1032 lines
26 KiB
C
1032 lines
26 KiB
C
|
/*
|
||
|
* Copyright (C) 2014 Facebook. All rights reserved.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public
|
||
|
* License v2 as published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public
|
||
|
* License along with this program; if not, write to the
|
||
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||
|
* Boston, MA 021110-1307, USA.
|
||
|
*/
|
||
|
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/stacktrace.h>
|
||
|
#include "ctree.h"
|
||
|
#include "disk-io.h"
|
||
|
#include "locking.h"
|
||
|
#include "delayed-ref.h"
|
||
|
#include "ref-verify.h"
|
||
|
|
||
|
/*
|
||
|
* Used to keep track the roots and number of refs each root has for a given
|
||
|
* bytenr. This just tracks the number of direct references, no shared
|
||
|
* references.
|
||
|
*/
|
||
|
struct root_entry {
|
||
|
u64 root_objectid;
|
||
|
u64 num_refs;
|
||
|
struct rb_node node;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* These are meant to represent what should exist in the extent tree, these can
|
||
|
* be used to verify the extent tree is consistent as these should all match
|
||
|
* what the extent tree says.
|
||
|
*/
|
||
|
struct ref_entry {
|
||
|
u64 root_objectid;
|
||
|
u64 parent;
|
||
|
u64 owner;
|
||
|
u64 offset;
|
||
|
u64 num_refs;
|
||
|
struct rb_node node;
|
||
|
};
|
||
|
|
||
|
#define MAX_TRACE 16
|
||
|
|
||
|
/*
|
||
|
* Whenever we add/remove a reference we record the action. The action maps
|
||
|
* back to the delayed ref action. We hold the ref we are changing in the
|
||
|
* action so we can account for the history properly, and we record the root we
|
||
|
* were called with since it could be different from ref_root. We also store
|
||
|
* stack traces because thats how I roll.
|
||
|
*/
|
||
|
struct ref_action {
|
||
|
int action;
|
||
|
u64 root;
|
||
|
struct ref_entry ref;
|
||
|
struct list_head list;
|
||
|
unsigned long trace[MAX_TRACE];
|
||
|
unsigned int trace_len;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* One of these for every block we reference, it holds the roots and references
|
||
|
* to it as well as all of the ref actions that have occured to it. We never
|
||
|
* free it until we unmount the file system in order to make sure re-allocations
|
||
|
* are happening properly.
|
||
|
*/
|
||
|
struct block_entry {
|
||
|
u64 bytenr;
|
||
|
u64 len;
|
||
|
u64 num_refs;
|
||
|
int metadata;
|
||
|
int from_disk;
|
||
|
struct rb_root roots;
|
||
|
struct rb_root refs;
|
||
|
struct rb_node node;
|
||
|
struct list_head actions;
|
||
|
};
|
||
|
|
||
|
static struct block_entry *insert_block_entry(struct rb_root *root,
|
||
|
struct block_entry *be)
|
||
|
{
|
||
|
struct rb_node **p = &root->rb_node;
|
||
|
struct rb_node *parent_node = NULL;
|
||
|
struct block_entry *entry;
|
||
|
|
||
|
while (*p) {
|
||
|
parent_node = *p;
|
||
|
entry = rb_entry(parent_node, struct block_entry, node);
|
||
|
if (entry->bytenr > be->bytenr)
|
||
|
p = &(*p)->rb_left;
|
||
|
else if (entry->bytenr < be->bytenr)
|
||
|
p = &(*p)->rb_right;
|
||
|
else
|
||
|
return entry;
|
||
|
}
|
||
|
|
||
|
rb_link_node(&be->node, parent_node, p);
|
||
|
rb_insert_color(&be->node, root);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
|
||
|
{
|
||
|
struct rb_node *n;
|
||
|
struct block_entry *entry = NULL;
|
||
|
|
||
|
n = root->rb_node;
|
||
|
while (n) {
|
||
|
entry = rb_entry(n, struct block_entry, node);
|
||
|
if (entry->bytenr < bytenr)
|
||
|
n = n->rb_right;
|
||
|
else if (entry->bytenr > bytenr)
|
||
|
n = n->rb_left;
|
||
|
else
|
||
|
return entry;
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static struct root_entry *insert_root_entry(struct rb_root *root,
|
||
|
struct root_entry *re)
|
||
|
{
|
||
|
struct rb_node **p = &root->rb_node;
|
||
|
struct rb_node *parent_node = NULL;
|
||
|
struct root_entry *entry;
|
||
|
|
||
|
while (*p) {
|
||
|
parent_node = *p;
|
||
|
entry = rb_entry(parent_node, struct root_entry, node);
|
||
|
if (entry->root_objectid > re->root_objectid)
|
||
|
p = &(*p)->rb_left;
|
||
|
else if (entry->root_objectid < re->root_objectid)
|
||
|
p = &(*p)->rb_right;
|
||
|
else
|
||
|
return entry;
|
||
|
}
|
||
|
|
||
|
rb_link_node(&re->node, parent_node, p);
|
||
|
rb_insert_color(&re->node, root);
|
||
|
return NULL;
|
||
|
|
||
|
}
|
||
|
|
||
|
static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
|
||
|
{
|
||
|
if (ref1->root_objectid < ref2->root_objectid)
|
||
|
return -1;
|
||
|
if (ref1->root_objectid > ref2->root_objectid)
|
||
|
return 1;
|
||
|
if (ref1->parent < ref2->parent)
|
||
|
return -1;
|
||
|
if (ref1->parent > ref2->parent)
|
||
|
return 1;
|
||
|
if (ref1->owner < ref2->owner)
|
||
|
return -1;
|
||
|
if (ref1->owner > ref2->owner)
|
||
|
return 1;
|
||
|
if (ref1->offset < ref2->offset)
|
||
|
return -1;
|
||
|
if (ref1->offset > ref2->offset)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct ref_entry *insert_ref_entry(struct rb_root *root,
|
||
|
struct ref_entry *ref)
|
||
|
{
|
||
|
struct rb_node **p = &root->rb_node;
|
||
|
struct rb_node *parent_node = NULL;
|
||
|
struct ref_entry *entry;
|
||
|
int cmp;
|
||
|
|
||
|
while (*p) {
|
||
|
parent_node = *p;
|
||
|
entry = rb_entry(parent_node, struct ref_entry, node);
|
||
|
cmp = comp_refs(entry, ref);
|
||
|
if (cmp > 0)
|
||
|
p = &(*p)->rb_left;
|
||
|
else if (cmp < 0)
|
||
|
p = &(*p)->rb_right;
|
||
|
else
|
||
|
return entry;
|
||
|
}
|
||
|
|
||
|
rb_link_node(&ref->node, parent_node, p);
|
||
|
rb_insert_color(&ref->node, root);
|
||
|
return NULL;
|
||
|
|
||
|
}
|
||
|
|
||
|
static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
|
||
|
{
|
||
|
struct rb_node *n;
|
||
|
struct root_entry *entry = NULL;
|
||
|
|
||
|
n = root->rb_node;
|
||
|
while (n) {
|
||
|
entry = rb_entry(n, struct root_entry, node);
|
||
|
if (entry->root_objectid < objectid)
|
||
|
n = n->rb_right;
|
||
|
else if (entry->root_objectid > objectid)
|
||
|
n = n->rb_left;
|
||
|
else
|
||
|
return entry;
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_STACKTRACE
|
||
|
static void __save_stack_trace(struct ref_action *ra)
|
||
|
{
|
||
|
struct stack_trace stack_trace;
|
||
|
|
||
|
stack_trace.max_entries = MAX_TRACE;
|
||
|
stack_trace.nr_entries = 0;
|
||
|
stack_trace.entries = ra->trace;
|
||
|
stack_trace.skip = 2;
|
||
|
save_stack_trace(&stack_trace);
|
||
|
ra->trace_len = stack_trace.nr_entries;
|
||
|
}
|
||
|
|
||
|
static void __print_stack_trace(struct btrfs_fs_info *fs_info,
|
||
|
struct ref_action *ra)
|
||
|
{
|
||
|
struct stack_trace trace;
|
||
|
|
||
|
if (ra->trace_len == 0) {
|
||
|
btrfs_err(fs_info, " ref-verify: no stacktrace");
|
||
|
return;
|
||
|
}
|
||
|
trace.nr_entries = ra->trace_len;
|
||
|
trace.entries = ra->trace;
|
||
|
print_stack_trace(&trace, 2);
|
||
|
}
|
||
|
#else
|
||
|
static void inline __save_stack_trace(struct ref_action *ra)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static void inline __print_stack_trace(struct btrfs_fs_info *fs_info,
|
||
|
struct ref_action *ra)
|
||
|
{
|
||
|
btrfs_err(fs_info, " ref-verify: no stacktrace support");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static void free_block_entry(struct block_entry *be)
|
||
|
{
|
||
|
struct root_entry *re;
|
||
|
struct ref_entry *ref;
|
||
|
struct ref_action *ra;
|
||
|
struct rb_node *n;
|
||
|
|
||
|
while ((n = rb_first(&be->roots))) {
|
||
|
re = rb_entry(n, struct root_entry, node);
|
||
|
rb_erase(&re->node, &be->roots);
|
||
|
kfree(re);
|
||
|
}
|
||
|
|
||
|
while((n = rb_first(&be->refs))) {
|
||
|
ref = rb_entry(n, struct ref_entry, node);
|
||
|
rb_erase(&ref->node, &be->refs);
|
||
|
kfree(ref);
|
||
|
}
|
||
|
|
||
|
while (!list_empty(&be->actions)) {
|
||
|
ra = list_first_entry(&be->actions, struct ref_action,
|
||
|
list);
|
||
|
list_del(&ra->list);
|
||
|
kfree(ra);
|
||
|
}
|
||
|
kfree(be);
|
||
|
}
|
||
|
|
||
|
static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
|
||
|
u64 bytenr, u64 len,
|
||
|
u64 root_objectid)
|
||
|
{
|
||
|
struct block_entry *be = NULL, *exist;
|
||
|
struct root_entry *re = NULL;
|
||
|
|
||
|
re = kzalloc(sizeof(struct root_entry), GFP_KERNEL);
|
||
|
be = kzalloc(sizeof(struct block_entry), GFP_KERNEL);
|
||
|
if (!be || !re) {
|
||
|
kfree(re);
|
||
|
kfree(be);
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
}
|
||
|
be->bytenr = bytenr;
|
||
|
be->len = len;
|
||
|
|
||
|
re->root_objectid = root_objectid;
|
||
|
re->num_refs = 0;
|
||
|
|
||
|
spin_lock(&fs_info->ref_verify_lock);
|
||
|
exist = insert_block_entry(&fs_info->block_tree, be);
|
||
|
if (exist) {
|
||
|
if (root_objectid) {
|
||
|
struct root_entry *exist_re;
|
||
|
|
||
|
exist_re = insert_root_entry(&exist->roots, re);
|
||
|
if (exist_re)
|
||
|
kfree(re);
|
||
|
}
|
||
|
kfree(be);
|
||
|
return exist;
|
||
|
}
|
||
|
|
||
|
be->num_refs = 0;
|
||
|
be->metadata = 0;
|
||
|
be->from_disk = 0;
|
||
|
be->roots = RB_ROOT;
|
||
|
be->refs = RB_ROOT;
|
||
|
INIT_LIST_HEAD(&be->actions);
|
||
|
if (root_objectid)
|
||
|
insert_root_entry(&be->roots, re);
|
||
|
else
|
||
|
kfree(re);
|
||
|
return be;
|
||
|
}
|
||
|
|
||
|
static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
|
||
|
u64 parent, u64 bytenr, int level)
|
||
|
{
|
||
|
struct block_entry *be;
|
||
|
struct root_entry *re;
|
||
|
struct ref_entry *ref = NULL, *exist;
|
||
|
|
||
|
ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL);
|
||
|
if (!ref)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (parent)
|
||
|
ref->root_objectid = 0;
|
||
|
else
|
||
|
ref->root_objectid = ref_root;
|
||
|
ref->parent = parent;
|
||
|
ref->owner = level;
|
||
|
ref->offset = 0;
|
||
|
ref->num_refs = 1;
|
||
|
|
||
|
be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
|
||
|
if (IS_ERR(be)) {
|
||
|
kfree(ref);
|
||
|
return PTR_ERR(be);
|
||
|
}
|
||
|
be->num_refs++;
|
||
|
be->from_disk = 1;
|
||
|
be->metadata = 1;
|
||
|
|
||
|
if (!parent) {
|
||
|
ASSERT(ref_root);
|
||
|
re = lookup_root_entry(&be->roots, ref_root);
|
||
|
ASSERT(re);
|
||
|
re->num_refs++;
|
||
|
}
|
||
|
exist = insert_ref_entry(&be->refs, ref);
|
||
|
if (exist) {
|
||
|
exist->num_refs++;
|
||
|
kfree(ref);
|
||
|
}
|
||
|
spin_unlock(&fs_info->ref_verify_lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
|
||
|
u64 parent, u32 num_refs, u64 bytenr,
|
||
|
u64 num_bytes)
|
||
|
{
|
||
|
struct block_entry *be;
|
||
|
struct ref_entry *ref;
|
||
|
|
||
|
ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
|
||
|
if (!ref)
|
||
|
return -ENOMEM;
|
||
|
be = add_block_entry(fs_info, bytenr, num_bytes, 0);
|
||
|
if (IS_ERR(be)) {
|
||
|
kfree(ref);
|
||
|
return PTR_ERR(be);
|
||
|
}
|
||
|
be->num_refs += num_refs;
|
||
|
|
||
|
ref->parent = parent;
|
||
|
ref->num_refs = num_refs;
|
||
|
if (insert_ref_entry(&be->refs, ref)) {
|
||
|
spin_unlock(&fs_info->ref_verify_lock);
|
||
|
btrfs_err(fs_info, "existing shared ref when reading from disk?");
|
||
|
kfree(ref);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
spin_unlock(&fs_info->ref_verify_lock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
|
||
|
struct extent_buffer *leaf,
|
||
|
struct btrfs_extent_data_ref *dref,
|
||
|
u64 bytenr, u64 num_bytes)
|
||
|
{
|
||
|
struct block_entry *be;
|
||
|
struct ref_entry *ref;
|
||
|
struct root_entry *re;
|
||
|
u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
|
||
|
u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
|
||
|
u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
|
||
|
u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
|
||
|
|
||
|
ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
|
||
|
if (!ref)
|
||
|
return -ENOMEM;
|
||
|
be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
|
||
|
if (IS_ERR(be)) {
|
||
|
kfree(ref);
|
||
|
return PTR_ERR(be);
|
||
|
}
|
||
|
be->num_refs += num_refs;
|
||
|
|
||
|
ref->parent = 0;
|
||
|
ref->owner = owner;
|
||
|
ref->root_objectid = ref_root;
|
||
|
ref->offset = offset;
|
||
|
ref->num_refs = num_refs;
|
||
|
if (insert_ref_entry(&be->refs, ref)) {
|
||
|
spin_unlock(&fs_info->ref_verify_lock);
|
||
|
btrfs_err(fs_info, "existing ref when reading from disk?");
|
||
|
kfree(ref);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
re = lookup_root_entry(&be->roots, ref_root);
|
||
|
if (!re) {
|
||
|
spin_unlock(&fs_info->ref_verify_lock);
|
||
|
btrfs_err(fs_info, "missing root in new block entry?");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
re->num_refs += num_refs;
|
||
|
spin_unlock(&fs_info->ref_verify_lock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int process_extent_item(struct btrfs_fs_info *fs_info,
|
||
|
struct btrfs_path *path, struct btrfs_key *key,
|
||
|
int slot, int *tree_block_level)
|
||
|
{
|
||
|
struct btrfs_extent_item *ei;
|
||
|
struct btrfs_extent_inline_ref *iref;
|
||
|
struct btrfs_extent_data_ref *dref;
|
||
|
struct btrfs_shared_data_ref *sref;
|
||
|
struct extent_buffer *leaf = path->nodes[0];
|
||
|
u32 item_size = btrfs_item_size_nr(leaf, slot);
|
||
|
unsigned long end, ptr;
|
||
|
u64 offset, flags, count;
|
||
|
int type, ret;
|
||
|
|
||
|
ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
|
||
|
flags = btrfs_extent_flags(leaf, ei);
|
||
|
|
||
|
if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
|
||
|
flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
|
||
|
struct btrfs_tree_block_info *info;
|
||
|
|
||
|
info = (struct btrfs_tree_block_info *)(ei + 1);
|
||
|
*tree_block_level = btrfs_tree_block_level(leaf, info);
|
||
|
iref = (struct btrfs_extent_inline_ref *)(info + 1);
|
||
|
} else {
|
||
|
if (key->type == BTRFS_METADATA_ITEM_KEY)
|
||
|
*tree_block_level = key->offset;
|
||
|
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
|
||
|
}
|
||
|
|
||
|
ptr = (unsigned long)iref;
|
||
|
end = (unsigned long)ei + item_size;
|
||
|
while (ptr < end) {
|
||
|
iref = (struct btrfs_extent_inline_ref *)ptr;
|
||
|
type = btrfs_extent_inline_ref_type(leaf, iref);
|
||
|
offset = btrfs_extent_inline_ref_offset(leaf, iref);
|
||
|
switch (type) {
|
||
|
case BTRFS_TREE_BLOCK_REF_KEY:
|
||
|
ret = add_tree_block(fs_info, offset, 0, key->objectid,
|
||
|
*tree_block_level);
|
||
|
break;
|
||
|
case BTRFS_SHARED_BLOCK_REF_KEY:
|
||
|
ret = add_tree_block(fs_info, 0, offset, key->objectid,
|
||
|
*tree_block_level);
|
||
|
break;
|
||
|
case BTRFS_EXTENT_DATA_REF_KEY:
|
||
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
||
|
ret = add_extent_data_ref(fs_info, leaf, dref,
|
||
|
key->objectid, key->offset);
|
||
|
break;
|
||
|
case BTRFS_SHARED_DATA_REF_KEY:
|
||
|
sref = (struct btrfs_shared_data_ref *)(iref + 1);
|
||
|
count = btrfs_shared_data_ref_count(leaf, sref);
|
||
|
ret = add_shared_data_ref(fs_info, offset, count,
|
||
|
key->objectid, key->offset);
|
||
|
break;
|
||
|
default:
|
||
|
btrfs_err(fs_info, "invalid key type in iref");
|
||
|
ret = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
if (ret)
|
||
|
break;
|
||
|
ptr += btrfs_extent_inline_ref_size(type);
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int process_leaf(struct btrfs_root *root,
|
||
|
struct btrfs_path *path, u64 *bytenr, u64 *num_bytes)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
struct extent_buffer *leaf = path->nodes[0];
|
||
|
struct btrfs_extent_data_ref *dref;
|
||
|
struct btrfs_shared_data_ref *sref;
|
||
|
u32 count;
|
||
|
int i = 0, tree_block_level = 0, ret;
|
||
|
struct btrfs_key key;
|
||
|
int nritems = btrfs_header_nritems(leaf);
|
||
|
|
||
|
for (i = 0; i < nritems; i++) {
|
||
|
btrfs_item_key_to_cpu(leaf, &key, i);
|
||
|
switch (key.type) {
|
||
|
case BTRFS_EXTENT_ITEM_KEY:
|
||
|
*num_bytes = key.offset;
|
||
|
case BTRFS_METADATA_ITEM_KEY:
|
||
|
*bytenr = key.objectid;
|
||
|
ret = process_extent_item(fs_info, path, &key, i,
|
||
|
&tree_block_level);
|
||
|
break;
|
||
|
case BTRFS_TREE_BLOCK_REF_KEY:
|
||
|
ret = add_tree_block(fs_info, key.offset, 0,
|
||
|
key.objectid, tree_block_level);
|
||
|
break;
|
||
|
case BTRFS_SHARED_BLOCK_REF_KEY:
|
||
|
ret = add_tree_block(fs_info, 0, key.offset,
|
||
|
key.objectid, tree_block_level);
|
||
|
break;
|
||
|
case BTRFS_EXTENT_DATA_REF_KEY:
|
||
|
dref = btrfs_item_ptr(leaf, i,
|
||
|
struct btrfs_extent_data_ref);
|
||
|
ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
|
||
|
*num_bytes);
|
||
|
break;
|
||
|
case BTRFS_SHARED_DATA_REF_KEY:
|
||
|
sref = btrfs_item_ptr(leaf, i,
|
||
|
struct btrfs_shared_data_ref);
|
||
|
count = btrfs_shared_data_ref_count(leaf, sref);
|
||
|
ret = add_shared_data_ref(fs_info, key.offset, count,
|
||
|
*bytenr, *num_bytes);
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
if (ret)
|
||
|
break;
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Walk down to the leaf from the given level */
|
||
|
static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
|
||
|
int level, u64 *bytenr, u64 *num_bytes)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
struct extent_buffer *eb;
|
||
|
u64 block_bytenr, gen;
|
||
|
int ret = 0;
|
||
|
|
||
|
while (level >= 0) {
|
||
|
if (level) {
|
||
|
block_bytenr = btrfs_node_blockptr(path->nodes[level],
|
||
|
path->slots[level]);
|
||
|
gen = btrfs_node_ptr_generation(path->nodes[level],
|
||
|
path->slots[level]);
|
||
|
eb = read_tree_block(fs_info, block_bytenr, gen);
|
||
|
if (IS_ERR(eb))
|
||
|
return PTR_ERR(eb);
|
||
|
if (!extent_buffer_uptodate(eb)) {
|
||
|
free_extent_buffer(eb);
|
||
|
return -EIO;
|
||
|
}
|
||
|
btrfs_tree_read_lock(eb);
|
||
|
btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
|
||
|
path->nodes[level-1] = eb;
|
||
|
path->slots[level-1] = 0;
|
||
|
path->locks[level-1] = BTRFS_READ_LOCK_BLOCKING;
|
||
|
} else {
|
||
|
ret = process_leaf(root, path, bytenr, num_bytes);
|
||
|
if (ret)
|
||
|
break;
|
||
|
}
|
||
|
level--;
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Walk up to the next node that needs to be processed */
|
||
|
static int walk_up_tree(struct btrfs_root *root, struct btrfs_path *path,
|
||
|
int *level)
|
||
|
{
|
||
|
int l;
|
||
|
|
||
|
for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
|
||
|
if (!path->nodes[l])
|
||
|
continue;
|
||
|
if (l) {
|
||
|
path->slots[l]++;
|
||
|
if (path->slots[l] <
|
||
|
btrfs_header_nritems(path->nodes[l])) {
|
||
|
*level = l;
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
|
||
|
free_extent_buffer(path->nodes[l]);
|
||
|
path->nodes[l] = NULL;
|
||
|
path->slots[l] = 0;
|
||
|
path->locks[l] = 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static void dump_ref_action(struct btrfs_fs_info *fs_info,
|
||
|
struct ref_action *ra)
|
||
|
{
|
||
|
btrfs_err(fs_info,
|
||
|
" Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
|
||
|
ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
|
||
|
ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
|
||
|
__print_stack_trace(fs_info, ra);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Dumps all the information from the block entry to printk, it's going to be
|
||
|
* awesome.
|
||
|
*/
|
||
|
static void dump_block_entry(struct btrfs_fs_info *fs_info,
|
||
|
struct block_entry *be)
|
||
|
{
|
||
|
struct ref_entry *ref;
|
||
|
struct root_entry *re;
|
||
|
struct ref_action *ra;
|
||
|
struct rb_node *n;
|
||
|
|
||
|
btrfs_err(fs_info,
|
||
|
"dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
|
||
|
be->bytenr, be->len, be->num_refs, be->metadata,
|
||
|
be->from_disk);
|
||
|
|
||
|
for (n = rb_first(&be->refs); n; n = rb_next(n)) {
|
||
|
ref = rb_entry(n, struct ref_entry, node);
|
||
|
btrfs_err(fs_info,
|
||
|
" ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
|
||
|
ref->root_objectid, ref->parent, ref->owner,
|
||
|
ref->offset, ref->num_refs);
|
||
|
}
|
||
|
|
||
|
for (n = rb_first(&be->roots); n; n = rb_next(n)) {
|
||
|
re = rb_entry(n, struct root_entry, node);
|
||
|
btrfs_err(fs_info, " root entry %llu, num_refs %llu",
|
||
|
re->root_objectid, re->num_refs);
|
||
|
}
|
||
|
|
||
|
list_for_each_entry(ra, &be->actions, list)
|
||
|
dump_ref_action(fs_info, ra);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* btrfs_ref_tree_mod: called when we modify a ref for a bytenr
|
||
|
* @root: the root we are making this modification from.
|
||
|
* @bytenr: the bytenr we are modifying.
|
||
|
* @num_bytes: number of bytes.
|
||
|
* @parent: the parent bytenr.
|
||
|
* @ref_root: the original root owner of the bytenr.
|
||
|
* @owner: level in the case of metadata, inode in the case of data.
|
||
|
* @offset: 0 for metadata, file offset for data.
|
||
|
* @action: the action that we are doing, this is the same as the delayed ref
|
||
|
* action.
|
||
|
*
|
||
|
* This will add an action item to the given bytenr and do sanity checks to make
|
||
|
* sure we haven't messed something up. If we are making a new allocation and
|
||
|
* this block entry has history we will delete all previous actions as long as
|
||
|
* our sanity checks pass as they are no longer needed.
|
||
|
*/
|
||
|
int btrfs_ref_tree_mod(struct btrfs_root *root, u64 bytenr, u64 num_bytes,
|
||
|
u64 parent, u64 ref_root, u64 owner, u64 offset,
|
||
|
int action)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
struct ref_entry *ref = NULL, *exist;
|
||
|
struct ref_action *ra = NULL;
|
||
|
struct block_entry *be = NULL;
|
||
|
struct root_entry *re = NULL;
|
||
|
int ret = 0;
|
||
|
bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
|
||
|
|
||
|
if (!btrfs_test_opt(root->fs_info, REF_VERIFY))
|
||
|
return 0;
|
||
|
|
||
|
ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
|
||
|
ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
|
||
|
if (!ra || !ref) {
|
||
|
kfree(ref);
|
||
|
kfree(ra);
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (parent) {
|
||
|
ref->parent = parent;
|
||
|
} else {
|
||
|
ref->root_objectid = ref_root;
|
||
|
ref->owner = owner;
|
||
|
ref->offset = offset;
|
||
|
}
|
||
|
ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
|
||
|
|
||
|
memcpy(&ra->ref, ref, sizeof(struct ref_entry));
|
||
|
/*
|
||
|
* Save the extra info from the delayed ref in the ref action to make it
|
||
|
* easier to figure out what is happening. The real ref's we add to the
|
||
|
* ref tree need to reflect what we save on disk so it matches any
|
||
|
* on-disk refs we pre-loaded.
|
||
|
*/
|
||
|
ra->ref.owner = owner;
|
||
|
ra->ref.offset = offset;
|
||
|
ra->ref.root_objectid = ref_root;
|
||
|
__save_stack_trace(ra);
|
||
|
|
||
|
INIT_LIST_HEAD(&ra->list);
|
||
|
ra->action = action;
|
||
|
ra->root = root->objectid;
|
||
|
|
||
|
/*
|
||
|
* This is an allocation, preallocate the block_entry in case we haven't
|
||
|
* used it before.
|
||
|
*/
|
||
|
ret = -EINVAL;
|
||
|
if (action == BTRFS_ADD_DELAYED_EXTENT) {
|
||
|
/*
|
||
|
* For subvol_create we'll just pass in whatever the parent root
|
||
|
* is and the new root objectid, so let's not treat the passed
|
||
|
* in root as if it really has a ref for this bytenr.
|
||
|
*/
|
||
|
be = add_block_entry(root->fs_info, bytenr, num_bytes, ref_root);
|
||
|
if (IS_ERR(be)) {
|
||
|
kfree(ra);
|
||
|
ret = PTR_ERR(be);
|
||
|
goto out;
|
||
|
}
|
||
|
be->num_refs++;
|
||
|
if (metadata)
|
||
|
be->metadata = 1;
|
||
|
|
||
|
if (be->num_refs != 1) {
|
||
|
btrfs_err(fs_info,
|
||
|
"re-allocated a block that still has references to it!");
|
||
|
dump_block_entry(fs_info, be);
|
||
|
dump_ref_action(fs_info, ra);
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
while (!list_empty(&be->actions)) {
|
||
|
struct ref_action *tmp;
|
||
|
|
||
|
tmp = list_first_entry(&be->actions, struct ref_action,
|
||
|
list);
|
||
|
list_del(&tmp->list);
|
||
|
kfree(tmp);
|
||
|
}
|
||
|
} else {
|
||
|
struct root_entry *tmp;
|
||
|
|
||
|
if (!parent) {
|
||
|
re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
|
||
|
if (!re) {
|
||
|
kfree(ref);
|
||
|
kfree(ra);
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
/*
|
||
|
* This is the root that is modifying us, so it's the
|
||
|
* one we want to lookup below when we modify the
|
||
|
* re->num_refs.
|
||
|
*/
|
||
|
ref_root = root->objectid;
|
||
|
re->root_objectid = root->objectid;
|
||
|
re->num_refs = 0;
|
||
|
}
|
||
|
|
||
|
spin_lock(&root->fs_info->ref_verify_lock);
|
||
|
be = lookup_block_entry(&root->fs_info->block_tree, bytenr);
|
||
|
if (!be) {
|
||
|
btrfs_err(fs_info,
|
||
|
"trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
|
||
|
action, (unsigned long long)bytenr,
|
||
|
(unsigned long long)num_bytes);
|
||
|
dump_ref_action(fs_info, ra);
|
||
|
kfree(ref);
|
||
|
kfree(ra);
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
if (!parent) {
|
||
|
tmp = insert_root_entry(&be->roots, re);
|
||
|
if (tmp) {
|
||
|
kfree(re);
|
||
|
re = tmp;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
exist = insert_ref_entry(&be->refs, ref);
|
||
|
if (exist) {
|
||
|
if (action == BTRFS_DROP_DELAYED_REF) {
|
||
|
if (exist->num_refs == 0) {
|
||
|
btrfs_err(fs_info,
|
||
|
"dropping a ref for a existing root that doesn't have a ref on the block");
|
||
|
dump_block_entry(fs_info, be);
|
||
|
dump_ref_action(fs_info, ra);
|
||
|
kfree(ra);
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
exist->num_refs--;
|
||
|
if (exist->num_refs == 0) {
|
||
|
rb_erase(&exist->node, &be->refs);
|
||
|
kfree(exist);
|
||
|
}
|
||
|
} else if (!be->metadata) {
|
||
|
exist->num_refs++;
|
||
|
} else {
|
||
|
btrfs_err(fs_info,
|
||
|
"attempting to add another ref for an existing ref on a tree block");
|
||
|
dump_block_entry(fs_info, be);
|
||
|
dump_ref_action(fs_info, ra);
|
||
|
kfree(ra);
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
kfree(ref);
|
||
|
} else {
|
||
|
if (action == BTRFS_DROP_DELAYED_REF) {
|
||
|
btrfs_err(fs_info,
|
||
|
"dropping a ref for a root that doesn't have a ref on the block");
|
||
|
dump_block_entry(fs_info, be);
|
||
|
dump_ref_action(fs_info, ra);
|
||
|
kfree(ra);
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!parent && !re) {
|
||
|
re = lookup_root_entry(&be->roots, ref_root);
|
||
|
if (!re) {
|
||
|
/*
|
||
|
* This shouldn't happen because we will add our re
|
||
|
* above when we lookup the be with !parent, but just in
|
||
|
* case catch this case so we don't panic because I
|
||
|
* didn't thik of some other corner case.
|
||
|
*/
|
||
|
btrfs_err(fs_info, "failed to find root %llu for %llu",
|
||
|
root->objectid, be->bytenr);
|
||
|
dump_block_entry(fs_info, be);
|
||
|
dump_ref_action(fs_info, ra);
|
||
|
kfree(ra);
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
}
|
||
|
if (action == BTRFS_DROP_DELAYED_REF) {
|
||
|
if (re)
|
||
|
re->num_refs--;
|
||
|
be->num_refs--;
|
||
|
} else if (action == BTRFS_ADD_DELAYED_REF) {
|
||
|
be->num_refs++;
|
||
|
if (re)
|
||
|
re->num_refs++;
|
||
|
}
|
||
|
list_add_tail(&ra->list, &be->actions);
|
||
|
ret = 0;
|
||
|
out_unlock:
|
||
|
spin_unlock(&root->fs_info->ref_verify_lock);
|
||
|
out:
|
||
|
if (ret)
|
||
|
btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Free up the ref cache */
|
||
|
void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
|
||
|
{
|
||
|
struct block_entry *be;
|
||
|
struct rb_node *n;
|
||
|
|
||
|
if (!btrfs_test_opt(fs_info, REF_VERIFY))
|
||
|
return;
|
||
|
|
||
|
spin_lock(&fs_info->ref_verify_lock);
|
||
|
while ((n = rb_first(&fs_info->block_tree))) {
|
||
|
be = rb_entry(n, struct block_entry, node);
|
||
|
rb_erase(&be->node, &fs_info->block_tree);
|
||
|
free_block_entry(be);
|
||
|
cond_resched_lock(&fs_info->ref_verify_lock);
|
||
|
}
|
||
|
spin_unlock(&fs_info->ref_verify_lock);
|
||
|
}
|
||
|
|
||
|
void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
|
||
|
u64 len)
|
||
|
{
|
||
|
struct block_entry *be = NULL, *entry;
|
||
|
struct rb_node *n;
|
||
|
|
||
|
if (!btrfs_test_opt(fs_info, REF_VERIFY))
|
||
|
return;
|
||
|
|
||
|
spin_lock(&fs_info->ref_verify_lock);
|
||
|
n = fs_info->block_tree.rb_node;
|
||
|
while (n) {
|
||
|
entry = rb_entry(n, struct block_entry, node);
|
||
|
if (entry->bytenr < start) {
|
||
|
n = n->rb_right;
|
||
|
} else if (entry->bytenr > start) {
|
||
|
n = n->rb_left;
|
||
|
} else {
|
||
|
be = entry;
|
||
|
break;
|
||
|
}
|
||
|
/* We want to get as close to start as possible */
|
||
|
if (be == NULL ||
|
||
|
(entry->bytenr < start && be->bytenr > start) ||
|
||
|
(entry->bytenr < start && entry->bytenr > be->bytenr))
|
||
|
be = entry;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Could have an empty block group, maybe have something to check for
|
||
|
* this case to verify we were actually empty?
|
||
|
*/
|
||
|
if (!be) {
|
||
|
spin_unlock(&fs_info->ref_verify_lock);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
n = &be->node;
|
||
|
while (n) {
|
||
|
be = rb_entry(n, struct block_entry, node);
|
||
|
n = rb_next(n);
|
||
|
if (be->bytenr < start && be->bytenr + be->len > start) {
|
||
|
btrfs_err(fs_info,
|
||
|
"block entry overlaps a block group [%llu,%llu]!",
|
||
|
start, len);
|
||
|
dump_block_entry(fs_info, be);
|
||
|
continue;
|
||
|
}
|
||
|
if (be->bytenr < start)
|
||
|
continue;
|
||
|
if (be->bytenr >= start + len)
|
||
|
break;
|
||
|
if (be->bytenr + be->len > start + len) {
|
||
|
btrfs_err(fs_info,
|
||
|
"block entry overlaps a block group [%llu,%llu]!",
|
||
|
start, len);
|
||
|
dump_block_entry(fs_info, be);
|
||
|
}
|
||
|
rb_erase(&be->node, &fs_info->block_tree);
|
||
|
free_block_entry(be);
|
||
|
}
|
||
|
spin_unlock(&fs_info->ref_verify_lock);
|
||
|
}
|
||
|
|
||
|
/* Walk down all roots and build the ref tree, meant to be called at mount */
|
||
|
int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
|
||
|
{
|
||
|
struct btrfs_path *path;
|
||
|
struct btrfs_root *root;
|
||
|
struct extent_buffer *eb;
|
||
|
u64 bytenr = 0, num_bytes = 0;
|
||
|
int ret, level;
|
||
|
|
||
|
if (!btrfs_test_opt(fs_info, REF_VERIFY))
|
||
|
return 0;
|
||
|
|
||
|
path = btrfs_alloc_path();
|
||
|
if (!path)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
eb = btrfs_read_lock_root_node(fs_info->extent_root);
|
||
|
btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
|
||
|
level = btrfs_header_level(eb);
|
||
|
path->nodes[level] = eb;
|
||
|
path->slots[level] = 0;
|
||
|
path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
|
||
|
|
||
|
while (1) {
|
||
|
/*
|
||
|
* We have to keep track of the bytenr/num_bytes we last hit
|
||
|
* because we could have run out of space for an inline ref, and
|
||
|
* would have had to added a ref key item which may appear on a
|
||
|
* different leaf from the original extent item.
|
||
|
*/
|
||
|
ret = walk_down_tree(fs_info->extent_root, path, level,
|
||
|
&bytenr, &num_bytes);
|
||
|
if (ret)
|
||
|
break;
|
||
|
ret = walk_up_tree(root, path, &level);
|
||
|
if (ret < 0)
|
||
|
break;
|
||
|
if (ret > 0) {
|
||
|
ret = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (ret) {
|
||
|
btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
|
||
|
btrfs_free_ref_cache(fs_info);
|
||
|
}
|
||
|
btrfs_free_path(path);
|
||
|
return ret;
|
||
|
}
|