linux-sg2042/drivers/net/wireless/b43/phy_a.c

597 lines
16 KiB
C
Raw Normal View History

/*
Broadcom B43 wireless driver
IEEE 802.11a PHY driver
Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
Copyright (c) 2005-2007 Stefano Brivio <stefano.brivio@polimi.it>
Copyright (c) 2005-2008 Michael Buesch <mb@bu3sch.de>
Copyright (c) 2005, 2006 Danny van Dyk <kugelfang@gentoo.org>
Copyright (c) 2005, 2006 Andreas Jaggi <andreas.jaggi@waterwave.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include "b43.h"
#include "phy_a.h"
#include "phy_common.h"
#include "wa.h"
#include "tables.h"
#include "main.h"
/* Get the freq, as it has to be written to the device. */
static inline u16 channel2freq_a(u8 channel)
{
B43_WARN_ON(channel > 200);
return (5000 + 5 * channel);
}
static inline u16 freq_r3A_value(u16 frequency)
{
u16 value;
if (frequency < 5091)
value = 0x0040;
else if (frequency < 5321)
value = 0x0000;
else if (frequency < 5806)
value = 0x0080;
else
value = 0x0040;
return value;
}
#if 0
/* This function converts a TSSI value to dBm in Q5.2 */
static s8 b43_aphy_estimate_power_out(struct b43_wldev *dev, s8 tssi)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_a *aphy = phy->a;
s8 dbm = 0;
s32 tmp;
tmp = (aphy->tgt_idle_tssi - aphy->cur_idle_tssi + tssi);
tmp += 0x80;
tmp = clamp_val(tmp, 0x00, 0xFF);
dbm = aphy->tssi2dbm[tmp];
//TODO: There's a FIXME on the specs
return dbm;
}
#endif
static void b43_radio_set_tx_iq(struct b43_wldev *dev)
{
static const u8 data_high[5] = { 0x00, 0x40, 0x80, 0x90, 0xD0 };
static const u8 data_low[5] = { 0x00, 0x01, 0x05, 0x06, 0x0A };
u16 tmp = b43_radio_read16(dev, 0x001E);
int i, j;
for (i = 0; i < 5; i++) {
for (j = 0; j < 5; j++) {
if (tmp == (data_high[i] << 4 | data_low[j])) {
b43_phy_write(dev, 0x0069,
(i - j) << 8 | 0x00C0);
return;
}
}
}
}
static void aphy_channel_switch(struct b43_wldev *dev, unsigned int channel)
{
u16 freq, r8, tmp;
freq = channel2freq_a(channel);
r8 = b43_radio_read16(dev, 0x0008);
b43_write16(dev, 0x03F0, freq);
b43_radio_write16(dev, 0x0008, r8);
//TODO: write max channel TX power? to Radio 0x2D
tmp = b43_radio_read16(dev, 0x002E);
tmp &= 0x0080;
//TODO: OR tmp with the Power out estimation for this channel?
b43_radio_write16(dev, 0x002E, tmp);
if (freq >= 4920 && freq <= 5500) {
/*
* r8 = (((freq * 15 * 0xE1FC780F) >> 32) / 29) & 0x0F;
* = (freq * 0.025862069
*/
r8 = 3 * freq / 116; /* is equal to r8 = freq * 0.025862 */
}
b43_radio_write16(dev, 0x0007, (r8 << 4) | r8);
b43_radio_write16(dev, 0x0020, (r8 << 4) | r8);
b43_radio_write16(dev, 0x0021, (r8 << 4) | r8);
b43_radio_maskset(dev, 0x0022, 0x000F, (r8 << 4));
b43_radio_write16(dev, 0x002A, (r8 << 4));
b43_radio_write16(dev, 0x002B, (r8 << 4));
b43_radio_maskset(dev, 0x0008, 0x00F0, (r8 << 4));
b43_radio_maskset(dev, 0x0029, 0xFF0F, 0x00B0);
b43_radio_write16(dev, 0x0035, 0x00AA);
b43_radio_write16(dev, 0x0036, 0x0085);
b43_radio_maskset(dev, 0x003A, 0xFF20, freq_r3A_value(freq));
b43_radio_mask(dev, 0x003D, 0x00FF);
b43_radio_maskset(dev, 0x0081, 0xFF7F, 0x0080);
b43_radio_mask(dev, 0x0035, 0xFFEF);
b43_radio_maskset(dev, 0x0035, 0xFFEF, 0x0010);
b43_radio_set_tx_iq(dev);
//TODO: TSSI2dbm workaround
//FIXME b43_phy_xmitpower(dev);
}
static void b43_radio_init2060(struct b43_wldev *dev)
{
b43_radio_write16(dev, 0x0004, 0x00C0);
b43_radio_write16(dev, 0x0005, 0x0008);
b43_radio_write16(dev, 0x0009, 0x0040);
b43_radio_write16(dev, 0x0005, 0x00AA);
b43_radio_write16(dev, 0x0032, 0x008F);
b43_radio_write16(dev, 0x0006, 0x008F);
b43_radio_write16(dev, 0x0034, 0x008F);
b43_radio_write16(dev, 0x002C, 0x0007);
b43_radio_write16(dev, 0x0082, 0x0080);
b43_radio_write16(dev, 0x0080, 0x0000);
b43_radio_write16(dev, 0x003F, 0x00DA);
b43_radio_mask(dev, 0x0005, ~0x0008);
b43_radio_mask(dev, 0x0081, ~0x0010);
b43_radio_mask(dev, 0x0081, ~0x0020);
b43_radio_mask(dev, 0x0081, ~0x0020);
msleep(1); /* delay 400usec */
b43_radio_maskset(dev, 0x0081, ~0x0020, 0x0010);
msleep(1); /* delay 400usec */
b43_radio_maskset(dev, 0x0005, ~0x0008, 0x0008);
b43_radio_mask(dev, 0x0085, ~0x0010);
b43_radio_mask(dev, 0x0005, ~0x0008);
b43_radio_mask(dev, 0x0081, ~0x0040);
b43_radio_maskset(dev, 0x0081, ~0x0040, 0x0040);
b43_radio_write16(dev, 0x0005,
(b43_radio_read16(dev, 0x0081) & ~0x0008) | 0x0008);
b43_phy_write(dev, 0x0063, 0xDDC6);
b43_phy_write(dev, 0x0069, 0x07BE);
b43_phy_write(dev, 0x006A, 0x0000);
aphy_channel_switch(dev, dev->phy.ops->get_default_chan(dev));
msleep(1);
}
static void b43_phy_rssiagc(struct b43_wldev *dev, u8 enable)
{
int i;
if (dev->phy.rev < 3) {
if (enable)
for (i = 0; i < B43_TAB_RSSIAGC1_SIZE; i++) {
b43_ofdmtab_write16(dev,
B43_OFDMTAB_LNAHPFGAIN1, i, 0xFFF8);
b43_ofdmtab_write16(dev,
B43_OFDMTAB_WRSSI, i, 0xFFF8);
}
else
for (i = 0; i < B43_TAB_RSSIAGC1_SIZE; i++) {
b43_ofdmtab_write16(dev,
B43_OFDMTAB_LNAHPFGAIN1, i, b43_tab_rssiagc1[i]);
b43_ofdmtab_write16(dev,
B43_OFDMTAB_WRSSI, i, b43_tab_rssiagc1[i]);
}
} else {
if (enable)
for (i = 0; i < B43_TAB_RSSIAGC1_SIZE; i++)
b43_ofdmtab_write16(dev,
B43_OFDMTAB_WRSSI, i, 0x0820);
else
for (i = 0; i < B43_TAB_RSSIAGC2_SIZE; i++)
b43_ofdmtab_write16(dev,
B43_OFDMTAB_WRSSI, i, b43_tab_rssiagc2[i]);
}
}
static void b43_phy_ww(struct b43_wldev *dev)
{
u16 b, curr_s, best_s = 0xFFFF;
int i;
b43_phy_mask(dev, B43_PHY_CRS0, ~B43_PHY_CRS0_EN);
b43_phy_set(dev, B43_PHY_OFDM(0x1B), 0x1000);
b43_phy_maskset(dev, B43_PHY_OFDM(0x82), 0xF0FF, 0x0300);
b43_radio_set(dev, 0x0009, 0x0080);
b43_radio_maskset(dev, 0x0012, 0xFFFC, 0x0002);
b43_wa_initgains(dev);
b43_phy_write(dev, B43_PHY_OFDM(0xBA), 0x3ED5);
b = b43_phy_read(dev, B43_PHY_PWRDOWN);
b43_phy_write(dev, B43_PHY_PWRDOWN, (b & 0xFFF8) | 0x0005);
b43_radio_set(dev, 0x0004, 0x0004);
for (i = 0x10; i <= 0x20; i++) {
b43_radio_write16(dev, 0x0013, i);
curr_s = b43_phy_read(dev, B43_PHY_OTABLEQ) & 0x00FF;
if (!curr_s) {
best_s = 0x0000;
break;
} else if (curr_s >= 0x0080)
curr_s = 0x0100 - curr_s;
if (curr_s < best_s)
best_s = curr_s;
}
b43_phy_write(dev, B43_PHY_PWRDOWN, b);
b43_radio_mask(dev, 0x0004, 0xFFFB);
b43_radio_write16(dev, 0x0013, best_s);
b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1_R1, 0, 0xFFEC);
b43_phy_write(dev, B43_PHY_OFDM(0xB7), 0x1E80);
b43_phy_write(dev, B43_PHY_OFDM(0xB6), 0x1C00);
b43_phy_write(dev, B43_PHY_OFDM(0xB5), 0x0EC0);
b43_phy_write(dev, B43_PHY_OFDM(0xB2), 0x00C0);
b43_phy_write(dev, B43_PHY_OFDM(0xB9), 0x1FFF);
b43_phy_maskset(dev, B43_PHY_OFDM(0xBB), 0xF000, 0x0053);
b43_phy_maskset(dev, B43_PHY_OFDM61, 0xFE1F, 0x0120);
b43_phy_maskset(dev, B43_PHY_OFDM(0x13), 0x0FFF, 0x3000);
b43_phy_maskset(dev, B43_PHY_OFDM(0x14), 0x0FFF, 0x3000);
b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 6, 0x0017);
for (i = 0; i < 6; i++)
b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, i, 0x000F);
b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 0x0D, 0x000E);
b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 0x0E, 0x0011);
b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 0x0F, 0x0013);
b43_phy_write(dev, B43_PHY_OFDM(0x33), 0x5030);
b43_phy_set(dev, B43_PHY_CRS0, B43_PHY_CRS0_EN);
}
static void hardware_pctl_init_aphy(struct b43_wldev *dev)
{
//TODO
}
void b43_phy_inita(struct b43_wldev *dev)
{
struct ssb_bus *bus = dev->dev->bus;
struct b43_phy *phy = &dev->phy;
/* This lowlevel A-PHY init is also called from G-PHY init.
* So we must not access phy->a, if called from G-PHY code.
*/
B43_WARN_ON((phy->type != B43_PHYTYPE_A) &&
(phy->type != B43_PHYTYPE_G));
might_sleep();
if (phy->rev >= 6) {
if (phy->type == B43_PHYTYPE_A)
b43_phy_mask(dev, B43_PHY_OFDM(0x1B), ~0x1000);
if (b43_phy_read(dev, B43_PHY_ENCORE) & B43_PHY_ENCORE_EN)
b43_phy_set(dev, B43_PHY_ENCORE, 0x0010);
else
b43_phy_mask(dev, B43_PHY_ENCORE, ~0x1010);
}
b43_wa_all(dev);
if (phy->type == B43_PHYTYPE_A) {
if (phy->gmode && (phy->rev < 3))
b43_phy_set(dev, 0x0034, 0x0001);
b43_phy_rssiagc(dev, 0);
b43_phy_set(dev, B43_PHY_CRS0, B43_PHY_CRS0_EN);
b43_radio_init2060(dev);
if ((bus->boardinfo.vendor == SSB_BOARDVENDOR_BCM) &&
((bus->boardinfo.type == SSB_BOARD_BU4306) ||
(bus->boardinfo.type == SSB_BOARD_BU4309))) {
; //TODO: A PHY LO
}
if (phy->rev >= 3)
b43_phy_ww(dev);
hardware_pctl_init_aphy(dev);
//TODO: radar detection
}
if ((phy->type == B43_PHYTYPE_G) &&
(dev->dev->bus->sprom.boardflags_lo & B43_BFL_PACTRL)) {
b43_phy_maskset(dev, B43_PHY_OFDM(0x6E), 0xE000, 0x3CF);
}
}
/* Initialise the TSSI->dBm lookup table */
static int b43_aphy_init_tssi2dbm_table(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_a *aphy = phy->a;
s16 pab0, pab1, pab2;
pab0 = (s16) (dev->dev->bus->sprom.pa1b0);
pab1 = (s16) (dev->dev->bus->sprom.pa1b1);
pab2 = (s16) (dev->dev->bus->sprom.pa1b2);
if (pab0 != 0 && pab1 != 0 && pab2 != 0 &&
pab0 != -1 && pab1 != -1 && pab2 != -1) {
/* The pabX values are set in SPROM. Use them. */
if ((s8) dev->dev->bus->sprom.itssi_a != 0 &&
(s8) dev->dev->bus->sprom.itssi_a != -1)
aphy->tgt_idle_tssi =
(s8) (dev->dev->bus->sprom.itssi_a);
else
aphy->tgt_idle_tssi = 62;
aphy->tssi2dbm = b43_generate_dyn_tssi2dbm_tab(dev, pab0,
pab1, pab2);
if (!aphy->tssi2dbm)
return -ENOMEM;
} else {
/* pabX values not set in SPROM,
* but APHY needs a generated table. */
aphy->tssi2dbm = NULL;
b43err(dev->wl, "Could not generate tssi2dBm "
"table (wrong SPROM info)!\n");
return -ENODEV;
}
return 0;
}
static int b43_aphy_op_allocate(struct b43_wldev *dev)
{
struct b43_phy_a *aphy;
int err;
aphy = kzalloc(sizeof(*aphy), GFP_KERNEL);
if (!aphy)
return -ENOMEM;
dev->phy.a = aphy;
err = b43_aphy_init_tssi2dbm_table(dev);
if (err)
goto err_free_aphy;
return 0;
err_free_aphy:
kfree(aphy);
dev->phy.a = NULL;
return err;
}
static void b43_aphy_op_prepare_structs(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_a *aphy = phy->a;
const void *tssi2dbm;
int tgt_idle_tssi;
/* tssi2dbm table is constant, so it is initialized at alloc time.
* Save a copy of the pointer. */
tssi2dbm = aphy->tssi2dbm;
tgt_idle_tssi = aphy->tgt_idle_tssi;
/* Zero out the whole PHY structure. */
memset(aphy, 0, sizeof(*aphy));
aphy->tssi2dbm = tssi2dbm;
aphy->tgt_idle_tssi = tgt_idle_tssi;
//TODO init struct b43_phy_a
}
static void b43_aphy_op_free(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_a *aphy = phy->a;
kfree(aphy->tssi2dbm);
aphy->tssi2dbm = NULL;
kfree(aphy);
dev->phy.a = NULL;
}
static int b43_aphy_op_init(struct b43_wldev *dev)
{
b43_phy_inita(dev);
return 0;
}
static inline u16 adjust_phyreg(struct b43_wldev *dev, u16 offset)
{
/* OFDM registers are base-registers for the A-PHY. */
if ((offset & B43_PHYROUTE) == B43_PHYROUTE_OFDM_GPHY) {
offset &= ~B43_PHYROUTE;
offset |= B43_PHYROUTE_BASE;
}
#if B43_DEBUG
if ((offset & B43_PHYROUTE) == B43_PHYROUTE_EXT_GPHY) {
/* Ext-G registers are only available on G-PHYs */
b43err(dev->wl, "Invalid EXT-G PHY access at "
"0x%04X on A-PHY\n", offset);
dump_stack();
}
if ((offset & B43_PHYROUTE) == B43_PHYROUTE_N_BMODE) {
/* N-BMODE registers are only available on N-PHYs */
b43err(dev->wl, "Invalid N-BMODE PHY access at "
"0x%04X on A-PHY\n", offset);
dump_stack();
}
#endif /* B43_DEBUG */
return offset;
}
static u16 b43_aphy_op_read(struct b43_wldev *dev, u16 reg)
{
reg = adjust_phyreg(dev, reg);
b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
return b43_read16(dev, B43_MMIO_PHY_DATA);
}
static void b43_aphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
{
reg = adjust_phyreg(dev, reg);
b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
b43_write16(dev, B43_MMIO_PHY_DATA, value);
}
static u16 b43_aphy_op_radio_read(struct b43_wldev *dev, u16 reg)
{
/* Register 1 is a 32-bit register. */
B43_WARN_ON(reg == 1);
/* A-PHY needs 0x40 for read access */
reg |= 0x40;
b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
}
static void b43_aphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
{
/* Register 1 is a 32-bit register. */
B43_WARN_ON(reg == 1);
b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
}
static bool b43_aphy_op_supports_hwpctl(struct b43_wldev *dev)
{
return (dev->phy.rev >= 5);
}
static void b43_aphy_op_software_rfkill(struct b43_wldev *dev,
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 19:01:37 +08:00
bool blocked)
{
struct b43_phy *phy = &dev->phy;
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 19:01:37 +08:00
if (!blocked) {
if (phy->radio_on)
return;
b43_radio_write16(dev, 0x0004, 0x00C0);
b43_radio_write16(dev, 0x0005, 0x0008);
b43_phy_mask(dev, 0x0010, 0xFFF7);
b43_phy_mask(dev, 0x0011, 0xFFF7);
b43_radio_init2060(dev);
} else {
b43_radio_write16(dev, 0x0004, 0x00FF);
b43_radio_write16(dev, 0x0005, 0x00FB);
b43_phy_set(dev, 0x0010, 0x0008);
b43_phy_set(dev, 0x0011, 0x0008);
}
}
static int b43_aphy_op_switch_channel(struct b43_wldev *dev,
unsigned int new_channel)
{
if (new_channel > 200)
return -EINVAL;
aphy_channel_switch(dev, new_channel);
return 0;
}
static unsigned int b43_aphy_op_get_default_chan(struct b43_wldev *dev)
{
return 36; /* Default to channel 36 */
}
static void b43_aphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
{//TODO
struct b43_phy *phy = &dev->phy;
u16 tmp;
int autodiv = 0;
if (antenna == B43_ANTENNA_AUTO0 || antenna == B43_ANTENNA_AUTO1)
autodiv = 1;
b43_hf_write(dev, b43_hf_read(dev) & ~B43_HF_ANTDIVHELP);
b43_phy_maskset(dev, B43_PHY_BBANDCFG, ~B43_PHY_BBANDCFG_RXANT,
(autodiv ? B43_ANTENNA_AUTO1 : antenna) <<
B43_PHY_BBANDCFG_RXANT_SHIFT);
if (autodiv) {
tmp = b43_phy_read(dev, B43_PHY_ANTDWELL);
if (antenna == B43_ANTENNA_AUTO1)
tmp &= ~B43_PHY_ANTDWELL_AUTODIV1;
else
tmp |= B43_PHY_ANTDWELL_AUTODIV1;
b43_phy_write(dev, B43_PHY_ANTDWELL, tmp);
}
if (phy->rev < 3)
b43_phy_maskset(dev, B43_PHY_ANTDWELL, 0xFF00, 0x24);
else {
b43_phy_set(dev, B43_PHY_OFDM61, 0x10);
if (phy->rev == 3) {
b43_phy_write(dev, B43_PHY_CLIPPWRDOWNT, 0x1D);
b43_phy_write(dev, B43_PHY_ADIVRELATED, 8);
} else {
b43_phy_write(dev, B43_PHY_CLIPPWRDOWNT, 0x3A);
b43_phy_maskset(dev, B43_PHY_ADIVRELATED, 0xFF00, 8);
}
}
b43_hf_write(dev, b43_hf_read(dev) | B43_HF_ANTDIVHELP);
}
static void b43_aphy_op_adjust_txpower(struct b43_wldev *dev)
{//TODO
}
static enum b43_txpwr_result b43_aphy_op_recalc_txpower(struct b43_wldev *dev,
bool ignore_tssi)
{//TODO
return B43_TXPWR_RES_DONE;
}
static void b43_aphy_op_pwork_15sec(struct b43_wldev *dev)
{//TODO
}
static void b43_aphy_op_pwork_60sec(struct b43_wldev *dev)
{//TODO
}
const struct b43_phy_operations b43_phyops_a = {
.allocate = b43_aphy_op_allocate,
.free = b43_aphy_op_free,
.prepare_structs = b43_aphy_op_prepare_structs,
.init = b43_aphy_op_init,
.phy_read = b43_aphy_op_read,
.phy_write = b43_aphy_op_write,
.radio_read = b43_aphy_op_radio_read,
.radio_write = b43_aphy_op_radio_write,
.supports_hwpctl = b43_aphy_op_supports_hwpctl,
.software_rfkill = b43_aphy_op_software_rfkill,
.switch_analog = b43_phyop_switch_analog_generic,
.switch_channel = b43_aphy_op_switch_channel,
.get_default_chan = b43_aphy_op_get_default_chan,
.set_rx_antenna = b43_aphy_op_set_rx_antenna,
.recalc_txpower = b43_aphy_op_recalc_txpower,
.adjust_txpower = b43_aphy_op_adjust_txpower,
.pwork_15sec = b43_aphy_op_pwork_15sec,
.pwork_60sec = b43_aphy_op_pwork_60sec,
};