linux-sg2042/include/linux/time64.h

166 lines
4.4 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_TIME64_H
#define _LINUX_TIME64_H
#include <linux/math64.h>
typedef __s64 time64_t;
time: Avoid undefined behaviour in timespec64_add_safe() I ran into this: ================================================================================ UBSAN: Undefined behaviour in kernel/time/time.c:783:2 signed integer overflow: 5273 + 9223372036854771711 cannot be represented in type 'long int' CPU: 0 PID: 17363 Comm: trinity-c0 Not tainted 4.8.0-rc1+ #88 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.3-0-ge2fc41e-prebuilt.qemu-project.org 04/01/2014 0000000000000000 ffff88011457f8f0 ffffffff82344f50 0000000041b58ab3 ffffffff84f98080 ffffffff82344ea4 ffff88011457f918 ffff88011457f8c8 ffff88011457f8e0 7fffffffffffefff ffff88011457f6d8 dffffc0000000000 Call Trace: [<ffffffff82344f50>] dump_stack+0xac/0xfc [<ffffffff82344ea4>] ? _atomic_dec_and_lock+0xc4/0xc4 [<ffffffff8242f4c8>] ubsan_epilogue+0xd/0x8a [<ffffffff8242fc04>] handle_overflow+0x202/0x23d [<ffffffff8242fa02>] ? val_to_string.constprop.6+0x11e/0x11e [<ffffffff823c7837>] ? debug_smp_processor_id+0x17/0x20 [<ffffffff8131b581>] ? __sigqueue_free.part.13+0x51/0x70 [<ffffffff8146d4e0>] ? rcu_is_watching+0x110/0x110 [<ffffffff8242fc4d>] __ubsan_handle_add_overflow+0xe/0x10 [<ffffffff81476ef8>] timespec64_add_safe+0x298/0x340 [<ffffffff81476c60>] ? timespec_add_safe+0x330/0x330 [<ffffffff812f7990>] ? wait_noreap_copyout+0x1d0/0x1d0 [<ffffffff8184bf18>] poll_select_set_timeout+0xf8/0x170 [<ffffffff8184be20>] ? poll_schedule_timeout+0x2b0/0x2b0 [<ffffffff813aa9bb>] ? __might_sleep+0x5b/0x260 [<ffffffff833c8a87>] __sys_recvmmsg+0x107/0x790 [<ffffffff833c8980>] ? SyS_recvmsg+0x20/0x20 [<ffffffff81486378>] ? hrtimer_start_range_ns+0x3b8/0x1380 [<ffffffff845f8bfb>] ? _raw_spin_unlock_irqrestore+0x3b/0x60 [<ffffffff8148bcea>] ? do_setitimer+0x39a/0x8e0 [<ffffffff813aa9bb>] ? __might_sleep+0x5b/0x260 [<ffffffff833c9110>] ? __sys_recvmmsg+0x790/0x790 [<ffffffff833c91e9>] SyS_recvmmsg+0xd9/0x160 [<ffffffff833c9110>] ? __sys_recvmmsg+0x790/0x790 [<ffffffff823c7853>] ? __this_cpu_preempt_check+0x13/0x20 [<ffffffff8162f680>] ? __context_tracking_exit.part.3+0x30/0x1b0 [<ffffffff833c9110>] ? __sys_recvmmsg+0x790/0x790 [<ffffffff81007bd3>] do_syscall_64+0x1b3/0x4b0 [<ffffffff845f936a>] entry_SYSCALL64_slow_path+0x25/0x25 ================================================================================ Line 783 is this: 783 set_normalized_timespec64(&res, lhs.tv_sec + rhs.tv_sec, 784 lhs.tv_nsec + rhs.tv_nsec); In other words, since lhs.tv_sec and rhs.tv_sec are both time64_t, this is a signed addition which will cause undefined behaviour on overflow. Note that this is not currently a huge concern since the kernel should be built with -fno-strict-overflow by default, but could be a problem in the future, a problem with older compilers, or other compilers than gcc. The easiest way to avoid the overflow is to cast one of the arguments to unsigned (so the addition will be done using unsigned arithmetic). Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com> Signed-off-by: John Stultz <john.stultz@linaro.org>
2016-08-13 02:14:09 +08:00
typedef __u64 timeu64_t;
#include <uapi/linux/time.h>
struct timespec64 {
time64_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */
};
struct itimerspec64 {
struct timespec64 it_interval;
struct timespec64 it_value;
};
/* Parameters used to convert the timespec values: */
#define MSEC_PER_SEC 1000L
#define USEC_PER_MSEC 1000L
#define NSEC_PER_USEC 1000L
#define NSEC_PER_MSEC 1000000L
#define USEC_PER_SEC 1000000L
#define NSEC_PER_SEC 1000000000L
#define FSEC_PER_SEC 1000000000000000LL
/* Located here for timespec[64]_valid_strict */
time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge Currently, leapsecond adjustments are done at tick time. As a result, the leapsecond was applied at the first timer tick *after* the leapsecond (~1-10ms late depending on HZ), rather then exactly on the second edge. This was in part historical from back when we were always tick based, but correcting this since has been avoided since it adds extra conditional checks in the gettime fastpath, which has performance overhead. However, it was recently pointed out that ABS_TIME CLOCK_REALTIME timers set for right after the leapsecond could fire a second early, since some timers may be expired before we trigger the timekeeping timer, which then applies the leapsecond. This isn't quite as bad as it sounds, since behaviorally it is similar to what is possible w/ ntpd made leapsecond adjustments done w/o using the kernel discipline. Where due to latencies, timers may fire just prior to the settimeofday call. (Also, one should note that all applications using CLOCK_REALTIME timers should always be careful, since they are prone to quirks from settimeofday() disturbances.) However, the purpose of having the kernel do the leap adjustment is to avoid such latencies, so I think this is worth fixing. So in order to properly keep those timers from firing a second early, this patch modifies the ntp and timekeeping logic so that we keep enough state so that the update_base_offsets_now accessor, which provides the hrtimer core the current time, can check and apply the leapsecond adjustment on the second edge. This prevents the hrtimer core from expiring timers too early. This patch does not modify any other time read path, so no additional overhead is incurred. However, this also means that the leap-second continues to be applied at tick time for all other read-paths. Apologies to Richard Cochran, who pushed for similar changes years ago, which I resisted due to the concerns about the performance overhead. While I suspect this isn't extremely critical, folks who care about strict leap-second correctness will likely want to watch this. Potentially a -stable candidate eventually. Originally-suggested-by: Richard Cochran <richardcochran@gmail.com> Reported-by: Daniel Bristot de Oliveira <bristot@redhat.com> Reported-by: Prarit Bhargava <prarit@redhat.com> Signed-off-by: John Stultz <john.stultz@linaro.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Jiri Bohac <jbohac@suse.cz> Cc: Shuah Khan <shuahkh@osg.samsung.com> Cc: Ingo Molnar <mingo@kernel.org> Link: http://lkml.kernel.org/r/1434063297-28657-4-git-send-email-john.stultz@linaro.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-12 06:54:55 +08:00
#define TIME64_MAX ((s64)~((u64)1 << 63))
#define KTIME_MAX ((s64)~((u64)1 << 63))
#define KTIME_SEC_MAX (KTIME_MAX / NSEC_PER_SEC)
timekeeping: Force upper bound for setting CLOCK_REALTIME Several people reported testing failures after setting CLOCK_REALTIME close to the limits of the kernel internal representation in nanoseconds, i.e. year 2262. The failures are exposed in subsequent operations, i.e. when arming timers or when the advancing CLOCK_MONOTONIC makes the calculation of CLOCK_REALTIME overflow into negative space. Now people start to paper over the underlying problem by clamping calculations to the valid range, but that's just wrong because such workarounds will prevent detection of real issues as well. It is reasonable to force an upper bound for the various methods of setting CLOCK_REALTIME. Year 2262 is the absolute upper bound. Assume a maximum uptime of 30 years which is plenty enough even for esoteric embedded systems. That results in an upper bound of year 2232 for setting the time. Once that limit is reached in reality this limit is only a small part of the problem space. But until then this stops people from trying to paper over the problem at the wrong places. Reported-by: Xiongfeng Wang <wangxiongfeng2@huawei.com> Reported-by: Hongbo Yao <yaohongbo@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Stephen Boyd <sboyd@kernel.org> Cc: Miroslav Lichvar <mlichvar@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1903231125480.2157@nanos.tec.linutronix.de
2019-03-23 18:36:19 +08:00
/*
* Limits for settimeofday():
*
* To prevent setting the time close to the wraparound point time setting
* is limited so a reasonable uptime can be accomodated. Uptime of 30 years
* should be really sufficient, which means the cutoff is 2232. At that
* point the cutoff is just a small part of the larger problem.
*/
#define TIME_UPTIME_SEC_MAX (30LL * 365 * 24 *3600)
#define TIME_SETTOD_SEC_MAX (KTIME_SEC_MAX - TIME_UPTIME_SEC_MAX)
static inline int timespec64_equal(const struct timespec64 *a,
const struct timespec64 *b)
{
return (a->tv_sec == b->tv_sec) && (a->tv_nsec == b->tv_nsec);
}
/*
* lhs < rhs: return <0
* lhs == rhs: return 0
* lhs > rhs: return >0
*/
static inline int timespec64_compare(const struct timespec64 *lhs, const struct timespec64 *rhs)
{
if (lhs->tv_sec < rhs->tv_sec)
return -1;
if (lhs->tv_sec > rhs->tv_sec)
return 1;
return lhs->tv_nsec - rhs->tv_nsec;
}
extern void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec);
static inline struct timespec64 timespec64_add(struct timespec64 lhs,
struct timespec64 rhs)
{
struct timespec64 ts_delta;
set_normalized_timespec64(&ts_delta, lhs.tv_sec + rhs.tv_sec,
lhs.tv_nsec + rhs.tv_nsec);
return ts_delta;
}
/*
* sub = lhs - rhs, in normalized form
*/
static inline struct timespec64 timespec64_sub(struct timespec64 lhs,
struct timespec64 rhs)
{
struct timespec64 ts_delta;
set_normalized_timespec64(&ts_delta, lhs.tv_sec - rhs.tv_sec,
lhs.tv_nsec - rhs.tv_nsec);
return ts_delta;
}
/*
* Returns true if the timespec64 is norm, false if denorm:
*/
static inline bool timespec64_valid(const struct timespec64 *ts)
{
/* Dates before 1970 are bogus */
if (ts->tv_sec < 0)
return false;
/* Can't have more nanoseconds then a second */
if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
return false;
return true;
}
static inline bool timespec64_valid_strict(const struct timespec64 *ts)
{
if (!timespec64_valid(ts))
return false;
/* Disallow values that could overflow ktime_t */
if ((unsigned long long)ts->tv_sec >= KTIME_SEC_MAX)
return false;
return true;
}
timekeeping: Force upper bound for setting CLOCK_REALTIME Several people reported testing failures after setting CLOCK_REALTIME close to the limits of the kernel internal representation in nanoseconds, i.e. year 2262. The failures are exposed in subsequent operations, i.e. when arming timers or when the advancing CLOCK_MONOTONIC makes the calculation of CLOCK_REALTIME overflow into negative space. Now people start to paper over the underlying problem by clamping calculations to the valid range, but that's just wrong because such workarounds will prevent detection of real issues as well. It is reasonable to force an upper bound for the various methods of setting CLOCK_REALTIME. Year 2262 is the absolute upper bound. Assume a maximum uptime of 30 years which is plenty enough even for esoteric embedded systems. That results in an upper bound of year 2232 for setting the time. Once that limit is reached in reality this limit is only a small part of the problem space. But until then this stops people from trying to paper over the problem at the wrong places. Reported-by: Xiongfeng Wang <wangxiongfeng2@huawei.com> Reported-by: Hongbo Yao <yaohongbo@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Stephen Boyd <sboyd@kernel.org> Cc: Miroslav Lichvar <mlichvar@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1903231125480.2157@nanos.tec.linutronix.de
2019-03-23 18:36:19 +08:00
static inline bool timespec64_valid_settod(const struct timespec64 *ts)
{
if (!timespec64_valid(ts))
return false;
/* Disallow values which cause overflow issues vs. CLOCK_REALTIME */
if ((unsigned long long)ts->tv_sec >= TIME_SETTOD_SEC_MAX)
return false;
return true;
}
/**
* timespec64_to_ns - Convert timespec64 to nanoseconds
* @ts: pointer to the timespec64 variable to be converted
*
* Returns the scalar nanosecond representation of the timespec64
* parameter.
*/
static inline s64 timespec64_to_ns(const struct timespec64 *ts)
{
return ((s64) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec;
}
/**
* ns_to_timespec64 - Convert nanoseconds to timespec64
* @nsec: the nanoseconds value to be converted
*
* Returns the timespec64 representation of the nsec parameter.
*/
extern struct timespec64 ns_to_timespec64(const s64 nsec);
/**
* timespec64_add_ns - Adds nanoseconds to a timespec64
* @a: pointer to timespec64 to be incremented
* @ns: unsigned nanoseconds value to be added
*
* This must always be inlined because its used from the x86-64 vdso,
* which cannot call other kernel functions.
*/
static __always_inline void timespec64_add_ns(struct timespec64 *a, u64 ns)
{
a->tv_sec += __iter_div_u64_rem(a->tv_nsec + ns, NSEC_PER_SEC, &ns);
a->tv_nsec = ns;
}
/*
* timespec64_add_safe assumes both values are positive and checks for
* overflow. It will return TIME64_MAX in case of overflow.
*/
extern struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
const struct timespec64 rhs);
#endif /* _LINUX_TIME64_H */