))
break;
}
seg1->mr_base = seg1->mr_dma;
seg1->mr_chunk.rl_mr = ib_reg_phys_mr(ia->ri_pd,
ipb, i, mem_priv, &seg1->mr_base);
if (IS_ERR(seg1->mr_chunk.rl_mr)) {
rc = PTR_ERR(seg1->mr_chunk.rl_mr);
dprintk("RPC: %s: failed ib_reg_phys_mr "
"%u@0x%llx (%d)... status %i\n",
__func__, len,
(unsigned long long)seg1->mr_dma, i, rc);
while (i--)
rpcrdma_unmap_one(ia, --seg);
} else {
seg1->mr_rkey = seg1->mr_chunk.rl_mr->rkey;
seg1->mr_nsegs = i;
seg1->mr_len = len;
}
*nsegs = i;
return rc;
}
static int
rpcrdma_deregister_default_external(struct rpcrdma_mr_seg *seg,
struct rpcrdma_ia *ia)
{
struct rpcrdma_mr_seg *seg1 = seg;
int rc;
rc = ib_dereg_mr(seg1->mr_chunk.rl_mr);
seg1->mr_chunk.rl_mr = NULL;
while (seg1->mr_nsegs--)
rpcrdma_unmap_one(ia, seg++);
if (rc)
dprintk("RPC: %s: failed ib_dereg_mr,"
" status %i\n", __func__, rc);
return rc;
}
int
rpcrdma_register_external(struct rpcrdma_mr_seg *seg,
int nsegs, int writing, struct rpcrdma_xprt *r_xprt)
{
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
int rc = 0;
switch (ia->ri_memreg_strategy) {
#if RPCRDMA_PERSISTENT_REGISTRATION
case RPCRDMA_ALLPHYSICAL:
rpcrdma_map_one(ia, seg, writing);
seg->mr_rkey = ia->ri_bind_mem->rkey;
seg->mr_base = seg->mr_dma;
seg->mr_nsegs = 1;
nsegs = 1;
break;
#endif
/* Registration using frmr registration */
case RPCRDMA_FRMR:
rc = rpcrdma_register_frmr_external(seg, &nsegs, writing, ia, r_xprt);
break;
/* Registration using fmr memory registration */
case RPCRDMA_MTHCAFMR:
rc = rpcrdma_register_fmr_external(seg, &nsegs, writing, ia);
break;
/* Registration using memory windows */
case RPCRDMA_MEMWINDOWS_ASYNC:
case RPCRDMA_MEMWINDOWS:
rc = rpcrdma_register_memwin_external(seg, &nsegs, writing, ia, r_xprt);
break;
/* Default registration each time */
default:
rc = rpcrdma_register_default_external(seg, &nsegs, writing, ia);
break;
}
if (rc)
return -1;
return nsegs;
}
int
rpcrdma_deregister_external(struct rpcrdma_mr_seg *seg,
struct rpcrdma_xprt *r_xprt, void *r)
{
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
int nsegs = seg->mr_nsegs, rc;
switch (ia->ri_memreg_strategy) {
#if RPCRDMA_PERSISTENT_REGISTRATION
case RPCRDMA_ALLPHYSICAL:
BUG_ON(nsegs != 1);
rpcrdma_unmap_one(ia, seg);
rc = 0;
break;
#endif
case RPCRDMA_FRMR:
rc = rpcrdma_deregister_frmr_external(seg, ia, r_xprt);
break;
case RPCRDMA_MTHCAFMR:
rc = rpcrdma_deregister_fmr_external(seg, ia);
break;
case RPCRDMA_MEMWINDOWS_ASYNC:
case RPCRDMA_MEMWINDOWS:
rc = rpcrdma_deregister_memwin_external(seg, ia, r_xprt, &r);
break;
default:
rc = rpcrdma_deregister_default_external(seg, ia);
break;
}
if (r) {
struct rpcrdma_rep *rep = r;
void (*func)(struct rpcrdma_rep *) = rep->rr_func;
rep->rr_func = NULL;
func(rep); /* dereg done, callback now */
}
return nsegs;
}
/*
* Prepost any receive buffer, then post send.
*
* Receive buffer is donated to hardware, reclaimed upon recv completion.
*/
int
rpcrdma_ep_post(struct rpcrdma_ia *ia,
struct rpcrdma_ep *ep,
struct rpcrdma_req *req)
{
struct ib_send_wr send_wr, *send_wr_fail;
struct rpcrdma_rep *rep = req->rl_reply;
int rc;
if (rep) {
rc = rpcrdma_ep_post_recv(ia, ep, rep);
if (rc)
goto out;
req->rl_reply = NULL;
}
send_wr.next = NULL;
send_wr.wr_id = 0ULL; /* no send cookie */
send_wr.sg_list = req->rl_send_iov;
send_wr.num_sge = req->rl_niovs;
send_wr.opcode = IB_WR_SEND;
if (send_wr.num_sge == 4) /* no need to sync any pad (constant) */
ib_dma_sync_single_for_device(ia->ri_id->device,
req->rl_send_iov[3].addr, req->rl_send_iov[3].length,
DMA_TO_DEVICE);
ib_dma_sync_single_for_device(ia->ri_id->device,
req->rl_send_iov[1].addr, req->rl_send_iov[1].length,
DMA_TO_DEVICE);
ib_dma_sync_single_for_device(ia->ri_id->device,
req->rl_send_iov[0].addr, req->rl_send_iov[0].length,
DMA_TO_DEVICE);
if (DECR_CQCOUNT(ep) > 0)
send_wr.send_flags = 0;
else { /* Provider must take a send completion every now and then */
INIT_CQCOUNT(ep);
send_wr.send_flags = IB_SEND_SIGNALED;
}
rc = ib_post_send(ia->ri_id->qp, &send_wr, &send_wr_fail);
if (rc)
dprintk("RPC: %s: ib_post_send returned %i\n", __func__,
rc);
out:
return rc;
}
/*
* (Re)post a receive buffer.
*/
int
rpcrdma_ep_post_recv(struct rpcrdma_ia *ia,
struct rpcrdma_ep *ep,
struct rpcrdma_rep *rep)
{
struct ib_recv_wr recv_wr, *recv_wr_fail;
int rc;
recv_wr.next = NULL;
recv_wr.wr_id = (u64) (unsigned long) rep;
recv_wr.sg_list = &rep->rr_iov;
recv_wr.num_sge = 1;
ib_dma_sync_single_for_cpu(ia->ri_id->device,
rep->rr_iov.addr, rep->rr_iov.length, DMA_BIDIRECTIONAL);
DECR_CQCOUNT(ep);
rc = ib_post_recv(ia->ri_id->qp, &recv_wr, &recv_wr_fail);
if (rc)
dprintk("RPC: %s: ib_post_recv returned %i\n", __func__,
rc);
return rc;
}