linux-sg2042/arch/arm64/kernel/signal32.c

597 lines
17 KiB
C
Raw Normal View History

/*
* Based on arch/arm/kernel/signal.c
*
* Copyright (C) 1995-2009 Russell King
* Copyright (C) 2012 ARM Ltd.
* Modified by Will Deacon <will.deacon@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/compat.h>
#include <linux/signal.h>
#include <linux/syscalls.h>
#include <linux/ratelimit.h>
#include <asm/esr.h>
#include <asm/fpsimd.h>
#include <asm/signal32.h>
#include <linux/uaccess.h>
#include <asm/unistd.h>
struct compat_sigcontext {
/* We always set these two fields to 0 */
compat_ulong_t trap_no;
compat_ulong_t error_code;
compat_ulong_t oldmask;
compat_ulong_t arm_r0;
compat_ulong_t arm_r1;
compat_ulong_t arm_r2;
compat_ulong_t arm_r3;
compat_ulong_t arm_r4;
compat_ulong_t arm_r5;
compat_ulong_t arm_r6;
compat_ulong_t arm_r7;
compat_ulong_t arm_r8;
compat_ulong_t arm_r9;
compat_ulong_t arm_r10;
compat_ulong_t arm_fp;
compat_ulong_t arm_ip;
compat_ulong_t arm_sp;
compat_ulong_t arm_lr;
compat_ulong_t arm_pc;
compat_ulong_t arm_cpsr;
compat_ulong_t fault_address;
};
struct compat_ucontext {
compat_ulong_t uc_flags;
compat_uptr_t uc_link;
compat_stack_t uc_stack;
struct compat_sigcontext uc_mcontext;
compat_sigset_t uc_sigmask;
int __unused[32 - (sizeof (compat_sigset_t) / sizeof (int))];
compat_ulong_t uc_regspace[128] __attribute__((__aligned__(8)));
};
struct compat_vfp_sigframe {
compat_ulong_t magic;
compat_ulong_t size;
struct compat_user_vfp {
compat_u64 fpregs[32];
compat_ulong_t fpscr;
} ufp;
struct compat_user_vfp_exc {
compat_ulong_t fpexc;
compat_ulong_t fpinst;
compat_ulong_t fpinst2;
} ufp_exc;
} __attribute__((__aligned__(8)));
#define VFP_MAGIC 0x56465001
#define VFP_STORAGE_SIZE sizeof(struct compat_vfp_sigframe)
#define FSR_WRITE_SHIFT (11)
struct compat_aux_sigframe {
struct compat_vfp_sigframe vfp;
/* Something that isn't a valid magic number for any coprocessor. */
unsigned long end_magic;
} __attribute__((__aligned__(8)));
struct compat_sigframe {
struct compat_ucontext uc;
compat_ulong_t retcode[2];
};
struct compat_rt_sigframe {
struct compat_siginfo info;
struct compat_sigframe sig;
};
#define _BLOCKABLE (~(sigmask(SIGKILL) | sigmask(SIGSTOP)))
static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
{
compat_sigset_t cset;
cset.sig[0] = set->sig[0] & 0xffffffffull;
cset.sig[1] = set->sig[0] >> 32;
return copy_to_user(uset, &cset, sizeof(*uset));
}
static inline int get_sigset_t(sigset_t *set,
const compat_sigset_t __user *uset)
{
compat_sigset_t s32;
if (copy_from_user(&s32, uset, sizeof(*uset)))
return -EFAULT;
set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
return 0;
}
int copy_siginfo_to_user32(compat_siginfo_t __user *to, const siginfo_t *from)
{
int err;
if (!access_ok(VERIFY_WRITE, to, sizeof(*to)))
return -EFAULT;
/* If you change siginfo_t structure, please be sure
* this code is fixed accordingly.
* It should never copy any pad contained in the structure
* to avoid security leaks, but must copy the generic
* 3 ints plus the relevant union member.
* This routine must convert siginfo from 64bit to 32bit as well
* at the same time.
*/
err = __put_user(from->si_signo, &to->si_signo);
err |= __put_user(from->si_errno, &to->si_errno);
signal: Remove kernel interal si_code magic struct siginfo is a union and the kernel since 2.4 has been hiding a union tag in the high 16bits of si_code using the values: __SI_KILL __SI_TIMER __SI_POLL __SI_FAULT __SI_CHLD __SI_RT __SI_MESGQ __SI_SYS While this looks plausible on the surface, in practice this situation has not worked well. - Injected positive signals are not copied to user space properly unless they have these magic high bits set. - Injected positive signals are not reported properly by signalfd unless they have these magic high bits set. - These kernel internal values leaked to userspace via ptrace_peek_siginfo - It was possible to inject these kernel internal values and cause the the kernel to misbehave. - Kernel developers got confused and expected these kernel internal values in userspace in kernel self tests. - Kernel developers got confused and set si_code to __SI_FAULT which is SI_USER in userspace which causes userspace to think an ordinary user sent the signal and that it was not kernel generated. - The values make it impossible to reorganize the code to transform siginfo_copy_to_user into a plain copy_to_user. As si_code must be massaged before being passed to userspace. So remove these kernel internal si codes and make the kernel code simpler and more maintainable. To replace these kernel internal magic si_codes introduce the helper function siginfo_layout, that takes a signal number and an si_code and computes which union member of siginfo is being used. Have siginfo_layout return an enumeration so that gcc will have enough information to warn if a switch statement does not handle all of union members. A couple of architectures have a messed up ABI that defines signal specific duplications of SI_USER which causes more special cases in siginfo_layout than I would like. The good news is only problem architectures pay the cost. Update all of the code that used the previous magic __SI_ values to use the new SIL_ values and to call siginfo_layout to get those values. Escept where not all of the cases are handled remove the defaults in the switch statements so that if a new case is missed in the future the lack will show up at compile time. Modify the code that copies siginfo si_code to userspace to just copy the value and not cast si_code to a short first. The high bits are no longer used to hold a magic union member. Fixup the siginfo header files to stop including the __SI_ values in their constants and for the headers that were missing it to properly update the number of si_codes for each signal type. The fixes to copy_siginfo_from_user32 implementations has the interesting property that several of them perviously should never have worked as the __SI_ values they depended up where kernel internal. With that dependency gone those implementations should work much better. The idea of not passing the __SI_ values out to userspace and then not reinserting them has been tested with criu and criu worked without changes. Ref: 2.4.0-test1 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-07-17 11:36:59 +08:00
err |= __put_user(from->si_code, &to->si_code);
if (from->si_code < 0)
err |= __copy_to_user(&to->_sifields._pad, &from->_sifields._pad,
SI_PAD_SIZE);
signal: Remove kernel interal si_code magic struct siginfo is a union and the kernel since 2.4 has been hiding a union tag in the high 16bits of si_code using the values: __SI_KILL __SI_TIMER __SI_POLL __SI_FAULT __SI_CHLD __SI_RT __SI_MESGQ __SI_SYS While this looks plausible on the surface, in practice this situation has not worked well. - Injected positive signals are not copied to user space properly unless they have these magic high bits set. - Injected positive signals are not reported properly by signalfd unless they have these magic high bits set. - These kernel internal values leaked to userspace via ptrace_peek_siginfo - It was possible to inject these kernel internal values and cause the the kernel to misbehave. - Kernel developers got confused and expected these kernel internal values in userspace in kernel self tests. - Kernel developers got confused and set si_code to __SI_FAULT which is SI_USER in userspace which causes userspace to think an ordinary user sent the signal and that it was not kernel generated. - The values make it impossible to reorganize the code to transform siginfo_copy_to_user into a plain copy_to_user. As si_code must be massaged before being passed to userspace. So remove these kernel internal si codes and make the kernel code simpler and more maintainable. To replace these kernel internal magic si_codes introduce the helper function siginfo_layout, that takes a signal number and an si_code and computes which union member of siginfo is being used. Have siginfo_layout return an enumeration so that gcc will have enough information to warn if a switch statement does not handle all of union members. A couple of architectures have a messed up ABI that defines signal specific duplications of SI_USER which causes more special cases in siginfo_layout than I would like. The good news is only problem architectures pay the cost. Update all of the code that used the previous magic __SI_ values to use the new SIL_ values and to call siginfo_layout to get those values. Escept where not all of the cases are handled remove the defaults in the switch statements so that if a new case is missed in the future the lack will show up at compile time. Modify the code that copies siginfo si_code to userspace to just copy the value and not cast si_code to a short first. The high bits are no longer used to hold a magic union member. Fixup the siginfo header files to stop including the __SI_ values in their constants and for the headers that were missing it to properly update the number of si_codes for each signal type. The fixes to copy_siginfo_from_user32 implementations has the interesting property that several of them perviously should never have worked as the __SI_ values they depended up where kernel internal. With that dependency gone those implementations should work much better. The idea of not passing the __SI_ values out to userspace and then not reinserting them has been tested with criu and criu worked without changes. Ref: 2.4.0-test1 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-07-17 11:36:59 +08:00
else switch (siginfo_layout(from->si_signo, from->si_code)) {
case SIL_KILL:
err |= __put_user(from->si_pid, &to->si_pid);
err |= __put_user(from->si_uid, &to->si_uid);
break;
signal: Remove kernel interal si_code magic struct siginfo is a union and the kernel since 2.4 has been hiding a union tag in the high 16bits of si_code using the values: __SI_KILL __SI_TIMER __SI_POLL __SI_FAULT __SI_CHLD __SI_RT __SI_MESGQ __SI_SYS While this looks plausible on the surface, in practice this situation has not worked well. - Injected positive signals are not copied to user space properly unless they have these magic high bits set. - Injected positive signals are not reported properly by signalfd unless they have these magic high bits set. - These kernel internal values leaked to userspace via ptrace_peek_siginfo - It was possible to inject these kernel internal values and cause the the kernel to misbehave. - Kernel developers got confused and expected these kernel internal values in userspace in kernel self tests. - Kernel developers got confused and set si_code to __SI_FAULT which is SI_USER in userspace which causes userspace to think an ordinary user sent the signal and that it was not kernel generated. - The values make it impossible to reorganize the code to transform siginfo_copy_to_user into a plain copy_to_user. As si_code must be massaged before being passed to userspace. So remove these kernel internal si codes and make the kernel code simpler and more maintainable. To replace these kernel internal magic si_codes introduce the helper function siginfo_layout, that takes a signal number and an si_code and computes which union member of siginfo is being used. Have siginfo_layout return an enumeration so that gcc will have enough information to warn if a switch statement does not handle all of union members. A couple of architectures have a messed up ABI that defines signal specific duplications of SI_USER which causes more special cases in siginfo_layout than I would like. The good news is only problem architectures pay the cost. Update all of the code that used the previous magic __SI_ values to use the new SIL_ values and to call siginfo_layout to get those values. Escept where not all of the cases are handled remove the defaults in the switch statements so that if a new case is missed in the future the lack will show up at compile time. Modify the code that copies siginfo si_code to userspace to just copy the value and not cast si_code to a short first. The high bits are no longer used to hold a magic union member. Fixup the siginfo header files to stop including the __SI_ values in their constants and for the headers that were missing it to properly update the number of si_codes for each signal type. The fixes to copy_siginfo_from_user32 implementations has the interesting property that several of them perviously should never have worked as the __SI_ values they depended up where kernel internal. With that dependency gone those implementations should work much better. The idea of not passing the __SI_ values out to userspace and then not reinserting them has been tested with criu and criu worked without changes. Ref: 2.4.0-test1 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-07-17 11:36:59 +08:00
case SIL_TIMER:
err |= __put_user(from->si_tid, &to->si_tid);
err |= __put_user(from->si_overrun, &to->si_overrun);
err |= __put_user(from->si_int, &to->si_int);
break;
signal: Remove kernel interal si_code magic struct siginfo is a union and the kernel since 2.4 has been hiding a union tag in the high 16bits of si_code using the values: __SI_KILL __SI_TIMER __SI_POLL __SI_FAULT __SI_CHLD __SI_RT __SI_MESGQ __SI_SYS While this looks plausible on the surface, in practice this situation has not worked well. - Injected positive signals are not copied to user space properly unless they have these magic high bits set. - Injected positive signals are not reported properly by signalfd unless they have these magic high bits set. - These kernel internal values leaked to userspace via ptrace_peek_siginfo - It was possible to inject these kernel internal values and cause the the kernel to misbehave. - Kernel developers got confused and expected these kernel internal values in userspace in kernel self tests. - Kernel developers got confused and set si_code to __SI_FAULT which is SI_USER in userspace which causes userspace to think an ordinary user sent the signal and that it was not kernel generated. - The values make it impossible to reorganize the code to transform siginfo_copy_to_user into a plain copy_to_user. As si_code must be massaged before being passed to userspace. So remove these kernel internal si codes and make the kernel code simpler and more maintainable. To replace these kernel internal magic si_codes introduce the helper function siginfo_layout, that takes a signal number and an si_code and computes which union member of siginfo is being used. Have siginfo_layout return an enumeration so that gcc will have enough information to warn if a switch statement does not handle all of union members. A couple of architectures have a messed up ABI that defines signal specific duplications of SI_USER which causes more special cases in siginfo_layout than I would like. The good news is only problem architectures pay the cost. Update all of the code that used the previous magic __SI_ values to use the new SIL_ values and to call siginfo_layout to get those values. Escept where not all of the cases are handled remove the defaults in the switch statements so that if a new case is missed in the future the lack will show up at compile time. Modify the code that copies siginfo si_code to userspace to just copy the value and not cast si_code to a short first. The high bits are no longer used to hold a magic union member. Fixup the siginfo header files to stop including the __SI_ values in their constants and for the headers that were missing it to properly update the number of si_codes for each signal type. The fixes to copy_siginfo_from_user32 implementations has the interesting property that several of them perviously should never have worked as the __SI_ values they depended up where kernel internal. With that dependency gone those implementations should work much better. The idea of not passing the __SI_ values out to userspace and then not reinserting them has been tested with criu and criu worked without changes. Ref: 2.4.0-test1 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-07-17 11:36:59 +08:00
case SIL_POLL:
err |= __put_user(from->si_band, &to->si_band);
err |= __put_user(from->si_fd, &to->si_fd);
break;
signal: Remove kernel interal si_code magic struct siginfo is a union and the kernel since 2.4 has been hiding a union tag in the high 16bits of si_code using the values: __SI_KILL __SI_TIMER __SI_POLL __SI_FAULT __SI_CHLD __SI_RT __SI_MESGQ __SI_SYS While this looks plausible on the surface, in practice this situation has not worked well. - Injected positive signals are not copied to user space properly unless they have these magic high bits set. - Injected positive signals are not reported properly by signalfd unless they have these magic high bits set. - These kernel internal values leaked to userspace via ptrace_peek_siginfo - It was possible to inject these kernel internal values and cause the the kernel to misbehave. - Kernel developers got confused and expected these kernel internal values in userspace in kernel self tests. - Kernel developers got confused and set si_code to __SI_FAULT which is SI_USER in userspace which causes userspace to think an ordinary user sent the signal and that it was not kernel generated. - The values make it impossible to reorganize the code to transform siginfo_copy_to_user into a plain copy_to_user. As si_code must be massaged before being passed to userspace. So remove these kernel internal si codes and make the kernel code simpler and more maintainable. To replace these kernel internal magic si_codes introduce the helper function siginfo_layout, that takes a signal number and an si_code and computes which union member of siginfo is being used. Have siginfo_layout return an enumeration so that gcc will have enough information to warn if a switch statement does not handle all of union members. A couple of architectures have a messed up ABI that defines signal specific duplications of SI_USER which causes more special cases in siginfo_layout than I would like. The good news is only problem architectures pay the cost. Update all of the code that used the previous magic __SI_ values to use the new SIL_ values and to call siginfo_layout to get those values. Escept where not all of the cases are handled remove the defaults in the switch statements so that if a new case is missed in the future the lack will show up at compile time. Modify the code that copies siginfo si_code to userspace to just copy the value and not cast si_code to a short first. The high bits are no longer used to hold a magic union member. Fixup the siginfo header files to stop including the __SI_ values in their constants and for the headers that were missing it to properly update the number of si_codes for each signal type. The fixes to copy_siginfo_from_user32 implementations has the interesting property that several of them perviously should never have worked as the __SI_ values they depended up where kernel internal. With that dependency gone those implementations should work much better. The idea of not passing the __SI_ values out to userspace and then not reinserting them has been tested with criu and criu worked without changes. Ref: 2.4.0-test1 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-07-17 11:36:59 +08:00
case SIL_FAULT:
err |= __put_user((compat_uptr_t)(unsigned long)from->si_addr,
&to->si_addr);
#ifdef BUS_MCEERR_AO
/*
* Other callers might not initialize the si_lsb field,
* so check explicitly for the right codes here.
*/
if (from->si_signo == SIGBUS &&
(from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
#endif
break;
signal: Remove kernel interal si_code magic struct siginfo is a union and the kernel since 2.4 has been hiding a union tag in the high 16bits of si_code using the values: __SI_KILL __SI_TIMER __SI_POLL __SI_FAULT __SI_CHLD __SI_RT __SI_MESGQ __SI_SYS While this looks plausible on the surface, in practice this situation has not worked well. - Injected positive signals are not copied to user space properly unless they have these magic high bits set. - Injected positive signals are not reported properly by signalfd unless they have these magic high bits set. - These kernel internal values leaked to userspace via ptrace_peek_siginfo - It was possible to inject these kernel internal values and cause the the kernel to misbehave. - Kernel developers got confused and expected these kernel internal values in userspace in kernel self tests. - Kernel developers got confused and set si_code to __SI_FAULT which is SI_USER in userspace which causes userspace to think an ordinary user sent the signal and that it was not kernel generated. - The values make it impossible to reorganize the code to transform siginfo_copy_to_user into a plain copy_to_user. As si_code must be massaged before being passed to userspace. So remove these kernel internal si codes and make the kernel code simpler and more maintainable. To replace these kernel internal magic si_codes introduce the helper function siginfo_layout, that takes a signal number and an si_code and computes which union member of siginfo is being used. Have siginfo_layout return an enumeration so that gcc will have enough information to warn if a switch statement does not handle all of union members. A couple of architectures have a messed up ABI that defines signal specific duplications of SI_USER which causes more special cases in siginfo_layout than I would like. The good news is only problem architectures pay the cost. Update all of the code that used the previous magic __SI_ values to use the new SIL_ values and to call siginfo_layout to get those values. Escept where not all of the cases are handled remove the defaults in the switch statements so that if a new case is missed in the future the lack will show up at compile time. Modify the code that copies siginfo si_code to userspace to just copy the value and not cast si_code to a short first. The high bits are no longer used to hold a magic union member. Fixup the siginfo header files to stop including the __SI_ values in their constants and for the headers that were missing it to properly update the number of si_codes for each signal type. The fixes to copy_siginfo_from_user32 implementations has the interesting property that several of them perviously should never have worked as the __SI_ values they depended up where kernel internal. With that dependency gone those implementations should work much better. The idea of not passing the __SI_ values out to userspace and then not reinserting them has been tested with criu and criu worked without changes. Ref: 2.4.0-test1 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-07-17 11:36:59 +08:00
case SIL_CHLD:
err |= __put_user(from->si_pid, &to->si_pid);
err |= __put_user(from->si_uid, &to->si_uid);
err |= __put_user(from->si_status, &to->si_status);
err |= __put_user(from->si_utime, &to->si_utime);
err |= __put_user(from->si_stime, &to->si_stime);
break;
signal: Remove kernel interal si_code magic struct siginfo is a union and the kernel since 2.4 has been hiding a union tag in the high 16bits of si_code using the values: __SI_KILL __SI_TIMER __SI_POLL __SI_FAULT __SI_CHLD __SI_RT __SI_MESGQ __SI_SYS While this looks plausible on the surface, in practice this situation has not worked well. - Injected positive signals are not copied to user space properly unless they have these magic high bits set. - Injected positive signals are not reported properly by signalfd unless they have these magic high bits set. - These kernel internal values leaked to userspace via ptrace_peek_siginfo - It was possible to inject these kernel internal values and cause the the kernel to misbehave. - Kernel developers got confused and expected these kernel internal values in userspace in kernel self tests. - Kernel developers got confused and set si_code to __SI_FAULT which is SI_USER in userspace which causes userspace to think an ordinary user sent the signal and that it was not kernel generated. - The values make it impossible to reorganize the code to transform siginfo_copy_to_user into a plain copy_to_user. As si_code must be massaged before being passed to userspace. So remove these kernel internal si codes and make the kernel code simpler and more maintainable. To replace these kernel internal magic si_codes introduce the helper function siginfo_layout, that takes a signal number and an si_code and computes which union member of siginfo is being used. Have siginfo_layout return an enumeration so that gcc will have enough information to warn if a switch statement does not handle all of union members. A couple of architectures have a messed up ABI that defines signal specific duplications of SI_USER which causes more special cases in siginfo_layout than I would like. The good news is only problem architectures pay the cost. Update all of the code that used the previous magic __SI_ values to use the new SIL_ values and to call siginfo_layout to get those values. Escept where not all of the cases are handled remove the defaults in the switch statements so that if a new case is missed in the future the lack will show up at compile time. Modify the code that copies siginfo si_code to userspace to just copy the value and not cast si_code to a short first. The high bits are no longer used to hold a magic union member. Fixup the siginfo header files to stop including the __SI_ values in their constants and for the headers that were missing it to properly update the number of si_codes for each signal type. The fixes to copy_siginfo_from_user32 implementations has the interesting property that several of them perviously should never have worked as the __SI_ values they depended up where kernel internal. With that dependency gone those implementations should work much better. The idea of not passing the __SI_ values out to userspace and then not reinserting them has been tested with criu and criu worked without changes. Ref: 2.4.0-test1 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-07-17 11:36:59 +08:00
case SIL_RT:
err |= __put_user(from->si_pid, &to->si_pid);
err |= __put_user(from->si_uid, &to->si_uid);
err |= __put_user(from->si_int, &to->si_int);
break;
signal: Remove kernel interal si_code magic struct siginfo is a union and the kernel since 2.4 has been hiding a union tag in the high 16bits of si_code using the values: __SI_KILL __SI_TIMER __SI_POLL __SI_FAULT __SI_CHLD __SI_RT __SI_MESGQ __SI_SYS While this looks plausible on the surface, in practice this situation has not worked well. - Injected positive signals are not copied to user space properly unless they have these magic high bits set. - Injected positive signals are not reported properly by signalfd unless they have these magic high bits set. - These kernel internal values leaked to userspace via ptrace_peek_siginfo - It was possible to inject these kernel internal values and cause the the kernel to misbehave. - Kernel developers got confused and expected these kernel internal values in userspace in kernel self tests. - Kernel developers got confused and set si_code to __SI_FAULT which is SI_USER in userspace which causes userspace to think an ordinary user sent the signal and that it was not kernel generated. - The values make it impossible to reorganize the code to transform siginfo_copy_to_user into a plain copy_to_user. As si_code must be massaged before being passed to userspace. So remove these kernel internal si codes and make the kernel code simpler and more maintainable. To replace these kernel internal magic si_codes introduce the helper function siginfo_layout, that takes a signal number and an si_code and computes which union member of siginfo is being used. Have siginfo_layout return an enumeration so that gcc will have enough information to warn if a switch statement does not handle all of union members. A couple of architectures have a messed up ABI that defines signal specific duplications of SI_USER which causes more special cases in siginfo_layout than I would like. The good news is only problem architectures pay the cost. Update all of the code that used the previous magic __SI_ values to use the new SIL_ values and to call siginfo_layout to get those values. Escept where not all of the cases are handled remove the defaults in the switch statements so that if a new case is missed in the future the lack will show up at compile time. Modify the code that copies siginfo si_code to userspace to just copy the value and not cast si_code to a short first. The high bits are no longer used to hold a magic union member. Fixup the siginfo header files to stop including the __SI_ values in their constants and for the headers that were missing it to properly update the number of si_codes for each signal type. The fixes to copy_siginfo_from_user32 implementations has the interesting property that several of them perviously should never have worked as the __SI_ values they depended up where kernel internal. With that dependency gone those implementations should work much better. The idea of not passing the __SI_ values out to userspace and then not reinserting them has been tested with criu and criu worked without changes. Ref: 2.4.0-test1 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-07-17 11:36:59 +08:00
case SIL_SYS:
err |= __put_user((compat_uptr_t)(unsigned long)
from->si_call_addr, &to->si_call_addr);
err |= __put_user(from->si_syscall, &to->si_syscall);
err |= __put_user(from->si_arch, &to->si_arch);
break;
}
return err;
}
int copy_siginfo_from_user32(siginfo_t *to, compat_siginfo_t __user *from)
{
if (copy_from_user(to, from, __ARCH_SI_PREAMBLE_SIZE) ||
copy_from_user(to->_sifields._pad,
from->_sifields._pad, SI_PAD_SIZE))
return -EFAULT;
return 0;
}
/*
* VFP save/restore code.
*
* We have to be careful with endianness, since the fpsimd context-switch
* code operates on 128-bit (Q) register values whereas the compat ABI
* uses an array of 64-bit (D) registers. Consequently, we need to swap
* the two halves of each Q register when running on a big-endian CPU.
*/
union __fpsimd_vreg {
__uint128_t raw;
struct {
#ifdef __AARCH64EB__
u64 hi;
u64 lo;
#else
u64 lo;
u64 hi;
#endif
};
};
static int compat_preserve_vfp_context(struct compat_vfp_sigframe __user *frame)
{
struct fpsimd_state *fpsimd = &current->thread.fpsimd_state;
compat_ulong_t magic = VFP_MAGIC;
compat_ulong_t size = VFP_STORAGE_SIZE;
compat_ulong_t fpscr, fpexc;
int i, err = 0;
/*
* Save the hardware registers to the fpsimd_state structure.
* Note that this also saves V16-31, which aren't visible
* in AArch32.
*/
fpsimd_preserve_current_state();
/* Place structure header on the stack */
__put_user_error(magic, &frame->magic, err);
__put_user_error(size, &frame->size, err);
/*
* Now copy the FP registers. Since the registers are packed,
* we can copy the prefix we want (V0-V15) as it is.
*/
for (i = 0; i < ARRAY_SIZE(frame->ufp.fpregs); i += 2) {
union __fpsimd_vreg vreg = {
.raw = fpsimd->vregs[i >> 1],
};
__put_user_error(vreg.lo, &frame->ufp.fpregs[i], err);
__put_user_error(vreg.hi, &frame->ufp.fpregs[i + 1], err);
}
/* Create an AArch32 fpscr from the fpsr and the fpcr. */
fpscr = (fpsimd->fpsr & VFP_FPSCR_STAT_MASK) |
(fpsimd->fpcr & VFP_FPSCR_CTRL_MASK);
__put_user_error(fpscr, &frame->ufp.fpscr, err);
/*
* The exception register aren't available so we fake up a
* basic FPEXC and zero everything else.
*/
fpexc = (1 << 30);
__put_user_error(fpexc, &frame->ufp_exc.fpexc, err);
__put_user_error(0, &frame->ufp_exc.fpinst, err);
__put_user_error(0, &frame->ufp_exc.fpinst2, err);
return err ? -EFAULT : 0;
}
static int compat_restore_vfp_context(struct compat_vfp_sigframe __user *frame)
{
struct fpsimd_state fpsimd;
compat_ulong_t magic = VFP_MAGIC;
compat_ulong_t size = VFP_STORAGE_SIZE;
compat_ulong_t fpscr;
int i, err = 0;
__get_user_error(magic, &frame->magic, err);
__get_user_error(size, &frame->size, err);
if (err)
return -EFAULT;
if (magic != VFP_MAGIC || size != VFP_STORAGE_SIZE)
return -EINVAL;
/* Copy the FP registers into the start of the fpsimd_state. */
for (i = 0; i < ARRAY_SIZE(frame->ufp.fpregs); i += 2) {
union __fpsimd_vreg vreg;
__get_user_error(vreg.lo, &frame->ufp.fpregs[i], err);
__get_user_error(vreg.hi, &frame->ufp.fpregs[i + 1], err);
fpsimd.vregs[i >> 1] = vreg.raw;
}
/* Extract the fpsr and the fpcr from the fpscr */
__get_user_error(fpscr, &frame->ufp.fpscr, err);
fpsimd.fpsr = fpscr & VFP_FPSCR_STAT_MASK;
fpsimd.fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
/*
* We don't need to touch the exception register, so
* reload the hardware state.
*/
if (!err)
fpsimd_update_current_state(&fpsimd);
return err ? -EFAULT : 0;
}
static int compat_restore_sigframe(struct pt_regs *regs,
struct compat_sigframe __user *sf)
{
int err;
sigset_t set;
struct compat_aux_sigframe __user *aux;
err = get_sigset_t(&set, &sf->uc.uc_sigmask);
if (err == 0) {
sigdelsetmask(&set, ~_BLOCKABLE);
set_current_blocked(&set);
}
__get_user_error(regs->regs[0], &sf->uc.uc_mcontext.arm_r0, err);
__get_user_error(regs->regs[1], &sf->uc.uc_mcontext.arm_r1, err);
__get_user_error(regs->regs[2], &sf->uc.uc_mcontext.arm_r2, err);
__get_user_error(regs->regs[3], &sf->uc.uc_mcontext.arm_r3, err);
__get_user_error(regs->regs[4], &sf->uc.uc_mcontext.arm_r4, err);
__get_user_error(regs->regs[5], &sf->uc.uc_mcontext.arm_r5, err);
__get_user_error(regs->regs[6], &sf->uc.uc_mcontext.arm_r6, err);
__get_user_error(regs->regs[7], &sf->uc.uc_mcontext.arm_r7, err);
__get_user_error(regs->regs[8], &sf->uc.uc_mcontext.arm_r8, err);
__get_user_error(regs->regs[9], &sf->uc.uc_mcontext.arm_r9, err);
__get_user_error(regs->regs[10], &sf->uc.uc_mcontext.arm_r10, err);
__get_user_error(regs->regs[11], &sf->uc.uc_mcontext.arm_fp, err);
__get_user_error(regs->regs[12], &sf->uc.uc_mcontext.arm_ip, err);
__get_user_error(regs->compat_sp, &sf->uc.uc_mcontext.arm_sp, err);
__get_user_error(regs->compat_lr, &sf->uc.uc_mcontext.arm_lr, err);
__get_user_error(regs->pc, &sf->uc.uc_mcontext.arm_pc, err);
__get_user_error(regs->pstate, &sf->uc.uc_mcontext.arm_cpsr, err);
/*
* Avoid compat_sys_sigreturn() restarting.
*/
forget_syscall(regs);
err |= !valid_user_regs(&regs->user_regs, current);
aux = (struct compat_aux_sigframe __user *) sf->uc.uc_regspace;
if (err == 0)
err |= compat_restore_vfp_context(&aux->vfp);
return err;
}
asmlinkage int compat_sys_sigreturn(struct pt_regs *regs)
{
struct compat_sigframe __user *frame;
/* Always make any pending restarted system calls return -EINTR */
all arches, signal: move restart_block to struct task_struct If an attacker can cause a controlled kernel stack overflow, overwriting the restart block is a very juicy exploit target. This is because the restart_block is held in the same memory allocation as the kernel stack. Moving the restart block to struct task_struct prevents this exploit by making the restart_block harder to locate. Note that there are other fields in thread_info that are also easy targets, at least on some architectures. It's also a decent simplification, since the restart code is more or less identical on all architectures. [james.hogan@imgtec.com: metag: align thread_info::supervisor_stack] Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: David Miller <davem@davemloft.net> Acked-by: Richard Weinberger <richard@nod.at> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Steven Miao <realmz6@gmail.com> Cc: Mark Salter <msalter@redhat.com> Cc: Aurelien Jacquiot <a-jacquiot@ti.com> Cc: Mikael Starvik <starvik@axis.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Michal Simek <monstr@monstr.eu> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Tested-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Chris Zankel <chris@zankel.net> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Signed-off-by: James Hogan <james.hogan@imgtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:01:14 +08:00
current->restart_block.fn = do_no_restart_syscall;
/*
* Since we stacked the signal on a 64-bit boundary,
* then 'sp' should be word aligned here. If it's
* not, then the user is trying to mess with us.
*/
if (regs->compat_sp & 7)
goto badframe;
frame = (struct compat_sigframe __user *)regs->compat_sp;
if (!access_ok(VERIFY_READ, frame, sizeof (*frame)))
goto badframe;
if (compat_restore_sigframe(regs, frame))
goto badframe;
return regs->regs[0];
badframe:
if (show_unhandled_signals)
pr_info_ratelimited("%s[%d]: bad frame in %s: pc=%08llx sp=%08llx\n",
current->comm, task_pid_nr(current), __func__,
regs->pc, regs->compat_sp);
force_sig(SIGSEGV, current);
return 0;
}
asmlinkage int compat_sys_rt_sigreturn(struct pt_regs *regs)
{
struct compat_rt_sigframe __user *frame;
/* Always make any pending restarted system calls return -EINTR */
all arches, signal: move restart_block to struct task_struct If an attacker can cause a controlled kernel stack overflow, overwriting the restart block is a very juicy exploit target. This is because the restart_block is held in the same memory allocation as the kernel stack. Moving the restart block to struct task_struct prevents this exploit by making the restart_block harder to locate. Note that there are other fields in thread_info that are also easy targets, at least on some architectures. It's also a decent simplification, since the restart code is more or less identical on all architectures. [james.hogan@imgtec.com: metag: align thread_info::supervisor_stack] Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: David Miller <davem@davemloft.net> Acked-by: Richard Weinberger <richard@nod.at> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Steven Miao <realmz6@gmail.com> Cc: Mark Salter <msalter@redhat.com> Cc: Aurelien Jacquiot <a-jacquiot@ti.com> Cc: Mikael Starvik <starvik@axis.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Michal Simek <monstr@monstr.eu> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Tested-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Chris Zankel <chris@zankel.net> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Signed-off-by: James Hogan <james.hogan@imgtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:01:14 +08:00
current->restart_block.fn = do_no_restart_syscall;
/*
* Since we stacked the signal on a 64-bit boundary,
* then 'sp' should be word aligned here. If it's
* not, then the user is trying to mess with us.
*/
if (regs->compat_sp & 7)
goto badframe;
frame = (struct compat_rt_sigframe __user *)regs->compat_sp;
if (!access_ok(VERIFY_READ, frame, sizeof (*frame)))
goto badframe;
if (compat_restore_sigframe(regs, &frame->sig))
goto badframe;
if (compat_restore_altstack(&frame->sig.uc.uc_stack))
goto badframe;
return regs->regs[0];
badframe:
if (show_unhandled_signals)
pr_info_ratelimited("%s[%d]: bad frame in %s: pc=%08llx sp=%08llx\n",
current->comm, task_pid_nr(current), __func__,
regs->pc, regs->compat_sp);
force_sig(SIGSEGV, current);
return 0;
}
static void __user *compat_get_sigframe(struct ksignal *ksig,
struct pt_regs *regs,
int framesize)
{
compat_ulong_t sp = sigsp(regs->compat_sp, ksig);
void __user *frame;
/*
* ATPCS B01 mandates 8-byte alignment
*/
frame = compat_ptr((compat_uptr_t)((sp - framesize) & ~7));
/*
* Check that we can actually write to the signal frame.
*/
if (!access_ok(VERIFY_WRITE, frame, framesize))
frame = NULL;
return frame;
}
static void compat_setup_return(struct pt_regs *regs, struct k_sigaction *ka,
compat_ulong_t __user *rc, void __user *frame,
int usig)
{
compat_ulong_t handler = ptr_to_compat(ka->sa.sa_handler);
compat_ulong_t retcode;
compat_ulong_t spsr = regs->pstate & ~(PSR_f | COMPAT_PSR_E_BIT);
int thumb;
/* Check if the handler is written for ARM or Thumb */
thumb = handler & 1;
if (thumb)
spsr |= COMPAT_PSR_T_BIT;
else
spsr &= ~COMPAT_PSR_T_BIT;
/* The IT state must be cleared for both ARM and Thumb-2 */
spsr &= ~COMPAT_PSR_IT_MASK;
/* Restore the original endianness */
spsr |= COMPAT_PSR_ENDSTATE;
if (ka->sa.sa_flags & SA_RESTORER) {
retcode = ptr_to_compat(ka->sa.sa_restorer);
} else {
/* Set up sigreturn pointer */
unsigned int idx = thumb << 1;
if (ka->sa.sa_flags & SA_SIGINFO)
idx += 3;
retcode = AARCH32_VECTORS_BASE +
AARCH32_KERN_SIGRET_CODE_OFFSET +
(idx << 2) + thumb;
}
regs->regs[0] = usig;
regs->compat_sp = ptr_to_compat(frame);
regs->compat_lr = retcode;
regs->pc = handler;
regs->pstate = spsr;
}
static int compat_setup_sigframe(struct compat_sigframe __user *sf,
struct pt_regs *regs, sigset_t *set)
{
struct compat_aux_sigframe __user *aux;
int err = 0;
__put_user_error(regs->regs[0], &sf->uc.uc_mcontext.arm_r0, err);
__put_user_error(regs->regs[1], &sf->uc.uc_mcontext.arm_r1, err);
__put_user_error(regs->regs[2], &sf->uc.uc_mcontext.arm_r2, err);
__put_user_error(regs->regs[3], &sf->uc.uc_mcontext.arm_r3, err);
__put_user_error(regs->regs[4], &sf->uc.uc_mcontext.arm_r4, err);
__put_user_error(regs->regs[5], &sf->uc.uc_mcontext.arm_r5, err);
__put_user_error(regs->regs[6], &sf->uc.uc_mcontext.arm_r6, err);
__put_user_error(regs->regs[7], &sf->uc.uc_mcontext.arm_r7, err);
__put_user_error(regs->regs[8], &sf->uc.uc_mcontext.arm_r8, err);
__put_user_error(regs->regs[9], &sf->uc.uc_mcontext.arm_r9, err);
__put_user_error(regs->regs[10], &sf->uc.uc_mcontext.arm_r10, err);
__put_user_error(regs->regs[11], &sf->uc.uc_mcontext.arm_fp, err);
__put_user_error(regs->regs[12], &sf->uc.uc_mcontext.arm_ip, err);
__put_user_error(regs->compat_sp, &sf->uc.uc_mcontext.arm_sp, err);
__put_user_error(regs->compat_lr, &sf->uc.uc_mcontext.arm_lr, err);
__put_user_error(regs->pc, &sf->uc.uc_mcontext.arm_pc, err);
__put_user_error(regs->pstate, &sf->uc.uc_mcontext.arm_cpsr, err);
__put_user_error((compat_ulong_t)0, &sf->uc.uc_mcontext.trap_no, err);
/* set the compat FSR WnR */
__put_user_error(!!(current->thread.fault_code & ESR_ELx_WNR) <<
FSR_WRITE_SHIFT, &sf->uc.uc_mcontext.error_code, err);
__put_user_error(current->thread.fault_address, &sf->uc.uc_mcontext.fault_address, err);
__put_user_error(set->sig[0], &sf->uc.uc_mcontext.oldmask, err);
err |= put_sigset_t(&sf->uc.uc_sigmask, set);
aux = (struct compat_aux_sigframe __user *) sf->uc.uc_regspace;
if (err == 0)
err |= compat_preserve_vfp_context(&aux->vfp);
__put_user_error(0, &aux->end_magic, err);
return err;
}
/*
* 32-bit signal handling routines called from signal.c
*/
int compat_setup_rt_frame(int usig, struct ksignal *ksig,
sigset_t *set, struct pt_regs *regs)
{
struct compat_rt_sigframe __user *frame;
int err = 0;
frame = compat_get_sigframe(ksig, regs, sizeof(*frame));
if (!frame)
return 1;
err |= copy_siginfo_to_user32(&frame->info, &ksig->info);
__put_user_error(0, &frame->sig.uc.uc_flags, err);
__put_user_error(0, &frame->sig.uc.uc_link, err);
err |= __compat_save_altstack(&frame->sig.uc.uc_stack, regs->compat_sp);
err |= compat_setup_sigframe(&frame->sig, regs, set);
if (err == 0) {
compat_setup_return(regs, &ksig->ka, frame->sig.retcode, frame, usig);
regs->regs[1] = (compat_ulong_t)(unsigned long)&frame->info;
regs->regs[2] = (compat_ulong_t)(unsigned long)&frame->sig.uc;
}
return err;
}
int compat_setup_frame(int usig, struct ksignal *ksig, sigset_t *set,
struct pt_regs *regs)
{
struct compat_sigframe __user *frame;
int err = 0;
frame = compat_get_sigframe(ksig, regs, sizeof(*frame));
if (!frame)
return 1;
__put_user_error(0x5ac3c35a, &frame->uc.uc_flags, err);
err |= compat_setup_sigframe(frame, regs, set);
if (err == 0)
compat_setup_return(regs, &ksig->ka, frame->retcode, frame, usig);
return err;
}
void compat_setup_restart_syscall(struct pt_regs *regs)
{
regs->regs[7] = __NR_compat_restart_syscall;
}