linux-sg2042/drivers/net/wireless/iwlwifi/iwl-core.c

1494 lines
41 KiB
C
Raw Normal View History

/******************************************************************************
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2012 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <linux/sched.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <net/mac80211.h>
#include "iwl-eeprom.h"
#include "iwl-debug.h"
#include "iwl-core.h"
#include "iwl-io.h"
#include "iwl-power.h"
#include "iwl-shared.h"
#include "iwl-agn.h"
#include "iwl-trans.h"
const u8 iwl_bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
#define MAX_BIT_RATE_40_MHZ 150 /* Mbps */
#define MAX_BIT_RATE_20_MHZ 72 /* Mbps */
static void iwl_init_ht_hw_capab(const struct iwl_priv *priv,
struct ieee80211_sta_ht_cap *ht_info,
enum ieee80211_band band)
{
u16 max_bit_rate = 0;
u8 rx_chains_num = hw_params(priv).rx_chains_num;
u8 tx_chains_num = hw_params(priv).tx_chains_num;
ht_info->cap = 0;
memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
ht_info->ht_supported = true;
if (cfg(priv)->ht_params &&
cfg(priv)->ht_params->ht_greenfield_support)
ht_info->cap |= IEEE80211_HT_CAP_GRN_FLD;
ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
max_bit_rate = MAX_BIT_RATE_20_MHZ;
if (hw_params(priv).ht40_channel & BIT(band)) {
ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
ht_info->cap |= IEEE80211_HT_CAP_SGI_40;
ht_info->mcs.rx_mask[4] = 0x01;
max_bit_rate = MAX_BIT_RATE_40_MHZ;
}
if (iwlagn_mod_params.amsdu_size_8K)
ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU;
ht_info->ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF;
ht_info->ampdu_density = CFG_HT_MPDU_DENSITY_DEF;
ht_info->mcs.rx_mask[0] = 0xFF;
if (rx_chains_num >= 2)
ht_info->mcs.rx_mask[1] = 0xFF;
if (rx_chains_num >= 3)
ht_info->mcs.rx_mask[2] = 0xFF;
/* Highest supported Rx data rate */
max_bit_rate *= rx_chains_num;
WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK);
ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate);
/* Tx MCS capabilities */
ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
if (tx_chains_num != rx_chains_num) {
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
ht_info->mcs.tx_params |= ((tx_chains_num - 1) <<
IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
}
}
/**
* iwl_init_geos - Initialize mac80211's geo/channel info based from eeprom
*/
int iwl_init_geos(struct iwl_priv *priv)
{
struct iwl_channel_info *ch;
struct ieee80211_supported_band *sband;
struct ieee80211_channel *channels;
struct ieee80211_channel *geo_ch;
struct ieee80211_rate *rates;
int i = 0;
s8 max_tx_power = IWLAGN_TX_POWER_TARGET_POWER_MIN;
if (priv->bands[IEEE80211_BAND_2GHZ].n_bitrates ||
priv->bands[IEEE80211_BAND_5GHZ].n_bitrates) {
IWL_DEBUG_INFO(priv, "Geography modes already initialized.\n");
set_bit(STATUS_GEO_CONFIGURED, &priv->shrd->status);
return 0;
}
channels = kcalloc(priv->channel_count,
sizeof(struct ieee80211_channel), GFP_KERNEL);
if (!channels)
return -ENOMEM;
rates = kcalloc(IWL_RATE_COUNT_LEGACY, sizeof(struct ieee80211_rate),
GFP_KERNEL);
if (!rates) {
kfree(channels);
return -ENOMEM;
}
/* 5.2GHz channels start after the 2.4GHz channels */
sband = &priv->bands[IEEE80211_BAND_5GHZ];
sband->channels = &channels[ARRAY_SIZE(iwl_eeprom_band_1)];
/* just OFDM */
sband->bitrates = &rates[IWL_FIRST_OFDM_RATE];
sband->n_bitrates = IWL_RATE_COUNT_LEGACY - IWL_FIRST_OFDM_RATE;
if (hw_params(priv).sku & EEPROM_SKU_CAP_11N_ENABLE)
iwl_init_ht_hw_capab(priv, &sband->ht_cap,
IEEE80211_BAND_5GHZ);
sband = &priv->bands[IEEE80211_BAND_2GHZ];
sband->channels = channels;
/* OFDM & CCK */
sband->bitrates = rates;
sband->n_bitrates = IWL_RATE_COUNT_LEGACY;
if (hw_params(priv).sku & EEPROM_SKU_CAP_11N_ENABLE)
iwl_init_ht_hw_capab(priv, &sband->ht_cap,
IEEE80211_BAND_2GHZ);
priv->ieee_channels = channels;
priv->ieee_rates = rates;
for (i = 0; i < priv->channel_count; i++) {
ch = &priv->channel_info[i];
/* FIXME: might be removed if scan is OK */
if (!is_channel_valid(ch))
continue;
sband = &priv->bands[ch->band];
geo_ch = &sband->channels[sband->n_channels++];
geo_ch->center_freq =
ieee80211_channel_to_frequency(ch->channel, ch->band);
geo_ch->max_power = ch->max_power_avg;
geo_ch->max_antenna_gain = 0xff;
geo_ch->hw_value = ch->channel;
if (is_channel_valid(ch)) {
if (!(ch->flags & EEPROM_CHANNEL_IBSS))
geo_ch->flags |= IEEE80211_CHAN_NO_IBSS;
if (!(ch->flags & EEPROM_CHANNEL_ACTIVE))
geo_ch->flags |= IEEE80211_CHAN_PASSIVE_SCAN;
if (ch->flags & EEPROM_CHANNEL_RADAR)
geo_ch->flags |= IEEE80211_CHAN_RADAR;
geo_ch->flags |= ch->ht40_extension_channel;
if (ch->max_power_avg > max_tx_power)
max_tx_power = ch->max_power_avg;
} else {
geo_ch->flags |= IEEE80211_CHAN_DISABLED;
}
IWL_DEBUG_INFO(priv, "Channel %d Freq=%d[%sGHz] %s flag=0x%X\n",
ch->channel, geo_ch->center_freq,
is_channel_a_band(ch) ? "5.2" : "2.4",
geo_ch->flags & IEEE80211_CHAN_DISABLED ?
"restricted" : "valid",
geo_ch->flags);
}
priv->tx_power_device_lmt = max_tx_power;
priv->tx_power_user_lmt = max_tx_power;
priv->tx_power_next = max_tx_power;
if ((priv->bands[IEEE80211_BAND_5GHZ].n_channels == 0) &&
hw_params(priv).sku & EEPROM_SKU_CAP_BAND_52GHZ) {
IWL_INFO(priv, "Incorrectly detected BG card as ABG. "
"Please send your %s to maintainer.\n",
trans(priv)->hw_id_str);
hw_params(priv).sku &= ~EEPROM_SKU_CAP_BAND_52GHZ;
}
IWL_INFO(priv, "Tunable channels: %d 802.11bg, %d 802.11a channels\n",
priv->bands[IEEE80211_BAND_2GHZ].n_channels,
priv->bands[IEEE80211_BAND_5GHZ].n_channels);
set_bit(STATUS_GEO_CONFIGURED, &priv->shrd->status);
return 0;
}
/*
* iwl_free_geos - undo allocations in iwl_init_geos
*/
void iwl_free_geos(struct iwl_priv *priv)
{
kfree(priv->ieee_channels);
kfree(priv->ieee_rates);
clear_bit(STATUS_GEO_CONFIGURED, &priv->shrd->status);
}
static bool iwl_is_channel_extension(struct iwl_priv *priv,
enum ieee80211_band band,
u16 channel, u8 extension_chan_offset)
{
const struct iwl_channel_info *ch_info;
ch_info = iwl_get_channel_info(priv, band, channel);
if (!is_channel_valid(ch_info))
return false;
if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE)
return !(ch_info->ht40_extension_channel &
IEEE80211_CHAN_NO_HT40PLUS);
else if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW)
return !(ch_info->ht40_extension_channel &
IEEE80211_CHAN_NO_HT40MINUS);
return false;
}
bool iwl_is_ht40_tx_allowed(struct iwl_priv *priv,
struct iwl_rxon_context *ctx,
struct ieee80211_sta_ht_cap *ht_cap)
{
if (!ctx->ht.enabled || !ctx->ht.is_40mhz)
return false;
/*
* We do not check for IEEE80211_HT_CAP_SUP_WIDTH_20_40
* the bit will not set if it is pure 40MHz case
*/
if (ht_cap && !ht_cap->ht_supported)
return false;
#ifdef CONFIG_IWLWIFI_DEBUGFS
if (priv->disable_ht40)
return false;
#endif
return iwl_is_channel_extension(priv, priv->band,
le16_to_cpu(ctx->staging.channel),
ctx->ht.extension_chan_offset);
}
static u16 iwl_adjust_beacon_interval(u16 beacon_val, u16 max_beacon_val)
{
u16 new_val;
u16 beacon_factor;
/*
* If mac80211 hasn't given us a beacon interval, program
* the default into the device (not checking this here
* would cause the adjustment below to return the maximum
* value, which may break PAN.)
*/
if (!beacon_val)
return DEFAULT_BEACON_INTERVAL;
/*
* If the beacon interval we obtained from the peer
* is too large, we'll have to wake up more often
* (and in IBSS case, we'll beacon too much)
*
* For example, if max_beacon_val is 4096, and the
* requested beacon interval is 7000, we'll have to
* use 3500 to be able to wake up on the beacons.
*
* This could badly influence beacon detection stats.
*/
beacon_factor = (beacon_val + max_beacon_val) / max_beacon_val;
new_val = beacon_val / beacon_factor;
if (!new_val)
new_val = max_beacon_val;
return new_val;
}
int iwl_send_rxon_timing(struct iwl_priv *priv, struct iwl_rxon_context *ctx)
{
u64 tsf;
s32 interval_tm, rem;
struct ieee80211_conf *conf = NULL;
u16 beacon_int;
struct ieee80211_vif *vif = ctx->vif;
conf = &priv->hw->conf;
lockdep_assert_held(&priv->shrd->mutex);
memset(&ctx->timing, 0, sizeof(struct iwl_rxon_time_cmd));
ctx->timing.timestamp = cpu_to_le64(priv->timestamp);
ctx->timing.listen_interval = cpu_to_le16(conf->listen_interval);
beacon_int = vif ? vif->bss_conf.beacon_int : 0;
/*
* TODO: For IBSS we need to get atim_window from mac80211,
* for now just always use 0
*/
ctx->timing.atim_window = 0;
if (ctx->ctxid == IWL_RXON_CTX_PAN &&
(!ctx->vif || ctx->vif->type != NL80211_IFTYPE_STATION) &&
iwl_is_associated(priv, IWL_RXON_CTX_BSS) &&
priv->contexts[IWL_RXON_CTX_BSS].vif &&
priv->contexts[IWL_RXON_CTX_BSS].vif->bss_conf.beacon_int) {
ctx->timing.beacon_interval =
priv->contexts[IWL_RXON_CTX_BSS].timing.beacon_interval;
beacon_int = le16_to_cpu(ctx->timing.beacon_interval);
} else if (ctx->ctxid == IWL_RXON_CTX_BSS &&
iwl_is_associated(priv, IWL_RXON_CTX_PAN) &&
priv->contexts[IWL_RXON_CTX_PAN].vif &&
priv->contexts[IWL_RXON_CTX_PAN].vif->bss_conf.beacon_int &&
(!iwl_is_associated_ctx(ctx) || !ctx->vif ||
!ctx->vif->bss_conf.beacon_int)) {
ctx->timing.beacon_interval =
priv->contexts[IWL_RXON_CTX_PAN].timing.beacon_interval;
beacon_int = le16_to_cpu(ctx->timing.beacon_interval);
} else {
beacon_int = iwl_adjust_beacon_interval(beacon_int,
IWL_MAX_UCODE_BEACON_INTERVAL * TIME_UNIT);
ctx->timing.beacon_interval = cpu_to_le16(beacon_int);
}
ctx->beacon_int = beacon_int;
tsf = priv->timestamp; /* tsf is modifed by do_div: copy it */
interval_tm = beacon_int * TIME_UNIT;
rem = do_div(tsf, interval_tm);
ctx->timing.beacon_init_val = cpu_to_le32(interval_tm - rem);
ctx->timing.dtim_period = vif ? (vif->bss_conf.dtim_period ?: 1) : 1;
IWL_DEBUG_ASSOC(priv,
"beacon interval %d beacon timer %d beacon tim %d\n",
le16_to_cpu(ctx->timing.beacon_interval),
le32_to_cpu(ctx->timing.beacon_init_val),
le16_to_cpu(ctx->timing.atim_window));
return iwl_trans_send_cmd_pdu(trans(priv), ctx->rxon_timing_cmd,
CMD_SYNC, sizeof(ctx->timing), &ctx->timing);
}
void iwl_set_rxon_hwcrypto(struct iwl_priv *priv, struct iwl_rxon_context *ctx,
int hw_decrypt)
{
struct iwl_rxon_cmd *rxon = &ctx->staging;
if (hw_decrypt)
rxon->filter_flags &= ~RXON_FILTER_DIS_DECRYPT_MSK;
else
rxon->filter_flags |= RXON_FILTER_DIS_DECRYPT_MSK;
}
/* validate RXON structure is valid */
int iwl_check_rxon_cmd(struct iwl_priv *priv, struct iwl_rxon_context *ctx)
{
struct iwl_rxon_cmd *rxon = &ctx->staging;
u32 errors = 0;
if (rxon->flags & RXON_FLG_BAND_24G_MSK) {
if (rxon->flags & RXON_FLG_TGJ_NARROW_BAND_MSK) {
IWL_WARN(priv, "check 2.4G: wrong narrow\n");
errors |= BIT(0);
}
if (rxon->flags & RXON_FLG_RADAR_DETECT_MSK) {
IWL_WARN(priv, "check 2.4G: wrong radar\n");
errors |= BIT(1);
}
} else {
if (!(rxon->flags & RXON_FLG_SHORT_SLOT_MSK)) {
IWL_WARN(priv, "check 5.2G: not short slot!\n");
errors |= BIT(2);
}
if (rxon->flags & RXON_FLG_CCK_MSK) {
IWL_WARN(priv, "check 5.2G: CCK!\n");
errors |= BIT(3);
}
}
if ((rxon->node_addr[0] | rxon->bssid_addr[0]) & 0x1) {
IWL_WARN(priv, "mac/bssid mcast!\n");
errors |= BIT(4);
}
/* make sure basic rates 6Mbps and 1Mbps are supported */
if ((rxon->ofdm_basic_rates & IWL_RATE_6M_MASK) == 0 &&
(rxon->cck_basic_rates & IWL_RATE_1M_MASK) == 0) {
IWL_WARN(priv, "neither 1 nor 6 are basic\n");
errors |= BIT(5);
}
if (le16_to_cpu(rxon->assoc_id) > 2007) {
IWL_WARN(priv, "aid > 2007\n");
errors |= BIT(6);
}
if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK))
== (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) {
IWL_WARN(priv, "CCK and short slot\n");
errors |= BIT(7);
}
if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK))
== (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) {
IWL_WARN(priv, "CCK and auto detect");
errors |= BIT(8);
}
if ((rxon->flags & (RXON_FLG_AUTO_DETECT_MSK |
RXON_FLG_TGG_PROTECT_MSK)) ==
RXON_FLG_TGG_PROTECT_MSK) {
IWL_WARN(priv, "TGg but no auto-detect\n");
errors |= BIT(9);
}
if (rxon->channel == 0) {
IWL_WARN(priv, "zero channel is invalid\n");
errors |= BIT(10);
}
WARN(errors, "Invalid RXON (%#x), channel %d",
errors, le16_to_cpu(rxon->channel));
return errors ? -EINVAL : 0;
}
/**
* iwl_full_rxon_required - check if full RXON (vs RXON_ASSOC) cmd is needed
* @priv: staging_rxon is compared to active_rxon
*
* If the RXON structure is changing enough to require a new tune,
* or is clearing the RXON_FILTER_ASSOC_MSK, then return 1 to indicate that
* a new tune (full RXON command, rather than RXON_ASSOC cmd) is required.
*/
int iwl_full_rxon_required(struct iwl_priv *priv,
struct iwl_rxon_context *ctx)
{
const struct iwl_rxon_cmd *staging = &ctx->staging;
const struct iwl_rxon_cmd *active = &ctx->active;
#define CHK(cond) \
if ((cond)) { \
IWL_DEBUG_INFO(priv, "need full RXON - " #cond "\n"); \
return 1; \
}
#define CHK_NEQ(c1, c2) \
if ((c1) != (c2)) { \
IWL_DEBUG_INFO(priv, "need full RXON - " \
#c1 " != " #c2 " - %d != %d\n", \
(c1), (c2)); \
return 1; \
}
/* These items are only settable from the full RXON command */
CHK(!iwl_is_associated_ctx(ctx));
CHK(compare_ether_addr(staging->bssid_addr, active->bssid_addr));
CHK(compare_ether_addr(staging->node_addr, active->node_addr));
CHK(compare_ether_addr(staging->wlap_bssid_addr,
active->wlap_bssid_addr));
CHK_NEQ(staging->dev_type, active->dev_type);
CHK_NEQ(staging->channel, active->channel);
CHK_NEQ(staging->air_propagation, active->air_propagation);
CHK_NEQ(staging->ofdm_ht_single_stream_basic_rates,
active->ofdm_ht_single_stream_basic_rates);
CHK_NEQ(staging->ofdm_ht_dual_stream_basic_rates,
active->ofdm_ht_dual_stream_basic_rates);
CHK_NEQ(staging->ofdm_ht_triple_stream_basic_rates,
active->ofdm_ht_triple_stream_basic_rates);
CHK_NEQ(staging->assoc_id, active->assoc_id);
/* flags, filter_flags, ofdm_basic_rates, and cck_basic_rates can
* be updated with the RXON_ASSOC command -- however only some
* flag transitions are allowed using RXON_ASSOC */
/* Check if we are not switching bands */
CHK_NEQ(staging->flags & RXON_FLG_BAND_24G_MSK,
active->flags & RXON_FLG_BAND_24G_MSK);
/* Check if we are switching association toggle */
CHK_NEQ(staging->filter_flags & RXON_FILTER_ASSOC_MSK,
active->filter_flags & RXON_FILTER_ASSOC_MSK);
#undef CHK
#undef CHK_NEQ
return 0;
}
static void _iwl_set_rxon_ht(struct iwl_priv *priv,
struct iwl_ht_config *ht_conf,
struct iwl_rxon_context *ctx)
{
struct iwl_rxon_cmd *rxon = &ctx->staging;
if (!ctx->ht.enabled) {
rxon->flags &= ~(RXON_FLG_CHANNEL_MODE_MSK |
RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK |
RXON_FLG_HT40_PROT_MSK |
RXON_FLG_HT_PROT_MSK);
return;
}
/* FIXME: if the definition of ht.protection changed, the "translation"
* will be needed for rxon->flags
*/
rxon->flags |= cpu_to_le32(ctx->ht.protection << RXON_FLG_HT_OPERATING_MODE_POS);
/* Set up channel bandwidth:
* 20 MHz only, 20/40 mixed or pure 40 if ht40 ok */
/* clear the HT channel mode before set the mode */
rxon->flags &= ~(RXON_FLG_CHANNEL_MODE_MSK |
RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
if (iwl_is_ht40_tx_allowed(priv, ctx, NULL)) {
/* pure ht40 */
if (ctx->ht.protection == IEEE80211_HT_OP_MODE_PROTECTION_20MHZ) {
rxon->flags |= RXON_FLG_CHANNEL_MODE_PURE_40;
/* Note: control channel is opposite of extension channel */
switch (ctx->ht.extension_chan_offset) {
case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
rxon->flags &= ~RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
break;
case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
break;
}
} else {
/* Note: control channel is opposite of extension channel */
switch (ctx->ht.extension_chan_offset) {
case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
rxon->flags &= ~(RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
break;
case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
break;
case IEEE80211_HT_PARAM_CHA_SEC_NONE:
default:
/* channel location only valid if in Mixed mode */
IWL_ERR(priv, "invalid extension channel offset\n");
break;
}
}
} else {
rxon->flags |= RXON_FLG_CHANNEL_MODE_LEGACY;
}
iwlagn_set_rxon_chain(priv, ctx);
IWL_DEBUG_ASSOC(priv, "rxon flags 0x%X operation mode :0x%X "
"extension channel offset 0x%x\n",
le32_to_cpu(rxon->flags), ctx->ht.protection,
ctx->ht.extension_chan_offset);
}
void iwl_set_rxon_ht(struct iwl_priv *priv, struct iwl_ht_config *ht_conf)
{
struct iwl_rxon_context *ctx;
for_each_context(priv, ctx)
_iwl_set_rxon_ht(priv, ht_conf, ctx);
}
/* Return valid, unused, channel for a passive scan to reset the RF */
u8 iwl_get_single_channel_number(struct iwl_priv *priv,
enum ieee80211_band band)
{
const struct iwl_channel_info *ch_info;
int i;
u8 channel = 0;
u8 min, max;
struct iwl_rxon_context *ctx;
if (band == IEEE80211_BAND_5GHZ) {
min = 14;
max = priv->channel_count;
} else {
min = 0;
max = 14;
}
for (i = min; i < max; i++) {
bool busy = false;
for_each_context(priv, ctx) {
busy = priv->channel_info[i].channel ==
le16_to_cpu(ctx->staging.channel);
if (busy)
break;
}
if (busy)
continue;
channel = priv->channel_info[i].channel;
ch_info = iwl_get_channel_info(priv, band, channel);
if (is_channel_valid(ch_info))
break;
}
return channel;
}
/**
* iwl_set_rxon_channel - Set the band and channel values in staging RXON
* @ch: requested channel as a pointer to struct ieee80211_channel
* NOTE: Does not commit to the hardware; it sets appropriate bit fields
* in the staging RXON flag structure based on the ch->band
*/
void iwl_set_rxon_channel(struct iwl_priv *priv, struct ieee80211_channel *ch,
struct iwl_rxon_context *ctx)
{
enum ieee80211_band band = ch->band;
u16 channel = ch->hw_value;
if ((le16_to_cpu(ctx->staging.channel) == channel) &&
(priv->band == band))
return;
ctx->staging.channel = cpu_to_le16(channel);
if (band == IEEE80211_BAND_5GHZ)
ctx->staging.flags &= ~RXON_FLG_BAND_24G_MSK;
else
ctx->staging.flags |= RXON_FLG_BAND_24G_MSK;
priv->band = band;
IWL_DEBUG_INFO(priv, "Staging channel set to %d [%d]\n", channel, band);
}
void iwl_set_flags_for_band(struct iwl_priv *priv,
struct iwl_rxon_context *ctx,
enum ieee80211_band band,
struct ieee80211_vif *vif)
{
if (band == IEEE80211_BAND_5GHZ) {
ctx->staging.flags &=
~(RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK
| RXON_FLG_CCK_MSK);
ctx->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
} else {
/* Copied from iwl_post_associate() */
if (vif && vif->bss_conf.use_short_slot)
ctx->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
else
ctx->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
ctx->staging.flags |= RXON_FLG_BAND_24G_MSK;
ctx->staging.flags |= RXON_FLG_AUTO_DETECT_MSK;
ctx->staging.flags &= ~RXON_FLG_CCK_MSK;
}
}
/*
* initialize rxon structure with default values from eeprom
*/
void iwl_connection_init_rx_config(struct iwl_priv *priv,
struct iwl_rxon_context *ctx)
{
const struct iwl_channel_info *ch_info;
memset(&ctx->staging, 0, sizeof(ctx->staging));
if (!ctx->vif) {
ctx->staging.dev_type = ctx->unused_devtype;
} else switch (ctx->vif->type) {
case NL80211_IFTYPE_AP:
ctx->staging.dev_type = ctx->ap_devtype;
break;
case NL80211_IFTYPE_STATION:
ctx->staging.dev_type = ctx->station_devtype;
ctx->staging.filter_flags = RXON_FILTER_ACCEPT_GRP_MSK;
break;
case NL80211_IFTYPE_ADHOC:
ctx->staging.dev_type = ctx->ibss_devtype;
ctx->staging.flags = RXON_FLG_SHORT_PREAMBLE_MSK;
ctx->staging.filter_flags = RXON_FILTER_BCON_AWARE_MSK |
RXON_FILTER_ACCEPT_GRP_MSK;
break;
default:
IWL_ERR(priv, "Unsupported interface type %d\n",
ctx->vif->type);
break;
}
#if 0
/* TODO: Figure out when short_preamble would be set and cache from
* that */
if (!hw_to_local(priv->hw)->short_preamble)
ctx->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
else
ctx->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
#endif
ch_info = iwl_get_channel_info(priv, priv->band,
le16_to_cpu(ctx->active.channel));
if (!ch_info)
ch_info = &priv->channel_info[0];
ctx->staging.channel = cpu_to_le16(ch_info->channel);
priv->band = ch_info->band;
iwl_set_flags_for_band(priv, ctx, priv->band, ctx->vif);
ctx->staging.ofdm_basic_rates =
(IWL_OFDM_RATES_MASK >> IWL_FIRST_OFDM_RATE) & 0xFF;
ctx->staging.cck_basic_rates =
(IWL_CCK_RATES_MASK >> IWL_FIRST_CCK_RATE) & 0xF;
/* clear both MIX and PURE40 mode flag */
ctx->staging.flags &= ~(RXON_FLG_CHANNEL_MODE_MIXED |
RXON_FLG_CHANNEL_MODE_PURE_40);
if (ctx->vif)
memcpy(ctx->staging.node_addr, ctx->vif->addr, ETH_ALEN);
ctx->staging.ofdm_ht_single_stream_basic_rates = 0xff;
ctx->staging.ofdm_ht_dual_stream_basic_rates = 0xff;
ctx->staging.ofdm_ht_triple_stream_basic_rates = 0xff;
}
void iwl_set_rate(struct iwl_priv *priv)
{
const struct ieee80211_supported_band *hw = NULL;
struct ieee80211_rate *rate;
struct iwl_rxon_context *ctx;
int i;
hw = iwl_get_hw_mode(priv, priv->band);
if (!hw) {
IWL_ERR(priv, "Failed to set rate: unable to get hw mode\n");
return;
}
priv->active_rate = 0;
for (i = 0; i < hw->n_bitrates; i++) {
rate = &(hw->bitrates[i]);
if (rate->hw_value < IWL_RATE_COUNT_LEGACY)
priv->active_rate |= (1 << rate->hw_value);
}
IWL_DEBUG_RATE(priv, "Set active_rate = %0x\n", priv->active_rate);
for_each_context(priv, ctx) {
ctx->staging.cck_basic_rates =
(IWL_CCK_BASIC_RATES_MASK >> IWL_FIRST_CCK_RATE) & 0xF;
ctx->staging.ofdm_basic_rates =
(IWL_OFDM_BASIC_RATES_MASK >> IWL_FIRST_OFDM_RATE) & 0xFF;
}
}
void iwl_chswitch_done(struct iwl_priv *priv, bool is_success)
{
/*
* MULTI-FIXME
* See iwlagn_mac_channel_switch.
*/
struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
if (test_bit(STATUS_EXIT_PENDING, &priv->shrd->status))
return;
if (test_and_clear_bit(STATUS_CHANNEL_SWITCH_PENDING,
&priv->shrd->status))
ieee80211_chswitch_done(ctx->vif, is_success);
}
#ifdef CONFIG_IWLWIFI_DEBUG
void iwl_print_rx_config_cmd(struct iwl_priv *priv,
enum iwl_rxon_context_id ctxid)
{
struct iwl_rxon_context *ctx = &priv->contexts[ctxid];
struct iwl_rxon_cmd *rxon = &ctx->staging;
IWL_DEBUG_RADIO(priv, "RX CONFIG:\n");
iwl_print_hex_dump(priv, IWL_DL_RADIO, (u8 *) rxon, sizeof(*rxon));
IWL_DEBUG_RADIO(priv, "u16 channel: 0x%x\n", le16_to_cpu(rxon->channel));
IWL_DEBUG_RADIO(priv, "u32 flags: 0x%08X\n", le32_to_cpu(rxon->flags));
IWL_DEBUG_RADIO(priv, "u32 filter_flags: 0x%08x\n",
le32_to_cpu(rxon->filter_flags));
IWL_DEBUG_RADIO(priv, "u8 dev_type: 0x%x\n", rxon->dev_type);
IWL_DEBUG_RADIO(priv, "u8 ofdm_basic_rates: 0x%02x\n",
rxon->ofdm_basic_rates);
IWL_DEBUG_RADIO(priv, "u8 cck_basic_rates: 0x%02x\n", rxon->cck_basic_rates);
IWL_DEBUG_RADIO(priv, "u8[6] node_addr: %pM\n", rxon->node_addr);
IWL_DEBUG_RADIO(priv, "u8[6] bssid_addr: %pM\n", rxon->bssid_addr);
IWL_DEBUG_RADIO(priv, "u16 assoc_id: 0x%x\n", le16_to_cpu(rxon->assoc_id));
}
#endif
static void iwlagn_fw_error(struct iwl_priv *priv, bool ondemand)
{
unsigned int reload_msec;
unsigned long reload_jiffies;
#ifdef CONFIG_IWLWIFI_DEBUG
if (iwl_have_debug_level(IWL_DL_FW_ERRORS))
iwl_print_rx_config_cmd(priv, IWL_RXON_CTX_BSS);
#endif
/* Set the FW error flag -- cleared on iwl_down */
set_bit(STATUS_FW_ERROR, &priv->shrd->status);
/* Cancel currently queued command. */
clear_bit(STATUS_HCMD_ACTIVE, &priv->shrd->status);
iwl_abort_notification_waits(priv->shrd);
/* Keep the restart process from trying to send host
* commands by clearing the ready bit */
clear_bit(STATUS_READY, &priv->shrd->status);
wake_up(&priv->shrd->wait_command_queue);
if (!ondemand) {
/*
* If firmware keep reloading, then it indicate something
* serious wrong and firmware having problem to recover
* from it. Instead of keep trying which will fill the syslog
* and hang the system, let's just stop it
*/
reload_jiffies = jiffies;
reload_msec = jiffies_to_msecs((long) reload_jiffies -
(long) priv->reload_jiffies);
priv->reload_jiffies = reload_jiffies;
if (reload_msec <= IWL_MIN_RELOAD_DURATION) {
priv->reload_count++;
if (priv->reload_count >= IWL_MAX_CONTINUE_RELOAD_CNT) {
IWL_ERR(priv, "BUG_ON, Stop restarting\n");
return;
}
} else
priv->reload_count = 0;
}
if (!test_bit(STATUS_EXIT_PENDING, &priv->shrd->status)) {
if (iwlagn_mod_params.restart_fw) {
IWL_DEBUG_FW_ERRORS(priv,
"Restarting adapter due to uCode error.\n");
queue_work(priv->workqueue, &priv->restart);
} else
IWL_DEBUG_FW_ERRORS(priv,
"Detected FW error, but not restarting\n");
}
}
int iwl_set_tx_power(struct iwl_priv *priv, s8 tx_power, bool force)
{
int ret;
s8 prev_tx_power;
bool defer;
struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
lockdep_assert_held(&priv->shrd->mutex);
if (priv->tx_power_user_lmt == tx_power && !force)
return 0;
if (tx_power < IWLAGN_TX_POWER_TARGET_POWER_MIN) {
IWL_WARN(priv,
"Requested user TXPOWER %d below lower limit %d.\n",
tx_power,
IWLAGN_TX_POWER_TARGET_POWER_MIN);
return -EINVAL;
}
if (tx_power > priv->tx_power_device_lmt) {
IWL_WARN(priv,
"Requested user TXPOWER %d above upper limit %d.\n",
tx_power, priv->tx_power_device_lmt);
return -EINVAL;
}
if (!iwl_is_ready_rf(priv->shrd))
return -EIO;
/* scan complete and commit_rxon use tx_power_next value,
* it always need to be updated for newest request */
priv->tx_power_next = tx_power;
/* do not set tx power when scanning or channel changing */
defer = test_bit(STATUS_SCANNING, &priv->shrd->status) ||
memcmp(&ctx->active, &ctx->staging, sizeof(ctx->staging));
if (defer && !force) {
IWL_DEBUG_INFO(priv, "Deferring tx power set\n");
return 0;
}
prev_tx_power = priv->tx_power_user_lmt;
priv->tx_power_user_lmt = tx_power;
ret = iwlagn_send_tx_power(priv);
/* if fail to set tx_power, restore the orig. tx power */
if (ret) {
priv->tx_power_user_lmt = prev_tx_power;
priv->tx_power_next = prev_tx_power;
}
return ret;
}
void iwl_send_bt_config(struct iwl_priv *priv)
{
struct iwl_bt_cmd bt_cmd = {
.lead_time = BT_LEAD_TIME_DEF,
.max_kill = BT_MAX_KILL_DEF,
.kill_ack_mask = 0,
.kill_cts_mask = 0,
};
if (!iwlagn_mod_params.bt_coex_active)
bt_cmd.flags = BT_COEX_DISABLE;
else
bt_cmd.flags = BT_COEX_ENABLE;
priv->bt_enable_flag = bt_cmd.flags;
IWL_DEBUG_INFO(priv, "BT coex %s\n",
(bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active");
if (iwl_trans_send_cmd_pdu(trans(priv), REPLY_BT_CONFIG,
CMD_SYNC, sizeof(struct iwl_bt_cmd), &bt_cmd))
IWL_ERR(priv, "failed to send BT Coex Config\n");
}
int iwl_send_statistics_request(struct iwl_priv *priv, u8 flags, bool clear)
{
struct iwl_statistics_cmd statistics_cmd = {
.configuration_flags =
clear ? IWL_STATS_CONF_CLEAR_STATS : 0,
};
if (flags & CMD_ASYNC)
return iwl_trans_send_cmd_pdu(trans(priv), REPLY_STATISTICS_CMD,
CMD_ASYNC,
sizeof(struct iwl_statistics_cmd),
&statistics_cmd);
else
return iwl_trans_send_cmd_pdu(trans(priv), REPLY_STATISTICS_CMD,
CMD_SYNC,
sizeof(struct iwl_statistics_cmd),
&statistics_cmd);
}
#ifdef CONFIG_IWLWIFI_DEBUGFS
#define IWL_TRAFFIC_DUMP_SIZE (IWL_TRAFFIC_ENTRY_SIZE * IWL_TRAFFIC_ENTRIES)
void iwl_reset_traffic_log(struct iwl_priv *priv)
{
priv->tx_traffic_idx = 0;
priv->rx_traffic_idx = 0;
if (priv->tx_traffic)
memset(priv->tx_traffic, 0, IWL_TRAFFIC_DUMP_SIZE);
if (priv->rx_traffic)
memset(priv->rx_traffic, 0, IWL_TRAFFIC_DUMP_SIZE);
}
int iwl_alloc_traffic_mem(struct iwl_priv *priv)
{
u32 traffic_size = IWL_TRAFFIC_DUMP_SIZE;
if (iwl_have_debug_level(IWL_DL_TX)) {
if (!priv->tx_traffic) {
priv->tx_traffic =
kzalloc(traffic_size, GFP_KERNEL);
if (!priv->tx_traffic)
return -ENOMEM;
}
}
if (iwl_have_debug_level(IWL_DL_RX)) {
if (!priv->rx_traffic) {
priv->rx_traffic =
kzalloc(traffic_size, GFP_KERNEL);
if (!priv->rx_traffic)
return -ENOMEM;
}
}
iwl_reset_traffic_log(priv);
return 0;
}
void iwl_free_traffic_mem(struct iwl_priv *priv)
{
kfree(priv->tx_traffic);
priv->tx_traffic = NULL;
kfree(priv->rx_traffic);
priv->rx_traffic = NULL;
}
void iwl_dbg_log_tx_data_frame(struct iwl_priv *priv,
u16 length, struct ieee80211_hdr *header)
{
__le16 fc;
u16 len;
if (likely(!iwl_have_debug_level(IWL_DL_TX)))
return;
if (!priv->tx_traffic)
return;
fc = header->frame_control;
if (ieee80211_is_data(fc)) {
len = (length > IWL_TRAFFIC_ENTRY_SIZE)
? IWL_TRAFFIC_ENTRY_SIZE : length;
memcpy((priv->tx_traffic +
(priv->tx_traffic_idx * IWL_TRAFFIC_ENTRY_SIZE)),
header, len);
priv->tx_traffic_idx =
(priv->tx_traffic_idx + 1) % IWL_TRAFFIC_ENTRIES;
}
}
void iwl_dbg_log_rx_data_frame(struct iwl_priv *priv,
u16 length, struct ieee80211_hdr *header)
{
__le16 fc;
u16 len;
if (likely(!iwl_have_debug_level(IWL_DL_RX)))
return;
if (!priv->rx_traffic)
return;
fc = header->frame_control;
if (ieee80211_is_data(fc)) {
len = (length > IWL_TRAFFIC_ENTRY_SIZE)
? IWL_TRAFFIC_ENTRY_SIZE : length;
memcpy((priv->rx_traffic +
(priv->rx_traffic_idx * IWL_TRAFFIC_ENTRY_SIZE)),
header, len);
priv->rx_traffic_idx =
(priv->rx_traffic_idx + 1) % IWL_TRAFFIC_ENTRIES;
}
}
const char *get_mgmt_string(int cmd)
{
switch (cmd) {
IWL_CMD(MANAGEMENT_ASSOC_REQ);
IWL_CMD(MANAGEMENT_ASSOC_RESP);
IWL_CMD(MANAGEMENT_REASSOC_REQ);
IWL_CMD(MANAGEMENT_REASSOC_RESP);
IWL_CMD(MANAGEMENT_PROBE_REQ);
IWL_CMD(MANAGEMENT_PROBE_RESP);
IWL_CMD(MANAGEMENT_BEACON);
IWL_CMD(MANAGEMENT_ATIM);
IWL_CMD(MANAGEMENT_DISASSOC);
IWL_CMD(MANAGEMENT_AUTH);
IWL_CMD(MANAGEMENT_DEAUTH);
IWL_CMD(MANAGEMENT_ACTION);
default:
return "UNKNOWN";
}
}
const char *get_ctrl_string(int cmd)
{
switch (cmd) {
IWL_CMD(CONTROL_BACK_REQ);
IWL_CMD(CONTROL_BACK);
IWL_CMD(CONTROL_PSPOLL);
IWL_CMD(CONTROL_RTS);
IWL_CMD(CONTROL_CTS);
IWL_CMD(CONTROL_ACK);
IWL_CMD(CONTROL_CFEND);
IWL_CMD(CONTROL_CFENDACK);
default:
return "UNKNOWN";
}
}
void iwl_clear_traffic_stats(struct iwl_priv *priv)
{
memset(&priv->tx_stats, 0, sizeof(struct traffic_stats));
memset(&priv->rx_stats, 0, sizeof(struct traffic_stats));
}
/*
* if CONFIG_IWLWIFI_DEBUGFS defined, iwl_update_stats function will
* record all the MGMT, CTRL and DATA pkt for both TX and Rx pass.
* Use debugFs to display the rx/rx_statistics
* if CONFIG_IWLWIFI_DEBUGFS not being defined, then no MGMT and CTRL
* information will be recorded, but DATA pkt still will be recorded
* for the reason of iwl_led.c need to control the led blinking based on
* number of tx and rx data.
*
*/
void iwl_update_stats(struct iwl_priv *priv, bool is_tx, __le16 fc, u16 len)
{
struct traffic_stats *stats;
if (is_tx)
stats = &priv->tx_stats;
else
stats = &priv->rx_stats;
if (ieee80211_is_mgmt(fc)) {
switch (fc & cpu_to_le16(IEEE80211_FCTL_STYPE)) {
case cpu_to_le16(IEEE80211_STYPE_ASSOC_REQ):
stats->mgmt[MANAGEMENT_ASSOC_REQ]++;
break;
case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
stats->mgmt[MANAGEMENT_ASSOC_RESP]++;
break;
case cpu_to_le16(IEEE80211_STYPE_REASSOC_REQ):
stats->mgmt[MANAGEMENT_REASSOC_REQ]++;
break;
case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
stats->mgmt[MANAGEMENT_REASSOC_RESP]++;
break;
case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
stats->mgmt[MANAGEMENT_PROBE_REQ]++;
break;
case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
stats->mgmt[MANAGEMENT_PROBE_RESP]++;
break;
case cpu_to_le16(IEEE80211_STYPE_BEACON):
stats->mgmt[MANAGEMENT_BEACON]++;
break;
case cpu_to_le16(IEEE80211_STYPE_ATIM):
stats->mgmt[MANAGEMENT_ATIM]++;
break;
case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
stats->mgmt[MANAGEMENT_DISASSOC]++;
break;
case cpu_to_le16(IEEE80211_STYPE_AUTH):
stats->mgmt[MANAGEMENT_AUTH]++;
break;
case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
stats->mgmt[MANAGEMENT_DEAUTH]++;
break;
case cpu_to_le16(IEEE80211_STYPE_ACTION):
stats->mgmt[MANAGEMENT_ACTION]++;
break;
}
} else if (ieee80211_is_ctl(fc)) {
switch (fc & cpu_to_le16(IEEE80211_FCTL_STYPE)) {
case cpu_to_le16(IEEE80211_STYPE_BACK_REQ):
stats->ctrl[CONTROL_BACK_REQ]++;
break;
case cpu_to_le16(IEEE80211_STYPE_BACK):
stats->ctrl[CONTROL_BACK]++;
break;
case cpu_to_le16(IEEE80211_STYPE_PSPOLL):
stats->ctrl[CONTROL_PSPOLL]++;
break;
case cpu_to_le16(IEEE80211_STYPE_RTS):
stats->ctrl[CONTROL_RTS]++;
break;
case cpu_to_le16(IEEE80211_STYPE_CTS):
stats->ctrl[CONTROL_CTS]++;
break;
case cpu_to_le16(IEEE80211_STYPE_ACK):
stats->ctrl[CONTROL_ACK]++;
break;
case cpu_to_le16(IEEE80211_STYPE_CFEND):
stats->ctrl[CONTROL_CFEND]++;
break;
case cpu_to_le16(IEEE80211_STYPE_CFENDACK):
stats->ctrl[CONTROL_CFENDACK]++;
break;
}
} else {
/* data */
stats->data_cnt++;
stats->data_bytes += len;
}
}
#endif
static void iwl_force_rf_reset(struct iwl_priv *priv)
{
if (test_bit(STATUS_EXIT_PENDING, &priv->shrd->status))
return;
if (!iwl_is_any_associated(priv)) {
IWL_DEBUG_SCAN(priv, "force reset rejected: not associated\n");
return;
}
/*
* There is no easy and better way to force reset the radio,
* the only known method is switching channel which will force to
* reset and tune the radio.
* Use internal short scan (single channel) operation to should
* achieve this objective.
* Driver should reset the radio when number of consecutive missed
* beacon, or any other uCode error condition detected.
*/
IWL_DEBUG_INFO(priv, "perform radio reset.\n");
iwl_internal_short_hw_scan(priv);
}
int iwl_force_reset(struct iwl_priv *priv, int mode, bool external)
{
struct iwl_force_reset *force_reset;
if (test_bit(STATUS_EXIT_PENDING, &priv->shrd->status))
return -EINVAL;
if (mode >= IWL_MAX_FORCE_RESET) {
IWL_DEBUG_INFO(priv, "invalid reset request.\n");
return -EINVAL;
}
force_reset = &priv->force_reset[mode];
force_reset->reset_request_count++;
if (!external) {
if (force_reset->last_force_reset_jiffies &&
time_after(force_reset->last_force_reset_jiffies +
force_reset->reset_duration, jiffies)) {
IWL_DEBUG_INFO(priv, "force reset rejected\n");
force_reset->reset_reject_count++;
return -EAGAIN;
}
}
force_reset->reset_success_count++;
force_reset->last_force_reset_jiffies = jiffies;
IWL_DEBUG_INFO(priv, "perform force reset (%d)\n", mode);
switch (mode) {
case IWL_RF_RESET:
iwl_force_rf_reset(priv);
break;
case IWL_FW_RESET:
/*
* if the request is from external(ex: debugfs),
* then always perform the request in regardless the module
* parameter setting
* if the request is from internal (uCode error or driver
* detect failure), then fw_restart module parameter
* need to be check before performing firmware reload
*/
if (!external && !iwlagn_mod_params.restart_fw) {
IWL_DEBUG_INFO(priv, "Cancel firmware reload based on "
"module parameter setting\n");
break;
}
IWL_ERR(priv, "On demand firmware reload\n");
iwlagn_fw_error(priv, true);
break;
}
return 0;
}
int iwl_cmd_echo_test(struct iwl_priv *priv)
{
int ret;
struct iwl_host_cmd cmd = {
.id = REPLY_ECHO,
.len = { 0 },
.flags = CMD_SYNC,
};
ret = iwl_trans_send_cmd(trans(priv), &cmd);
if (ret)
IWL_ERR(priv, "echo testing fail: 0X%x\n", ret);
else
IWL_DEBUG_INFO(priv, "echo testing pass\n");
return ret;
}
static inline int iwl_check_stuck_queue(struct iwl_priv *priv, int txq)
{
if (iwl_trans_check_stuck_queue(trans(priv), txq)) {
int ret;
ret = iwl_force_reset(priv, IWL_FW_RESET, false);
return (ret == -EAGAIN) ? 0 : 1;
}
return 0;
}
/*
* Making watchdog tick be a quarter of timeout assure we will
* discover the queue hung between timeout and 1.25*timeout
*/
#define IWL_WD_TICK(timeout) ((timeout) / 4)
/*
* Watchdog timer callback, we check each tx queue for stuck, if if hung
* we reset the firmware. If everything is fine just rearm the timer.
*/
void iwl_bg_watchdog(unsigned long data)
{
struct iwl_priv *priv = (struct iwl_priv *)data;
int cnt;
unsigned long timeout;
if (test_bit(STATUS_EXIT_PENDING, &priv->shrd->status))
return;
if (iwl_is_rfkill(priv->shrd))
return;
timeout = cfg(priv)->base_params->wd_timeout;
if (timeout == 0)
return;
/* monitor and check for stuck queues */
for (cnt = 0; cnt < hw_params(priv).max_txq_num; cnt++)
if (iwl_check_stuck_queue(priv, cnt))
return;
mod_timer(&priv->watchdog, jiffies +
msecs_to_jiffies(IWL_WD_TICK(timeout)));
}
void iwl_setup_watchdog(struct iwl_priv *priv)
{
unsigned int timeout = cfg(priv)->base_params->wd_timeout;
if (!iwlagn_mod_params.wd_disable) {
/* use system default */
if (timeout && !cfg(priv)->base_params->wd_disable)
mod_timer(&priv->watchdog,
jiffies +
msecs_to_jiffies(IWL_WD_TICK(timeout)));
else
del_timer(&priv->watchdog);
} else {
/* module parameter overwrite default configuration */
if (timeout && iwlagn_mod_params.wd_disable == 2)
mod_timer(&priv->watchdog,
jiffies +
msecs_to_jiffies(IWL_WD_TICK(timeout)));
else
del_timer(&priv->watchdog);
}
}
/**
* iwl_beacon_time_mask_low - mask of lower 32 bit of beacon time
* @priv -- pointer to iwl_priv data structure
* @tsf_bits -- number of bits need to shift for masking)
*/
static inline u32 iwl_beacon_time_mask_low(struct iwl_priv *priv,
u16 tsf_bits)
{
return (1 << tsf_bits) - 1;
}
/**
* iwl_beacon_time_mask_high - mask of higher 32 bit of beacon time
* @priv -- pointer to iwl_priv data structure
* @tsf_bits -- number of bits need to shift for masking)
*/
static inline u32 iwl_beacon_time_mask_high(struct iwl_priv *priv,
u16 tsf_bits)
{
return ((1 << (32 - tsf_bits)) - 1) << tsf_bits;
}
/*
* extended beacon time format
* time in usec will be changed into a 32-bit value in extended:internal format
* the extended part is the beacon counts
* the internal part is the time in usec within one beacon interval
*/
u32 iwl_usecs_to_beacons(struct iwl_priv *priv, u32 usec, u32 beacon_interval)
{
u32 quot;
u32 rem;
u32 interval = beacon_interval * TIME_UNIT;
if (!interval || !usec)
return 0;
quot = (usec / interval) &
(iwl_beacon_time_mask_high(priv, IWLAGN_EXT_BEACON_TIME_POS) >>
IWLAGN_EXT_BEACON_TIME_POS);
rem = (usec % interval) & iwl_beacon_time_mask_low(priv,
IWLAGN_EXT_BEACON_TIME_POS);
return (quot << IWLAGN_EXT_BEACON_TIME_POS) + rem;
}
/* base is usually what we get from ucode with each received frame,
* the same as HW timer counter counting down
*/
__le32 iwl_add_beacon_time(struct iwl_priv *priv, u32 base,
u32 addon, u32 beacon_interval)
{
u32 base_low = base & iwl_beacon_time_mask_low(priv,
IWLAGN_EXT_BEACON_TIME_POS);
u32 addon_low = addon & iwl_beacon_time_mask_low(priv,
IWLAGN_EXT_BEACON_TIME_POS);
u32 interval = beacon_interval * TIME_UNIT;
u32 res = (base & iwl_beacon_time_mask_high(priv,
IWLAGN_EXT_BEACON_TIME_POS)) +
(addon & iwl_beacon_time_mask_high(priv,
IWLAGN_EXT_BEACON_TIME_POS));
if (base_low > addon_low)
res += base_low - addon_low;
else if (base_low < addon_low) {
res += interval + base_low - addon_low;
res += (1 << IWLAGN_EXT_BEACON_TIME_POS);
} else
res += (1 << IWLAGN_EXT_BEACON_TIME_POS);
return cpu_to_le32(res);
}
void iwl_nic_error(struct iwl_op_mode *op_mode)
{
struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
iwlagn_fw_error(priv, false);
}
void iwl_set_hw_rfkill_state(struct iwl_op_mode *op_mode, bool state)
{
struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
wiphy_rfkill_set_hw_state(priv->hw->wiphy, state);
}
void iwl_nic_config(struct iwl_priv *priv)
{
cfg(priv)->lib->nic_config(priv);
}
void iwl_free_skb(struct iwl_op_mode *op_mode, struct sk_buff *skb)
{
struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
struct ieee80211_tx_info *info;
info = IEEE80211_SKB_CB(skb);
kmem_cache_free(priv->tx_cmd_pool, (info->driver_data[1]));
dev_kfree_skb_any(skb);
}
void iwl_stop_sw_queue(struct iwl_op_mode *op_mode, u8 ac)
{
struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
ieee80211_stop_queue(priv->hw, ac);
}
void iwl_wake_sw_queue(struct iwl_op_mode *op_mode, u8 ac)
{
struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
ieee80211_wake_queue(priv->hw, ac);
}