linux-sg2042/arch/arm/mach-omap2/common.h

310 lines
8.2 KiB
C
Raw Normal View History

/*
* Header for code common to all OMAP2+ machines.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __ARCH_ARM_MACH_OMAP2PLUS_COMMON_H
#define __ARCH_ARM_MACH_OMAP2PLUS_COMMON_H
#ifndef __ASSEMBLER__
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/i2c/twl.h>
#include <linux/i2c-omap.h>
#include <linux/reboot.h>
#include <linux/irqchip/irq-omap-intc.h>
ARM: OMAP: Split plat/hardware.h, use local soc.h for omap2+ As the plat and mach includes need to disappear for single zImage work, we need to remove plat/hardware.h. Do this by splitting plat/hardware.h into omap1 and omap2+ specific files. The old plat/hardware.h already has omap1 only defines, so it gets moved to mach/hardware.h for omap1. For omap2+, we use the local soc.h that for now just includes the related SoC headers to keep this patch more readable. Note that the local soc.h still includes plat/cpu.h that can be dealt with in later patches. Let's also include plat/serial.h from common.h for all the board-*.c files. This allows making the include files local later on without patching these files again. Note that only minimal changes are done in this patch for the drivers/watchdog/omap_wdt.c driver to keep things compiling. Further patches are needed to eventually remove cpu_is_omap usage in the drivers. Also only minimal changes are done to sound/soc/omap/* to remove the unneeded includes and to define OMAP44XX_MCPDM_L3_BASE locally so there's no need to include omap44xx.h. While at it, also sort some of the includes in the standard way. Cc: linux-watchdog@vger.kernel.org Cc: alsa-devel@alsa-project.org Cc: Peter Ujfalusi <peter.ujfalusi@ti.com> Cc: Jarkko Nikula <jarkko.nikula@bitmer.com> Cc: Liam Girdwood <lrg@ti.com> Acked-by: Wim Van Sebroeck <wim@iguana.be> Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Tony Lindgren <tony@atomide.com>
2012-09-01 01:59:07 +08:00
#include <asm/proc-fns.h>
#include "i2c.h"
#include "serial.h"
#include "usb.h"
ARM: OMAP: Split plat/hardware.h, use local soc.h for omap2+ As the plat and mach includes need to disappear for single zImage work, we need to remove plat/hardware.h. Do this by splitting plat/hardware.h into omap1 and omap2+ specific files. The old plat/hardware.h already has omap1 only defines, so it gets moved to mach/hardware.h for omap1. For omap2+, we use the local soc.h that for now just includes the related SoC headers to keep this patch more readable. Note that the local soc.h still includes plat/cpu.h that can be dealt with in later patches. Let's also include plat/serial.h from common.h for all the board-*.c files. This allows making the include files local later on without patching these files again. Note that only minimal changes are done in this patch for the drivers/watchdog/omap_wdt.c driver to keep things compiling. Further patches are needed to eventually remove cpu_is_omap usage in the drivers. Also only minimal changes are done to sound/soc/omap/* to remove the unneeded includes and to define OMAP44XX_MCPDM_L3_BASE locally so there's no need to include omap44xx.h. While at it, also sort some of the includes in the standard way. Cc: linux-watchdog@vger.kernel.org Cc: alsa-devel@alsa-project.org Cc: Peter Ujfalusi <peter.ujfalusi@ti.com> Cc: Jarkko Nikula <jarkko.nikula@bitmer.com> Cc: Liam Girdwood <lrg@ti.com> Acked-by: Wim Van Sebroeck <wim@iguana.be> Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Tony Lindgren <tony@atomide.com>
2012-09-01 01:59:07 +08:00
#define OMAP_INTC_START NR_IRQS
#if defined(CONFIG_PM) && defined(CONFIG_ARCH_OMAP2)
int omap2_pm_init(void);
#else
static inline int omap2_pm_init(void)
{
return 0;
}
#endif
#if defined(CONFIG_PM) && defined(CONFIG_ARCH_OMAP3)
int omap3_pm_init(void);
#else
static inline int omap3_pm_init(void)
{
return 0;
}
#endif
#if defined(CONFIG_PM) && (defined(CONFIG_ARCH_OMAP4) || defined(CONFIG_SOC_OMAP5) || defined(CONFIG_SOC_DRA7XX))
int omap4_pm_init(void);
int omap4_pm_init_early(void);
#else
static inline int omap4_pm_init(void)
{
return 0;
}
static inline int omap4_pm_init_early(void)
{
return 0;
}
#endif
#ifdef CONFIG_OMAP_MUX
int omap_mux_late_init(void);
#else
static inline int omap_mux_late_init(void)
{
return 0;
}
#endif
extern void omap2_init_common_infrastructure(void);
extern void omap2_sync32k_timer_init(void);
extern void omap3_sync32k_timer_init(void);
extern void omap3_secure_sync32k_timer_init(void);
extern void omap3_gptimer_timer_init(void);
extern void omap4_local_timer_init(void);
#ifdef CONFIG_CACHE_L2X0
int omap_l2_cache_init(void);
#else
static inline int omap_l2_cache_init(void)
{
return 0;
}
#endif
extern void omap5_realtime_timer_init(void);
void omap2420_init_early(void);
void omap2430_init_early(void);
void omap3430_init_early(void);
void omap35xx_init_early(void);
void omap3630_init_early(void);
void omap3_init_early(void); /* Do not use this one */
void am33xx_init_early(void);
void am35xx_init_early(void);
void ti81xx_init_early(void);
void am33xx_init_early(void);
void am43xx_init_early(void);
void am43xx_init_late(void);
void omap4430_init_early(void);
void omap5_init_early(void);
void omap3_init_late(void); /* Do not use this one */
void omap4430_init_late(void);
void omap2420_init_late(void);
void omap2430_init_late(void);
void omap3430_init_late(void);
void omap35xx_init_late(void);
void omap3630_init_late(void);
void am35xx_init_late(void);
void ti81xx_init_late(void);
void am33xx_init_late(void);
void omap5_init_late(void);
int omap2_common_pm_late_init(void);
void dra7xx_init_early(void);
void dra7xx_init_late(void);
#ifdef CONFIG_SOC_BUS
void omap_soc_device_init(void);
#else
static inline void omap_soc_device_init(void)
{
}
#endif
#if defined(CONFIG_SOC_OMAP2420) || defined(CONFIG_SOC_OMAP2430)
void omap2xxx_restart(enum reboot_mode mode, const char *cmd);
#else
static inline void omap2xxx_restart(enum reboot_mode mode, const char *cmd)
{
}
#endif
#ifdef CONFIG_SOC_AM33XX
void am33xx_restart(enum reboot_mode mode, const char *cmd);
#else
static inline void am33xx_restart(enum reboot_mode mode, const char *cmd)
{
}
#endif
#ifdef CONFIG_ARCH_OMAP3
void omap3xxx_restart(enum reboot_mode mode, const char *cmd);
#else
static inline void omap3xxx_restart(enum reboot_mode mode, const char *cmd)
{
}
#endif
#if defined(CONFIG_ARCH_OMAP4) || defined(CONFIG_SOC_OMAP5) || \
defined(CONFIG_SOC_DRA7XX) || defined(CONFIG_SOC_AM43XX)
void omap44xx_restart(enum reboot_mode mode, const char *cmd);
#else
static inline void omap44xx_restart(enum reboot_mode mode, const char *cmd)
{
}
#endif
/* This gets called from mach-omap2/io.c, do not call this */
void __init omap2_set_globals_tap(u32 class, void __iomem *tap);
void __init omap242x_map_io(void);
void __init omap243x_map_io(void);
void __init omap3_map_io(void);
void __init am33xx_map_io(void);
void __init omap4_map_io(void);
void __init omap5_map_io(void);
void __init ti81xx_map_io(void);
/* omap_barriers_init() is OMAP4 only */
void omap_barriers_init(void);
/**
* omap_test_timeout - busy-loop, testing a condition
* @cond: condition to test until it evaluates to true
* @timeout: maximum number of microseconds in the timeout
* @index: loop index (integer)
*
* Loop waiting for @cond to become true or until at least @timeout
* microseconds have passed. To use, define some integer @index in the
* calling code. After running, if @index == @timeout, then the loop has
* timed out.
*/
#define omap_test_timeout(cond, timeout, index) \
({ \
for (index = 0; index < timeout; index++) { \
if (cond) \
break; \
udelay(1); \
} \
})
extern struct device *omap2_get_mpuss_device(void);
extern struct device *omap2_get_iva_device(void);
extern struct device *omap2_get_l3_device(void);
extern struct device *omap4_get_dsp_device(void);
void omap_gic_of_init(void);
#ifdef CONFIG_CACHE_L2X0
extern void __iomem *omap4_get_l2cache_base(void);
#endif
struct device_node;
#ifdef CONFIG_SMP
extern void __iomem *omap4_get_scu_base(void);
#else
static inline void __iomem *omap4_get_scu_base(void)
{
return NULL;
}
#endif
ARM: OMAP4460: Workaround for ROM bug because of CA9 r2pX GIC control register change. On OMAP4+ devices, GIC register context is lost when MPUSS hits the OSWR(Open Switch Retention). On the CPU wakeup path, ROM code gets executed and one of the steps in it is to restore the saved context of the GIC. The ROM Code GIC distributor restoration is split in two parts: CPU specific register done by each CPU and common register done by only one CPU. Below is the abstract flow. ............................................................... - MPUSS in OSWR state. - CPU0 wakes up on the event(interrupt) and start executing ROM code. [..] - CPU0 executes "GIC Restoration:" [...] - CPU0 swicthes to non-secure mode and jumps to OS resume code. [...] - CPU0 is online in OS - CPU0 enables the GIC distributor. GICD.Enable Non-secure = 1 - CPU0 wakes up CPU1 with clock-domain force wakeup method. - CPU0 continues it's execution. [..] - CPU1 wakes up and start executing ROM code. [..] - CPU1 executes "GIC Restoration:" [..] - CPU1 swicthes to non-secure mode and jumps to OS resume code. [...] - CPU1 is online in OS and start executing. [...] - GIC Restoration: /* Common routine for HS and GP devices */ { if (GICD != 1) { /* This will be true in OSWR state */ if (GIC_SAR_BACKUP_STATE == SAVED) - CPU restores GIC distributor else - reconfigure GIC distributor to boot values. GICD.Enable secure = 1 } if (GIC_SAR_BACKUP_STATE == SAVED) - CPU restore its GIC CPU interface registers if saved. else - reconfigure its GIC CPU interface registers to boot values. } ............................................................... So as mentioned in the flow, GICD != 1 condition decides how the GIC registers are handled in ROM code wakeup path from OSWR. As evident from the flow, ROM code relies on the entire GICD register value and not specific register bits. The assumption was valid till CortexA9 r1pX version since there was only one banked bit to control secure and non-secure GICD. Secure view which ROM code sees: bit 0 == Enable Non-secure Non-secure view which HLOS sees: bit 0 == Enable secure But GICD register has changed between CortexA9 r1pX and r2pX. On r2pX GICD register is composed of 2 bits. Secure view which ROM code sees: bit 1 == Enable Non-secure bit 0 == Enable secure Non-secure view which HLOS sees: bit 0 == Enable Non-secure Hence on OMAP4460(r2pX) devices, if you go through the above flow again during CPU1 wakeup, GICD == 3 and hence ROM code fails to understand the real wakeup power state and reconfigures GIC distributor to boot values. This is nasty since you loose the entire interrupt controller context in a live system. The ROM code fix done on next OMAP4 device (OMAP4470 - r2px) is to check "GICD.Enable secure != 1" for GIC restoration in OSWR wakeup path. Since ROM code can't be fixed on OMAP4460 devices, a work around needs to be implemented. As evident from the flow, as long as CPU1 sees GICD == 1 in it's wakeup path from OSWR, the issue won't happen. Below is the flow with the work-around. ............................................................... - MPUSS in OSWR state. - CPU0 wakes up on the event(interrupt) and start executing ROM code. [..] - CPU0 executes "GIC Restoration:" [..] - CPU0 swicthes to non-secure mode and jumps to OS resume code. [..] - CPU0 is online in OS. - CPU0 does GICD.Enable Non-secure = 0 - CPU0 wakes up CPU1 with clock domain force wakeup method. - CPU0 waits for GICD.Enable Non-secure = 1 - CPU0 coninues it's execution. [..] - CPU1 wakes up and start executing ROM code. [..] - CPU1 executes "GIC Restoration:" [..] - CPU1 swicthes to non-secure mode and jumps to OS resume code. [..] - CPU1 is online in OS - CPU1 does GICD.Enable Non-secure = 1 - CPU1 start executing [...] ............................................................... With this procedure, the GIC configuration done between the CPU0 wakeup and CPU1 wakeup will not be lost but during this short windows, the CPU0 will not receive interrupts. The BUG is applicable to only OMAP4460(r2pX) devices. OMAP4470 (also r2pX) is not affected by this bug because ROM code has been fixed. Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Signed-off-by: Tero Kristo <t-kristo@ti.com> Signed-off-by: Kevin Hilman <khilman@ti.com>
2012-10-18 17:20:05 +08:00
extern void gic_dist_disable(void);
extern void gic_dist_enable(void);
extern bool gic_dist_disabled(void);
extern void gic_timer_retrigger(void);
extern void omap_smc1(u32 fn, u32 arg);
extern void __iomem *omap4_get_sar_ram_base(void);
extern void omap_do_wfi(void);
#ifdef CONFIG_SMP
/* Needed for secondary core boot */
extern void omap4_secondary_startup(void);
extern void omap4460_secondary_startup(void);
extern u32 omap_modify_auxcoreboot0(u32 set_mask, u32 clear_mask);
extern void omap_auxcoreboot_addr(u32 cpu_addr);
extern u32 omap_read_auxcoreboot0(void);
extern void omap4_cpu_die(unsigned int cpu);
extern struct smp_operations omap4_smp_ops;
extern void omap5_secondary_startup(void);
#endif
#if defined(CONFIG_SMP) && defined(CONFIG_PM)
extern int omap4_mpuss_init(void);
extern int omap4_enter_lowpower(unsigned int cpu, unsigned int power_state);
extern int omap4_finish_suspend(unsigned long cpu_state);
extern void omap4_cpu_resume(void);
extern int omap4_hotplug_cpu(unsigned int cpu, unsigned int power_state);
#else
static inline int omap4_enter_lowpower(unsigned int cpu,
unsigned int power_state)
{
cpu_do_idle();
return 0;
}
static inline int omap4_hotplug_cpu(unsigned int cpu, unsigned int power_state)
{
cpu_do_idle();
return 0;
}
static inline int omap4_mpuss_init(void)
{
return 0;
}
static inline int omap4_finish_suspend(unsigned long cpu_state)
{
return 0;
}
static inline void omap4_cpu_resume(void)
{}
#endif
void pdata_quirks_init(const struct of_device_id *);
void omap_auxdata_legacy_init(struct device *dev);
void omap_pcs_legacy_init(int irq, void (*rearm)(void));
struct omap_sdrc_params;
extern void omap_sdrc_init(struct omap_sdrc_params *sdrc_cs0,
struct omap_sdrc_params *sdrc_cs1);
struct omap2_hsmmc_info;
extern void omap_reserve(void);
struct omap_hwmod;
extern int omap_dss_reset(struct omap_hwmod *);
ARM: OMAP: clocks: Delay clk inits atleast until slab is initialized clk inits on OMAP happen quite early, even before slab is available. The dependency comes from the fact that the timer init code starts to use clocks and hwmod and we need clocks to be initialized by then. There are various problems doing clk inits this early, one is, not being able to do dynamic clk registrations and hence the dependency on clk-private.h. The other is, inability to debug early kernel crashes without enabling DEBUG_LL and earlyprintk. Doing early clk init also exposed another instance of a kernel panic due to a BUG() when CONFIG_DEBUG_SLAB is enabled. [ 0.000000] Kernel BUG at c01174f8 [verbose debug info unavailable] [ 0.000000] Internal error: Oops - BUG: 0 [#1] SMP ARM [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 Not tainted (3.9.0-rc1-12179-g72d48f9 #6) [ 0.000000] PC is at __kmalloc+0x1d4/0x248 [ 0.000000] LR is at __clk_init+0x2e0/0x364 [ 0.000000] pc : [<c01174f8>] lr : [<c0441f54>] psr: 600001d3 [ 0.000000] sp : c076ff28 ip : c065cefc fp : c0441f54 [ 0.000000] r10: 0000001c r9 : 000080d0 r8 : c076ffd4 [ 0.000000] r7 : c074b578 r6 : c0794d88 r5 : 00000040 r4 : 00000000 [ 0.000000] r3 : 00000000 r2 : c07cac70 r1 : 000080d0 r0 : 0000001c [ 0.000000] Flags: nZCv IRQs off FIQs off Mode SVC_32 ISA ARM Segment kernel [ 0.000000] Control: 10c53c7d Table: 8000404a DAC: 00000017 [ 0.000000] Process swapper (pid: 0, stack limit = 0xc076e240) [ 0.000000] Stack: (0xc076ff28 to 0xc0770000) [ 0.000000] ff20: 22222222 c0794ec8 c06546e8 00000000 00000040 c0794d88 [ 0.000000] ff40: c074b578 c076ffd4 c07951c8 c076e000 00000000 c0441f54 c074b578 c076ffd4 [ 0.000000] ff60: c0793828 00000040 c0794d88 c074b578 c076ffd4 c0776900 c076e000 c07272ac [ 0.000000] ff80: 2f800000 c074c968 c07f93d0 c0719780 c076ffa0 c076ff98 00000000 00000000 [ 0.000000] ffa0: 00000000 00000000 00000000 00000001 c074cd6c c077b1ec 8000406a c0715724 [ 0.000000] ffc0: 00000000 00000000 00000000 00000000 00000000 c074c968 10c53c7d c0776974 [ 0.000000] ffe0: c074cd6c c077b1ec 8000406a 411fc092 00000000 80008074 00000000 00000000 [ 0.000000] [<c01174f8>] (__kmalloc+0x1d4/0x248) from [<c0441f54>] (__clk_init+0x2e0/0x364) [ 0.000000] [<c0441f54>] (__clk_init+0x2e0/0x364) from [<c07272ac>] (omap4xxx_clk_init+0xbc/0x140) [ 0.000000] [<c07272ac>] (omap4xxx_clk_init+0xbc/0x140) from [<c0719780>] (setup_arch+0x15c/0x284) [ 0.000000] [<c0719780>] (setup_arch+0x15c/0x284) from [<c0715724>] (start_kernel+0x7c/0x334) [ 0.000000] [<c0715724>] (start_kernel+0x7c/0x334) from [<80008074>] (0x80008074) [ 0.000000] Code: e5883004 e1a00006 e28dd00c e8bd8ff0 (e7f001f2) [ 0.000000] ---[ end trace 1b75b31a2719ed1c ]--- [ 0.000000] Kernel panic - not syncing: Attempted to kill the idle task! It was a know issue, that slab allocations would fail when common clock core tries to cache parent pointers for mux clocks on OMAP, and hence a patch 'clk: Allow late cache allocation for clk->parents, commit 7975059d' was added to work this problem around. A BUG() within kmalloc() with CONFIG_DEBUG_SLAB enabled was completely overlooked causing this regression. More details on the issue reported can be found here, http://www.mail-archive.com/linux-omap@vger.kernel.org/msg85932.html With all these issues around clk inits happening way too early, it makes sense to at least move them to a point where dynamic memory allocations are possible. So move them to a point just before the timer code starts using clocks and hwmod. This should at least pave way for clk inits on OMAP moving to dynamic clock registrations instead of using the static macros defined in clk-private.h. The issue with kernel panic while CONFIG_DEBUG_SLAB is enabled was reported by Piotr Haber and Tony Lindgren and this patch fixes the reported issue as well. Reported-by: Piotr Haber <phaber@broadcom.com> Reported-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Rajendra Nayak <rnayak@ti.com> Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Reviewed-by: Mike Turquette <mturquette@linaro.org> Acked-by: Paul Walmsley <paul@pwsan.com> Cc: stable@vger.kernel.org # v3.8 Signed-off-by: Tony Lindgren <tony@atomide.com>
2013-03-21 19:04:52 +08:00
/* SoC specific clock initializer */
int omap_clk_init(void);
ARM: OMAP: clocks: Delay clk inits atleast until slab is initialized clk inits on OMAP happen quite early, even before slab is available. The dependency comes from the fact that the timer init code starts to use clocks and hwmod and we need clocks to be initialized by then. There are various problems doing clk inits this early, one is, not being able to do dynamic clk registrations and hence the dependency on clk-private.h. The other is, inability to debug early kernel crashes without enabling DEBUG_LL and earlyprintk. Doing early clk init also exposed another instance of a kernel panic due to a BUG() when CONFIG_DEBUG_SLAB is enabled. [ 0.000000] Kernel BUG at c01174f8 [verbose debug info unavailable] [ 0.000000] Internal error: Oops - BUG: 0 [#1] SMP ARM [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 Not tainted (3.9.0-rc1-12179-g72d48f9 #6) [ 0.000000] PC is at __kmalloc+0x1d4/0x248 [ 0.000000] LR is at __clk_init+0x2e0/0x364 [ 0.000000] pc : [<c01174f8>] lr : [<c0441f54>] psr: 600001d3 [ 0.000000] sp : c076ff28 ip : c065cefc fp : c0441f54 [ 0.000000] r10: 0000001c r9 : 000080d0 r8 : c076ffd4 [ 0.000000] r7 : c074b578 r6 : c0794d88 r5 : 00000040 r4 : 00000000 [ 0.000000] r3 : 00000000 r2 : c07cac70 r1 : 000080d0 r0 : 0000001c [ 0.000000] Flags: nZCv IRQs off FIQs off Mode SVC_32 ISA ARM Segment kernel [ 0.000000] Control: 10c53c7d Table: 8000404a DAC: 00000017 [ 0.000000] Process swapper (pid: 0, stack limit = 0xc076e240) [ 0.000000] Stack: (0xc076ff28 to 0xc0770000) [ 0.000000] ff20: 22222222 c0794ec8 c06546e8 00000000 00000040 c0794d88 [ 0.000000] ff40: c074b578 c076ffd4 c07951c8 c076e000 00000000 c0441f54 c074b578 c076ffd4 [ 0.000000] ff60: c0793828 00000040 c0794d88 c074b578 c076ffd4 c0776900 c076e000 c07272ac [ 0.000000] ff80: 2f800000 c074c968 c07f93d0 c0719780 c076ffa0 c076ff98 00000000 00000000 [ 0.000000] ffa0: 00000000 00000000 00000000 00000001 c074cd6c c077b1ec 8000406a c0715724 [ 0.000000] ffc0: 00000000 00000000 00000000 00000000 00000000 c074c968 10c53c7d c0776974 [ 0.000000] ffe0: c074cd6c c077b1ec 8000406a 411fc092 00000000 80008074 00000000 00000000 [ 0.000000] [<c01174f8>] (__kmalloc+0x1d4/0x248) from [<c0441f54>] (__clk_init+0x2e0/0x364) [ 0.000000] [<c0441f54>] (__clk_init+0x2e0/0x364) from [<c07272ac>] (omap4xxx_clk_init+0xbc/0x140) [ 0.000000] [<c07272ac>] (omap4xxx_clk_init+0xbc/0x140) from [<c0719780>] (setup_arch+0x15c/0x284) [ 0.000000] [<c0719780>] (setup_arch+0x15c/0x284) from [<c0715724>] (start_kernel+0x7c/0x334) [ 0.000000] [<c0715724>] (start_kernel+0x7c/0x334) from [<80008074>] (0x80008074) [ 0.000000] Code: e5883004 e1a00006 e28dd00c e8bd8ff0 (e7f001f2) [ 0.000000] ---[ end trace 1b75b31a2719ed1c ]--- [ 0.000000] Kernel panic - not syncing: Attempted to kill the idle task! It was a know issue, that slab allocations would fail when common clock core tries to cache parent pointers for mux clocks on OMAP, and hence a patch 'clk: Allow late cache allocation for clk->parents, commit 7975059d' was added to work this problem around. A BUG() within kmalloc() with CONFIG_DEBUG_SLAB enabled was completely overlooked causing this regression. More details on the issue reported can be found here, http://www.mail-archive.com/linux-omap@vger.kernel.org/msg85932.html With all these issues around clk inits happening way too early, it makes sense to at least move them to a point where dynamic memory allocations are possible. So move them to a point just before the timer code starts using clocks and hwmod. This should at least pave way for clk inits on OMAP moving to dynamic clock registrations instead of using the static macros defined in clk-private.h. The issue with kernel panic while CONFIG_DEBUG_SLAB is enabled was reported by Piotr Haber and Tony Lindgren and this patch fixes the reported issue as well. Reported-by: Piotr Haber <phaber@broadcom.com> Reported-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Rajendra Nayak <rnayak@ti.com> Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Reviewed-by: Mike Turquette <mturquette@linaro.org> Acked-by: Paul Walmsley <paul@pwsan.com> Cc: stable@vger.kernel.org # v3.8 Signed-off-by: Tony Lindgren <tony@atomide.com>
2013-03-21 19:04:52 +08:00
int __init omapdss_init_of(void);
void __init omapdss_early_init_of(void);
#endif /* __ASSEMBLER__ */
#endif /* __ARCH_ARM_MACH_OMAP2PLUS_COMMON_H */