linux-sg2042/drivers/gpu/drm/radeon/radeon_i2c.c

1157 lines
28 KiB
C
Raw Normal View History

drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
/*
* Copyright 2007-8 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
*/
#include <linux/export.h>
#include <drm/drmP.h>
#include <drm/drm_edid.h>
#include <drm/radeon_drm.h>
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
#include "radeon.h"
#include "atom.h"
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
extern int radeon_atom_hw_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg *msgs, int num);
extern u32 radeon_atom_hw_i2c_func(struct i2c_adapter *adap);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
/**
* radeon_ddc_probe
*
*/
bool radeon_ddc_probe(struct radeon_connector *radeon_connector, bool use_aux)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
{
drm/radeon: Extended DDC Probing for Connectors with Improperly Wired DDC Lines (here: Asus M2A-VM HDMI) Some integrated ATI Radeon chipset implementations with add-on HDMI card (e. g. Asus M2A-VM HDMI) indicate the availability of a DDC even when the add-on card is not plugged in or HDMI is disabled in BIOS setup. In this case, drm_get_edid() and drm_edid_block_valid() periodically dump data and kernel errors into system log files and onto terminals. For these connectors DDC probing is extended by a check for a correct EDID header. Only in case a valid EDID header is also found, the (HDMI or DVI) connector will be used by the Radeon driver. This prevents the kernel driver from useless flooding of logs and terminal sessions with EDID dumps and error messages. This patch adds a flag 'requires_extended_probe' to the radeon_connector structure. In function radeon_connector_needs_extended_probe() this flag can be set on a chipset family/vendor/connector type specific basis. In addition, function radeon_ddc_probe() has been adapted to perform extended DDC probing if required by the connector's flag. Requires function drm_edid_header_is_valid() in DRM module provided by [PATCH] drm: Separate EDID Header Check from EDID Block Check. Tested for kernel 2.6.35, 2.6.38 and 3.0 on Asus M2A-VM HDMI board BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=668196 BugLink: http://bugs.launchpad.net/bugs/7228066 Cc: <stable@kernel.org> Signed-off-by: Thomas Reim <reimth@gmail.com> Reviewed-by: Alex Deucher <alexdeucher@gmail.com> Acked-by: Stephen Michaels <Stephen.Micheals@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2011-07-29 22:28:58 +08:00
u8 out = 0x0;
u8 buf[8];
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
int ret;
struct i2c_msg msgs[] = {
{
.addr = DDC_ADDR,
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
.flags = 0,
.len = 1,
drm/radeon: Extended DDC Probing for Connectors with Improperly Wired DDC Lines (here: Asus M2A-VM HDMI) Some integrated ATI Radeon chipset implementations with add-on HDMI card (e. g. Asus M2A-VM HDMI) indicate the availability of a DDC even when the add-on card is not plugged in or HDMI is disabled in BIOS setup. In this case, drm_get_edid() and drm_edid_block_valid() periodically dump data and kernel errors into system log files and onto terminals. For these connectors DDC probing is extended by a check for a correct EDID header. Only in case a valid EDID header is also found, the (HDMI or DVI) connector will be used by the Radeon driver. This prevents the kernel driver from useless flooding of logs and terminal sessions with EDID dumps and error messages. This patch adds a flag 'requires_extended_probe' to the radeon_connector structure. In function radeon_connector_needs_extended_probe() this flag can be set on a chipset family/vendor/connector type specific basis. In addition, function radeon_ddc_probe() has been adapted to perform extended DDC probing if required by the connector's flag. Requires function drm_edid_header_is_valid() in DRM module provided by [PATCH] drm: Separate EDID Header Check from EDID Block Check. Tested for kernel 2.6.35, 2.6.38 and 3.0 on Asus M2A-VM HDMI board BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=668196 BugLink: http://bugs.launchpad.net/bugs/7228066 Cc: <stable@kernel.org> Signed-off-by: Thomas Reim <reimth@gmail.com> Reviewed-by: Alex Deucher <alexdeucher@gmail.com> Acked-by: Stephen Michaels <Stephen.Micheals@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2011-07-29 22:28:58 +08:00
.buf = &out,
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
},
{
.addr = DDC_ADDR,
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
.flags = I2C_M_RD,
.len = 8,
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
.buf = buf,
}
};
/* on hw with routers, select right port */
if (radeon_connector->router.ddc_valid)
radeon_router_select_ddc_port(radeon_connector);
if (use_aux) {
ret = i2c_transfer(&radeon_connector->ddc_bus->aux.ddc, msgs, 2);
} else {
ret = i2c_transfer(&radeon_connector->ddc_bus->adapter, msgs, 2);
}
drm/radeon: Extended DDC Probing for Connectors with Improperly Wired DDC Lines (here: Asus M2A-VM HDMI) Some integrated ATI Radeon chipset implementations with add-on HDMI card (e. g. Asus M2A-VM HDMI) indicate the availability of a DDC even when the add-on card is not plugged in or HDMI is disabled in BIOS setup. In this case, drm_get_edid() and drm_edid_block_valid() periodically dump data and kernel errors into system log files and onto terminals. For these connectors DDC probing is extended by a check for a correct EDID header. Only in case a valid EDID header is also found, the (HDMI or DVI) connector will be used by the Radeon driver. This prevents the kernel driver from useless flooding of logs and terminal sessions with EDID dumps and error messages. This patch adds a flag 'requires_extended_probe' to the radeon_connector structure. In function radeon_connector_needs_extended_probe() this flag can be set on a chipset family/vendor/connector type specific basis. In addition, function radeon_ddc_probe() has been adapted to perform extended DDC probing if required by the connector's flag. Requires function drm_edid_header_is_valid() in DRM module provided by [PATCH] drm: Separate EDID Header Check from EDID Block Check. Tested for kernel 2.6.35, 2.6.38 and 3.0 on Asus M2A-VM HDMI board BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=668196 BugLink: http://bugs.launchpad.net/bugs/7228066 Cc: <stable@kernel.org> Signed-off-by: Thomas Reim <reimth@gmail.com> Reviewed-by: Alex Deucher <alexdeucher@gmail.com> Acked-by: Stephen Michaels <Stephen.Micheals@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2011-07-29 22:28:58 +08:00
if (ret != 2)
/* Couldn't find an accessible DDC on this connector */
return false;
/* Probe also for valid EDID header
* EDID header starts with:
* 0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00.
* Only the first 6 bytes must be valid as
* drm_edid_block_valid() can fix the last 2 bytes */
if (drm_edid_header_is_valid(buf) < 6) {
/* Couldn't find an accessible EDID on this
* connector */
return false;
drm/radeon: Extended DDC Probing for Connectors with Improperly Wired DDC Lines (here: Asus M2A-VM HDMI) Some integrated ATI Radeon chipset implementations with add-on HDMI card (e. g. Asus M2A-VM HDMI) indicate the availability of a DDC even when the add-on card is not plugged in or HDMI is disabled in BIOS setup. In this case, drm_get_edid() and drm_edid_block_valid() periodically dump data and kernel errors into system log files and onto terminals. For these connectors DDC probing is extended by a check for a correct EDID header. Only in case a valid EDID header is also found, the (HDMI or DVI) connector will be used by the Radeon driver. This prevents the kernel driver from useless flooding of logs and terminal sessions with EDID dumps and error messages. This patch adds a flag 'requires_extended_probe' to the radeon_connector structure. In function radeon_connector_needs_extended_probe() this flag can be set on a chipset family/vendor/connector type specific basis. In addition, function radeon_ddc_probe() has been adapted to perform extended DDC probing if required by the connector's flag. Requires function drm_edid_header_is_valid() in DRM module provided by [PATCH] drm: Separate EDID Header Check from EDID Block Check. Tested for kernel 2.6.35, 2.6.38 and 3.0 on Asus M2A-VM HDMI board BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=668196 BugLink: http://bugs.launchpad.net/bugs/7228066 Cc: <stable@kernel.org> Signed-off-by: Thomas Reim <reimth@gmail.com> Reviewed-by: Alex Deucher <alexdeucher@gmail.com> Acked-by: Stephen Michaels <Stephen.Micheals@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2011-07-29 22:28:58 +08:00
}
return true;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
}
/* bit banging i2c */
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
static int pre_xfer(struct i2c_adapter *i2c_adap)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
{
struct radeon_i2c_chan *i2c = i2c_get_adapdata(i2c_adap);
struct radeon_device *rdev = i2c->dev->dev_private;
struct radeon_i2c_bus_rec *rec = &i2c->rec;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
uint32_t temp;
mutex_lock(&i2c->mutex);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
/* RV410 appears to have a bug where the hw i2c in reset
* holds the i2c port in a bad state - switch hw i2c away before
* doing DDC - do this for all r200s/r300s/r400s for safety sake
*/
if (rec->hw_capable) {
if ((rdev->family >= CHIP_R200) && !ASIC_IS_AVIVO(rdev)) {
u32 reg;
if (rdev->family >= CHIP_RV350)
reg = RADEON_GPIO_MONID;
else if ((rdev->family == CHIP_R300) ||
(rdev->family == CHIP_R350))
reg = RADEON_GPIO_DVI_DDC;
else
reg = RADEON_GPIO_CRT2_DDC;
mutex_lock(&rdev->dc_hw_i2c_mutex);
if (rec->a_clk_reg == reg) {
WREG32(RADEON_DVI_I2C_CNTL_0, (RADEON_I2C_SOFT_RST |
R200_DVI_I2C_PIN_SEL(R200_SEL_DDC1)));
} else {
WREG32(RADEON_DVI_I2C_CNTL_0, (RADEON_I2C_SOFT_RST |
R200_DVI_I2C_PIN_SEL(R200_SEL_DDC3)));
}
mutex_unlock(&rdev->dc_hw_i2c_mutex);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
}
}
/* switch the pads to ddc mode */
if (ASIC_IS_DCE3(rdev) && rec->hw_capable) {
temp = RREG32(rec->mask_clk_reg);
temp &= ~(1 << 16);
WREG32(rec->mask_clk_reg, temp);
}
/* clear the output pin values */
temp = RREG32(rec->a_clk_reg) & ~rec->a_clk_mask;
WREG32(rec->a_clk_reg, temp);
temp = RREG32(rec->a_data_reg) & ~rec->a_data_mask;
WREG32(rec->a_data_reg, temp);
/* set the pins to input */
temp = RREG32(rec->en_clk_reg) & ~rec->en_clk_mask;
WREG32(rec->en_clk_reg, temp);
temp = RREG32(rec->en_data_reg) & ~rec->en_data_mask;
WREG32(rec->en_data_reg, temp);
/* mask the gpio pins for software use */
temp = RREG32(rec->mask_clk_reg) | rec->mask_clk_mask;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
WREG32(rec->mask_clk_reg, temp);
temp = RREG32(rec->mask_clk_reg);
temp = RREG32(rec->mask_data_reg) | rec->mask_data_mask;
WREG32(rec->mask_data_reg, temp);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
temp = RREG32(rec->mask_data_reg);
return 0;
}
static void post_xfer(struct i2c_adapter *i2c_adap)
{
struct radeon_i2c_chan *i2c = i2c_get_adapdata(i2c_adap);
struct radeon_device *rdev = i2c->dev->dev_private;
struct radeon_i2c_bus_rec *rec = &i2c->rec;
uint32_t temp;
/* unmask the gpio pins for software use */
temp = RREG32(rec->mask_clk_reg) & ~rec->mask_clk_mask;
WREG32(rec->mask_clk_reg, temp);
temp = RREG32(rec->mask_clk_reg);
temp = RREG32(rec->mask_data_reg) & ~rec->mask_data_mask;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
WREG32(rec->mask_data_reg, temp);
temp = RREG32(rec->mask_data_reg);
mutex_unlock(&i2c->mutex);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
}
static int get_clock(void *i2c_priv)
{
struct radeon_i2c_chan *i2c = i2c_priv;
struct radeon_device *rdev = i2c->dev->dev_private;
struct radeon_i2c_bus_rec *rec = &i2c->rec;
uint32_t val;
/* read the value off the pin */
val = RREG32(rec->y_clk_reg);
val &= rec->y_clk_mask;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
return (val != 0);
}
static int get_data(void *i2c_priv)
{
struct radeon_i2c_chan *i2c = i2c_priv;
struct radeon_device *rdev = i2c->dev->dev_private;
struct radeon_i2c_bus_rec *rec = &i2c->rec;
uint32_t val;
/* read the value off the pin */
val = RREG32(rec->y_data_reg);
val &= rec->y_data_mask;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
return (val != 0);
}
static void set_clock(void *i2c_priv, int clock)
{
struct radeon_i2c_chan *i2c = i2c_priv;
struct radeon_device *rdev = i2c->dev->dev_private;
struct radeon_i2c_bus_rec *rec = &i2c->rec;
uint32_t val;
/* set pin direction */
val = RREG32(rec->en_clk_reg) & ~rec->en_clk_mask;
val |= clock ? 0 : rec->en_clk_mask;
WREG32(rec->en_clk_reg, val);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
}
static void set_data(void *i2c_priv, int data)
{
struct radeon_i2c_chan *i2c = i2c_priv;
struct radeon_device *rdev = i2c->dev->dev_private;
struct radeon_i2c_bus_rec *rec = &i2c->rec;
uint32_t val;
/* set pin direction */
val = RREG32(rec->en_data_reg) & ~rec->en_data_mask;
val |= data ? 0 : rec->en_data_mask;
WREG32(rec->en_data_reg, val);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
}
/* hw i2c */
static u32 radeon_get_i2c_prescale(struct radeon_device *rdev)
{
u32 sclk = rdev->pm.current_sclk;
u32 prescale = 0;
u32 nm;
u8 n, m, loop;
int i2c_clock;
switch (rdev->family) {
case CHIP_R100:
case CHIP_RV100:
case CHIP_RS100:
case CHIP_RV200:
case CHIP_RS200:
case CHIP_R200:
case CHIP_RV250:
case CHIP_RS300:
case CHIP_RV280:
case CHIP_R300:
case CHIP_R350:
case CHIP_RV350:
i2c_clock = 60;
nm = (sclk * 10) / (i2c_clock * 4);
for (loop = 1; loop < 255; loop++) {
if ((nm / loop) < loop)
break;
}
n = loop - 1;
m = loop - 2;
prescale = m | (n << 8);
break;
case CHIP_RV380:
case CHIP_RS400:
case CHIP_RS480:
case CHIP_R420:
case CHIP_R423:
case CHIP_RV410:
prescale = (((sclk * 10)/(4 * 128 * 100) + 1) << 8) + 128;
break;
case CHIP_RS600:
case CHIP_RS690:
case CHIP_RS740:
/* todo */
break;
case CHIP_RV515:
case CHIP_R520:
case CHIP_RV530:
case CHIP_RV560:
case CHIP_RV570:
case CHIP_R580:
i2c_clock = 50;
if (rdev->family == CHIP_R520)
prescale = (127 << 8) + ((sclk * 10) / (4 * 127 * i2c_clock));
else
prescale = (((sclk * 10)/(4 * 128 * 100) + 1) << 8) + 128;
break;
case CHIP_R600:
case CHIP_RV610:
case CHIP_RV630:
case CHIP_RV670:
/* todo */
break;
case CHIP_RV620:
case CHIP_RV635:
case CHIP_RS780:
case CHIP_RS880:
case CHIP_RV770:
case CHIP_RV730:
case CHIP_RV710:
case CHIP_RV740:
/* todo */
break;
case CHIP_CEDAR:
case CHIP_REDWOOD:
case CHIP_JUNIPER:
case CHIP_CYPRESS:
case CHIP_HEMLOCK:
/* todo */
break;
default:
DRM_ERROR("i2c: unhandled radeon chip\n");
break;
}
return prescale;
}
/* hw i2c engine for r1xx-4xx hardware
* hw can buffer up to 15 bytes
*/
static int r100_hw_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg *msgs, int num)
{
struct radeon_i2c_chan *i2c = i2c_get_adapdata(i2c_adap);
struct radeon_device *rdev = i2c->dev->dev_private;
struct radeon_i2c_bus_rec *rec = &i2c->rec;
struct i2c_msg *p;
int i, j, k, ret = num;
u32 prescale;
u32 i2c_cntl_0, i2c_cntl_1, i2c_data;
u32 tmp, reg;
mutex_lock(&rdev->dc_hw_i2c_mutex);
/* take the pm lock since we need a constant sclk */
mutex_lock(&rdev->pm.mutex);
prescale = radeon_get_i2c_prescale(rdev);
reg = ((prescale << RADEON_I2C_PRESCALE_SHIFT) |
RADEON_I2C_DRIVE_EN |
RADEON_I2C_START |
RADEON_I2C_STOP |
RADEON_I2C_GO);
if (rdev->is_atom_bios) {
tmp = RREG32(RADEON_BIOS_6_SCRATCH);
WREG32(RADEON_BIOS_6_SCRATCH, tmp | ATOM_S6_HW_I2C_BUSY_STATE);
}
if (rec->mm_i2c) {
i2c_cntl_0 = RADEON_I2C_CNTL_0;
i2c_cntl_1 = RADEON_I2C_CNTL_1;
i2c_data = RADEON_I2C_DATA;
} else {
i2c_cntl_0 = RADEON_DVI_I2C_CNTL_0;
i2c_cntl_1 = RADEON_DVI_I2C_CNTL_1;
i2c_data = RADEON_DVI_I2C_DATA;
switch (rdev->family) {
case CHIP_R100:
case CHIP_RV100:
case CHIP_RS100:
case CHIP_RV200:
case CHIP_RS200:
case CHIP_RS300:
switch (rec->mask_clk_reg) {
case RADEON_GPIO_DVI_DDC:
/* no gpio select bit */
break;
default:
DRM_ERROR("gpio not supported with hw i2c\n");
ret = -EINVAL;
goto done;
}
break;
case CHIP_R200:
/* only bit 4 on r200 */
switch (rec->mask_clk_reg) {
case RADEON_GPIO_DVI_DDC:
reg |= R200_DVI_I2C_PIN_SEL(R200_SEL_DDC1);
break;
case RADEON_GPIO_MONID:
reg |= R200_DVI_I2C_PIN_SEL(R200_SEL_DDC3);
break;
default:
DRM_ERROR("gpio not supported with hw i2c\n");
ret = -EINVAL;
goto done;
}
break;
case CHIP_RV250:
case CHIP_RV280:
/* bits 3 and 4 */
switch (rec->mask_clk_reg) {
case RADEON_GPIO_DVI_DDC:
reg |= R200_DVI_I2C_PIN_SEL(R200_SEL_DDC1);
break;
case RADEON_GPIO_VGA_DDC:
reg |= R200_DVI_I2C_PIN_SEL(R200_SEL_DDC2);
break;
case RADEON_GPIO_CRT2_DDC:
reg |= R200_DVI_I2C_PIN_SEL(R200_SEL_DDC3);
break;
default:
DRM_ERROR("gpio not supported with hw i2c\n");
ret = -EINVAL;
goto done;
}
break;
case CHIP_R300:
case CHIP_R350:
/* only bit 4 on r300/r350 */
switch (rec->mask_clk_reg) {
case RADEON_GPIO_VGA_DDC:
reg |= R200_DVI_I2C_PIN_SEL(R200_SEL_DDC1);
break;
case RADEON_GPIO_DVI_DDC:
reg |= R200_DVI_I2C_PIN_SEL(R200_SEL_DDC3);
break;
default:
DRM_ERROR("gpio not supported with hw i2c\n");
ret = -EINVAL;
goto done;
}
break;
case CHIP_RV350:
case CHIP_RV380:
case CHIP_R420:
case CHIP_R423:
case CHIP_RV410:
case CHIP_RS400:
case CHIP_RS480:
/* bits 3 and 4 */
switch (rec->mask_clk_reg) {
case RADEON_GPIO_VGA_DDC:
reg |= R200_DVI_I2C_PIN_SEL(R200_SEL_DDC1);
break;
case RADEON_GPIO_DVI_DDC:
reg |= R200_DVI_I2C_PIN_SEL(R200_SEL_DDC2);
break;
case RADEON_GPIO_MONID:
reg |= R200_DVI_I2C_PIN_SEL(R200_SEL_DDC3);
break;
default:
DRM_ERROR("gpio not supported with hw i2c\n");
ret = -EINVAL;
goto done;
}
break;
default:
DRM_ERROR("unsupported asic\n");
ret = -EINVAL;
goto done;
break;
}
}
/* check for bus probe */
p = &msgs[0];
if ((num == 1) && (p->len == 0)) {
WREG32(i2c_cntl_0, (RADEON_I2C_DONE |
RADEON_I2C_NACK |
RADEON_I2C_HALT |
RADEON_I2C_SOFT_RST));
WREG32(i2c_data, (p->addr << 1) & 0xff);
WREG32(i2c_data, 0);
WREG32(i2c_cntl_1, ((1 << RADEON_I2C_DATA_COUNT_SHIFT) |
(1 << RADEON_I2C_ADDR_COUNT_SHIFT) |
RADEON_I2C_EN |
(48 << RADEON_I2C_TIME_LIMIT_SHIFT)));
WREG32(i2c_cntl_0, reg);
for (k = 0; k < 32; k++) {
udelay(10);
tmp = RREG32(i2c_cntl_0);
if (tmp & RADEON_I2C_GO)
continue;
tmp = RREG32(i2c_cntl_0);
if (tmp & RADEON_I2C_DONE)
break;
else {
DRM_DEBUG("i2c write error 0x%08x\n", tmp);
WREG32(i2c_cntl_0, tmp | RADEON_I2C_ABORT);
ret = -EIO;
goto done;
}
}
goto done;
}
for (i = 0; i < num; i++) {
p = &msgs[i];
for (j = 0; j < p->len; j++) {
if (p->flags & I2C_M_RD) {
WREG32(i2c_cntl_0, (RADEON_I2C_DONE |
RADEON_I2C_NACK |
RADEON_I2C_HALT |
RADEON_I2C_SOFT_RST));
WREG32(i2c_data, ((p->addr << 1) & 0xff) | 0x1);
WREG32(i2c_cntl_1, ((1 << RADEON_I2C_DATA_COUNT_SHIFT) |
(1 << RADEON_I2C_ADDR_COUNT_SHIFT) |
RADEON_I2C_EN |
(48 << RADEON_I2C_TIME_LIMIT_SHIFT)));
WREG32(i2c_cntl_0, reg | RADEON_I2C_RECEIVE);
for (k = 0; k < 32; k++) {
udelay(10);
tmp = RREG32(i2c_cntl_0);
if (tmp & RADEON_I2C_GO)
continue;
tmp = RREG32(i2c_cntl_0);
if (tmp & RADEON_I2C_DONE)
break;
else {
DRM_DEBUG("i2c read error 0x%08x\n", tmp);
WREG32(i2c_cntl_0, tmp | RADEON_I2C_ABORT);
ret = -EIO;
goto done;
}
}
p->buf[j] = RREG32(i2c_data) & 0xff;
} else {
WREG32(i2c_cntl_0, (RADEON_I2C_DONE |
RADEON_I2C_NACK |
RADEON_I2C_HALT |
RADEON_I2C_SOFT_RST));
WREG32(i2c_data, (p->addr << 1) & 0xff);
WREG32(i2c_data, p->buf[j]);
WREG32(i2c_cntl_1, ((1 << RADEON_I2C_DATA_COUNT_SHIFT) |
(1 << RADEON_I2C_ADDR_COUNT_SHIFT) |
RADEON_I2C_EN |
(48 << RADEON_I2C_TIME_LIMIT_SHIFT)));
WREG32(i2c_cntl_0, reg);
for (k = 0; k < 32; k++) {
udelay(10);
tmp = RREG32(i2c_cntl_0);
if (tmp & RADEON_I2C_GO)
continue;
tmp = RREG32(i2c_cntl_0);
if (tmp & RADEON_I2C_DONE)
break;
else {
DRM_DEBUG("i2c write error 0x%08x\n", tmp);
WREG32(i2c_cntl_0, tmp | RADEON_I2C_ABORT);
ret = -EIO;
goto done;
}
}
}
}
}
done:
WREG32(i2c_cntl_0, 0);
WREG32(i2c_cntl_1, 0);
WREG32(i2c_cntl_0, (RADEON_I2C_DONE |
RADEON_I2C_NACK |
RADEON_I2C_HALT |
RADEON_I2C_SOFT_RST));
if (rdev->is_atom_bios) {
tmp = RREG32(RADEON_BIOS_6_SCRATCH);
tmp &= ~ATOM_S6_HW_I2C_BUSY_STATE;
WREG32(RADEON_BIOS_6_SCRATCH, tmp);
}
mutex_unlock(&rdev->pm.mutex);
mutex_unlock(&rdev->dc_hw_i2c_mutex);
return ret;
}
/* hw i2c engine for r5xx hardware
* hw can buffer up to 15 bytes
*/
static int r500_hw_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg *msgs, int num)
{
struct radeon_i2c_chan *i2c = i2c_get_adapdata(i2c_adap);
struct radeon_device *rdev = i2c->dev->dev_private;
struct radeon_i2c_bus_rec *rec = &i2c->rec;
struct i2c_msg *p;
int i, j, remaining, current_count, buffer_offset, ret = num;
u32 prescale;
u32 tmp, reg;
u32 saved1, saved2;
mutex_lock(&rdev->dc_hw_i2c_mutex);
/* take the pm lock since we need a constant sclk */
mutex_lock(&rdev->pm.mutex);
prescale = radeon_get_i2c_prescale(rdev);
/* clear gpio mask bits */
tmp = RREG32(rec->mask_clk_reg);
tmp &= ~rec->mask_clk_mask;
WREG32(rec->mask_clk_reg, tmp);
tmp = RREG32(rec->mask_clk_reg);
tmp = RREG32(rec->mask_data_reg);
tmp &= ~rec->mask_data_mask;
WREG32(rec->mask_data_reg, tmp);
tmp = RREG32(rec->mask_data_reg);
/* clear pin values */
tmp = RREG32(rec->a_clk_reg);
tmp &= ~rec->a_clk_mask;
WREG32(rec->a_clk_reg, tmp);
tmp = RREG32(rec->a_clk_reg);
tmp = RREG32(rec->a_data_reg);
tmp &= ~rec->a_data_mask;
WREG32(rec->a_data_reg, tmp);
tmp = RREG32(rec->a_data_reg);
/* set the pins to input */
tmp = RREG32(rec->en_clk_reg);
tmp &= ~rec->en_clk_mask;
WREG32(rec->en_clk_reg, tmp);
tmp = RREG32(rec->en_clk_reg);
tmp = RREG32(rec->en_data_reg);
tmp &= ~rec->en_data_mask;
WREG32(rec->en_data_reg, tmp);
tmp = RREG32(rec->en_data_reg);
/* */
tmp = RREG32(RADEON_BIOS_6_SCRATCH);
WREG32(RADEON_BIOS_6_SCRATCH, tmp | ATOM_S6_HW_I2C_BUSY_STATE);
saved1 = RREG32(AVIVO_DC_I2C_CONTROL1);
saved2 = RREG32(0x494);
WREG32(0x494, saved2 | 0x1);
WREG32(AVIVO_DC_I2C_ARBITRATION, AVIVO_DC_I2C_SW_WANTS_TO_USE_I2C);
for (i = 0; i < 50; i++) {
udelay(1);
if (RREG32(AVIVO_DC_I2C_ARBITRATION) & AVIVO_DC_I2C_SW_CAN_USE_I2C)
break;
}
if (i == 50) {
DRM_ERROR("failed to get i2c bus\n");
ret = -EBUSY;
goto done;
}
reg = AVIVO_DC_I2C_START | AVIVO_DC_I2C_STOP | AVIVO_DC_I2C_EN;
switch (rec->mask_clk_reg) {
case AVIVO_DC_GPIO_DDC1_MASK:
reg |= AVIVO_DC_I2C_PIN_SELECT(AVIVO_SEL_DDC1);
break;
case AVIVO_DC_GPIO_DDC2_MASK:
reg |= AVIVO_DC_I2C_PIN_SELECT(AVIVO_SEL_DDC2);
break;
case AVIVO_DC_GPIO_DDC3_MASK:
reg |= AVIVO_DC_I2C_PIN_SELECT(AVIVO_SEL_DDC3);
break;
default:
DRM_ERROR("gpio not supported with hw i2c\n");
ret = -EINVAL;
goto done;
}
/* check for bus probe */
p = &msgs[0];
if ((num == 1) && (p->len == 0)) {
WREG32(AVIVO_DC_I2C_STATUS1, (AVIVO_DC_I2C_DONE |
AVIVO_DC_I2C_NACK |
AVIVO_DC_I2C_HALT));
WREG32(AVIVO_DC_I2C_RESET, AVIVO_DC_I2C_SOFT_RESET);
udelay(1);
WREG32(AVIVO_DC_I2C_RESET, 0);
WREG32(AVIVO_DC_I2C_DATA, (p->addr << 1) & 0xff);
WREG32(AVIVO_DC_I2C_DATA, 0);
WREG32(AVIVO_DC_I2C_CONTROL3, AVIVO_DC_I2C_TIME_LIMIT(48));
WREG32(AVIVO_DC_I2C_CONTROL2, (AVIVO_DC_I2C_ADDR_COUNT(1) |
AVIVO_DC_I2C_DATA_COUNT(1) |
(prescale << 16)));
WREG32(AVIVO_DC_I2C_CONTROL1, reg);
WREG32(AVIVO_DC_I2C_STATUS1, AVIVO_DC_I2C_GO);
for (j = 0; j < 200; j++) {
udelay(50);
tmp = RREG32(AVIVO_DC_I2C_STATUS1);
if (tmp & AVIVO_DC_I2C_GO)
continue;
tmp = RREG32(AVIVO_DC_I2C_STATUS1);
if (tmp & AVIVO_DC_I2C_DONE)
break;
else {
DRM_DEBUG("i2c write error 0x%08x\n", tmp);
WREG32(AVIVO_DC_I2C_RESET, AVIVO_DC_I2C_ABORT);
ret = -EIO;
goto done;
}
}
goto done;
}
for (i = 0; i < num; i++) {
p = &msgs[i];
remaining = p->len;
buffer_offset = 0;
if (p->flags & I2C_M_RD) {
while (remaining) {
if (remaining > 15)
current_count = 15;
else
current_count = remaining;
WREG32(AVIVO_DC_I2C_STATUS1, (AVIVO_DC_I2C_DONE |
AVIVO_DC_I2C_NACK |
AVIVO_DC_I2C_HALT));
WREG32(AVIVO_DC_I2C_RESET, AVIVO_DC_I2C_SOFT_RESET);
udelay(1);
WREG32(AVIVO_DC_I2C_RESET, 0);
WREG32(AVIVO_DC_I2C_DATA, ((p->addr << 1) & 0xff) | 0x1);
WREG32(AVIVO_DC_I2C_CONTROL3, AVIVO_DC_I2C_TIME_LIMIT(48));
WREG32(AVIVO_DC_I2C_CONTROL2, (AVIVO_DC_I2C_ADDR_COUNT(1) |
AVIVO_DC_I2C_DATA_COUNT(current_count) |
(prescale << 16)));
WREG32(AVIVO_DC_I2C_CONTROL1, reg | AVIVO_DC_I2C_RECEIVE);
WREG32(AVIVO_DC_I2C_STATUS1, AVIVO_DC_I2C_GO);
for (j = 0; j < 200; j++) {
udelay(50);
tmp = RREG32(AVIVO_DC_I2C_STATUS1);
if (tmp & AVIVO_DC_I2C_GO)
continue;
tmp = RREG32(AVIVO_DC_I2C_STATUS1);
if (tmp & AVIVO_DC_I2C_DONE)
break;
else {
DRM_DEBUG("i2c read error 0x%08x\n", tmp);
WREG32(AVIVO_DC_I2C_RESET, AVIVO_DC_I2C_ABORT);
ret = -EIO;
goto done;
}
}
for (j = 0; j < current_count; j++)
p->buf[buffer_offset + j] = RREG32(AVIVO_DC_I2C_DATA) & 0xff;
remaining -= current_count;
buffer_offset += current_count;
}
} else {
while (remaining) {
if (remaining > 15)
current_count = 15;
else
current_count = remaining;
WREG32(AVIVO_DC_I2C_STATUS1, (AVIVO_DC_I2C_DONE |
AVIVO_DC_I2C_NACK |
AVIVO_DC_I2C_HALT));
WREG32(AVIVO_DC_I2C_RESET, AVIVO_DC_I2C_SOFT_RESET);
udelay(1);
WREG32(AVIVO_DC_I2C_RESET, 0);
WREG32(AVIVO_DC_I2C_DATA, (p->addr << 1) & 0xff);
for (j = 0; j < current_count; j++)
WREG32(AVIVO_DC_I2C_DATA, p->buf[buffer_offset + j]);
WREG32(AVIVO_DC_I2C_CONTROL3, AVIVO_DC_I2C_TIME_LIMIT(48));
WREG32(AVIVO_DC_I2C_CONTROL2, (AVIVO_DC_I2C_ADDR_COUNT(1) |
AVIVO_DC_I2C_DATA_COUNT(current_count) |
(prescale << 16)));
WREG32(AVIVO_DC_I2C_CONTROL1, reg);
WREG32(AVIVO_DC_I2C_STATUS1, AVIVO_DC_I2C_GO);
for (j = 0; j < 200; j++) {
udelay(50);
tmp = RREG32(AVIVO_DC_I2C_STATUS1);
if (tmp & AVIVO_DC_I2C_GO)
continue;
tmp = RREG32(AVIVO_DC_I2C_STATUS1);
if (tmp & AVIVO_DC_I2C_DONE)
break;
else {
DRM_DEBUG("i2c write error 0x%08x\n", tmp);
WREG32(AVIVO_DC_I2C_RESET, AVIVO_DC_I2C_ABORT);
ret = -EIO;
goto done;
}
}
remaining -= current_count;
buffer_offset += current_count;
}
}
}
done:
WREG32(AVIVO_DC_I2C_STATUS1, (AVIVO_DC_I2C_DONE |
AVIVO_DC_I2C_NACK |
AVIVO_DC_I2C_HALT));
WREG32(AVIVO_DC_I2C_RESET, AVIVO_DC_I2C_SOFT_RESET);
udelay(1);
WREG32(AVIVO_DC_I2C_RESET, 0);
WREG32(AVIVO_DC_I2C_ARBITRATION, AVIVO_DC_I2C_SW_DONE_USING_I2C);
WREG32(AVIVO_DC_I2C_CONTROL1, saved1);
WREG32(0x494, saved2);
tmp = RREG32(RADEON_BIOS_6_SCRATCH);
tmp &= ~ATOM_S6_HW_I2C_BUSY_STATE;
WREG32(RADEON_BIOS_6_SCRATCH, tmp);
mutex_unlock(&rdev->pm.mutex);
mutex_unlock(&rdev->dc_hw_i2c_mutex);
return ret;
}
static int radeon_hw_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg *msgs, int num)
{
struct radeon_i2c_chan *i2c = i2c_get_adapdata(i2c_adap);
struct radeon_device *rdev = i2c->dev->dev_private;
struct radeon_i2c_bus_rec *rec = &i2c->rec;
int ret = 0;
mutex_lock(&i2c->mutex);
switch (rdev->family) {
case CHIP_R100:
case CHIP_RV100:
case CHIP_RS100:
case CHIP_RV200:
case CHIP_RS200:
case CHIP_R200:
case CHIP_RV250:
case CHIP_RS300:
case CHIP_RV280:
case CHIP_R300:
case CHIP_R350:
case CHIP_RV350:
case CHIP_RV380:
case CHIP_R420:
case CHIP_R423:
case CHIP_RV410:
case CHIP_RS400:
case CHIP_RS480:
ret = r100_hw_i2c_xfer(i2c_adap, msgs, num);
break;
case CHIP_RS600:
case CHIP_RS690:
case CHIP_RS740:
/* XXX fill in hw i2c implementation */
break;
case CHIP_RV515:
case CHIP_R520:
case CHIP_RV530:
case CHIP_RV560:
case CHIP_RV570:
case CHIP_R580:
if (rec->mm_i2c)
ret = r100_hw_i2c_xfer(i2c_adap, msgs, num);
else
ret = r500_hw_i2c_xfer(i2c_adap, msgs, num);
break;
case CHIP_R600:
case CHIP_RV610:
case CHIP_RV630:
case CHIP_RV670:
/* XXX fill in hw i2c implementation */
break;
case CHIP_RV620:
case CHIP_RV635:
case CHIP_RS780:
case CHIP_RS880:
case CHIP_RV770:
case CHIP_RV730:
case CHIP_RV710:
case CHIP_RV740:
/* XXX fill in hw i2c implementation */
break;
case CHIP_CEDAR:
case CHIP_REDWOOD:
case CHIP_JUNIPER:
case CHIP_CYPRESS:
case CHIP_HEMLOCK:
/* XXX fill in hw i2c implementation */
break;
default:
DRM_ERROR("i2c: unhandled radeon chip\n");
ret = -EIO;
break;
}
mutex_unlock(&i2c->mutex);
return ret;
}
static u32 radeon_hw_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm radeon_i2c_algo = {
.master_xfer = radeon_hw_i2c_xfer,
.functionality = radeon_hw_i2c_func,
};
static const struct i2c_algorithm radeon_atom_i2c_algo = {
.master_xfer = radeon_atom_hw_i2c_xfer,
.functionality = radeon_atom_hw_i2c_func,
};
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
struct radeon_i2c_chan *radeon_i2c_create(struct drm_device *dev,
struct radeon_i2c_bus_rec *rec,
const char *name)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
{
struct radeon_device *rdev = dev->dev_private;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
struct radeon_i2c_chan *i2c;
int ret;
/* don't add the mm_i2c bus unless hw_i2c is enabled */
if (rec->mm_i2c && (radeon_hw_i2c == 0))
return NULL;
i2c = kzalloc(sizeof(struct radeon_i2c_chan), GFP_KERNEL);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
if (i2c == NULL)
return NULL;
i2c->rec = *rec;
i2c->adapter.owner = THIS_MODULE;
i2c->adapter.class = I2C_CLASS_DDC;
i2c->adapter.dev.parent = &dev->pdev->dev;
i2c->dev = dev;
i2c_set_adapdata(&i2c->adapter, i2c);
mutex_init(&i2c->mutex);
if (rec->mm_i2c ||
(rec->hw_capable &&
radeon_hw_i2c &&
((rdev->family <= CHIP_RS480) ||
((rdev->family >= CHIP_RV515) && (rdev->family <= CHIP_R580))))) {
/* set the radeon hw i2c adapter */
snprintf(i2c->adapter.name, sizeof(i2c->adapter.name),
"Radeon i2c hw bus %s", name);
i2c->adapter.algo = &radeon_i2c_algo;
ret = i2c_add_adapter(&i2c->adapter);
if (ret)
goto out_free;
} else if (rec->hw_capable &&
radeon_hw_i2c &&
ASIC_IS_DCE3(rdev)) {
/* hw i2c using atom */
snprintf(i2c->adapter.name, sizeof(i2c->adapter.name),
"Radeon i2c hw bus %s", name);
i2c->adapter.algo = &radeon_atom_i2c_algo;
ret = i2c_add_adapter(&i2c->adapter);
if (ret)
goto out_free;
} else {
/* set the radeon bit adapter */
snprintf(i2c->adapter.name, sizeof(i2c->adapter.name),
"Radeon i2c bit bus %s", name);
i2c->adapter.algo_data = &i2c->bit;
i2c->bit.pre_xfer = pre_xfer;
i2c->bit.post_xfer = post_xfer;
i2c->bit.setsda = set_data;
i2c->bit.setscl = set_clock;
i2c->bit.getsda = get_data;
i2c->bit.getscl = get_clock;
i2c->bit.udelay = 10;
i2c->bit.timeout = usecs_to_jiffies(2200); /* from VESA */
i2c->bit.data = i2c;
ret = i2c_bit_add_bus(&i2c->adapter);
if (ret) {
DRM_ERROR("Failed to register bit i2c %s\n", name);
goto out_free;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
}
return i2c;
out_free:
kfree(i2c);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
return NULL;
}
void radeon_i2c_destroy(struct radeon_i2c_chan *i2c)
{
if (!i2c)
return;
WARN_ON(i2c->has_aux);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
i2c_del_adapter(&i2c->adapter);
kfree(i2c);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
}
/* Add the default buses */
void radeon_i2c_init(struct radeon_device *rdev)
{
if (radeon_hw_i2c)
DRM_INFO("hw_i2c forced on, you may experience display detection problems!\n");
if (rdev->is_atom_bios)
radeon_atombios_i2c_init(rdev);
else
radeon_combios_i2c_init(rdev);
}
/* remove all the buses */
void radeon_i2c_fini(struct radeon_device *rdev)
{
int i;
for (i = 0; i < RADEON_MAX_I2C_BUS; i++) {
if (rdev->i2c_bus[i]) {
radeon_i2c_destroy(rdev->i2c_bus[i]);
rdev->i2c_bus[i] = NULL;
}
}
}
/* Add additional buses */
void radeon_i2c_add(struct radeon_device *rdev,
struct radeon_i2c_bus_rec *rec,
const char *name)
{
struct drm_device *dev = rdev->ddev;
int i;
for (i = 0; i < RADEON_MAX_I2C_BUS; i++) {
if (!rdev->i2c_bus[i]) {
rdev->i2c_bus[i] = radeon_i2c_create(dev, rec, name);
return;
}
}
}
/* looks up bus based on id */
struct radeon_i2c_chan *radeon_i2c_lookup(struct radeon_device *rdev,
struct radeon_i2c_bus_rec *i2c_bus)
{
int i;
for (i = 0; i < RADEON_MAX_I2C_BUS; i++) {
if (rdev->i2c_bus[i] &&
(rdev->i2c_bus[i]->rec.i2c_id == i2c_bus->i2c_id)) {
return rdev->i2c_bus[i];
}
}
return NULL;
}
void radeon_i2c_get_byte(struct radeon_i2c_chan *i2c_bus,
u8 slave_addr,
u8 addr,
u8 *val)
{
u8 out_buf[2];
u8 in_buf[2];
struct i2c_msg msgs[] = {
{
.addr = slave_addr,
.flags = 0,
.len = 1,
.buf = out_buf,
},
{
.addr = slave_addr,
.flags = I2C_M_RD,
.len = 1,
.buf = in_buf,
}
};
out_buf[0] = addr;
out_buf[1] = 0;
if (i2c_transfer(&i2c_bus->adapter, msgs, 2) == 2) {
*val = in_buf[0];
DRM_DEBUG("val = 0x%02x\n", *val);
} else {
DRM_DEBUG("i2c 0x%02x 0x%02x read failed\n",
addr, *val);
}
}
void radeon_i2c_put_byte(struct radeon_i2c_chan *i2c_bus,
u8 slave_addr,
u8 addr,
u8 val)
{
uint8_t out_buf[2];
struct i2c_msg msg = {
.addr = slave_addr,
.flags = 0,
.len = 2,
.buf = out_buf,
};
out_buf[0] = addr;
out_buf[1] = val;
if (i2c_transfer(&i2c_bus->adapter, &msg, 1) != 1)
DRM_DEBUG("i2c 0x%02x 0x%02x write failed\n",
addr, val);
}
/* ddc router switching */
void radeon_router_select_ddc_port(struct radeon_connector *radeon_connector)
{
u8 val;
if (!radeon_connector->router.ddc_valid)
return;
if (!radeon_connector->router_bus)
return;
radeon_i2c_get_byte(radeon_connector->router_bus,
radeon_connector->router.i2c_addr,
0x3, &val);
val &= ~radeon_connector->router.ddc_mux_control_pin;
radeon_i2c_put_byte(radeon_connector->router_bus,
radeon_connector->router.i2c_addr,
0x3, val);
radeon_i2c_get_byte(radeon_connector->router_bus,
radeon_connector->router.i2c_addr,
0x1, &val);
val &= ~radeon_connector->router.ddc_mux_control_pin;
val |= radeon_connector->router.ddc_mux_state;
radeon_i2c_put_byte(radeon_connector->router_bus,
radeon_connector->router.i2c_addr,
0x1, val);
}
/* clock/data router switching */
void radeon_router_select_cd_port(struct radeon_connector *radeon_connector)
{
u8 val;
if (!radeon_connector->router.cd_valid)
return;
if (!radeon_connector->router_bus)
return;
radeon_i2c_get_byte(radeon_connector->router_bus,
radeon_connector->router.i2c_addr,
0x3, &val);
val &= ~radeon_connector->router.cd_mux_control_pin;
radeon_i2c_put_byte(radeon_connector->router_bus,
radeon_connector->router.i2c_addr,
0x3, val);
radeon_i2c_get_byte(radeon_connector->router_bus,
radeon_connector->router.i2c_addr,
0x1, &val);
val &= ~radeon_connector->router.cd_mux_control_pin;
val |= radeon_connector->router.cd_mux_state;
radeon_i2c_put_byte(radeon_connector->router_bus,
radeon_connector->router.i2c_addr,
0x1, val);
}