2012-11-29 12:28:09 +08:00
|
|
|
/*
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
* fs/f2fs/gc.c
|
|
|
|
*
|
|
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
|
|
* http://www.samsung.com/
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/backing-dev.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/f2fs_fs.h>
|
|
|
|
#include <linux/kthread.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/freezer.h>
|
|
|
|
|
|
|
|
#include "f2fs.h"
|
|
|
|
#include "node.h"
|
|
|
|
#include "segment.h"
|
|
|
|
#include "gc.h"
|
2013-04-23 15:42:53 +08:00
|
|
|
#include <trace/events/f2fs.h>
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
|
|
|
static int gc_thread_func(void *data)
|
|
|
|
{
|
|
|
|
struct f2fs_sb_info *sbi = data;
|
2013-08-04 22:09:40 +08:00
|
|
|
struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
|
2017-08-07 23:12:46 +08:00
|
|
|
unsigned int wait_ms;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2013-08-04 22:09:40 +08:00
|
|
|
wait_ms = gc_th->min_sleep_time;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2017-05-18 01:36:58 +08:00
|
|
|
set_freezable();
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
do {
|
2017-05-18 01:36:58 +08:00
|
|
|
wait_event_interruptible_timeout(*wq,
|
2017-08-07 13:09:00 +08:00
|
|
|
kthread_should_stop() || freezing(current) ||
|
|
|
|
gc_th->gc_wake,
|
2017-05-18 01:36:58 +08:00
|
|
|
msecs_to_jiffies(wait_ms));
|
|
|
|
|
2017-08-07 13:09:00 +08:00
|
|
|
/* give it a try one time */
|
|
|
|
if (gc_th->gc_wake)
|
|
|
|
gc_th->gc_wake = 0;
|
|
|
|
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
if (try_to_freeze())
|
|
|
|
continue;
|
|
|
|
if (kthread_should_stop())
|
|
|
|
break;
|
|
|
|
|
2013-01-29 17:30:07 +08:00
|
|
|
if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
|
2015-01-26 20:24:21 +08:00
|
|
|
increase_sleep_time(gc_th, &wait_ms);
|
2013-01-29 17:30:07 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2016-09-26 19:45:55 +08:00
|
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
2017-02-25 11:08:28 +08:00
|
|
|
if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
|
|
|
|
f2fs_show_injection_info(FAULT_CHECKPOINT);
|
2016-09-26 19:45:55 +08:00
|
|
|
f2fs_stop_checkpoint(sbi, false);
|
2017-02-25 11:08:28 +08:00
|
|
|
}
|
2016-09-26 19:45:55 +08:00
|
|
|
#endif
|
|
|
|
|
f2fs: make background threads of f2fs being aware of freezing
When ->freeze_fs is called from lvm for doing snapshot, it needs to
make sure there will be no more changes in filesystem's data, however,
previously, background threads like GC thread wasn't aware of freezing,
so in environment with active background threads, data of snapshot
becomes unstable.
This patch fixes this issue by adding sb_{start,end}_intwrite in
below background threads:
- GC thread
- flush thread
- discard thread
Note that, don't use sb_start_intwrite() in gc_thread_func() due to:
generic/241 reports below bug:
======================================================
WARNING: possible circular locking dependency detected
4.13.0-rc1+ #32 Tainted: G O
------------------------------------------------------
f2fs_gc-250:0/22186 is trying to acquire lock:
(&sbi->gc_mutex){+.+...}, at: [<f8fa7f0b>] f2fs_sync_fs+0x7b/0x1b0 [f2fs]
but task is already holding lock:
(sb_internal#2){++++.-}, at: [<f8fb5609>] gc_thread_func+0x159/0x4a0 [f2fs]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (sb_internal#2){++++.-}:
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
__sb_start_write+0x11d/0x1f0
f2fs_evict_inode+0x2d6/0x4e0 [f2fs]
evict+0xa8/0x170
iput+0x1fb/0x2c0
f2fs_sync_inode_meta+0x3f/0xf0 [f2fs]
write_checkpoint+0x1b1/0x750 [f2fs]
f2fs_sync_fs+0x85/0x1b0 [f2fs]
f2fs_do_sync_file.isra.24+0x137/0xa30 [f2fs]
f2fs_sync_file+0x34/0x40 [f2fs]
vfs_fsync_range+0x4a/0xa0
do_fsync+0x3c/0x60
SyS_fdatasync+0x15/0x20
do_fast_syscall_32+0xa1/0x1b0
entry_SYSENTER_32+0x4c/0x7b
-> #1 (&sbi->cp_mutex){+.+...}:
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
__mutex_lock+0x4f/0x830
mutex_lock_nested+0x25/0x30
write_checkpoint+0x2f/0x750 [f2fs]
f2fs_sync_fs+0x85/0x1b0 [f2fs]
sync_filesystem+0x67/0x80
generic_shutdown_super+0x27/0x100
kill_block_super+0x22/0x50
kill_f2fs_super+0x3a/0x40 [f2fs]
deactivate_locked_super+0x3d/0x70
deactivate_super+0x40/0x60
cleanup_mnt+0x39/0x70
__cleanup_mnt+0x10/0x20
task_work_run+0x69/0x80
exit_to_usermode_loop+0x57/0x92
do_fast_syscall_32+0x18c/0x1b0
entry_SYSENTER_32+0x4c/0x7b
-> #0 (&sbi->gc_mutex){+.+...}:
validate_chain.isra.36+0xc50/0xdb0
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
__mutex_lock+0x4f/0x830
mutex_lock_nested+0x25/0x30
f2fs_sync_fs+0x7b/0x1b0 [f2fs]
f2fs_balance_fs_bg+0xb9/0x200 [f2fs]
gc_thread_func+0x302/0x4a0 [f2fs]
kthread+0xe9/0x120
ret_from_fork+0x19/0x24
other info that might help us debug this:
Chain exists of:
&sbi->gc_mutex --> &sbi->cp_mutex --> sb_internal#2
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(sb_internal#2);
lock(&sbi->cp_mutex);
lock(sb_internal#2);
lock(&sbi->gc_mutex);
*** DEADLOCK ***
1 lock held by f2fs_gc-250:0/22186:
#0: (sb_internal#2){++++.-}, at: [<f8fb5609>] gc_thread_func+0x159/0x4a0 [f2fs]
stack backtrace:
CPU: 2 PID: 22186 Comm: f2fs_gc-250:0 Tainted: G O 4.13.0-rc1+ #32
Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
Call Trace:
dump_stack+0x5f/0x92
print_circular_bug+0x1b3/0x1bd
validate_chain.isra.36+0xc50/0xdb0
? __this_cpu_preempt_check+0xf/0x20
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
? f2fs_sync_fs+0x7b/0x1b0 [f2fs]
__mutex_lock+0x4f/0x830
? f2fs_sync_fs+0x7b/0x1b0 [f2fs]
mutex_lock_nested+0x25/0x30
? f2fs_sync_fs+0x7b/0x1b0 [f2fs]
f2fs_sync_fs+0x7b/0x1b0 [f2fs]
f2fs_balance_fs_bg+0xb9/0x200 [f2fs]
gc_thread_func+0x302/0x4a0 [f2fs]
? preempt_schedule_common+0x2f/0x4d
? f2fs_gc+0x540/0x540 [f2fs]
kthread+0xe9/0x120
? f2fs_gc+0x540/0x540 [f2fs]
? kthread_create_on_node+0x30/0x30
ret_from_fork+0x19/0x24
The deadlock occurs in below condition:
GC Thread Thread B
- sb_start_intwrite
- f2fs_sync_file
- f2fs_sync_fs
- mutex_lock(&sbi->gc_mutex)
- write_checkpoint
- block_operations
- f2fs_sync_inode_meta
- iput
- sb_start_intwrite
- mutex_lock(&sbi->gc_mutex)
Fix this by altering sb_start_intwrite to sb_start_write_trylock.
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-07-22 08:52:23 +08:00
|
|
|
if (!sb_start_write_trylock(sbi->sb))
|
|
|
|
continue;
|
|
|
|
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
/*
|
|
|
|
* [GC triggering condition]
|
|
|
|
* 0. GC is not conducted currently.
|
|
|
|
* 1. There are enough dirty segments.
|
|
|
|
* 2. IO subsystem is idle by checking the # of writeback pages.
|
|
|
|
* 3. IO subsystem is idle by checking the # of requests in
|
|
|
|
* bdev's request list.
|
|
|
|
*
|
2014-08-06 22:22:50 +08:00
|
|
|
* Note) We have to avoid triggering GCs frequently.
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
* Because it is possible that some segments can be
|
|
|
|
* invalidated soon after by user update or deletion.
|
|
|
|
* So, I'd like to wait some time to collect dirty segments.
|
|
|
|
*/
|
|
|
|
if (!mutex_trylock(&sbi->gc_mutex))
|
f2fs: make background threads of f2fs being aware of freezing
When ->freeze_fs is called from lvm for doing snapshot, it needs to
make sure there will be no more changes in filesystem's data, however,
previously, background threads like GC thread wasn't aware of freezing,
so in environment with active background threads, data of snapshot
becomes unstable.
This patch fixes this issue by adding sb_{start,end}_intwrite in
below background threads:
- GC thread
- flush thread
- discard thread
Note that, don't use sb_start_intwrite() in gc_thread_func() due to:
generic/241 reports below bug:
======================================================
WARNING: possible circular locking dependency detected
4.13.0-rc1+ #32 Tainted: G O
------------------------------------------------------
f2fs_gc-250:0/22186 is trying to acquire lock:
(&sbi->gc_mutex){+.+...}, at: [<f8fa7f0b>] f2fs_sync_fs+0x7b/0x1b0 [f2fs]
but task is already holding lock:
(sb_internal#2){++++.-}, at: [<f8fb5609>] gc_thread_func+0x159/0x4a0 [f2fs]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (sb_internal#2){++++.-}:
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
__sb_start_write+0x11d/0x1f0
f2fs_evict_inode+0x2d6/0x4e0 [f2fs]
evict+0xa8/0x170
iput+0x1fb/0x2c0
f2fs_sync_inode_meta+0x3f/0xf0 [f2fs]
write_checkpoint+0x1b1/0x750 [f2fs]
f2fs_sync_fs+0x85/0x1b0 [f2fs]
f2fs_do_sync_file.isra.24+0x137/0xa30 [f2fs]
f2fs_sync_file+0x34/0x40 [f2fs]
vfs_fsync_range+0x4a/0xa0
do_fsync+0x3c/0x60
SyS_fdatasync+0x15/0x20
do_fast_syscall_32+0xa1/0x1b0
entry_SYSENTER_32+0x4c/0x7b
-> #1 (&sbi->cp_mutex){+.+...}:
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
__mutex_lock+0x4f/0x830
mutex_lock_nested+0x25/0x30
write_checkpoint+0x2f/0x750 [f2fs]
f2fs_sync_fs+0x85/0x1b0 [f2fs]
sync_filesystem+0x67/0x80
generic_shutdown_super+0x27/0x100
kill_block_super+0x22/0x50
kill_f2fs_super+0x3a/0x40 [f2fs]
deactivate_locked_super+0x3d/0x70
deactivate_super+0x40/0x60
cleanup_mnt+0x39/0x70
__cleanup_mnt+0x10/0x20
task_work_run+0x69/0x80
exit_to_usermode_loop+0x57/0x92
do_fast_syscall_32+0x18c/0x1b0
entry_SYSENTER_32+0x4c/0x7b
-> #0 (&sbi->gc_mutex){+.+...}:
validate_chain.isra.36+0xc50/0xdb0
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
__mutex_lock+0x4f/0x830
mutex_lock_nested+0x25/0x30
f2fs_sync_fs+0x7b/0x1b0 [f2fs]
f2fs_balance_fs_bg+0xb9/0x200 [f2fs]
gc_thread_func+0x302/0x4a0 [f2fs]
kthread+0xe9/0x120
ret_from_fork+0x19/0x24
other info that might help us debug this:
Chain exists of:
&sbi->gc_mutex --> &sbi->cp_mutex --> sb_internal#2
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(sb_internal#2);
lock(&sbi->cp_mutex);
lock(sb_internal#2);
lock(&sbi->gc_mutex);
*** DEADLOCK ***
1 lock held by f2fs_gc-250:0/22186:
#0: (sb_internal#2){++++.-}, at: [<f8fb5609>] gc_thread_func+0x159/0x4a0 [f2fs]
stack backtrace:
CPU: 2 PID: 22186 Comm: f2fs_gc-250:0 Tainted: G O 4.13.0-rc1+ #32
Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
Call Trace:
dump_stack+0x5f/0x92
print_circular_bug+0x1b3/0x1bd
validate_chain.isra.36+0xc50/0xdb0
? __this_cpu_preempt_check+0xf/0x20
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
? f2fs_sync_fs+0x7b/0x1b0 [f2fs]
__mutex_lock+0x4f/0x830
? f2fs_sync_fs+0x7b/0x1b0 [f2fs]
mutex_lock_nested+0x25/0x30
? f2fs_sync_fs+0x7b/0x1b0 [f2fs]
f2fs_sync_fs+0x7b/0x1b0 [f2fs]
f2fs_balance_fs_bg+0xb9/0x200 [f2fs]
gc_thread_func+0x302/0x4a0 [f2fs]
? preempt_schedule_common+0x2f/0x4d
? f2fs_gc+0x540/0x540 [f2fs]
kthread+0xe9/0x120
? f2fs_gc+0x540/0x540 [f2fs]
? kthread_create_on_node+0x30/0x30
ret_from_fork+0x19/0x24
The deadlock occurs in below condition:
GC Thread Thread B
- sb_start_intwrite
- f2fs_sync_file
- f2fs_sync_fs
- mutex_lock(&sbi->gc_mutex)
- write_checkpoint
- block_operations
- f2fs_sync_inode_meta
- iput
- sb_start_intwrite
- mutex_lock(&sbi->gc_mutex)
Fix this by altering sb_start_intwrite to sb_start_write_trylock.
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-07-22 08:52:23 +08:00
|
|
|
goto next;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2017-08-07 13:09:00 +08:00
|
|
|
if (gc_th->gc_urgent) {
|
|
|
|
wait_ms = gc_th->urgent_sleep_time;
|
|
|
|
goto do_gc;
|
|
|
|
}
|
|
|
|
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
if (!is_idle(sbi)) {
|
2015-01-26 20:24:21 +08:00
|
|
|
increase_sleep_time(gc_th, &wait_ms);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
mutex_unlock(&sbi->gc_mutex);
|
f2fs: make background threads of f2fs being aware of freezing
When ->freeze_fs is called from lvm for doing snapshot, it needs to
make sure there will be no more changes in filesystem's data, however,
previously, background threads like GC thread wasn't aware of freezing,
so in environment with active background threads, data of snapshot
becomes unstable.
This patch fixes this issue by adding sb_{start,end}_intwrite in
below background threads:
- GC thread
- flush thread
- discard thread
Note that, don't use sb_start_intwrite() in gc_thread_func() due to:
generic/241 reports below bug:
======================================================
WARNING: possible circular locking dependency detected
4.13.0-rc1+ #32 Tainted: G O
------------------------------------------------------
f2fs_gc-250:0/22186 is trying to acquire lock:
(&sbi->gc_mutex){+.+...}, at: [<f8fa7f0b>] f2fs_sync_fs+0x7b/0x1b0 [f2fs]
but task is already holding lock:
(sb_internal#2){++++.-}, at: [<f8fb5609>] gc_thread_func+0x159/0x4a0 [f2fs]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (sb_internal#2){++++.-}:
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
__sb_start_write+0x11d/0x1f0
f2fs_evict_inode+0x2d6/0x4e0 [f2fs]
evict+0xa8/0x170
iput+0x1fb/0x2c0
f2fs_sync_inode_meta+0x3f/0xf0 [f2fs]
write_checkpoint+0x1b1/0x750 [f2fs]
f2fs_sync_fs+0x85/0x1b0 [f2fs]
f2fs_do_sync_file.isra.24+0x137/0xa30 [f2fs]
f2fs_sync_file+0x34/0x40 [f2fs]
vfs_fsync_range+0x4a/0xa0
do_fsync+0x3c/0x60
SyS_fdatasync+0x15/0x20
do_fast_syscall_32+0xa1/0x1b0
entry_SYSENTER_32+0x4c/0x7b
-> #1 (&sbi->cp_mutex){+.+...}:
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
__mutex_lock+0x4f/0x830
mutex_lock_nested+0x25/0x30
write_checkpoint+0x2f/0x750 [f2fs]
f2fs_sync_fs+0x85/0x1b0 [f2fs]
sync_filesystem+0x67/0x80
generic_shutdown_super+0x27/0x100
kill_block_super+0x22/0x50
kill_f2fs_super+0x3a/0x40 [f2fs]
deactivate_locked_super+0x3d/0x70
deactivate_super+0x40/0x60
cleanup_mnt+0x39/0x70
__cleanup_mnt+0x10/0x20
task_work_run+0x69/0x80
exit_to_usermode_loop+0x57/0x92
do_fast_syscall_32+0x18c/0x1b0
entry_SYSENTER_32+0x4c/0x7b
-> #0 (&sbi->gc_mutex){+.+...}:
validate_chain.isra.36+0xc50/0xdb0
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
__mutex_lock+0x4f/0x830
mutex_lock_nested+0x25/0x30
f2fs_sync_fs+0x7b/0x1b0 [f2fs]
f2fs_balance_fs_bg+0xb9/0x200 [f2fs]
gc_thread_func+0x302/0x4a0 [f2fs]
kthread+0xe9/0x120
ret_from_fork+0x19/0x24
other info that might help us debug this:
Chain exists of:
&sbi->gc_mutex --> &sbi->cp_mutex --> sb_internal#2
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(sb_internal#2);
lock(&sbi->cp_mutex);
lock(sb_internal#2);
lock(&sbi->gc_mutex);
*** DEADLOCK ***
1 lock held by f2fs_gc-250:0/22186:
#0: (sb_internal#2){++++.-}, at: [<f8fb5609>] gc_thread_func+0x159/0x4a0 [f2fs]
stack backtrace:
CPU: 2 PID: 22186 Comm: f2fs_gc-250:0 Tainted: G O 4.13.0-rc1+ #32
Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
Call Trace:
dump_stack+0x5f/0x92
print_circular_bug+0x1b3/0x1bd
validate_chain.isra.36+0xc50/0xdb0
? __this_cpu_preempt_check+0xf/0x20
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
? f2fs_sync_fs+0x7b/0x1b0 [f2fs]
__mutex_lock+0x4f/0x830
? f2fs_sync_fs+0x7b/0x1b0 [f2fs]
mutex_lock_nested+0x25/0x30
? f2fs_sync_fs+0x7b/0x1b0 [f2fs]
f2fs_sync_fs+0x7b/0x1b0 [f2fs]
f2fs_balance_fs_bg+0xb9/0x200 [f2fs]
gc_thread_func+0x302/0x4a0 [f2fs]
? preempt_schedule_common+0x2f/0x4d
? f2fs_gc+0x540/0x540 [f2fs]
kthread+0xe9/0x120
? f2fs_gc+0x540/0x540 [f2fs]
? kthread_create_on_node+0x30/0x30
ret_from_fork+0x19/0x24
The deadlock occurs in below condition:
GC Thread Thread B
- sb_start_intwrite
- f2fs_sync_file
- f2fs_sync_fs
- mutex_lock(&sbi->gc_mutex)
- write_checkpoint
- block_operations
- f2fs_sync_inode_meta
- iput
- sb_start_intwrite
- mutex_lock(&sbi->gc_mutex)
Fix this by altering sb_start_intwrite to sb_start_write_trylock.
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-07-22 08:52:23 +08:00
|
|
|
goto next;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (has_enough_invalid_blocks(sbi))
|
2015-01-26 20:24:21 +08:00
|
|
|
decrease_sleep_time(gc_th, &wait_ms);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
else
|
2015-01-26 20:24:21 +08:00
|
|
|
increase_sleep_time(gc_th, &wait_ms);
|
2017-08-07 13:09:00 +08:00
|
|
|
do_gc:
|
2013-10-22 19:56:10 +08:00
|
|
|
stat_inc_bggc_count(sbi);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2013-02-04 14:11:17 +08:00
|
|
|
/* if return value is not zero, no victim was selected */
|
2017-04-14 06:17:00 +08:00
|
|
|
if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC), true, NULL_SEGNO))
|
2013-08-04 22:09:40 +08:00
|
|
|
wait_ms = gc_th->no_gc_sleep_time;
|
2013-10-24 12:31:34 +08:00
|
|
|
|
2015-10-14 01:00:53 +08:00
|
|
|
trace_f2fs_background_gc(sbi->sb, wait_ms,
|
|
|
|
prefree_segments(sbi), free_segments(sbi));
|
|
|
|
|
2013-10-24 13:19:18 +08:00
|
|
|
/* balancing f2fs's metadata periodically */
|
|
|
|
f2fs_balance_fs_bg(sbi);
|
f2fs: make background threads of f2fs being aware of freezing
When ->freeze_fs is called from lvm for doing snapshot, it needs to
make sure there will be no more changes in filesystem's data, however,
previously, background threads like GC thread wasn't aware of freezing,
so in environment with active background threads, data of snapshot
becomes unstable.
This patch fixes this issue by adding sb_{start,end}_intwrite in
below background threads:
- GC thread
- flush thread
- discard thread
Note that, don't use sb_start_intwrite() in gc_thread_func() due to:
generic/241 reports below bug:
======================================================
WARNING: possible circular locking dependency detected
4.13.0-rc1+ #32 Tainted: G O
------------------------------------------------------
f2fs_gc-250:0/22186 is trying to acquire lock:
(&sbi->gc_mutex){+.+...}, at: [<f8fa7f0b>] f2fs_sync_fs+0x7b/0x1b0 [f2fs]
but task is already holding lock:
(sb_internal#2){++++.-}, at: [<f8fb5609>] gc_thread_func+0x159/0x4a0 [f2fs]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (sb_internal#2){++++.-}:
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
__sb_start_write+0x11d/0x1f0
f2fs_evict_inode+0x2d6/0x4e0 [f2fs]
evict+0xa8/0x170
iput+0x1fb/0x2c0
f2fs_sync_inode_meta+0x3f/0xf0 [f2fs]
write_checkpoint+0x1b1/0x750 [f2fs]
f2fs_sync_fs+0x85/0x1b0 [f2fs]
f2fs_do_sync_file.isra.24+0x137/0xa30 [f2fs]
f2fs_sync_file+0x34/0x40 [f2fs]
vfs_fsync_range+0x4a/0xa0
do_fsync+0x3c/0x60
SyS_fdatasync+0x15/0x20
do_fast_syscall_32+0xa1/0x1b0
entry_SYSENTER_32+0x4c/0x7b
-> #1 (&sbi->cp_mutex){+.+...}:
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
__mutex_lock+0x4f/0x830
mutex_lock_nested+0x25/0x30
write_checkpoint+0x2f/0x750 [f2fs]
f2fs_sync_fs+0x85/0x1b0 [f2fs]
sync_filesystem+0x67/0x80
generic_shutdown_super+0x27/0x100
kill_block_super+0x22/0x50
kill_f2fs_super+0x3a/0x40 [f2fs]
deactivate_locked_super+0x3d/0x70
deactivate_super+0x40/0x60
cleanup_mnt+0x39/0x70
__cleanup_mnt+0x10/0x20
task_work_run+0x69/0x80
exit_to_usermode_loop+0x57/0x92
do_fast_syscall_32+0x18c/0x1b0
entry_SYSENTER_32+0x4c/0x7b
-> #0 (&sbi->gc_mutex){+.+...}:
validate_chain.isra.36+0xc50/0xdb0
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
__mutex_lock+0x4f/0x830
mutex_lock_nested+0x25/0x30
f2fs_sync_fs+0x7b/0x1b0 [f2fs]
f2fs_balance_fs_bg+0xb9/0x200 [f2fs]
gc_thread_func+0x302/0x4a0 [f2fs]
kthread+0xe9/0x120
ret_from_fork+0x19/0x24
other info that might help us debug this:
Chain exists of:
&sbi->gc_mutex --> &sbi->cp_mutex --> sb_internal#2
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(sb_internal#2);
lock(&sbi->cp_mutex);
lock(sb_internal#2);
lock(&sbi->gc_mutex);
*** DEADLOCK ***
1 lock held by f2fs_gc-250:0/22186:
#0: (sb_internal#2){++++.-}, at: [<f8fb5609>] gc_thread_func+0x159/0x4a0 [f2fs]
stack backtrace:
CPU: 2 PID: 22186 Comm: f2fs_gc-250:0 Tainted: G O 4.13.0-rc1+ #32
Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
Call Trace:
dump_stack+0x5f/0x92
print_circular_bug+0x1b3/0x1bd
validate_chain.isra.36+0xc50/0xdb0
? __this_cpu_preempt_check+0xf/0x20
__lock_acquire+0x405/0x7b0
lock_acquire+0xae/0x220
? f2fs_sync_fs+0x7b/0x1b0 [f2fs]
__mutex_lock+0x4f/0x830
? f2fs_sync_fs+0x7b/0x1b0 [f2fs]
mutex_lock_nested+0x25/0x30
? f2fs_sync_fs+0x7b/0x1b0 [f2fs]
f2fs_sync_fs+0x7b/0x1b0 [f2fs]
f2fs_balance_fs_bg+0xb9/0x200 [f2fs]
gc_thread_func+0x302/0x4a0 [f2fs]
? preempt_schedule_common+0x2f/0x4d
? f2fs_gc+0x540/0x540 [f2fs]
kthread+0xe9/0x120
? f2fs_gc+0x540/0x540 [f2fs]
? kthread_create_on_node+0x30/0x30
ret_from_fork+0x19/0x24
The deadlock occurs in below condition:
GC Thread Thread B
- sb_start_intwrite
- f2fs_sync_file
- f2fs_sync_fs
- mutex_lock(&sbi->gc_mutex)
- write_checkpoint
- block_operations
- f2fs_sync_inode_meta
- iput
- sb_start_intwrite
- mutex_lock(&sbi->gc_mutex)
Fix this by altering sb_start_intwrite to sb_start_write_trylock.
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-07-22 08:52:23 +08:00
|
|
|
next:
|
|
|
|
sb_end_write(sbi->sb);
|
2013-10-24 12:31:34 +08:00
|
|
|
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
} while (!kthread_should_stop());
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int start_gc_thread(struct f2fs_sb_info *sbi)
|
|
|
|
{
|
2012-12-01 09:56:13 +08:00
|
|
|
struct f2fs_gc_kthread *gc_th;
|
2013-02-02 22:52:28 +08:00
|
|
|
dev_t dev = sbi->sb->s_bdev->bd_dev;
|
2013-05-26 10:05:32 +08:00
|
|
|
int err = 0;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2016-09-23 21:30:09 +08:00
|
|
|
gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
|
2013-05-26 10:05:32 +08:00
|
|
|
if (!gc_th) {
|
|
|
|
err = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2017-08-07 13:09:00 +08:00
|
|
|
gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
|
2013-08-04 22:09:40 +08:00
|
|
|
gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
|
|
|
|
gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
|
|
|
|
gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
|
|
|
|
|
2013-08-04 22:10:15 +08:00
|
|
|
gc_th->gc_idle = 0;
|
2017-08-07 13:09:00 +08:00
|
|
|
gc_th->gc_urgent = 0;
|
|
|
|
gc_th->gc_wake= 0;
|
2013-08-04 22:10:15 +08:00
|
|
|
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
sbi->gc_thread = gc_th;
|
|
|
|
init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
|
|
|
|
sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
|
2013-02-02 22:52:28 +08:00
|
|
|
"f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
if (IS_ERR(gc_th->f2fs_gc_task)) {
|
2013-05-26 10:05:32 +08:00
|
|
|
err = PTR_ERR(gc_th->f2fs_gc_task);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
kfree(gc_th);
|
2013-02-02 22:52:42 +08:00
|
|
|
sbi->gc_thread = NULL;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
2013-05-26 10:05:32 +08:00
|
|
|
out:
|
|
|
|
return err;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void stop_gc_thread(struct f2fs_sb_info *sbi)
|
|
|
|
{
|
|
|
|
struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
|
|
|
|
if (!gc_th)
|
|
|
|
return;
|
|
|
|
kthread_stop(gc_th->f2fs_gc_task);
|
|
|
|
kfree(gc_th);
|
|
|
|
sbi->gc_thread = NULL;
|
|
|
|
}
|
|
|
|
|
2013-08-04 22:10:15 +08:00
|
|
|
static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
{
|
2013-08-04 22:10:15 +08:00
|
|
|
int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
|
|
|
|
|
|
|
|
if (gc_th && gc_th->gc_idle) {
|
|
|
|
if (gc_th->gc_idle == 1)
|
|
|
|
gc_mode = GC_CB;
|
|
|
|
else if (gc_th->gc_idle == 2)
|
|
|
|
gc_mode = GC_GREEDY;
|
|
|
|
}
|
|
|
|
return gc_mode;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
|
|
|
|
int type, struct victim_sel_policy *p)
|
|
|
|
{
|
|
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
|
|
|
2013-03-31 12:49:18 +08:00
|
|
|
if (p->alloc_mode == SSR) {
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
p->gc_mode = GC_GREEDY;
|
|
|
|
p->dirty_segmap = dirty_i->dirty_segmap[type];
|
f2fs: optimize gc for better performance
This patch improves the gc efficiency by optimizing the victim
selection policy. With this optimization, the random re-write
performance could increase up to 20%.
For f2fs, when disk is in shortage of free spaces, gc will selects
dirty segments and moves valid blocks around for making more space
available. The gc cost of a segment is determined by the valid blocks
in the segment. The less the valid blocks, the higher the efficiency.
The ideal victim segment is the one that has the most garbage blocks.
Currently, it searches up to 20 dirty segments for a victim segment.
The selected victim is not likely the best victim for gc when there
are much more dirty segments. Why not searching more dirty segments
for a better victim? The cost of searching dirty segments is
negligible in comparison to moving blocks.
In this patch, it enlarges the MAX_VICTIM_SEARCH to 4096 to make
the search more aggressively for a possible better victim. Since
it also applies to victim selection for SSR, it will likely improve
the SSR efficiency as well.
The test case is simple. It creates as many files until the disk full.
The size for each file is 32KB. Then it writes as many as 100000
records of 4KB size to random offsets of random files in sync mode.
The testing was done on a 2GB partition of a SDHC card. Let's see the
test result of f2fs without and with the patch.
---------------------------------------
2GB partition, SDHC
create 52023 files of size 32768 bytes
random re-write 100000 records of 4KB
---------------------------------------
| file creation (s) | rewrite time (s) | gc count | gc garbage blocks |
[no patch] 341 4227 1174 174840
[patched] 324 2958 645 106682
It's obvious that, with the patch, f2fs finishes the test in 20+% less
time than without the patch. And internally it does much less gc with
higher efficiency than before.
Since the performance improvement is related to gc, it might not be so
obvious for other tests that do not trigger gc as often as this one (
This is because f2fs selects dirty segments for SSR use most of the
time when free space is in shortage). The well-known iozone test tool
was not used for benchmarking the patch becuase it seems do not have
a test case that performs random re-write on a full disk.
This patch is the revised version based on the suggestion from
Jaegeuk Kim.
Signed-off-by: Jin Xu <jinuxstyle@gmail.com>
[Jaegeuk Kim: suggested simpler solution]
Reviewed-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-05 12:45:26 +08:00
|
|
|
p->max_search = dirty_i->nr_dirty[type];
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
p->ofs_unit = 1;
|
|
|
|
} else {
|
2013-08-04 22:10:15 +08:00
|
|
|
p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
|
f2fs: optimize gc for better performance
This patch improves the gc efficiency by optimizing the victim
selection policy. With this optimization, the random re-write
performance could increase up to 20%.
For f2fs, when disk is in shortage of free spaces, gc will selects
dirty segments and moves valid blocks around for making more space
available. The gc cost of a segment is determined by the valid blocks
in the segment. The less the valid blocks, the higher the efficiency.
The ideal victim segment is the one that has the most garbage blocks.
Currently, it searches up to 20 dirty segments for a victim segment.
The selected victim is not likely the best victim for gc when there
are much more dirty segments. Why not searching more dirty segments
for a better victim? The cost of searching dirty segments is
negligible in comparison to moving blocks.
In this patch, it enlarges the MAX_VICTIM_SEARCH to 4096 to make
the search more aggressively for a possible better victim. Since
it also applies to victim selection for SSR, it will likely improve
the SSR efficiency as well.
The test case is simple. It creates as many files until the disk full.
The size for each file is 32KB. Then it writes as many as 100000
records of 4KB size to random offsets of random files in sync mode.
The testing was done on a 2GB partition of a SDHC card. Let's see the
test result of f2fs without and with the patch.
---------------------------------------
2GB partition, SDHC
create 52023 files of size 32768 bytes
random re-write 100000 records of 4KB
---------------------------------------
| file creation (s) | rewrite time (s) | gc count | gc garbage blocks |
[no patch] 341 4227 1174 174840
[patched] 324 2958 645 106682
It's obvious that, with the patch, f2fs finishes the test in 20+% less
time than without the patch. And internally it does much less gc with
higher efficiency than before.
Since the performance improvement is related to gc, it might not be so
obvious for other tests that do not trigger gc as often as this one (
This is because f2fs selects dirty segments for SSR use most of the
time when free space is in shortage). The well-known iozone test tool
was not used for benchmarking the patch becuase it seems do not have
a test case that performs random re-write on a full disk.
This patch is the revised version based on the suggestion from
Jaegeuk Kim.
Signed-off-by: Jin Xu <jinuxstyle@gmail.com>
[Jaegeuk Kim: suggested simpler solution]
Reviewed-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-05 12:45:26 +08:00
|
|
|
p->max_search = dirty_i->nr_dirty[DIRTY];
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
p->ofs_unit = sbi->segs_per_sec;
|
|
|
|
}
|
f2fs: optimize gc for better performance
This patch improves the gc efficiency by optimizing the victim
selection policy. With this optimization, the random re-write
performance could increase up to 20%.
For f2fs, when disk is in shortage of free spaces, gc will selects
dirty segments and moves valid blocks around for making more space
available. The gc cost of a segment is determined by the valid blocks
in the segment. The less the valid blocks, the higher the efficiency.
The ideal victim segment is the one that has the most garbage blocks.
Currently, it searches up to 20 dirty segments for a victim segment.
The selected victim is not likely the best victim for gc when there
are much more dirty segments. Why not searching more dirty segments
for a better victim? The cost of searching dirty segments is
negligible in comparison to moving blocks.
In this patch, it enlarges the MAX_VICTIM_SEARCH to 4096 to make
the search more aggressively for a possible better victim. Since
it also applies to victim selection for SSR, it will likely improve
the SSR efficiency as well.
The test case is simple. It creates as many files until the disk full.
The size for each file is 32KB. Then it writes as many as 100000
records of 4KB size to random offsets of random files in sync mode.
The testing was done on a 2GB partition of a SDHC card. Let's see the
test result of f2fs without and with the patch.
---------------------------------------
2GB partition, SDHC
create 52023 files of size 32768 bytes
random re-write 100000 records of 4KB
---------------------------------------
| file creation (s) | rewrite time (s) | gc count | gc garbage blocks |
[no patch] 341 4227 1174 174840
[patched] 324 2958 645 106682
It's obvious that, with the patch, f2fs finishes the test in 20+% less
time than without the patch. And internally it does much less gc with
higher efficiency than before.
Since the performance improvement is related to gc, it might not be so
obvious for other tests that do not trigger gc as often as this one (
This is because f2fs selects dirty segments for SSR use most of the
time when free space is in shortage). The well-known iozone test tool
was not used for benchmarking the patch becuase it seems do not have
a test case that performs random re-write on a full disk.
This patch is the revised version based on the suggestion from
Jaegeuk Kim.
Signed-off-by: Jin Xu <jinuxstyle@gmail.com>
[Jaegeuk Kim: suggested simpler solution]
Reviewed-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-05 12:45:26 +08:00
|
|
|
|
f2fs: add ovp valid_blocks check for bg gc victim to fg_gc
For foreground gc, greedy algorithm should be adapted, which makes
this formula work well:
(2 * (100 / config.overprovision + 1) + 6)
But currently, we fg_gc have a prior to select bg_gc victim segments to gc
first, these victims are selected by cost-benefit algorithm, we can't guarantee
such segments have the small valid blocks, which may destroy the f2fs rule, on
the worstest case, would consume all the free segments.
This patch fix this by add a filter in check_bg_victims, if segment's has # of
valid blocks over overprovision ratio, skip such segments.
Cc: <stable@vger.kernel.org>
Signed-off-by: Hou Pengyang <houpengyang@huawei.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-02-16 20:34:31 +08:00
|
|
|
/* we need to check every dirty segments in the FG_GC case */
|
|
|
|
if (gc_type != FG_GC && p->max_search > sbi->max_victim_search)
|
2014-01-08 12:45:08 +08:00
|
|
|
p->max_search = sbi->max_victim_search;
|
f2fs: optimize gc for better performance
This patch improves the gc efficiency by optimizing the victim
selection policy. With this optimization, the random re-write
performance could increase up to 20%.
For f2fs, when disk is in shortage of free spaces, gc will selects
dirty segments and moves valid blocks around for making more space
available. The gc cost of a segment is determined by the valid blocks
in the segment. The less the valid blocks, the higher the efficiency.
The ideal victim segment is the one that has the most garbage blocks.
Currently, it searches up to 20 dirty segments for a victim segment.
The selected victim is not likely the best victim for gc when there
are much more dirty segments. Why not searching more dirty segments
for a better victim? The cost of searching dirty segments is
negligible in comparison to moving blocks.
In this patch, it enlarges the MAX_VICTIM_SEARCH to 4096 to make
the search more aggressively for a possible better victim. Since
it also applies to victim selection for SSR, it will likely improve
the SSR efficiency as well.
The test case is simple. It creates as many files until the disk full.
The size for each file is 32KB. Then it writes as many as 100000
records of 4KB size to random offsets of random files in sync mode.
The testing was done on a 2GB partition of a SDHC card. Let's see the
test result of f2fs without and with the patch.
---------------------------------------
2GB partition, SDHC
create 52023 files of size 32768 bytes
random re-write 100000 records of 4KB
---------------------------------------
| file creation (s) | rewrite time (s) | gc count | gc garbage blocks |
[no patch] 341 4227 1174 174840
[patched] 324 2958 645 106682
It's obvious that, with the patch, f2fs finishes the test in 20+% less
time than without the patch. And internally it does much less gc with
higher efficiency than before.
Since the performance improvement is related to gc, it might not be so
obvious for other tests that do not trigger gc as often as this one (
This is because f2fs selects dirty segments for SSR use most of the
time when free space is in shortage). The well-known iozone test tool
was not used for benchmarking the patch becuase it seems do not have
a test case that performs random re-write on a full disk.
This patch is the revised version based on the suggestion from
Jaegeuk Kim.
Signed-off-by: Jin Xu <jinuxstyle@gmail.com>
[Jaegeuk Kim: suggested simpler solution]
Reviewed-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-05 12:45:26 +08:00
|
|
|
|
2017-03-25 08:41:45 +08:00
|
|
|
/* let's select beginning hot/small space first */
|
|
|
|
if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
|
|
|
|
p->offset = 0;
|
|
|
|
else
|
2017-04-14 06:17:00 +08:00
|
|
|
p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
|
|
|
|
struct victim_sel_policy *p)
|
|
|
|
{
|
2013-02-05 12:19:28 +08:00
|
|
|
/* SSR allocates in a segment unit */
|
|
|
|
if (p->alloc_mode == SSR)
|
2015-12-01 11:56:52 +08:00
|
|
|
return sbi->blocks_per_seg;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
if (p->gc_mode == GC_GREEDY)
|
2017-03-25 15:03:02 +08:00
|
|
|
return 2 * sbi->blocks_per_seg * p->ofs_unit;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
else if (p->gc_mode == GC_CB)
|
|
|
|
return UINT_MAX;
|
|
|
|
else /* No other gc_mode */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
|
|
|
|
{
|
|
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
2013-03-31 12:26:03 +08:00
|
|
|
unsigned int secno;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If the gc_type is FG_GC, we can select victim segments
|
|
|
|
* selected by background GC before.
|
|
|
|
* Those segments guarantee they have small valid blocks.
|
|
|
|
*/
|
2014-09-24 02:23:01 +08:00
|
|
|
for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
|
2013-03-31 12:26:03 +08:00
|
|
|
if (sec_usage_check(sbi, secno))
|
2014-08-04 10:10:07 +08:00
|
|
|
continue;
|
f2fs: add ovp valid_blocks check for bg gc victim to fg_gc
For foreground gc, greedy algorithm should be adapted, which makes
this formula work well:
(2 * (100 / config.overprovision + 1) + 6)
But currently, we fg_gc have a prior to select bg_gc victim segments to gc
first, these victims are selected by cost-benefit algorithm, we can't guarantee
such segments have the small valid blocks, which may destroy the f2fs rule, on
the worstest case, would consume all the free segments.
This patch fix this by add a filter in check_bg_victims, if segment's has # of
valid blocks over overprovision ratio, skip such segments.
Cc: <stable@vger.kernel.org>
Signed-off-by: Hou Pengyang <houpengyang@huawei.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-02-16 20:34:31 +08:00
|
|
|
|
|
|
|
if (no_fggc_candidate(sbi, secno))
|
|
|
|
continue;
|
|
|
|
|
2013-03-31 12:26:03 +08:00
|
|
|
clear_bit(secno, dirty_i->victim_secmap);
|
2017-04-08 06:08:17 +08:00
|
|
|
return GET_SEG_FROM_SEC(sbi, secno);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
return NULL_SEGNO;
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
|
|
|
|
{
|
|
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
2017-04-08 06:08:17 +08:00
|
|
|
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
|
|
|
|
unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
unsigned long long mtime = 0;
|
|
|
|
unsigned int vblocks;
|
|
|
|
unsigned char age = 0;
|
|
|
|
unsigned char u;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for (i = 0; i < sbi->segs_per_sec; i++)
|
|
|
|
mtime += get_seg_entry(sbi, start + i)->mtime;
|
2017-04-08 05:33:22 +08:00
|
|
|
vblocks = get_valid_blocks(sbi, segno, true);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
|
|
|
mtime = div_u64(mtime, sbi->segs_per_sec);
|
|
|
|
vblocks = div_u64(vblocks, sbi->segs_per_sec);
|
|
|
|
|
|
|
|
u = (vblocks * 100) >> sbi->log_blocks_per_seg;
|
|
|
|
|
2014-08-06 22:22:50 +08:00
|
|
|
/* Handle if the system time has changed by the user */
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
if (mtime < sit_i->min_mtime)
|
|
|
|
sit_i->min_mtime = mtime;
|
|
|
|
if (mtime > sit_i->max_mtime)
|
|
|
|
sit_i->max_mtime = mtime;
|
|
|
|
if (sit_i->max_mtime != sit_i->min_mtime)
|
|
|
|
age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
|
|
|
|
sit_i->max_mtime - sit_i->min_mtime);
|
|
|
|
|
|
|
|
return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
|
|
|
|
}
|
|
|
|
|
2013-09-13 08:38:54 +08:00
|
|
|
static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
|
|
|
|
unsigned int segno, struct victim_sel_policy *p)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
{
|
|
|
|
if (p->alloc_mode == SSR)
|
2017-09-04 11:10:18 +08:00
|
|
|
return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
|
|
|
/* alloc_mode == LFS */
|
|
|
|
if (p->gc_mode == GC_GREEDY)
|
2017-09-23 17:02:18 +08:00
|
|
|
return get_valid_blocks(sbi, segno, true);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
else
|
|
|
|
return get_cb_cost(sbi, segno);
|
|
|
|
}
|
|
|
|
|
2016-02-03 16:21:57 +08:00
|
|
|
static unsigned int count_bits(const unsigned long *addr,
|
|
|
|
unsigned int offset, unsigned int len)
|
|
|
|
{
|
|
|
|
unsigned int end = offset + len, sum = 0;
|
|
|
|
|
|
|
|
while (offset < end) {
|
|
|
|
if (test_bit(offset++, addr))
|
|
|
|
++sum;
|
|
|
|
}
|
|
|
|
return sum;
|
|
|
|
}
|
|
|
|
|
2012-11-29 12:28:09 +08:00
|
|
|
/*
|
2013-03-19 07:03:35 +08:00
|
|
|
* This function is called from two paths.
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
* One is garbage collection and the other is SSR segment selection.
|
|
|
|
* When it is called during GC, it just gets a victim segment
|
|
|
|
* and it does not remove it from dirty seglist.
|
|
|
|
* When it is called from SSR segment selection, it finds a segment
|
|
|
|
* which has minimum valid blocks and removes it from dirty seglist.
|
|
|
|
*/
|
|
|
|
static int get_victim_by_default(struct f2fs_sb_info *sbi,
|
|
|
|
unsigned int *result, int gc_type, int type, char alloc_mode)
|
|
|
|
{
|
|
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
2017-04-14 06:17:00 +08:00
|
|
|
struct sit_info *sm = SIT_I(sbi);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
struct victim_sel_policy p;
|
2016-09-29 18:37:31 +08:00
|
|
|
unsigned int secno, last_victim;
|
2015-10-05 22:19:24 +08:00
|
|
|
unsigned int last_segment = MAIN_SEGS(sbi);
|
2016-02-03 16:21:57 +08:00
|
|
|
unsigned int nsearched = 0;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2014-09-15 18:05:44 +08:00
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
|
|
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
p.alloc_mode = alloc_mode;
|
|
|
|
select_policy(sbi, gc_type, type, &p);
|
|
|
|
|
|
|
|
p.min_segno = NULL_SEGNO;
|
2016-09-29 18:37:31 +08:00
|
|
|
p.min_cost = get_max_cost(sbi, &p);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2017-04-14 06:17:00 +08:00
|
|
|
if (*result != NULL_SEGNO) {
|
|
|
|
if (IS_DATASEG(get_seg_entry(sbi, *result)->type) &&
|
|
|
|
get_valid_blocks(sbi, *result, false) &&
|
|
|
|
!sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
|
|
|
|
p.min_segno = *result;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2015-10-05 22:20:40 +08:00
|
|
|
if (p.max_search == 0)
|
|
|
|
goto out;
|
|
|
|
|
2017-04-14 06:17:00 +08:00
|
|
|
last_victim = sm->last_victim[p.gc_mode];
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
if (p.alloc_mode == LFS && gc_type == FG_GC) {
|
|
|
|
p.min_segno = check_bg_victims(sbi);
|
|
|
|
if (p.min_segno != NULL_SEGNO)
|
|
|
|
goto got_it;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (1) {
|
|
|
|
unsigned long cost;
|
2013-03-31 12:26:03 +08:00
|
|
|
unsigned int segno;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2015-10-05 22:19:24 +08:00
|
|
|
segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
|
|
|
|
if (segno >= last_segment) {
|
2017-04-14 06:17:00 +08:00
|
|
|
if (sm->last_victim[p.gc_mode]) {
|
|
|
|
last_segment =
|
|
|
|
sm->last_victim[p.gc_mode];
|
|
|
|
sm->last_victim[p.gc_mode] = 0;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
p.offset = 0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2013-09-13 08:38:54 +08:00
|
|
|
|
|
|
|
p.offset = segno + p.ofs_unit;
|
2016-02-03 16:21:57 +08:00
|
|
|
if (p.ofs_unit > 1) {
|
2013-09-13 08:38:54 +08:00
|
|
|
p.offset -= segno % p.ofs_unit;
|
2016-02-03 16:21:57 +08:00
|
|
|
nsearched += count_bits(p.dirty_segmap,
|
|
|
|
p.offset - p.ofs_unit,
|
|
|
|
p.ofs_unit);
|
|
|
|
} else {
|
|
|
|
nsearched++;
|
|
|
|
}
|
|
|
|
|
2017-04-08 06:08:17 +08:00
|
|
|
secno = GET_SEC_FROM_SEG(sbi, segno);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2013-03-31 12:26:03 +08:00
|
|
|
if (sec_usage_check(sbi, secno))
|
2016-02-03 16:21:57 +08:00
|
|
|
goto next;
|
2013-03-31 12:26:03 +08:00
|
|
|
if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
|
2016-02-03 16:21:57 +08:00
|
|
|
goto next;
|
f2fs: add ovp valid_blocks check for bg gc victim to fg_gc
For foreground gc, greedy algorithm should be adapted, which makes
this formula work well:
(2 * (100 / config.overprovision + 1) + 6)
But currently, we fg_gc have a prior to select bg_gc victim segments to gc
first, these victims are selected by cost-benefit algorithm, we can't guarantee
such segments have the small valid blocks, which may destroy the f2fs rule, on
the worstest case, would consume all the free segments.
This patch fix this by add a filter in check_bg_victims, if segment's has # of
valid blocks over overprovision ratio, skip such segments.
Cc: <stable@vger.kernel.org>
Signed-off-by: Hou Pengyang <houpengyang@huawei.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-02-16 20:34:31 +08:00
|
|
|
if (gc_type == FG_GC && p.alloc_mode == LFS &&
|
|
|
|
no_fggc_candidate(sbi, secno))
|
|
|
|
goto next;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
|
|
|
cost = get_gc_cost(sbi, segno, &p);
|
|
|
|
|
|
|
|
if (p.min_cost > cost) {
|
|
|
|
p.min_segno = segno;
|
|
|
|
p.min_cost = cost;
|
2013-09-13 08:38:54 +08:00
|
|
|
}
|
2016-02-03 16:21:57 +08:00
|
|
|
next:
|
|
|
|
if (nsearched >= p.max_search) {
|
2017-04-14 06:17:00 +08:00
|
|
|
if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
|
|
|
|
sm->last_victim[p.gc_mode] = last_victim + 1;
|
2016-02-19 08:34:38 +08:00
|
|
|
else
|
2017-04-14 06:17:00 +08:00
|
|
|
sm->last_victim[p.gc_mode] = segno + 1;
|
|
|
|
sm->last_victim[p.gc_mode] %= MAIN_SEGS(sbi);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (p.min_segno != NULL_SEGNO) {
|
2013-06-01 15:20:26 +08:00
|
|
|
got_it:
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
if (p.alloc_mode == LFS) {
|
2017-04-08 06:08:17 +08:00
|
|
|
secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
|
2013-03-31 12:26:03 +08:00
|
|
|
if (gc_type == FG_GC)
|
|
|
|
sbi->cur_victim_sec = secno;
|
|
|
|
else
|
|
|
|
set_bit(secno, dirty_i->victim_secmap);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
2013-03-31 12:26:03 +08:00
|
|
|
*result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
|
2013-04-23 15:42:53 +08:00
|
|
|
|
|
|
|
trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
|
|
|
|
sbi->cur_victim_sec,
|
|
|
|
prefree_segments(sbi), free_segments(sbi));
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
2015-10-05 22:20:40 +08:00
|
|
|
out:
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
|
|
|
|
|
|
return (p.min_segno == NULL_SEGNO) ? 0 : 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct victim_selection default_v_ops = {
|
|
|
|
.get_victim = get_victim_by_default,
|
|
|
|
};
|
|
|
|
|
2014-11-28 23:49:40 +08:00
|
|
|
static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
{
|
|
|
|
struct inode_entry *ie;
|
|
|
|
|
2014-11-28 23:49:40 +08:00
|
|
|
ie = radix_tree_lookup(&gc_list->iroot, ino);
|
|
|
|
if (ie)
|
|
|
|
return ie->inode;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2014-11-28 23:49:40 +08:00
|
|
|
static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
{
|
2013-06-20 17:52:39 +08:00
|
|
|
struct inode_entry *new_ie;
|
|
|
|
|
2014-11-28 23:49:40 +08:00
|
|
|
if (inode == find_gc_inode(gc_list, inode->i_ino)) {
|
2013-06-20 17:52:39 +08:00
|
|
|
iput(inode);
|
|
|
|
return;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
2014-12-29 15:56:18 +08:00
|
|
|
new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
new_ie->inode = inode;
|
2015-01-23 20:37:53 +08:00
|
|
|
|
|
|
|
f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
|
2014-11-28 23:49:40 +08:00
|
|
|
list_add_tail(&new_ie->list, &gc_list->ilist);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
|
2014-11-28 23:49:40 +08:00
|
|
|
static void put_gc_inode(struct gc_inode_list *gc_list)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
{
|
|
|
|
struct inode_entry *ie, *next_ie;
|
2014-11-28 23:49:40 +08:00
|
|
|
list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
|
|
|
|
radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
iput(ie->inode);
|
|
|
|
list_del(&ie->list);
|
2014-12-29 15:56:18 +08:00
|
|
|
kmem_cache_free(inode_entry_slab, ie);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int check_valid_map(struct f2fs_sb_info *sbi,
|
|
|
|
unsigned int segno, int offset)
|
|
|
|
{
|
|
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
|
|
struct seg_entry *sentry;
|
|
|
|
int ret;
|
|
|
|
|
2017-10-30 17:49:53 +08:00
|
|
|
down_read(&sit_i->sentry_lock);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
sentry = get_seg_entry(sbi, segno);
|
|
|
|
ret = f2fs_test_bit(offset, sentry->cur_valid_map);
|
2017-10-30 17:49:53 +08:00
|
|
|
up_read(&sit_i->sentry_lock);
|
2013-02-04 14:11:17 +08:00
|
|
|
return ret;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
|
2012-11-29 12:28:09 +08:00
|
|
|
/*
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
* This function compares node address got in summary with that in NAT.
|
|
|
|
* On validity, copy that node with cold status, otherwise (invalid node)
|
|
|
|
* ignore that.
|
|
|
|
*/
|
f2fs: enhance foreground GC
If we configure section consist of multiple segments, foreground GC will
do the garbage collection with following approach:
for each segment in victim section
blk_start_plug
for each valid block in segment
write out by OPU method
submit bio cache <---
blk_finish_plug <---
There are two issue:
1) for most of the time, 'submit bio cache' will break the merging in
current bio buffer from writes of next segments, making a smaller bio
submitting.
2) block plug only cover IO submitting in one segment, which reduce
opportunity of merging IOs in plug with multiple segments.
So refactor the code as below structure to strive for biggest
opportunity of merging IOs:
blk_start_plug
for each segment in victim section
for each valid block in segment
write out by OPU method
submit bio cache
blk_finish_plug
Test method:
1. mkfs.f2fs -s 8 /dev/sdX
2. touch 32 files
3. write 2M data into each file
4. punch 1.5M data from offset 0 for each file
5. trigger foreground gc through ioctl
Before patch, there are totoally 40 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65776, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66016, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66256, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66496, size = 32768
----repeat for 8 times
After patch, there are totally 35 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
----repeat 34 times
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 73696, size = 16384
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-01-23 16:23:55 +08:00
|
|
|
static void gc_node_segment(struct f2fs_sb_info *sbi,
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
struct f2fs_summary *sum, unsigned int segno, int gc_type)
|
|
|
|
{
|
|
|
|
struct f2fs_summary *entry;
|
2015-08-15 05:37:50 +08:00
|
|
|
block_t start_addr;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
int off;
|
f2fs: do in batch synchronously readahead during GC
In order to enhance performance, we try to readahead node page during
GC, but before loading node page we should get block address of node page
which is stored in NAT table, so synchronously read of single NAT page
block our readahead flow.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xa1e, oldaddr = 0xa1e, newaddr = 0xa1e, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x35e9, oldaddr = 0x72d7a, newaddr = 0x72d7a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xc1f, oldaddr = 0xc1f, newaddr = 0xc1f, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x389d, oldaddr = 0x72d7d, newaddr = 0x72d7d, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3a82, oldaddr = 0x72d7f, newaddr = 0x72d7f, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3bfa, oldaddr = 0x72d86, newaddr = 0x72d86, rw = READAHEAD ^H, type = NODE
This patch adds one phase that do readahead NAT pages in batch before
readahead node page for more effeciently.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0x1952, oldaddr = 0x1952, newaddr = 0x1952, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc34, oldaddr = 0xc34, newaddr = 0xc34, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa33, oldaddr = 0xa33, newaddr = 0xa33, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc30, oldaddr = 0xc30, newaddr = 0xc30, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc32, oldaddr = 0xc32, newaddr = 0xc32, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc26, oldaddr = 0xc26, newaddr = 0xc26, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa2b, oldaddr = 0xa2b, newaddr = 0xa2b, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc23, oldaddr = 0xc23, newaddr = 0xc23, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc24, oldaddr = 0xc24, newaddr = 0xc24, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa10, oldaddr = 0xa10, newaddr = 0xa10, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc2c, oldaddr = 0xc2c, newaddr = 0xc2c, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db7, oldaddr = 0x6be00, newaddr = 0x6be00, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db9, oldaddr = 0x6be17, newaddr = 0x6be17, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dbc, oldaddr = 0x6be1a, newaddr = 0x6be1a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc3, oldaddr = 0x6be20, newaddr = 0x6be20, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc7, oldaddr = 0x6be24, newaddr = 0x6be24, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc9, oldaddr = 0x6be25, newaddr = 0x6be25, rw = READAHEAD ^H, type = NODE
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-08-27 00:14:31 +08:00
|
|
|
int phase = 0;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2015-08-15 05:37:50 +08:00
|
|
|
start_addr = START_BLOCK(sbi, segno);
|
|
|
|
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
next_step:
|
|
|
|
entry = sum;
|
f2fs: give a chance to merge IOs by IO scheduler
Previously, background GC submits many 4KB read requests to load victim blocks
and/or its (i)node blocks.
...
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb61, blkaddr = 0x3b964ed
f2fs_gc : block_rq_complete: 8,16 R () 499854968 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb6f, blkaddr = 0x3b964ee
f2fs_gc : block_rq_complete: 8,16 R () 499854976 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb79, blkaddr = 0x3b964ef
f2fs_gc : block_rq_complete: 8,16 R () 499854984 + 8 [0]
...
However, by the fact that many IOs are sequential, we can give a chance to merge
the IOs by IO scheduler.
In order to do that, let's use blk_plug.
...
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c6, blkaddr = 0x2e6ee
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c7, blkaddr = 0x2e6ef
<idle> : block_rq_complete: 8,16 R () 1519616 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1519848 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1520432 + 96 [0]
<idle> : block_rq_complete: 8,16 R () 1520536 + 104 [0]
<idle> : block_rq_complete: 8,16 R () 1521008 + 112 [0]
<idle> : block_rq_complete: 8,16 R () 1521440 + 152 [0]
<idle> : block_rq_complete: 8,16 R () 1521688 + 144 [0]
<idle> : block_rq_complete: 8,16 R () 1522128 + 192 [0]
<idle> : block_rq_complete: 8,16 R () 1523256 + 328 [0]
...
Note that this issue should be addressed in checkpoint, and some readahead
flows too.
Reviewed-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-04-24 12:19:56 +08:00
|
|
|
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
|
|
|
|
nid_t nid = le32_to_cpu(entry->nid);
|
|
|
|
struct page *node_page;
|
2015-08-15 05:37:50 +08:00
|
|
|
struct node_info ni;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2013-02-04 14:11:17 +08:00
|
|
|
/* stop BG_GC if there is not enough free sections. */
|
2016-09-02 03:02:51 +08:00
|
|
|
if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
|
f2fs: enhance foreground GC
If we configure section consist of multiple segments, foreground GC will
do the garbage collection with following approach:
for each segment in victim section
blk_start_plug
for each valid block in segment
write out by OPU method
submit bio cache <---
blk_finish_plug <---
There are two issue:
1) for most of the time, 'submit bio cache' will break the merging in
current bio buffer from writes of next segments, making a smaller bio
submitting.
2) block plug only cover IO submitting in one segment, which reduce
opportunity of merging IOs in plug with multiple segments.
So refactor the code as below structure to strive for biggest
opportunity of merging IOs:
blk_start_plug
for each segment in victim section
for each valid block in segment
write out by OPU method
submit bio cache
blk_finish_plug
Test method:
1. mkfs.f2fs -s 8 /dev/sdX
2. touch 32 files
3. write 2M data into each file
4. punch 1.5M data from offset 0 for each file
5. trigger foreground gc through ioctl
Before patch, there are totoally 40 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65776, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66016, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66256, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66496, size = 32768
----repeat for 8 times
After patch, there are totally 35 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
----repeat 34 times
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 73696, size = 16384
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-01-23 16:23:55 +08:00
|
|
|
return;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2013-02-04 14:11:17 +08:00
|
|
|
if (check_valid_map(sbi, segno, off) == 0)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
continue;
|
|
|
|
|
f2fs: do in batch synchronously readahead during GC
In order to enhance performance, we try to readahead node page during
GC, but before loading node page we should get block address of node page
which is stored in NAT table, so synchronously read of single NAT page
block our readahead flow.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xa1e, oldaddr = 0xa1e, newaddr = 0xa1e, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x35e9, oldaddr = 0x72d7a, newaddr = 0x72d7a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xc1f, oldaddr = 0xc1f, newaddr = 0xc1f, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x389d, oldaddr = 0x72d7d, newaddr = 0x72d7d, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3a82, oldaddr = 0x72d7f, newaddr = 0x72d7f, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3bfa, oldaddr = 0x72d86, newaddr = 0x72d86, rw = READAHEAD ^H, type = NODE
This patch adds one phase that do readahead NAT pages in batch before
readahead node page for more effeciently.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0x1952, oldaddr = 0x1952, newaddr = 0x1952, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc34, oldaddr = 0xc34, newaddr = 0xc34, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa33, oldaddr = 0xa33, newaddr = 0xa33, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc30, oldaddr = 0xc30, newaddr = 0xc30, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc32, oldaddr = 0xc32, newaddr = 0xc32, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc26, oldaddr = 0xc26, newaddr = 0xc26, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa2b, oldaddr = 0xa2b, newaddr = 0xa2b, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc23, oldaddr = 0xc23, newaddr = 0xc23, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc24, oldaddr = 0xc24, newaddr = 0xc24, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa10, oldaddr = 0xa10, newaddr = 0xa10, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc2c, oldaddr = 0xc2c, newaddr = 0xc2c, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db7, oldaddr = 0x6be00, newaddr = 0x6be00, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db9, oldaddr = 0x6be17, newaddr = 0x6be17, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dbc, oldaddr = 0x6be1a, newaddr = 0x6be1a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc3, oldaddr = 0x6be20, newaddr = 0x6be20, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc7, oldaddr = 0x6be24, newaddr = 0x6be24, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc9, oldaddr = 0x6be25, newaddr = 0x6be25, rw = READAHEAD ^H, type = NODE
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-08-27 00:14:31 +08:00
|
|
|
if (phase == 0) {
|
|
|
|
ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
|
|
|
|
META_NAT, true);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (phase == 1) {
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
ra_node_page(sbi, nid);
|
|
|
|
continue;
|
|
|
|
}
|
f2fs: do in batch synchronously readahead during GC
In order to enhance performance, we try to readahead node page during
GC, but before loading node page we should get block address of node page
which is stored in NAT table, so synchronously read of single NAT page
block our readahead flow.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xa1e, oldaddr = 0xa1e, newaddr = 0xa1e, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x35e9, oldaddr = 0x72d7a, newaddr = 0x72d7a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xc1f, oldaddr = 0xc1f, newaddr = 0xc1f, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x389d, oldaddr = 0x72d7d, newaddr = 0x72d7d, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3a82, oldaddr = 0x72d7f, newaddr = 0x72d7f, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3bfa, oldaddr = 0x72d86, newaddr = 0x72d86, rw = READAHEAD ^H, type = NODE
This patch adds one phase that do readahead NAT pages in batch before
readahead node page for more effeciently.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0x1952, oldaddr = 0x1952, newaddr = 0x1952, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc34, oldaddr = 0xc34, newaddr = 0xc34, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa33, oldaddr = 0xa33, newaddr = 0xa33, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc30, oldaddr = 0xc30, newaddr = 0xc30, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc32, oldaddr = 0xc32, newaddr = 0xc32, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc26, oldaddr = 0xc26, newaddr = 0xc26, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa2b, oldaddr = 0xa2b, newaddr = 0xa2b, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc23, oldaddr = 0xc23, newaddr = 0xc23, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc24, oldaddr = 0xc24, newaddr = 0xc24, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa10, oldaddr = 0xa10, newaddr = 0xa10, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc2c, oldaddr = 0xc2c, newaddr = 0xc2c, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db7, oldaddr = 0x6be00, newaddr = 0x6be00, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db9, oldaddr = 0x6be17, newaddr = 0x6be17, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dbc, oldaddr = 0x6be1a, newaddr = 0x6be1a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc3, oldaddr = 0x6be20, newaddr = 0x6be20, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc7, oldaddr = 0x6be24, newaddr = 0x6be24, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc9, oldaddr = 0x6be25, newaddr = 0x6be25, rw = READAHEAD ^H, type = NODE
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-08-27 00:14:31 +08:00
|
|
|
|
|
|
|
/* phase == 2 */
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
node_page = get_node_page(sbi, nid);
|
|
|
|
if (IS_ERR(node_page))
|
|
|
|
continue;
|
|
|
|
|
2014-09-07 11:05:20 +08:00
|
|
|
/* block may become invalid during get_node_page */
|
|
|
|
if (check_valid_map(sbi, segno, off) == 0) {
|
|
|
|
f2fs_put_page(node_page, 1);
|
|
|
|
continue;
|
2015-08-15 05:37:50 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
get_node_info(sbi, nid, &ni);
|
|
|
|
if (ni.blk_addr != start_addr + off) {
|
|
|
|
f2fs_put_page(node_page, 1);
|
|
|
|
continue;
|
2014-09-07 11:05:20 +08:00
|
|
|
}
|
|
|
|
|
2016-04-27 21:40:15 +08:00
|
|
|
move_node_page(node_page, gc_type);
|
2014-12-23 07:37:39 +08:00
|
|
|
stat_inc_node_blk_count(sbi, 1, gc_type);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
f2fs: give a chance to merge IOs by IO scheduler
Previously, background GC submits many 4KB read requests to load victim blocks
and/or its (i)node blocks.
...
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb61, blkaddr = 0x3b964ed
f2fs_gc : block_rq_complete: 8,16 R () 499854968 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb6f, blkaddr = 0x3b964ee
f2fs_gc : block_rq_complete: 8,16 R () 499854976 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb79, blkaddr = 0x3b964ef
f2fs_gc : block_rq_complete: 8,16 R () 499854984 + 8 [0]
...
However, by the fact that many IOs are sequential, we can give a chance to merge
the IOs by IO scheduler.
In order to do that, let's use blk_plug.
...
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c6, blkaddr = 0x2e6ee
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c7, blkaddr = 0x2e6ef
<idle> : block_rq_complete: 8,16 R () 1519616 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1519848 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1520432 + 96 [0]
<idle> : block_rq_complete: 8,16 R () 1520536 + 104 [0]
<idle> : block_rq_complete: 8,16 R () 1521008 + 112 [0]
<idle> : block_rq_complete: 8,16 R () 1521440 + 152 [0]
<idle> : block_rq_complete: 8,16 R () 1521688 + 144 [0]
<idle> : block_rq_complete: 8,16 R () 1522128 + 192 [0]
<idle> : block_rq_complete: 8,16 R () 1523256 + 328 [0]
...
Note that this issue should be addressed in checkpoint, and some readahead
flows too.
Reviewed-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-04-24 12:19:56 +08:00
|
|
|
|
f2fs: do in batch synchronously readahead during GC
In order to enhance performance, we try to readahead node page during
GC, but before loading node page we should get block address of node page
which is stored in NAT table, so synchronously read of single NAT page
block our readahead flow.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xa1e, oldaddr = 0xa1e, newaddr = 0xa1e, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x35e9, oldaddr = 0x72d7a, newaddr = 0x72d7a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xc1f, oldaddr = 0xc1f, newaddr = 0xc1f, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x389d, oldaddr = 0x72d7d, newaddr = 0x72d7d, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3a82, oldaddr = 0x72d7f, newaddr = 0x72d7f, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3bfa, oldaddr = 0x72d86, newaddr = 0x72d86, rw = READAHEAD ^H, type = NODE
This patch adds one phase that do readahead NAT pages in batch before
readahead node page for more effeciently.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0x1952, oldaddr = 0x1952, newaddr = 0x1952, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc34, oldaddr = 0xc34, newaddr = 0xc34, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa33, oldaddr = 0xa33, newaddr = 0xa33, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc30, oldaddr = 0xc30, newaddr = 0xc30, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc32, oldaddr = 0xc32, newaddr = 0xc32, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc26, oldaddr = 0xc26, newaddr = 0xc26, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa2b, oldaddr = 0xa2b, newaddr = 0xa2b, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc23, oldaddr = 0xc23, newaddr = 0xc23, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc24, oldaddr = 0xc24, newaddr = 0xc24, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa10, oldaddr = 0xa10, newaddr = 0xa10, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc2c, oldaddr = 0xc2c, newaddr = 0xc2c, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db7, oldaddr = 0x6be00, newaddr = 0x6be00, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db9, oldaddr = 0x6be17, newaddr = 0x6be17, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dbc, oldaddr = 0x6be1a, newaddr = 0x6be1a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc3, oldaddr = 0x6be20, newaddr = 0x6be20, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc7, oldaddr = 0x6be24, newaddr = 0x6be24, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc9, oldaddr = 0x6be25, newaddr = 0x6be25, rw = READAHEAD ^H, type = NODE
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-08-27 00:14:31 +08:00
|
|
|
if (++phase < 3)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
goto next_step;
|
|
|
|
}
|
|
|
|
|
2012-11-29 12:28:09 +08:00
|
|
|
/*
|
2013-01-21 16:34:21 +08:00
|
|
|
* Calculate start block index indicating the given node offset.
|
|
|
|
* Be careful, caller should give this node offset only indicating direct node
|
|
|
|
* blocks. If any node offsets, which point the other types of node blocks such
|
|
|
|
* as indirect or double indirect node blocks, are given, it must be a caller's
|
|
|
|
* bug.
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
*/
|
2016-01-26 15:39:35 +08:00
|
|
|
block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
{
|
2012-12-26 11:03:22 +08:00
|
|
|
unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
|
|
|
|
unsigned int bidx;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2012-12-26 11:03:22 +08:00
|
|
|
if (node_ofs == 0)
|
|
|
|
return 0;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2012-12-26 11:03:22 +08:00
|
|
|
if (node_ofs <= 2) {
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
bidx = node_ofs - 1;
|
|
|
|
} else if (node_ofs <= indirect_blks) {
|
2012-12-26 11:03:22 +08:00
|
|
|
int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
bidx = node_ofs - 2 - dec;
|
|
|
|
} else {
|
2012-12-26 11:03:22 +08:00
|
|
|
int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
bidx = node_ofs - 5 - dec;
|
|
|
|
}
|
2016-01-26 15:39:35 +08:00
|
|
|
return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
|
2015-07-01 09:37:21 +08:00
|
|
|
static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
struct node_info *dni, block_t blkaddr, unsigned int *nofs)
|
|
|
|
{
|
|
|
|
struct page *node_page;
|
|
|
|
nid_t nid;
|
|
|
|
unsigned int ofs_in_node;
|
|
|
|
block_t source_blkaddr;
|
|
|
|
|
|
|
|
nid = le32_to_cpu(sum->nid);
|
|
|
|
ofs_in_node = le16_to_cpu(sum->ofs_in_node);
|
|
|
|
|
|
|
|
node_page = get_node_page(sbi, nid);
|
|
|
|
if (IS_ERR(node_page))
|
2015-07-01 09:37:21 +08:00
|
|
|
return false;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
|
|
|
get_node_info(sbi, nid, dni);
|
|
|
|
|
|
|
|
if (sum->version != dni->version) {
|
f2fs: relax node version check for victim data in gc
- has_not_enough_free_secs
node_secs: 0 dent_secs: 0 freed:0 free_segments:103 reserved:104
- f2fs_gc
- get_victim_by_default
alloc_mode 0, gc_mode 1, max_search 2672, offset 4654, ofs_unit 1
- do_garbage_collect
start_segno 3976, end_segno 3977 type 0
- is_alive
nid 22797, blkaddr 2131882, ofs_in_node 0, version 0x8/0x0
- gc_data_segment 766, segno 3976, block 512/426 not alive
So, this patch fixes subtle corrupted case where node version does not match
to summary version which results in infinite loop by gc.
Reported-by: Yunlei He <heyunlei@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-03-21 22:59:50 +08:00
|
|
|
f2fs_msg(sbi->sb, KERN_WARNING,
|
|
|
|
"%s: valid data with mismatched node version.",
|
|
|
|
__func__);
|
|
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
*nofs = ofs_of_node(node_page);
|
2017-07-19 00:19:06 +08:00
|
|
|
source_blkaddr = datablock_addr(NULL, node_page, ofs_in_node);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
f2fs_put_page(node_page, 1);
|
|
|
|
|
|
|
|
if (source_blkaddr != blkaddr)
|
2015-07-01 09:37:21 +08:00
|
|
|
return false;
|
|
|
|
return true;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
|
2017-09-06 08:04:35 +08:00
|
|
|
/*
|
|
|
|
* Move data block via META_MAPPING while keeping locked data page.
|
|
|
|
* This can be used to move blocks, aka LBAs, directly on disk.
|
|
|
|
*/
|
|
|
|
static void move_data_block(struct inode *inode, block_t bidx,
|
|
|
|
unsigned int segno, int off)
|
2015-04-24 03:04:33 +08:00
|
|
|
{
|
|
|
|
struct f2fs_io_info fio = {
|
|
|
|
.sbi = F2FS_I_SB(inode),
|
2017-09-29 13:59:38 +08:00
|
|
|
.ino = inode->i_ino,
|
2015-04-24 03:04:33 +08:00
|
|
|
.type = DATA,
|
2017-05-11 02:18:25 +08:00
|
|
|
.temp = COLD,
|
2016-06-06 03:31:55 +08:00
|
|
|
.op = REQ_OP_READ,
|
2016-11-01 21:40:10 +08:00
|
|
|
.op_flags = 0,
|
2015-04-24 03:04:33 +08:00
|
|
|
.encrypted_page = NULL,
|
2017-05-19 23:37:01 +08:00
|
|
|
.in_list = false,
|
2015-04-24 03:04:33 +08:00
|
|
|
};
|
|
|
|
struct dnode_of_data dn;
|
|
|
|
struct f2fs_summary sum;
|
|
|
|
struct node_info ni;
|
|
|
|
struct page *page;
|
2016-02-23 17:52:43 +08:00
|
|
|
block_t newaddr;
|
2015-04-24 03:04:33 +08:00
|
|
|
int err;
|
|
|
|
|
|
|
|
/* do not read out */
|
2015-10-10 06:11:38 +08:00
|
|
|
page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
|
2015-04-24 03:04:33 +08:00
|
|
|
if (!page)
|
|
|
|
return;
|
|
|
|
|
2016-11-07 21:22:31 +08:00
|
|
|
if (!check_valid_map(F2FS_I_SB(inode), segno, off))
|
|
|
|
goto out;
|
|
|
|
|
2017-01-07 18:50:26 +08:00
|
|
|
if (f2fs_is_atomic_file(inode))
|
|
|
|
goto out;
|
|
|
|
|
2017-12-08 08:25:39 +08:00
|
|
|
if (f2fs_is_pinned_file(inode)) {
|
|
|
|
f2fs_pin_file_control(inode, true);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2015-04-24 03:04:33 +08:00
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
|
|
err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
|
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
|
2015-10-08 13:27:34 +08:00
|
|
|
if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
|
|
|
|
ClearPageUptodate(page);
|
2015-04-24 03:04:33 +08:00
|
|
|
goto put_out;
|
2015-10-08 13:27:34 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* don't cache encrypted data into meta inode until previous dirty
|
|
|
|
* data were writebacked to avoid racing between GC and flush.
|
|
|
|
*/
|
2016-01-20 23:43:51 +08:00
|
|
|
f2fs_wait_on_page_writeback(page, DATA, true);
|
2015-04-24 03:04:33 +08:00
|
|
|
|
|
|
|
get_node_info(fio.sbi, dn.nid, &ni);
|
|
|
|
set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
|
|
|
|
|
|
|
|
/* read page */
|
|
|
|
fio.page = page;
|
f2fs: trace old block address for CoWed page
This patch enables to trace old block address of CoWed page for better
debugging.
f2fs_submit_page_mbio: dev = (1,0), ino = 1, page_index = 0x1d4f0, oldaddr = 0xfe8ab, newaddr = 0xfee90 rw = WRITE_SYNC, type = NODE
f2fs_submit_page_mbio: dev = (1,0), ino = 1, page_index = 0x1d4f8, oldaddr = 0xfe8b0, newaddr = 0xfee91 rw = WRITE_SYNC, type = NODE
f2fs_submit_page_mbio: dev = (1,0), ino = 1, page_index = 0x1d4fa, oldaddr = 0xfe8ae, newaddr = 0xfee92 rw = WRITE_SYNC, type = NODE
f2fs_submit_page_mbio: dev = (1,0), ino = 134824, page_index = 0x96, oldaddr = 0xf049b, newaddr = 0x2bbe rw = WRITE, type = DATA
f2fs_submit_page_mbio: dev = (1,0), ino = 134824, page_index = 0x97, oldaddr = 0xf049c, newaddr = 0x2bbf rw = WRITE, type = DATA
f2fs_submit_page_mbio: dev = (1,0), ino = 134824, page_index = 0x98, oldaddr = 0xf049d, newaddr = 0x2bc0 rw = WRITE, type = DATA
f2fs_submit_page_mbio: dev = (1,0), ino = 135260, page_index = 0x47, oldaddr = 0xffffffff, newaddr = 0xf2631 rw = WRITE, type = DATA
f2fs_submit_page_mbio: dev = (1,0), ino = 135260, page_index = 0x48, oldaddr = 0xffffffff, newaddr = 0xf2632 rw = WRITE, type = DATA
f2fs_submit_page_mbio: dev = (1,0), ino = 135260, page_index = 0x49, oldaddr = 0xffffffff, newaddr = 0xf2633 rw = WRITE, type = DATA
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-02-22 18:36:38 +08:00
|
|
|
fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
|
2015-04-24 03:04:33 +08:00
|
|
|
|
2016-02-23 17:52:43 +08:00
|
|
|
allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
|
2017-05-19 23:37:01 +08:00
|
|
|
&sum, CURSEG_COLD_DATA, NULL, false);
|
2016-02-23 17:52:43 +08:00
|
|
|
|
2017-10-28 16:52:30 +08:00
|
|
|
fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
|
|
|
|
newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
|
2016-02-23 17:52:43 +08:00
|
|
|
if (!fio.encrypted_page) {
|
|
|
|
err = -ENOMEM;
|
|
|
|
goto recover_block;
|
|
|
|
}
|
2015-04-24 03:04:33 +08:00
|
|
|
|
2015-07-14 08:44:14 +08:00
|
|
|
err = f2fs_submit_page_bio(&fio);
|
|
|
|
if (err)
|
|
|
|
goto put_page_out;
|
|
|
|
|
|
|
|
/* write page */
|
|
|
|
lock_page(fio.encrypted_page);
|
|
|
|
|
2016-07-03 22:05:12 +08:00
|
|
|
if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) {
|
2016-02-23 17:52:43 +08:00
|
|
|
err = -EIO;
|
2015-07-14 08:44:14 +08:00
|
|
|
goto put_page_out;
|
2016-02-23 17:52:43 +08:00
|
|
|
}
|
2016-07-03 22:05:12 +08:00
|
|
|
if (unlikely(!PageUptodate(fio.encrypted_page))) {
|
2016-02-23 17:52:43 +08:00
|
|
|
err = -EIO;
|
2015-07-14 08:44:14 +08:00
|
|
|
goto put_page_out;
|
2016-02-23 17:52:43 +08:00
|
|
|
}
|
2015-07-14 08:44:14 +08:00
|
|
|
|
2015-07-25 15:29:17 +08:00
|
|
|
set_page_dirty(fio.encrypted_page);
|
2016-01-20 23:43:51 +08:00
|
|
|
f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true);
|
2015-07-25 15:29:17 +08:00
|
|
|
if (clear_page_dirty_for_io(fio.encrypted_page))
|
|
|
|
dec_page_count(fio.sbi, F2FS_DIRTY_META);
|
|
|
|
|
2015-07-14 08:44:14 +08:00
|
|
|
set_page_writeback(fio.encrypted_page);
|
2015-04-24 03:04:33 +08:00
|
|
|
|
|
|
|
/* allocate block address */
|
2016-01-20 23:43:51 +08:00
|
|
|
f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
|
2016-02-23 17:52:43 +08:00
|
|
|
|
2016-06-06 03:31:55 +08:00
|
|
|
fio.op = REQ_OP_WRITE;
|
2016-11-01 21:40:10 +08:00
|
|
|
fio.op_flags = REQ_SYNC;
|
2016-02-23 17:52:43 +08:00
|
|
|
fio.new_blkaddr = newaddr;
|
2018-01-17 12:11:31 +08:00
|
|
|
err = f2fs_submit_page_write(&fio);
|
|
|
|
if (err) {
|
|
|
|
if (PageWriteback(fio.encrypted_page))
|
|
|
|
end_page_writeback(fio.encrypted_page);
|
|
|
|
goto put_page_out;
|
|
|
|
}
|
2015-04-24 03:04:33 +08:00
|
|
|
|
2017-08-02 23:21:48 +08:00
|
|
|
f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE);
|
|
|
|
|
2016-02-24 17:16:47 +08:00
|
|
|
f2fs_update_data_blkaddr(&dn, newaddr);
|
2016-05-21 01:13:22 +08:00
|
|
|
set_inode_flag(inode, FI_APPEND_WRITE);
|
2015-04-24 03:04:33 +08:00
|
|
|
if (page->index == 0)
|
2016-05-21 01:13:22 +08:00
|
|
|
set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
|
2015-07-14 08:44:14 +08:00
|
|
|
put_page_out:
|
2015-04-24 03:04:33 +08:00
|
|
|
f2fs_put_page(fio.encrypted_page, 1);
|
2016-02-23 17:52:43 +08:00
|
|
|
recover_block:
|
|
|
|
if (err)
|
|
|
|
__f2fs_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
|
|
|
|
true, true);
|
2015-04-24 03:04:33 +08:00
|
|
|
put_out:
|
|
|
|
f2fs_put_dnode(&dn);
|
|
|
|
out:
|
|
|
|
f2fs_put_page(page, 1);
|
|
|
|
}
|
|
|
|
|
2016-11-07 21:22:31 +08:00
|
|
|
static void move_data_page(struct inode *inode, block_t bidx, int gc_type,
|
|
|
|
unsigned int segno, int off)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
{
|
2015-04-25 05:34:30 +08:00
|
|
|
struct page *page;
|
|
|
|
|
2015-10-10 06:11:38 +08:00
|
|
|
page = get_lock_data_page(inode, bidx, true);
|
2015-04-25 05:34:30 +08:00
|
|
|
if (IS_ERR(page))
|
|
|
|
return;
|
2013-12-09 16:09:00 +08:00
|
|
|
|
2016-11-07 21:22:31 +08:00
|
|
|
if (!check_valid_map(F2FS_I_SB(inode), segno, off))
|
|
|
|
goto out;
|
|
|
|
|
2017-01-07 18:50:26 +08:00
|
|
|
if (f2fs_is_atomic_file(inode))
|
|
|
|
goto out;
|
2017-12-08 08:25:39 +08:00
|
|
|
if (f2fs_is_pinned_file(inode)) {
|
|
|
|
if (gc_type == FG_GC)
|
|
|
|
f2fs_pin_file_control(inode, true);
|
|
|
|
goto out;
|
|
|
|
}
|
2017-01-07 18:50:26 +08:00
|
|
|
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
if (gc_type == BG_GC) {
|
2013-03-31 12:49:18 +08:00
|
|
|
if (PageWriteback(page))
|
|
|
|
goto out;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
set_page_dirty(page);
|
|
|
|
set_cold_data(page);
|
|
|
|
} else {
|
2015-04-25 05:34:30 +08:00
|
|
|
struct f2fs_io_info fio = {
|
|
|
|
.sbi = F2FS_I_SB(inode),
|
2017-09-29 13:59:38 +08:00
|
|
|
.ino = inode->i_ino,
|
2015-04-25 05:34:30 +08:00
|
|
|
.type = DATA,
|
2017-05-11 02:18:25 +08:00
|
|
|
.temp = COLD,
|
2016-06-06 03:31:55 +08:00
|
|
|
.op = REQ_OP_WRITE,
|
2016-11-01 21:40:10 +08:00
|
|
|
.op_flags = REQ_SYNC,
|
2017-04-25 20:45:13 +08:00
|
|
|
.old_blkaddr = NULL_ADDR,
|
2015-04-25 05:34:30 +08:00
|
|
|
.page = page,
|
2015-04-24 03:04:33 +08:00
|
|
|
.encrypted_page = NULL,
|
2017-05-13 04:51:34 +08:00
|
|
|
.need_lock = LOCK_REQ,
|
2017-08-02 23:21:48 +08:00
|
|
|
.io_type = FS_GC_DATA_IO,
|
2015-04-25 05:34:30 +08:00
|
|
|
};
|
2016-07-03 22:05:13 +08:00
|
|
|
bool is_dirty = PageDirty(page);
|
|
|
|
int err;
|
|
|
|
|
|
|
|
retry:
|
2015-07-25 15:29:17 +08:00
|
|
|
set_page_dirty(page);
|
2016-01-20 23:43:51 +08:00
|
|
|
f2fs_wait_on_page_writeback(page, DATA, true);
|
2016-10-11 22:57:01 +08:00
|
|
|
if (clear_page_dirty_for_io(page)) {
|
2014-09-13 06:53:45 +08:00
|
|
|
inode_dec_dirty_pages(inode);
|
2016-10-11 22:57:01 +08:00
|
|
|
remove_dirty_inode(inode);
|
|
|
|
}
|
2016-07-03 22:05:13 +08:00
|
|
|
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
set_cold_data(page);
|
2016-07-03 22:05:13 +08:00
|
|
|
|
|
|
|
err = do_write_data_page(&fio);
|
|
|
|
if (err == -ENOMEM && is_dirty) {
|
|
|
|
congestion_wait(BLK_RW_ASYNC, HZ/50);
|
|
|
|
goto retry;
|
|
|
|
}
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
out:
|
|
|
|
f2fs_put_page(page, 1);
|
|
|
|
}
|
|
|
|
|
2012-11-29 12:28:09 +08:00
|
|
|
/*
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
* This function tries to get parent node of victim data block, and identifies
|
|
|
|
* data block validity. If the block is valid, copy that with cold status and
|
|
|
|
* modify parent node.
|
|
|
|
* If the parent node is not valid or the data block address is different,
|
|
|
|
* the victim data block is ignored.
|
|
|
|
*/
|
f2fs: enhance foreground GC
If we configure section consist of multiple segments, foreground GC will
do the garbage collection with following approach:
for each segment in victim section
blk_start_plug
for each valid block in segment
write out by OPU method
submit bio cache <---
blk_finish_plug <---
There are two issue:
1) for most of the time, 'submit bio cache' will break the merging in
current bio buffer from writes of next segments, making a smaller bio
submitting.
2) block plug only cover IO submitting in one segment, which reduce
opportunity of merging IOs in plug with multiple segments.
So refactor the code as below structure to strive for biggest
opportunity of merging IOs:
blk_start_plug
for each segment in victim section
for each valid block in segment
write out by OPU method
submit bio cache
blk_finish_plug
Test method:
1. mkfs.f2fs -s 8 /dev/sdX
2. touch 32 files
3. write 2M data into each file
4. punch 1.5M data from offset 0 for each file
5. trigger foreground gc through ioctl
Before patch, there are totoally 40 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65776, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66016, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66256, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66496, size = 32768
----repeat for 8 times
After patch, there are totally 35 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
----repeat 34 times
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 73696, size = 16384
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-01-23 16:23:55 +08:00
|
|
|
static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
|
2014-11-28 23:49:40 +08:00
|
|
|
struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
{
|
|
|
|
struct super_block *sb = sbi->sb;
|
|
|
|
struct f2fs_summary *entry;
|
|
|
|
block_t start_addr;
|
2013-02-04 14:11:17 +08:00
|
|
|
int off;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
int phase = 0;
|
|
|
|
|
|
|
|
start_addr = START_BLOCK(sbi, segno);
|
|
|
|
|
|
|
|
next_step:
|
|
|
|
entry = sum;
|
f2fs: give a chance to merge IOs by IO scheduler
Previously, background GC submits many 4KB read requests to load victim blocks
and/or its (i)node blocks.
...
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb61, blkaddr = 0x3b964ed
f2fs_gc : block_rq_complete: 8,16 R () 499854968 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb6f, blkaddr = 0x3b964ee
f2fs_gc : block_rq_complete: 8,16 R () 499854976 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb79, blkaddr = 0x3b964ef
f2fs_gc : block_rq_complete: 8,16 R () 499854984 + 8 [0]
...
However, by the fact that many IOs are sequential, we can give a chance to merge
the IOs by IO scheduler.
In order to do that, let's use blk_plug.
...
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c6, blkaddr = 0x2e6ee
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c7, blkaddr = 0x2e6ef
<idle> : block_rq_complete: 8,16 R () 1519616 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1519848 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1520432 + 96 [0]
<idle> : block_rq_complete: 8,16 R () 1520536 + 104 [0]
<idle> : block_rq_complete: 8,16 R () 1521008 + 112 [0]
<idle> : block_rq_complete: 8,16 R () 1521440 + 152 [0]
<idle> : block_rq_complete: 8,16 R () 1521688 + 144 [0]
<idle> : block_rq_complete: 8,16 R () 1522128 + 192 [0]
<idle> : block_rq_complete: 8,16 R () 1523256 + 328 [0]
...
Note that this issue should be addressed in checkpoint, and some readahead
flows too.
Reviewed-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-04-24 12:19:56 +08:00
|
|
|
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
|
|
|
|
struct page *data_page;
|
|
|
|
struct inode *inode;
|
|
|
|
struct node_info dni; /* dnode info for the data */
|
|
|
|
unsigned int ofs_in_node, nofs;
|
|
|
|
block_t start_bidx;
|
f2fs: do in batch synchronously readahead during GC
In order to enhance performance, we try to readahead node page during
GC, but before loading node page we should get block address of node page
which is stored in NAT table, so synchronously read of single NAT page
block our readahead flow.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xa1e, oldaddr = 0xa1e, newaddr = 0xa1e, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x35e9, oldaddr = 0x72d7a, newaddr = 0x72d7a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xc1f, oldaddr = 0xc1f, newaddr = 0xc1f, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x389d, oldaddr = 0x72d7d, newaddr = 0x72d7d, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3a82, oldaddr = 0x72d7f, newaddr = 0x72d7f, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3bfa, oldaddr = 0x72d86, newaddr = 0x72d86, rw = READAHEAD ^H, type = NODE
This patch adds one phase that do readahead NAT pages in batch before
readahead node page for more effeciently.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0x1952, oldaddr = 0x1952, newaddr = 0x1952, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc34, oldaddr = 0xc34, newaddr = 0xc34, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa33, oldaddr = 0xa33, newaddr = 0xa33, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc30, oldaddr = 0xc30, newaddr = 0xc30, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc32, oldaddr = 0xc32, newaddr = 0xc32, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc26, oldaddr = 0xc26, newaddr = 0xc26, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa2b, oldaddr = 0xa2b, newaddr = 0xa2b, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc23, oldaddr = 0xc23, newaddr = 0xc23, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc24, oldaddr = 0xc24, newaddr = 0xc24, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa10, oldaddr = 0xa10, newaddr = 0xa10, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc2c, oldaddr = 0xc2c, newaddr = 0xc2c, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db7, oldaddr = 0x6be00, newaddr = 0x6be00, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db9, oldaddr = 0x6be17, newaddr = 0x6be17, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dbc, oldaddr = 0x6be1a, newaddr = 0x6be1a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc3, oldaddr = 0x6be20, newaddr = 0x6be20, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc7, oldaddr = 0x6be24, newaddr = 0x6be24, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc9, oldaddr = 0x6be25, newaddr = 0x6be25, rw = READAHEAD ^H, type = NODE
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-08-27 00:14:31 +08:00
|
|
|
nid_t nid = le32_to_cpu(entry->nid);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2013-02-04 14:11:17 +08:00
|
|
|
/* stop BG_GC if there is not enough free sections. */
|
2016-09-02 03:02:51 +08:00
|
|
|
if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
|
f2fs: enhance foreground GC
If we configure section consist of multiple segments, foreground GC will
do the garbage collection with following approach:
for each segment in victim section
blk_start_plug
for each valid block in segment
write out by OPU method
submit bio cache <---
blk_finish_plug <---
There are two issue:
1) for most of the time, 'submit bio cache' will break the merging in
current bio buffer from writes of next segments, making a smaller bio
submitting.
2) block plug only cover IO submitting in one segment, which reduce
opportunity of merging IOs in plug with multiple segments.
So refactor the code as below structure to strive for biggest
opportunity of merging IOs:
blk_start_plug
for each segment in victim section
for each valid block in segment
write out by OPU method
submit bio cache
blk_finish_plug
Test method:
1. mkfs.f2fs -s 8 /dev/sdX
2. touch 32 files
3. write 2M data into each file
4. punch 1.5M data from offset 0 for each file
5. trigger foreground gc through ioctl
Before patch, there are totoally 40 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65776, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66016, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66256, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66496, size = 32768
----repeat for 8 times
After patch, there are totally 35 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
----repeat 34 times
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 73696, size = 16384
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-01-23 16:23:55 +08:00
|
|
|
return;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2013-02-04 14:11:17 +08:00
|
|
|
if (check_valid_map(sbi, segno, off) == 0)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
continue;
|
|
|
|
|
|
|
|
if (phase == 0) {
|
f2fs: do in batch synchronously readahead during GC
In order to enhance performance, we try to readahead node page during
GC, but before loading node page we should get block address of node page
which is stored in NAT table, so synchronously read of single NAT page
block our readahead flow.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xa1e, oldaddr = 0xa1e, newaddr = 0xa1e, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x35e9, oldaddr = 0x72d7a, newaddr = 0x72d7a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xc1f, oldaddr = 0xc1f, newaddr = 0xc1f, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x389d, oldaddr = 0x72d7d, newaddr = 0x72d7d, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3a82, oldaddr = 0x72d7f, newaddr = 0x72d7f, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3bfa, oldaddr = 0x72d86, newaddr = 0x72d86, rw = READAHEAD ^H, type = NODE
This patch adds one phase that do readahead NAT pages in batch before
readahead node page for more effeciently.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0x1952, oldaddr = 0x1952, newaddr = 0x1952, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc34, oldaddr = 0xc34, newaddr = 0xc34, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa33, oldaddr = 0xa33, newaddr = 0xa33, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc30, oldaddr = 0xc30, newaddr = 0xc30, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc32, oldaddr = 0xc32, newaddr = 0xc32, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc26, oldaddr = 0xc26, newaddr = 0xc26, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa2b, oldaddr = 0xa2b, newaddr = 0xa2b, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc23, oldaddr = 0xc23, newaddr = 0xc23, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc24, oldaddr = 0xc24, newaddr = 0xc24, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa10, oldaddr = 0xa10, newaddr = 0xa10, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc2c, oldaddr = 0xc2c, newaddr = 0xc2c, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db7, oldaddr = 0x6be00, newaddr = 0x6be00, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db9, oldaddr = 0x6be17, newaddr = 0x6be17, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dbc, oldaddr = 0x6be1a, newaddr = 0x6be1a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc3, oldaddr = 0x6be20, newaddr = 0x6be20, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc7, oldaddr = 0x6be24, newaddr = 0x6be24, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc9, oldaddr = 0x6be25, newaddr = 0x6be25, rw = READAHEAD ^H, type = NODE
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-08-27 00:14:31 +08:00
|
|
|
ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
|
|
|
|
META_NAT, true);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (phase == 1) {
|
|
|
|
ra_node_page(sbi, nid);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get an inode by ino with checking validity */
|
2015-07-01 09:37:21 +08:00
|
|
|
if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
continue;
|
|
|
|
|
f2fs: do in batch synchronously readahead during GC
In order to enhance performance, we try to readahead node page during
GC, but before loading node page we should get block address of node page
which is stored in NAT table, so synchronously read of single NAT page
block our readahead flow.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xa1e, oldaddr = 0xa1e, newaddr = 0xa1e, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x35e9, oldaddr = 0x72d7a, newaddr = 0x72d7a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xc1f, oldaddr = 0xc1f, newaddr = 0xc1f, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x389d, oldaddr = 0x72d7d, newaddr = 0x72d7d, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3a82, oldaddr = 0x72d7f, newaddr = 0x72d7f, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3bfa, oldaddr = 0x72d86, newaddr = 0x72d86, rw = READAHEAD ^H, type = NODE
This patch adds one phase that do readahead NAT pages in batch before
readahead node page for more effeciently.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0x1952, oldaddr = 0x1952, newaddr = 0x1952, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc34, oldaddr = 0xc34, newaddr = 0xc34, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa33, oldaddr = 0xa33, newaddr = 0xa33, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc30, oldaddr = 0xc30, newaddr = 0xc30, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc32, oldaddr = 0xc32, newaddr = 0xc32, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc26, oldaddr = 0xc26, newaddr = 0xc26, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa2b, oldaddr = 0xa2b, newaddr = 0xa2b, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc23, oldaddr = 0xc23, newaddr = 0xc23, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc24, oldaddr = 0xc24, newaddr = 0xc24, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa10, oldaddr = 0xa10, newaddr = 0xa10, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc2c, oldaddr = 0xc2c, newaddr = 0xc2c, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db7, oldaddr = 0x6be00, newaddr = 0x6be00, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db9, oldaddr = 0x6be17, newaddr = 0x6be17, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dbc, oldaddr = 0x6be1a, newaddr = 0x6be1a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc3, oldaddr = 0x6be20, newaddr = 0x6be20, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc7, oldaddr = 0x6be24, newaddr = 0x6be24, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc9, oldaddr = 0x6be25, newaddr = 0x6be25, rw = READAHEAD ^H, type = NODE
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-08-27 00:14:31 +08:00
|
|
|
if (phase == 2) {
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
ra_node_page(sbi, dni.ino);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
ofs_in_node = le16_to_cpu(entry->ofs_in_node);
|
|
|
|
|
f2fs: do in batch synchronously readahead during GC
In order to enhance performance, we try to readahead node page during
GC, but before loading node page we should get block address of node page
which is stored in NAT table, so synchronously read of single NAT page
block our readahead flow.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xa1e, oldaddr = 0xa1e, newaddr = 0xa1e, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x35e9, oldaddr = 0x72d7a, newaddr = 0x72d7a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xc1f, oldaddr = 0xc1f, newaddr = 0xc1f, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x389d, oldaddr = 0x72d7d, newaddr = 0x72d7d, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3a82, oldaddr = 0x72d7f, newaddr = 0x72d7f, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3bfa, oldaddr = 0x72d86, newaddr = 0x72d86, rw = READAHEAD ^H, type = NODE
This patch adds one phase that do readahead NAT pages in batch before
readahead node page for more effeciently.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0x1952, oldaddr = 0x1952, newaddr = 0x1952, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc34, oldaddr = 0xc34, newaddr = 0xc34, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa33, oldaddr = 0xa33, newaddr = 0xa33, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc30, oldaddr = 0xc30, newaddr = 0xc30, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc32, oldaddr = 0xc32, newaddr = 0xc32, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc26, oldaddr = 0xc26, newaddr = 0xc26, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa2b, oldaddr = 0xa2b, newaddr = 0xa2b, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc23, oldaddr = 0xc23, newaddr = 0xc23, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc24, oldaddr = 0xc24, newaddr = 0xc24, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa10, oldaddr = 0xa10, newaddr = 0xa10, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc2c, oldaddr = 0xc2c, newaddr = 0xc2c, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db7, oldaddr = 0x6be00, newaddr = 0x6be00, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db9, oldaddr = 0x6be17, newaddr = 0x6be17, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dbc, oldaddr = 0x6be1a, newaddr = 0x6be1a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc3, oldaddr = 0x6be20, newaddr = 0x6be20, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc7, oldaddr = 0x6be24, newaddr = 0x6be24, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc9, oldaddr = 0x6be25, newaddr = 0x6be25, rw = READAHEAD ^H, type = NODE
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-08-27 00:14:31 +08:00
|
|
|
if (phase == 3) {
|
f2fs: avoid balanc_fs during evict_inode
1. Background
Previously, if f2fs tries to move data blocks of an *evicting* inode during the
cleaning process, it stops the process incompletely and then restarts the whole
process, since it needs a locked inode to grab victim data pages in its address
space. In order to get a locked inode, iget_locked() by f2fs_iget() is normally
used, but, it waits if the inode is on freeing.
So, here is a deadlock scenario.
1. f2fs_evict_inode() <- inode "A"
2. f2fs_balance_fs()
3. f2fs_gc()
4. gc_data_segment()
5. f2fs_iget() <- inode "A" too!
If step #1 and #5 treat a same inode "A", step #5 would fall into deadlock since
the inode "A" is on freeing. In order to resolve this, f2fs_iget_nowait() which
skips __wait_on_freeing_inode() was introduced in step #5, and stops f2fs_gc()
to complete f2fs_evict_inode().
1. f2fs_evict_inode() <- inode "A"
2. f2fs_balance_fs()
3. f2fs_gc()
4. gc_data_segment()
5. f2fs_iget_nowait() <- inode "A", then stop f2fs_gc() w/ -ENOENT
2. Problem and Solution
In the above scenario, however, f2fs cannot finish f2fs_evict_inode() only if:
o there are not enough free sections, and
o f2fs_gc() tries to move data blocks of the *evicting* inode repeatedly.
So, the final solution is to use f2fs_iget() and remove f2fs_balance_fs() in
f2fs_evict_inode().
The f2fs_evict_inode() actually truncates all the data and node blocks, which
means that it doesn't produce any dirty node pages accordingly.
So, we don't need to do f2fs_balance_fs() in practical.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-01-31 14:36:04 +08:00
|
|
|
inode = f2fs_iget(sb, dni.ino);
|
2014-08-30 09:52:34 +08:00
|
|
|
if (IS_ERR(inode) || is_bad_inode(inode))
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
continue;
|
|
|
|
|
2015-04-24 03:04:33 +08:00
|
|
|
/* if encrypted inode, let's go phase 3 */
|
2017-09-06 07:54:24 +08:00
|
|
|
if (f2fs_encrypted_file(inode)) {
|
2015-04-24 03:04:33 +08:00
|
|
|
add_gc_inode(gc_list, inode);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2017-11-03 10:21:05 +08:00
|
|
|
if (!down_write_trylock(
|
|
|
|
&F2FS_I(inode)->dio_rwsem[WRITE])) {
|
|
|
|
iput(inode);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2016-01-26 15:39:35 +08:00
|
|
|
start_bidx = start_bidx_of_node(nofs, inode);
|
2015-05-01 08:00:33 +08:00
|
|
|
data_page = get_read_data_page(inode,
|
2016-07-19 17:28:41 +08:00
|
|
|
start_bidx + ofs_in_node, REQ_RAHEAD,
|
|
|
|
true);
|
2017-11-03 10:21:05 +08:00
|
|
|
up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
|
2014-11-27 15:03:08 +08:00
|
|
|
if (IS_ERR(data_page)) {
|
|
|
|
iput(inode);
|
|
|
|
continue;
|
|
|
|
}
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
|
|
|
f2fs_put_page(data_page, 0);
|
2014-11-28 23:49:40 +08:00
|
|
|
add_gc_inode(gc_list, inode);
|
2014-11-27 15:03:08 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
f2fs: do in batch synchronously readahead during GC
In order to enhance performance, we try to readahead node page during
GC, but before loading node page we should get block address of node page
which is stored in NAT table, so synchronously read of single NAT page
block our readahead flow.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xa1e, oldaddr = 0xa1e, newaddr = 0xa1e, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x35e9, oldaddr = 0x72d7a, newaddr = 0x72d7a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xc1f, oldaddr = 0xc1f, newaddr = 0xc1f, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x389d, oldaddr = 0x72d7d, newaddr = 0x72d7d, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3a82, oldaddr = 0x72d7f, newaddr = 0x72d7f, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3bfa, oldaddr = 0x72d86, newaddr = 0x72d86, rw = READAHEAD ^H, type = NODE
This patch adds one phase that do readahead NAT pages in batch before
readahead node page for more effeciently.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0x1952, oldaddr = 0x1952, newaddr = 0x1952, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc34, oldaddr = 0xc34, newaddr = 0xc34, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa33, oldaddr = 0xa33, newaddr = 0xa33, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc30, oldaddr = 0xc30, newaddr = 0xc30, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc32, oldaddr = 0xc32, newaddr = 0xc32, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc26, oldaddr = 0xc26, newaddr = 0xc26, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa2b, oldaddr = 0xa2b, newaddr = 0xa2b, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc23, oldaddr = 0xc23, newaddr = 0xc23, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc24, oldaddr = 0xc24, newaddr = 0xc24, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa10, oldaddr = 0xa10, newaddr = 0xa10, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc2c, oldaddr = 0xc2c, newaddr = 0xc2c, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db7, oldaddr = 0x6be00, newaddr = 0x6be00, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db9, oldaddr = 0x6be17, newaddr = 0x6be17, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dbc, oldaddr = 0x6be1a, newaddr = 0x6be1a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc3, oldaddr = 0x6be20, newaddr = 0x6be20, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc7, oldaddr = 0x6be24, newaddr = 0x6be24, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc9, oldaddr = 0x6be25, newaddr = 0x6be25, rw = READAHEAD ^H, type = NODE
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-08-27 00:14:31 +08:00
|
|
|
/* phase 4 */
|
2014-11-28 23:49:40 +08:00
|
|
|
inode = find_gc_inode(gc_list, dni.ino);
|
2014-11-27 15:03:08 +08:00
|
|
|
if (inode) {
|
2016-07-13 09:18:29 +08:00
|
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
|
|
bool locked = false;
|
|
|
|
|
|
|
|
if (S_ISREG(inode->i_mode)) {
|
|
|
|
if (!down_write_trylock(&fi->dio_rwsem[READ]))
|
|
|
|
continue;
|
|
|
|
if (!down_write_trylock(
|
|
|
|
&fi->dio_rwsem[WRITE])) {
|
|
|
|
up_write(&fi->dio_rwsem[READ]);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
locked = true;
|
2017-08-23 18:23:24 +08:00
|
|
|
|
|
|
|
/* wait for all inflight aio data */
|
|
|
|
inode_dio_wait(inode);
|
2016-07-13 09:18:29 +08:00
|
|
|
}
|
|
|
|
|
2016-01-26 15:39:35 +08:00
|
|
|
start_bidx = start_bidx_of_node(nofs, inode)
|
2015-04-25 05:34:30 +08:00
|
|
|
+ ofs_in_node;
|
2017-09-06 07:54:24 +08:00
|
|
|
if (f2fs_encrypted_file(inode))
|
2017-09-06 08:04:35 +08:00
|
|
|
move_data_block(inode, start_bidx, segno, off);
|
2015-04-24 03:04:33 +08:00
|
|
|
else
|
2017-09-06 08:04:35 +08:00
|
|
|
move_data_page(inode, start_bidx, gc_type,
|
|
|
|
segno, off);
|
2016-07-13 09:18:29 +08:00
|
|
|
|
|
|
|
if (locked) {
|
|
|
|
up_write(&fi->dio_rwsem[WRITE]);
|
|
|
|
up_write(&fi->dio_rwsem[READ]);
|
|
|
|
}
|
|
|
|
|
2014-12-23 07:37:39 +08:00
|
|
|
stat_inc_data_blk_count(sbi, 1, gc_type);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
}
|
f2fs: give a chance to merge IOs by IO scheduler
Previously, background GC submits many 4KB read requests to load victim blocks
and/or its (i)node blocks.
...
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb61, blkaddr = 0x3b964ed
f2fs_gc : block_rq_complete: 8,16 R () 499854968 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb6f, blkaddr = 0x3b964ee
f2fs_gc : block_rq_complete: 8,16 R () 499854976 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb79, blkaddr = 0x3b964ef
f2fs_gc : block_rq_complete: 8,16 R () 499854984 + 8 [0]
...
However, by the fact that many IOs are sequential, we can give a chance to merge
the IOs by IO scheduler.
In order to do that, let's use blk_plug.
...
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c6, blkaddr = 0x2e6ee
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c7, blkaddr = 0x2e6ef
<idle> : block_rq_complete: 8,16 R () 1519616 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1519848 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1520432 + 96 [0]
<idle> : block_rq_complete: 8,16 R () 1520536 + 104 [0]
<idle> : block_rq_complete: 8,16 R () 1521008 + 112 [0]
<idle> : block_rq_complete: 8,16 R () 1521440 + 152 [0]
<idle> : block_rq_complete: 8,16 R () 1521688 + 144 [0]
<idle> : block_rq_complete: 8,16 R () 1522128 + 192 [0]
<idle> : block_rq_complete: 8,16 R () 1523256 + 328 [0]
...
Note that this issue should be addressed in checkpoint, and some readahead
flows too.
Reviewed-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-04-24 12:19:56 +08:00
|
|
|
|
f2fs: do in batch synchronously readahead during GC
In order to enhance performance, we try to readahead node page during
GC, but before loading node page we should get block address of node page
which is stored in NAT table, so synchronously read of single NAT page
block our readahead flow.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xa1e, oldaddr = 0xa1e, newaddr = 0xa1e, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x35e9, oldaddr = 0x72d7a, newaddr = 0x72d7a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0xc1f, oldaddr = 0xc1f, newaddr = 0xc1f, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x389d, oldaddr = 0x72d7d, newaddr = 0x72d7d, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3a82, oldaddr = 0x72d7f, newaddr = 0x72d7f, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x3bfa, oldaddr = 0x72d86, newaddr = 0x72d86, rw = READAHEAD ^H, type = NODE
This patch adds one phase that do readahead NAT pages in batch before
readahead node page for more effeciently.
f2fs_submit_page_bio: dev = (251,0), ino = 2, page_index = 0x1952, oldaddr = 0x1952, newaddr = 0x1952, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc34, oldaddr = 0xc34, newaddr = 0xc34, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa33, oldaddr = 0xa33, newaddr = 0xa33, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc30, oldaddr = 0xc30, newaddr = 0xc30, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc32, oldaddr = 0xc32, newaddr = 0xc32, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc26, oldaddr = 0xc26, newaddr = 0xc26, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa2b, oldaddr = 0xa2b, newaddr = 0xa2b, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc23, oldaddr = 0xc23, newaddr = 0xc23, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc24, oldaddr = 0xc24, newaddr = 0xc24, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xa10, oldaddr = 0xa10, newaddr = 0xa10, rw = READ_SYNC(MP), type = META
f2fs_submit_page_mbio: dev = (251,0), ino = 2, page_index = 0xc2c, oldaddr = 0xc2c, newaddr = 0xc2c, rw = READ_SYNC(MP), type = META
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db7, oldaddr = 0x6be00, newaddr = 0x6be00, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5db9, oldaddr = 0x6be17, newaddr = 0x6be17, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dbc, oldaddr = 0x6be1a, newaddr = 0x6be1a, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc3, oldaddr = 0x6be20, newaddr = 0x6be20, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc7, oldaddr = 0x6be24, newaddr = 0x6be24, rw = READAHEAD ^H, type = NODE
f2fs_submit_page_bio: dev = (251,0), ino = 1, page_index = 0x5dc9, oldaddr = 0x6be25, newaddr = 0x6be25, rw = READAHEAD ^H, type = NODE
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-08-27 00:14:31 +08:00
|
|
|
if (++phase < 5)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
goto next_step;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
|
2014-10-20 17:45:48 +08:00
|
|
|
int gc_type)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
{
|
|
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
|
|
int ret;
|
2014-10-20 17:45:48 +08:00
|
|
|
|
2017-10-30 17:49:53 +08:00
|
|
|
down_write(&sit_i->sentry_lock);
|
2014-10-20 17:45:48 +08:00
|
|
|
ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
|
|
|
|
NO_CHECK_TYPE, LFS);
|
2017-10-30 17:49:53 +08:00
|
|
|
up_write(&sit_i->sentry_lock);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
f2fs: enhance foreground GC
If we configure section consist of multiple segments, foreground GC will
do the garbage collection with following approach:
for each segment in victim section
blk_start_plug
for each valid block in segment
write out by OPU method
submit bio cache <---
blk_finish_plug <---
There are two issue:
1) for most of the time, 'submit bio cache' will break the merging in
current bio buffer from writes of next segments, making a smaller bio
submitting.
2) block plug only cover IO submitting in one segment, which reduce
opportunity of merging IOs in plug with multiple segments.
So refactor the code as below structure to strive for biggest
opportunity of merging IOs:
blk_start_plug
for each segment in victim section
for each valid block in segment
write out by OPU method
submit bio cache
blk_finish_plug
Test method:
1. mkfs.f2fs -s 8 /dev/sdX
2. touch 32 files
3. write 2M data into each file
4. punch 1.5M data from offset 0 for each file
5. trigger foreground gc through ioctl
Before patch, there are totoally 40 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65776, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66016, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66256, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66496, size = 32768
----repeat for 8 times
After patch, there are totally 35 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
----repeat 34 times
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 73696, size = 16384
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-01-23 16:23:55 +08:00
|
|
|
static int do_garbage_collect(struct f2fs_sb_info *sbi,
|
|
|
|
unsigned int start_segno,
|
2014-11-28 23:49:40 +08:00
|
|
|
struct gc_inode_list *gc_list, int gc_type)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
{
|
|
|
|
struct page *sum_page;
|
|
|
|
struct f2fs_summary_block *sum;
|
f2fs: give a chance to merge IOs by IO scheduler
Previously, background GC submits many 4KB read requests to load victim blocks
and/or its (i)node blocks.
...
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb61, blkaddr = 0x3b964ed
f2fs_gc : block_rq_complete: 8,16 R () 499854968 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb6f, blkaddr = 0x3b964ee
f2fs_gc : block_rq_complete: 8,16 R () 499854976 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb79, blkaddr = 0x3b964ef
f2fs_gc : block_rq_complete: 8,16 R () 499854984 + 8 [0]
...
However, by the fact that many IOs are sequential, we can give a chance to merge
the IOs by IO scheduler.
In order to do that, let's use blk_plug.
...
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c6, blkaddr = 0x2e6ee
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c7, blkaddr = 0x2e6ef
<idle> : block_rq_complete: 8,16 R () 1519616 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1519848 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1520432 + 96 [0]
<idle> : block_rq_complete: 8,16 R () 1520536 + 104 [0]
<idle> : block_rq_complete: 8,16 R () 1521008 + 112 [0]
<idle> : block_rq_complete: 8,16 R () 1521440 + 152 [0]
<idle> : block_rq_complete: 8,16 R () 1521688 + 144 [0]
<idle> : block_rq_complete: 8,16 R () 1522128 + 192 [0]
<idle> : block_rq_complete: 8,16 R () 1523256 + 328 [0]
...
Note that this issue should be addressed in checkpoint, and some readahead
flows too.
Reviewed-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-04-24 12:19:56 +08:00
|
|
|
struct blk_plug plug;
|
f2fs: enhance foreground GC
If we configure section consist of multiple segments, foreground GC will
do the garbage collection with following approach:
for each segment in victim section
blk_start_plug
for each valid block in segment
write out by OPU method
submit bio cache <---
blk_finish_plug <---
There are two issue:
1) for most of the time, 'submit bio cache' will break the merging in
current bio buffer from writes of next segments, making a smaller bio
submitting.
2) block plug only cover IO submitting in one segment, which reduce
opportunity of merging IOs in plug with multiple segments.
So refactor the code as below structure to strive for biggest
opportunity of merging IOs:
blk_start_plug
for each segment in victim section
for each valid block in segment
write out by OPU method
submit bio cache
blk_finish_plug
Test method:
1. mkfs.f2fs -s 8 /dev/sdX
2. touch 32 files
3. write 2M data into each file
4. punch 1.5M data from offset 0 for each file
5. trigger foreground gc through ioctl
Before patch, there are totoally 40 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65776, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66016, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66256, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66496, size = 32768
----repeat for 8 times
After patch, there are totally 35 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
----repeat 34 times
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 73696, size = 16384
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-01-23 16:23:55 +08:00
|
|
|
unsigned int segno = start_segno;
|
|
|
|
unsigned int end_segno = start_segno + sbi->segs_per_sec;
|
2017-08-11 18:00:15 +08:00
|
|
|
int seg_freed = 0;
|
f2fs: enhance foreground GC
If we configure section consist of multiple segments, foreground GC will
do the garbage collection with following approach:
for each segment in victim section
blk_start_plug
for each valid block in segment
write out by OPU method
submit bio cache <---
blk_finish_plug <---
There are two issue:
1) for most of the time, 'submit bio cache' will break the merging in
current bio buffer from writes of next segments, making a smaller bio
submitting.
2) block plug only cover IO submitting in one segment, which reduce
opportunity of merging IOs in plug with multiple segments.
So refactor the code as below structure to strive for biggest
opportunity of merging IOs:
blk_start_plug
for each segment in victim section
for each valid block in segment
write out by OPU method
submit bio cache
blk_finish_plug
Test method:
1. mkfs.f2fs -s 8 /dev/sdX
2. touch 32 files
3. write 2M data into each file
4. punch 1.5M data from offset 0 for each file
5. trigger foreground gc through ioctl
Before patch, there are totoally 40 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65776, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66016, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66256, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66496, size = 32768
----repeat for 8 times
After patch, there are totally 35 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
----repeat 34 times
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 73696, size = 16384
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-01-23 16:23:55 +08:00
|
|
|
unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
|
|
|
|
SUM_TYPE_DATA : SUM_TYPE_NODE;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
f2fs: enhance foreground GC
If we configure section consist of multiple segments, foreground GC will
do the garbage collection with following approach:
for each segment in victim section
blk_start_plug
for each valid block in segment
write out by OPU method
submit bio cache <---
blk_finish_plug <---
There are two issue:
1) for most of the time, 'submit bio cache' will break the merging in
current bio buffer from writes of next segments, making a smaller bio
submitting.
2) block plug only cover IO submitting in one segment, which reduce
opportunity of merging IOs in plug with multiple segments.
So refactor the code as below structure to strive for biggest
opportunity of merging IOs:
blk_start_plug
for each segment in victim section
for each valid block in segment
write out by OPU method
submit bio cache
blk_finish_plug
Test method:
1. mkfs.f2fs -s 8 /dev/sdX
2. touch 32 files
3. write 2M data into each file
4. punch 1.5M data from offset 0 for each file
5. trigger foreground gc through ioctl
Before patch, there are totoally 40 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65776, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66016, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66256, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66496, size = 32768
----repeat for 8 times
After patch, there are totally 35 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
----repeat 34 times
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 73696, size = 16384
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-01-23 16:23:55 +08:00
|
|
|
/* readahead multi ssa blocks those have contiguous address */
|
|
|
|
if (sbi->segs_per_sec > 1)
|
|
|
|
ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
|
|
|
|
sbi->segs_per_sec, META_SSA, true);
|
|
|
|
|
|
|
|
/* reference all summary page */
|
|
|
|
while (segno < end_segno) {
|
|
|
|
sum_page = get_sum_page(sbi, segno++);
|
|
|
|
unlock_page(sum_page);
|
|
|
|
}
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
f2fs: give a chance to merge IOs by IO scheduler
Previously, background GC submits many 4KB read requests to load victim blocks
and/or its (i)node blocks.
...
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb61, blkaddr = 0x3b964ed
f2fs_gc : block_rq_complete: 8,16 R () 499854968 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb6f, blkaddr = 0x3b964ee
f2fs_gc : block_rq_complete: 8,16 R () 499854976 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb79, blkaddr = 0x3b964ef
f2fs_gc : block_rq_complete: 8,16 R () 499854984 + 8 [0]
...
However, by the fact that many IOs are sequential, we can give a chance to merge
the IOs by IO scheduler.
In order to do that, let's use blk_plug.
...
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c6, blkaddr = 0x2e6ee
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c7, blkaddr = 0x2e6ef
<idle> : block_rq_complete: 8,16 R () 1519616 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1519848 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1520432 + 96 [0]
<idle> : block_rq_complete: 8,16 R () 1520536 + 104 [0]
<idle> : block_rq_complete: 8,16 R () 1521008 + 112 [0]
<idle> : block_rq_complete: 8,16 R () 1521440 + 152 [0]
<idle> : block_rq_complete: 8,16 R () 1521688 + 144 [0]
<idle> : block_rq_complete: 8,16 R () 1522128 + 192 [0]
<idle> : block_rq_complete: 8,16 R () 1523256 + 328 [0]
...
Note that this issue should be addressed in checkpoint, and some readahead
flows too.
Reviewed-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-04-24 12:19:56 +08:00
|
|
|
blk_start_plug(&plug);
|
|
|
|
|
f2fs: enhance foreground GC
If we configure section consist of multiple segments, foreground GC will
do the garbage collection with following approach:
for each segment in victim section
blk_start_plug
for each valid block in segment
write out by OPU method
submit bio cache <---
blk_finish_plug <---
There are two issue:
1) for most of the time, 'submit bio cache' will break the merging in
current bio buffer from writes of next segments, making a smaller bio
submitting.
2) block plug only cover IO submitting in one segment, which reduce
opportunity of merging IOs in plug with multiple segments.
So refactor the code as below structure to strive for biggest
opportunity of merging IOs:
blk_start_plug
for each segment in victim section
for each valid block in segment
write out by OPU method
submit bio cache
blk_finish_plug
Test method:
1. mkfs.f2fs -s 8 /dev/sdX
2. touch 32 files
3. write 2M data into each file
4. punch 1.5M data from offset 0 for each file
5. trigger foreground gc through ioctl
Before patch, there are totoally 40 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65776, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66016, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66256, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66496, size = 32768
----repeat for 8 times
After patch, there are totally 35 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
----repeat 34 times
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 73696, size = 16384
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-01-23 16:23:55 +08:00
|
|
|
for (segno = start_segno; segno < end_segno; segno++) {
|
2016-06-07 09:49:54 +08:00
|
|
|
|
f2fs: enhance foreground GC
If we configure section consist of multiple segments, foreground GC will
do the garbage collection with following approach:
for each segment in victim section
blk_start_plug
for each valid block in segment
write out by OPU method
submit bio cache <---
blk_finish_plug <---
There are two issue:
1) for most of the time, 'submit bio cache' will break the merging in
current bio buffer from writes of next segments, making a smaller bio
submitting.
2) block plug only cover IO submitting in one segment, which reduce
opportunity of merging IOs in plug with multiple segments.
So refactor the code as below structure to strive for biggest
opportunity of merging IOs:
blk_start_plug
for each segment in victim section
for each valid block in segment
write out by OPU method
submit bio cache
blk_finish_plug
Test method:
1. mkfs.f2fs -s 8 /dev/sdX
2. touch 32 files
3. write 2M data into each file
4. punch 1.5M data from offset 0 for each file
5. trigger foreground gc through ioctl
Before patch, there are totoally 40 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65776, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66016, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66256, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66496, size = 32768
----repeat for 8 times
After patch, there are totally 35 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
----repeat 34 times
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 73696, size = 16384
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-01-23 16:23:55 +08:00
|
|
|
/* find segment summary of victim */
|
|
|
|
sum_page = find_get_page(META_MAPPING(sbi),
|
|
|
|
GET_SUM_BLOCK(sbi, segno));
|
|
|
|
f2fs_put_page(sum_page, 0);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2017-04-08 05:33:22 +08:00
|
|
|
if (get_valid_blocks(sbi, segno, false) == 0 ||
|
2016-10-13 04:38:41 +08:00
|
|
|
!PageUptodate(sum_page) ||
|
|
|
|
unlikely(f2fs_cp_error(sbi)))
|
|
|
|
goto next;
|
|
|
|
|
f2fs: enhance foreground GC
If we configure section consist of multiple segments, foreground GC will
do the garbage collection with following approach:
for each segment in victim section
blk_start_plug
for each valid block in segment
write out by OPU method
submit bio cache <---
blk_finish_plug <---
There are two issue:
1) for most of the time, 'submit bio cache' will break the merging in
current bio buffer from writes of next segments, making a smaller bio
submitting.
2) block plug only cover IO submitting in one segment, which reduce
opportunity of merging IOs in plug with multiple segments.
So refactor the code as below structure to strive for biggest
opportunity of merging IOs:
blk_start_plug
for each segment in victim section
for each valid block in segment
write out by OPU method
submit bio cache
blk_finish_plug
Test method:
1. mkfs.f2fs -s 8 /dev/sdX
2. touch 32 files
3. write 2M data into each file
4. punch 1.5M data from offset 0 for each file
5. trigger foreground gc through ioctl
Before patch, there are totoally 40 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65776, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66016, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66256, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66496, size = 32768
----repeat for 8 times
After patch, there are totally 35 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
----repeat 34 times
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 73696, size = 16384
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-01-23 16:23:55 +08:00
|
|
|
sum = page_address(sum_page);
|
|
|
|
f2fs_bug_on(sbi, type != GET_SUM_TYPE((&sum->footer)));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* this is to avoid deadlock:
|
|
|
|
* - lock_page(sum_page) - f2fs_replace_block
|
2017-10-30 17:49:53 +08:00
|
|
|
* - check_valid_map() - down_write(sentry_lock)
|
|
|
|
* - down_read(sentry_lock) - change_curseg()
|
f2fs: enhance foreground GC
If we configure section consist of multiple segments, foreground GC will
do the garbage collection with following approach:
for each segment in victim section
blk_start_plug
for each valid block in segment
write out by OPU method
submit bio cache <---
blk_finish_plug <---
There are two issue:
1) for most of the time, 'submit bio cache' will break the merging in
current bio buffer from writes of next segments, making a smaller bio
submitting.
2) block plug only cover IO submitting in one segment, which reduce
opportunity of merging IOs in plug with multiple segments.
So refactor the code as below structure to strive for biggest
opportunity of merging IOs:
blk_start_plug
for each segment in victim section
for each valid block in segment
write out by OPU method
submit bio cache
blk_finish_plug
Test method:
1. mkfs.f2fs -s 8 /dev/sdX
2. touch 32 files
3. write 2M data into each file
4. punch 1.5M data from offset 0 for each file
5. trigger foreground gc through ioctl
Before patch, there are totoally 40 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65776, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66016, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66256, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66496, size = 32768
----repeat for 8 times
After patch, there are totally 35 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
----repeat 34 times
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 73696, size = 16384
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-01-23 16:23:55 +08:00
|
|
|
* - lock_page(sum_page)
|
|
|
|
*/
|
|
|
|
if (type == SUM_TYPE_NODE)
|
|
|
|
gc_node_segment(sbi, sum->entries, segno, gc_type);
|
|
|
|
else
|
|
|
|
gc_data_segment(sbi, sum->entries, gc_list, segno,
|
|
|
|
gc_type);
|
|
|
|
|
|
|
|
stat_inc_seg_count(sbi, type, gc_type);
|
2017-08-11 18:00:15 +08:00
|
|
|
|
|
|
|
if (gc_type == FG_GC &&
|
|
|
|
get_valid_blocks(sbi, segno, false) == 0)
|
|
|
|
seg_freed++;
|
2016-09-22 00:34:48 +08:00
|
|
|
next:
|
f2fs: enhance foreground GC
If we configure section consist of multiple segments, foreground GC will
do the garbage collection with following approach:
for each segment in victim section
blk_start_plug
for each valid block in segment
write out by OPU method
submit bio cache <---
blk_finish_plug <---
There are two issue:
1) for most of the time, 'submit bio cache' will break the merging in
current bio buffer from writes of next segments, making a smaller bio
submitting.
2) block plug only cover IO submitting in one segment, which reduce
opportunity of merging IOs in plug with multiple segments.
So refactor the code as below structure to strive for biggest
opportunity of merging IOs:
blk_start_plug
for each segment in victim section
for each valid block in segment
write out by OPU method
submit bio cache
blk_finish_plug
Test method:
1. mkfs.f2fs -s 8 /dev/sdX
2. touch 32 files
3. write 2M data into each file
4. punch 1.5M data from offset 0 for each file
5. trigger foreground gc through ioctl
Before patch, there are totoally 40 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65776, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66016, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66256, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66496, size = 32768
----repeat for 8 times
After patch, there are totally 35 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
----repeat 34 times
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 73696, size = 16384
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-01-23 16:23:55 +08:00
|
|
|
f2fs_put_page(sum_page, 0);
|
|
|
|
}
|
|
|
|
|
2016-04-27 21:40:15 +08:00
|
|
|
if (gc_type == FG_GC)
|
2017-05-11 02:28:38 +08:00
|
|
|
f2fs_submit_merged_write(sbi,
|
|
|
|
(type == SUM_TYPE_NODE) ? NODE : DATA);
|
f2fs: give a chance to merge IOs by IO scheduler
Previously, background GC submits many 4KB read requests to load victim blocks
and/or its (i)node blocks.
...
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb61, blkaddr = 0x3b964ed
f2fs_gc : block_rq_complete: 8,16 R () 499854968 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb6f, blkaddr = 0x3b964ee
f2fs_gc : block_rq_complete: 8,16 R () 499854976 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb79, blkaddr = 0x3b964ef
f2fs_gc : block_rq_complete: 8,16 R () 499854984 + 8 [0]
...
However, by the fact that many IOs are sequential, we can give a chance to merge
the IOs by IO scheduler.
In order to do that, let's use blk_plug.
...
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c6, blkaddr = 0x2e6ee
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c7, blkaddr = 0x2e6ef
<idle> : block_rq_complete: 8,16 R () 1519616 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1519848 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1520432 + 96 [0]
<idle> : block_rq_complete: 8,16 R () 1520536 + 104 [0]
<idle> : block_rq_complete: 8,16 R () 1521008 + 112 [0]
<idle> : block_rq_complete: 8,16 R () 1521440 + 152 [0]
<idle> : block_rq_complete: 8,16 R () 1521688 + 144 [0]
<idle> : block_rq_complete: 8,16 R () 1522128 + 192 [0]
<idle> : block_rq_complete: 8,16 R () 1523256 + 328 [0]
...
Note that this issue should be addressed in checkpoint, and some readahead
flows too.
Reviewed-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-04-24 12:19:56 +08:00
|
|
|
|
f2fs: enhance foreground GC
If we configure section consist of multiple segments, foreground GC will
do the garbage collection with following approach:
for each segment in victim section
blk_start_plug
for each valid block in segment
write out by OPU method
submit bio cache <---
blk_finish_plug <---
There are two issue:
1) for most of the time, 'submit bio cache' will break the merging in
current bio buffer from writes of next segments, making a smaller bio
submitting.
2) block plug only cover IO submitting in one segment, which reduce
opportunity of merging IOs in plug with multiple segments.
So refactor the code as below structure to strive for biggest
opportunity of merging IOs:
blk_start_plug
for each segment in victim section
for each valid block in segment
write out by OPU method
submit bio cache
blk_finish_plug
Test method:
1. mkfs.f2fs -s 8 /dev/sdX
2. touch 32 files
3. write 2M data into each file
4. punch 1.5M data from offset 0 for each file
5. trigger foreground gc through ioctl
Before patch, there are totoally 40 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65776, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66016, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66256, size = 122880
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 66496, size = 32768
----repeat for 8 times
After patch, there are totally 35 bios submitted.
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 65536, size = 122880
----repeat 34 times
f2fs_submit_write_bio: dev = (8,32), WRITE_SYNC, DATA, sector = 73696, size = 16384
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-01-23 16:23:55 +08:00
|
|
|
blk_finish_plug(&plug);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2016-02-22 18:32:13 +08:00
|
|
|
stat_inc_call_count(sbi->stat_info);
|
|
|
|
|
2017-08-11 18:00:15 +08:00
|
|
|
return seg_freed;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
|
2017-04-14 06:17:00 +08:00
|
|
|
int f2fs_gc(struct f2fs_sb_info *sbi, bool sync,
|
|
|
|
bool background, unsigned int segno)
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
{
|
2015-10-05 22:22:44 +08:00
|
|
|
int gc_type = sync ? FG_GC : BG_GC;
|
2017-08-11 18:00:15 +08:00
|
|
|
int sec_freed = 0, seg_freed = 0, total_freed = 0;
|
|
|
|
int ret = 0;
|
2014-10-31 13:47:03 +08:00
|
|
|
struct cp_control cpc;
|
2017-04-14 06:17:00 +08:00
|
|
|
unsigned int init_segno = segno;
|
2014-11-28 23:49:40 +08:00
|
|
|
struct gc_inode_list gc_list = {
|
|
|
|
.ilist = LIST_HEAD_INIT(gc_list.ilist),
|
2014-12-04 12:47:26 +08:00
|
|
|
.iroot = RADIX_TREE_INIT(GFP_NOFS),
|
2014-11-28 23:49:40 +08:00
|
|
|
};
|
2014-10-31 13:47:03 +08:00
|
|
|
|
2017-08-11 18:00:15 +08:00
|
|
|
trace_f2fs_gc_begin(sbi->sb, sync, background,
|
|
|
|
get_pages(sbi, F2FS_DIRTY_NODES),
|
|
|
|
get_pages(sbi, F2FS_DIRTY_DENTS),
|
|
|
|
get_pages(sbi, F2FS_DIRTY_IMETA),
|
|
|
|
free_sections(sbi),
|
|
|
|
free_segments(sbi),
|
|
|
|
reserved_segments(sbi),
|
|
|
|
prefree_segments(sbi));
|
|
|
|
|
2015-01-30 03:45:33 +08:00
|
|
|
cpc.reason = __get_cp_reason(sbi);
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
gc_more:
|
2017-11-28 05:05:09 +08:00
|
|
|
if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
|
2017-05-11 04:28:00 +08:00
|
|
|
ret = -EINVAL;
|
2013-01-03 16:55:52 +08:00
|
|
|
goto stop;
|
2017-05-11 04:28:00 +08:00
|
|
|
}
|
2015-12-24 18:04:56 +08:00
|
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
|
|
ret = -EIO;
|
2014-02-05 12:03:57 +08:00
|
|
|
goto stop;
|
2015-12-24 18:04:56 +08:00
|
|
|
}
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2017-02-25 11:57:38 +08:00
|
|
|
if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
|
2016-01-23 22:00:57 +08:00
|
|
|
/*
|
2017-02-25 11:57:38 +08:00
|
|
|
* For example, if there are many prefree_segments below given
|
|
|
|
* threshold, we can make them free by checkpoint. Then, we
|
|
|
|
* secure free segments which doesn't need fggc any more.
|
2016-01-23 22:00:57 +08:00
|
|
|
*/
|
2017-04-08 08:25:54 +08:00
|
|
|
if (prefree_segments(sbi)) {
|
|
|
|
ret = write_checkpoint(sbi, &cpc);
|
|
|
|
if (ret)
|
|
|
|
goto stop;
|
|
|
|
}
|
2017-02-25 11:57:38 +08:00
|
|
|
if (has_not_enough_free_secs(sbi, 0, 0))
|
|
|
|
gc_type = FG_GC;
|
2013-04-08 15:01:00 +08:00
|
|
|
}
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2017-02-25 11:57:38 +08:00
|
|
|
/* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
|
2017-08-11 18:00:15 +08:00
|
|
|
if (gc_type == BG_GC && !background) {
|
|
|
|
ret = -EINVAL;
|
2017-02-25 11:57:38 +08:00
|
|
|
goto stop;
|
2017-08-11 18:00:15 +08:00
|
|
|
}
|
|
|
|
if (!__get_victim(sbi, &segno, gc_type)) {
|
|
|
|
ret = -ENODATA;
|
2013-01-03 16:55:52 +08:00
|
|
|
goto stop;
|
2017-08-11 18:00:15 +08:00
|
|
|
}
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
|
2017-08-11 18:00:15 +08:00
|
|
|
seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type);
|
|
|
|
if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec)
|
2015-09-28 17:42:24 +08:00
|
|
|
sec_freed++;
|
2017-08-11 18:00:15 +08:00
|
|
|
total_freed += seg_freed;
|
2013-02-04 14:11:17 +08:00
|
|
|
|
2015-08-16 13:06:08 +08:00
|
|
|
if (gc_type == FG_GC)
|
2013-03-31 12:26:03 +08:00
|
|
|
sbi->cur_victim_sec = NULL_SEGNO;
|
2013-02-04 14:11:17 +08:00
|
|
|
|
2015-10-05 22:22:44 +08:00
|
|
|
if (!sync) {
|
2017-04-14 06:17:00 +08:00
|
|
|
if (has_not_enough_free_secs(sbi, sec_freed, 0)) {
|
|
|
|
segno = NULL_SEGNO;
|
2015-10-05 22:22:44 +08:00
|
|
|
goto gc_more;
|
2017-04-14 06:17:00 +08:00
|
|
|
}
|
2013-02-04 14:11:17 +08:00
|
|
|
|
2015-10-05 22:22:44 +08:00
|
|
|
if (gc_type == FG_GC)
|
2016-09-22 00:28:06 +08:00
|
|
|
ret = write_checkpoint(sbi, &cpc);
|
2015-10-05 22:22:44 +08:00
|
|
|
}
|
2013-01-03 16:55:52 +08:00
|
|
|
stop:
|
2017-04-14 06:17:00 +08:00
|
|
|
SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
|
|
|
|
SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno;
|
2017-08-11 18:00:15 +08:00
|
|
|
|
|
|
|
trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed,
|
|
|
|
get_pages(sbi, F2FS_DIRTY_NODES),
|
|
|
|
get_pages(sbi, F2FS_DIRTY_DENTS),
|
|
|
|
get_pages(sbi, F2FS_DIRTY_IMETA),
|
|
|
|
free_sections(sbi),
|
|
|
|
free_segments(sbi),
|
|
|
|
reserved_segments(sbi),
|
|
|
|
prefree_segments(sbi));
|
|
|
|
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
mutex_unlock(&sbi->gc_mutex);
|
|
|
|
|
2014-11-28 23:49:40 +08:00
|
|
|
put_gc_inode(&gc_list);
|
2015-10-05 22:22:44 +08:00
|
|
|
|
|
|
|
if (sync)
|
|
|
|
ret = sec_freed ? 0 : -EAGAIN;
|
2013-02-04 14:11:17 +08:00
|
|
|
return ret;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void build_gc_manager(struct f2fs_sb_info *sbi)
|
|
|
|
{
|
2017-04-08 06:08:17 +08:00
|
|
|
u64 main_count, resv_count, ovp_count;
|
f2fs: add ovp valid_blocks check for bg gc victim to fg_gc
For foreground gc, greedy algorithm should be adapted, which makes
this formula work well:
(2 * (100 / config.overprovision + 1) + 6)
But currently, we fg_gc have a prior to select bg_gc victim segments to gc
first, these victims are selected by cost-benefit algorithm, we can't guarantee
such segments have the small valid blocks, which may destroy the f2fs rule, on
the worstest case, would consume all the free segments.
This patch fix this by add a filter in check_bg_victims, if segment's has # of
valid blocks over overprovision ratio, skip such segments.
Cc: <stable@vger.kernel.org>
Signed-off-by: Hou Pengyang <houpengyang@huawei.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-02-16 20:34:31 +08:00
|
|
|
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
DIRTY_I(sbi)->v_ops = &default_v_ops;
|
f2fs: add ovp valid_blocks check for bg gc victim to fg_gc
For foreground gc, greedy algorithm should be adapted, which makes
this formula work well:
(2 * (100 / config.overprovision + 1) + 6)
But currently, we fg_gc have a prior to select bg_gc victim segments to gc
first, these victims are selected by cost-benefit algorithm, we can't guarantee
such segments have the small valid blocks, which may destroy the f2fs rule, on
the worstest case, would consume all the free segments.
This patch fix this by add a filter in check_bg_victims, if segment's has # of
valid blocks over overprovision ratio, skip such segments.
Cc: <stable@vger.kernel.org>
Signed-off-by: Hou Pengyang <houpengyang@huawei.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-02-16 20:34:31 +08:00
|
|
|
|
|
|
|
/* threshold of # of valid blocks in a section for victims of FG_GC */
|
|
|
|
main_count = SM_I(sbi)->main_segments << sbi->log_blocks_per_seg;
|
|
|
|
resv_count = SM_I(sbi)->reserved_segments << sbi->log_blocks_per_seg;
|
|
|
|
ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
|
|
|
|
|
2017-04-08 06:08:17 +08:00
|
|
|
sbi->fggc_threshold = div64_u64((main_count - ovp_count) *
|
|
|
|
BLKS_PER_SEC(sbi), (main_count - resv_count));
|
2017-12-08 08:25:39 +08:00
|
|
|
sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
|
2017-04-19 06:03:15 +08:00
|
|
|
|
|
|
|
/* give warm/cold data area from slower device */
|
|
|
|
if (sbi->s_ndevs && sbi->segs_per_sec == 1)
|
|
|
|
SIT_I(sbi)->last_victim[ALLOC_NEXT] =
|
|
|
|
GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
|
f2fs: add garbage collection functions
This adds on-demand and background cleaning functions.
- The basic background cleaning policy is trying to do cleaning jobs as much as
possible whenever the system is idle. Once the background cleaning is done,
the cleaner sleeps an amount of time not to interfere with VFS calls. The time
is dynamically adjusted according to the status of whole segments, which is
decreased when the following conditions are satisfied.
. GC is not conducted currently, and
. IO subsystem is idle by checking the number of requets in bdev's request
list, and
. There are enough dirty segments.
Otherwise, the time is increased incrementally until to the maximum time.
Note that, min and max times are 10 secs and 30 secs by default.
- F2FS adopts a default victim selection policy where background cleaning uses
a cost-benefit algorithm, while on-demand cleaning uses a greedy algorithm.
- The method of moving data during the cleaning is slightly different between
background and on-demand cleaning schemes. In the case of background cleaning,
F2FS loads the data, and marks them as dirty. Then, F2FS expects that the data
will be moved by flusher or VM. In the case of on-demand cleaning, F2FS should
move the data right away.
- In order to identify valid blocks in a victim segment, F2FS scans the bitmap
of the segment managed as an SIT entry.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-02 16:13:01 +08:00
|
|
|
}
|