208 lines
4.5 KiB
C
208 lines
4.5 KiB
C
|
#include <linux/kernel.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/clocksource.h>
|
||
|
#include <linux/time.h>
|
||
|
#include <linux/acpi.h>
|
||
|
#include <linux/cpufreq.h>
|
||
|
|
||
|
#include <asm/timex.h>
|
||
|
|
||
|
static int notsc __initdata = 0;
|
||
|
|
||
|
unsigned int cpu_khz; /* TSC clocks / usec, not used here */
|
||
|
EXPORT_SYMBOL(cpu_khz);
|
||
|
unsigned int tsc_khz;
|
||
|
EXPORT_SYMBOL(tsc_khz);
|
||
|
|
||
|
static unsigned int cyc2ns_scale __read_mostly;
|
||
|
|
||
|
void set_cyc2ns_scale(unsigned long khz)
|
||
|
{
|
||
|
cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / khz;
|
||
|
}
|
||
|
|
||
|
static unsigned long long cycles_2_ns(unsigned long long cyc)
|
||
|
{
|
||
|
return (cyc * cyc2ns_scale) >> NS_SCALE;
|
||
|
}
|
||
|
|
||
|
unsigned long long sched_clock(void)
|
||
|
{
|
||
|
unsigned long a = 0;
|
||
|
|
||
|
/* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
|
||
|
* which means it is not completely exact and may not be monotonous
|
||
|
* between CPUs. But the errors should be too small to matter for
|
||
|
* scheduling purposes.
|
||
|
*/
|
||
|
|
||
|
rdtscll(a);
|
||
|
return cycles_2_ns(a);
|
||
|
}
|
||
|
|
||
|
static int tsc_unstable;
|
||
|
|
||
|
inline int check_tsc_unstable(void)
|
||
|
{
|
||
|
return tsc_unstable;
|
||
|
}
|
||
|
#ifdef CONFIG_CPU_FREQ
|
||
|
|
||
|
/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
|
||
|
* changes.
|
||
|
*
|
||
|
* RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
|
||
|
* not that important because current Opteron setups do not support
|
||
|
* scaling on SMP anyroads.
|
||
|
*
|
||
|
* Should fix up last_tsc too. Currently gettimeofday in the
|
||
|
* first tick after the change will be slightly wrong.
|
||
|
*/
|
||
|
|
||
|
static unsigned int ref_freq;
|
||
|
static unsigned long loops_per_jiffy_ref;
|
||
|
static unsigned long tsc_khz_ref;
|
||
|
|
||
|
static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
|
||
|
void *data)
|
||
|
{
|
||
|
struct cpufreq_freqs *freq = data;
|
||
|
unsigned long *lpj, dummy;
|
||
|
|
||
|
if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
|
||
|
return 0;
|
||
|
|
||
|
lpj = &dummy;
|
||
|
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
|
||
|
#ifdef CONFIG_SMP
|
||
|
lpj = &cpu_data[freq->cpu].loops_per_jiffy;
|
||
|
#else
|
||
|
lpj = &boot_cpu_data.loops_per_jiffy;
|
||
|
#endif
|
||
|
|
||
|
if (!ref_freq) {
|
||
|
ref_freq = freq->old;
|
||
|
loops_per_jiffy_ref = *lpj;
|
||
|
tsc_khz_ref = tsc_khz;
|
||
|
}
|
||
|
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
|
||
|
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
|
||
|
(val == CPUFREQ_RESUMECHANGE)) {
|
||
|
*lpj =
|
||
|
cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
|
||
|
|
||
|
tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
|
||
|
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
|
||
|
mark_tsc_unstable("cpufreq changes");
|
||
|
}
|
||
|
|
||
|
set_cyc2ns_scale(tsc_khz_ref);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct notifier_block time_cpufreq_notifier_block = {
|
||
|
.notifier_call = time_cpufreq_notifier
|
||
|
};
|
||
|
|
||
|
static int __init cpufreq_tsc(void)
|
||
|
{
|
||
|
cpufreq_register_notifier(&time_cpufreq_notifier_block,
|
||
|
CPUFREQ_TRANSITION_NOTIFIER);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
core_initcall(cpufreq_tsc);
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Make an educated guess if the TSC is trustworthy and synchronized
|
||
|
* over all CPUs.
|
||
|
*/
|
||
|
__cpuinit int unsynchronized_tsc(void)
|
||
|
{
|
||
|
if (tsc_unstable)
|
||
|
return 1;
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
if (apic_is_clustered_box())
|
||
|
return 1;
|
||
|
#endif
|
||
|
/* Most intel systems have synchronized TSCs except for
|
||
|
multi node systems */
|
||
|
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
|
||
|
#ifdef CONFIG_ACPI
|
||
|
/* But TSC doesn't tick in C3 so don't use it there */
|
||
|
if (acpi_gbl_FADT.header.length > 0 &&
|
||
|
acpi_gbl_FADT.C3latency < 1000)
|
||
|
return 1;
|
||
|
#endif
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Assume multi socket systems are not synchronized */
|
||
|
return num_present_cpus() > 1;
|
||
|
}
|
||
|
|
||
|
int __init notsc_setup(char *s)
|
||
|
{
|
||
|
notsc = 1;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
__setup("notsc", notsc_setup);
|
||
|
|
||
|
|
||
|
/* clock source code: */
|
||
|
static cycle_t read_tsc(void)
|
||
|
{
|
||
|
cycle_t ret = (cycle_t)get_cycles_sync();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static cycle_t __vsyscall_fn vread_tsc(void)
|
||
|
{
|
||
|
cycle_t ret = (cycle_t)get_cycles_sync();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static struct clocksource clocksource_tsc = {
|
||
|
.name = "tsc",
|
||
|
.rating = 300,
|
||
|
.read = read_tsc,
|
||
|
.mask = CLOCKSOURCE_MASK(64),
|
||
|
.shift = 22,
|
||
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS |
|
||
|
CLOCK_SOURCE_MUST_VERIFY,
|
||
|
.vread = vread_tsc,
|
||
|
};
|
||
|
|
||
|
void mark_tsc_unstable(char *reason)
|
||
|
{
|
||
|
if (!tsc_unstable) {
|
||
|
tsc_unstable = 1;
|
||
|
printk("Marking TSC unstable due to %s\n", reason);
|
||
|
/* Change only the rating, when not registered */
|
||
|
if (clocksource_tsc.mult)
|
||
|
clocksource_change_rating(&clocksource_tsc, 0);
|
||
|
else
|
||
|
clocksource_tsc.rating = 0;
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(mark_tsc_unstable);
|
||
|
|
||
|
void __init init_tsc_clocksource(void)
|
||
|
{
|
||
|
if (!notsc) {
|
||
|
clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
|
||
|
clocksource_tsc.shift);
|
||
|
if (check_tsc_unstable())
|
||
|
clocksource_tsc.rating = 0;
|
||
|
|
||
|
clocksource_register(&clocksource_tsc);
|
||
|
}
|
||
|
}
|