linux-sg2042/mm/mremap.c

546 lines
14 KiB
C
Raw Normal View History

/*
* mm/mremap.c
*
* (C) Copyright 1996 Linus Torvalds
*
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
* (C) Copyright 2002 Red Hat Inc, All Rights Reserved
*/
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/shm.h>
ksm: prevent mremap move poisoning KSM's scan allows for user pages to be COWed or unmapped at any time, without requiring any notification. But its stable tree does assume that when it finds a KSM page where it placed a KSM page, then it is the same KSM page that it placed there. mremap move could break that assumption: if an area containing a KSM page was unmapped, then an area containing a different KSM page was moved with mremap into the place of the original, before KSM's scan came around to notice. That could then poison a node of the stable tree, so that memcmps would "lie" and upset the ordering of the tree. Probably noone will ever need mremap move on a VM_MERGEABLE area; except that prohibiting it would make trouble for schemes in which we try making everything VM_MERGEABLE e.g. for testing: an mremap which normally works would then fail mysteriously. There's no need to go to any trouble, such as re-sorting KSM's list of rmap_items to match the new layout: simply unmerge the area to COW all its KSM pages before moving, but leave VM_MERGEABLE on so that they're remerged later. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Chris Wright <chrisw@redhat.com> Signed-off-by: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Avi Kivity <avi@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 08:02:05 +08:00
#include <linux/ksm.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/capability.h>
#include <linux/fs.h>
#include <linux/highmem.h>
#include <linux/security.h>
#include <linux/syscalls.h>
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 06:46:29 +08:00
#include <linux/mmu_notifier.h>
#include <asm/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include "internal.h"
static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pgd = pgd_offset(mm, addr);
if (pgd_none_or_clear_bad(pgd))
return NULL;
pud = pud_offset(pgd, addr);
if (pud_none_or_clear_bad(pud))
return NULL;
pmd = pmd_offset(pud, addr);
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
if (pmd_none(*pmd))
return NULL;
return pmd;
}
static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pgd = pgd_offset(mm, addr);
pud = pud_alloc(mm, pgd, addr);
if (!pud)
return NULL;
pmd = pmd_alloc(mm, pud, addr);
if (!pmd)
return NULL;
VM_BUG_ON(pmd_trans_huge(*pmd));
return pmd;
}
static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
unsigned long old_addr, unsigned long old_end,
struct vm_area_struct *new_vma, pmd_t *new_pmd,
unsigned long new_addr)
{
struct address_space *mapping = NULL;
struct mm_struct *mm = vma->vm_mm;
pte_t *old_pte, *new_pte, pte;
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:40 +08:00
spinlock_t *old_ptl, *new_ptl;
if (vma->vm_file) {
/*
* Subtle point from Rajesh Venkatasubramanian: before
* moving file-based ptes, we must lock truncate_pagecache
* out, since it might clean the dst vma before the src vma,
* and we propagate stale pages into the dst afterward.
*/
mapping = vma->vm_file->f_mapping;
mutex_lock(&mapping->i_mmap_mutex);
}
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:40 +08:00
/*
* We don't have to worry about the ordering of src and dst
* pte locks because exclusive mmap_sem prevents deadlock.
*/
old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
new_pte = pte_offset_map(new_pmd, new_addr);
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:40 +08:00
new_ptl = pte_lockptr(mm, new_pmd);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
arch_enter_lazy_mmu_mode();
for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
new_pte++, new_addr += PAGE_SIZE) {
if (pte_none(*old_pte))
continue;
2011-11-01 08:08:26 +08:00
pte = ptep_get_and_clear(mm, old_addr, old_pte);
pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
set_pte_at(mm, new_addr, new_pte, pte);
}
arch_leave_lazy_mmu_mode();
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:40 +08:00
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
pte_unmap(new_pte - 1);
pte_unmap_unlock(old_pte - 1, old_ptl);
if (mapping)
mutex_unlock(&mapping->i_mmap_mutex);
}
#define LATENCY_LIMIT (64 * PAGE_SIZE)
unsigned long move_page_tables(struct vm_area_struct *vma,
unsigned long old_addr, struct vm_area_struct *new_vma,
unsigned long new_addr, unsigned long len)
{
unsigned long extent, next, old_end;
pmd_t *old_pmd, *new_pmd;
2011-11-01 08:08:26 +08:00
bool need_flush = false;
old_end = old_addr + len;
flush_cache_range(vma, old_addr, old_end);
2011-11-01 08:08:26 +08:00
mmu_notifier_invalidate_range_start(vma->vm_mm, old_addr, old_end);
for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
cond_resched();
next = (old_addr + PMD_SIZE) & PMD_MASK;
/* even if next overflowed, extent below will be ok */
extent = next - old_addr;
if (extent > old_end - old_addr)
extent = old_end - old_addr;
old_pmd = get_old_pmd(vma->vm_mm, old_addr);
if (!old_pmd)
continue;
new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
if (!new_pmd)
break;
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
if (pmd_trans_huge(*old_pmd)) {
int err = 0;
if (extent == HPAGE_PMD_SIZE)
err = move_huge_pmd(vma, new_vma, old_addr,
new_addr, old_end,
old_pmd, new_pmd);
if (err > 0) {
need_flush = true;
continue;
} else if (!err) {
split_huge_page_pmd(vma->vm_mm, old_pmd);
}
VM_BUG_ON(pmd_trans_huge(*old_pmd));
}
if (pmd_none(*new_pmd) && __pte_alloc(new_vma->vm_mm, new_vma,
new_pmd, new_addr))
break;
next = (new_addr + PMD_SIZE) & PMD_MASK;
if (extent > next - new_addr)
extent = next - new_addr;
if (extent > LATENCY_LIMIT)
extent = LATENCY_LIMIT;
move_ptes(vma, old_pmd, old_addr, old_addr + extent,
new_vma, new_pmd, new_addr);
2011-11-01 08:08:26 +08:00
need_flush = true;
}
2011-11-01 08:08:26 +08:00
if (likely(need_flush))
flush_tlb_range(vma, old_end-len, old_addr);
mmu_notifier_invalidate_range_end(vma->vm_mm, old_end-len, old_end);
return len + old_addr - old_end; /* how much done */
}
static unsigned long move_vma(struct vm_area_struct *vma,
unsigned long old_addr, unsigned long old_len,
unsigned long new_len, unsigned long new_addr)
{
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *new_vma;
unsigned long vm_flags = vma->vm_flags;
unsigned long new_pgoff;
unsigned long moved_len;
unsigned long excess = 0;
[PATCH] mm: update_hiwaters just in time update_mem_hiwater has attracted various criticisms, in particular from those concerned with mm scalability. Originally it was called whenever rss or total_vm got raised. Then many of those callsites were replaced by a timer tick call from account_system_time. Now Frank van Maarseveen reports that to be found inadequate. How about this? Works for Frank. Replace update_mem_hiwater, a poor combination of two unrelated ops, by macros update_hiwater_rss and update_hiwater_vm. Don't attempt to keep mm->hiwater_rss up to date at timer tick, nor every time we raise rss (usually by 1): those are hot paths. Do the opposite, update only when about to lower rss (usually by many), or just before final accounting in do_exit. Handle mm->hiwater_vm in the same way, though it's much less of an issue. Demand that whoever collects these hiwater statistics do the work of taking the maximum with rss or total_vm. And there has been no collector of these hiwater statistics in the tree. The new convention needs an example, so match Frank's usage by adding a VmPeak line above VmSize to /proc/<pid>/status, and also a VmHWM line above VmRSS (High-Water-Mark or High-Water-Memory). There was a particular anomaly during mremap move, that hiwater_vm might be captured too high. A fleeting such anomaly remains, but it's quickly corrected now, whereas before it would stick. What locking? None: if the app is racy then these statistics will be racy, it's not worth any overhead to make them exact. But whenever it suits, hiwater_vm is updated under exclusive mmap_sem, and hiwater_rss under page_table_lock (for now) or with preemption disabled (later on): without going to any trouble, minimize the time between reading current values and updating, to minimize those occasions when a racing thread bumps a count up and back down in between. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:18 +08:00
unsigned long hiwater_vm;
int split = 0;
int err;
/*
* We'd prefer to avoid failure later on in do_munmap:
* which may split one vma into three before unmapping.
*/
if (mm->map_count >= sysctl_max_map_count - 3)
return -ENOMEM;
ksm: prevent mremap move poisoning KSM's scan allows for user pages to be COWed or unmapped at any time, without requiring any notification. But its stable tree does assume that when it finds a KSM page where it placed a KSM page, then it is the same KSM page that it placed there. mremap move could break that assumption: if an area containing a KSM page was unmapped, then an area containing a different KSM page was moved with mremap into the place of the original, before KSM's scan came around to notice. That could then poison a node of the stable tree, so that memcmps would "lie" and upset the ordering of the tree. Probably noone will ever need mremap move on a VM_MERGEABLE area; except that prohibiting it would make trouble for schemes in which we try making everything VM_MERGEABLE e.g. for testing: an mremap which normally works would then fail mysteriously. There's no need to go to any trouble, such as re-sorting KSM's list of rmap_items to match the new layout: simply unmerge the area to COW all its KSM pages before moving, but leave VM_MERGEABLE on so that they're remerged later. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Chris Wright <chrisw@redhat.com> Signed-off-by: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Avi Kivity <avi@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 08:02:05 +08:00
/*
* Advise KSM to break any KSM pages in the area to be moved:
* it would be confusing if they were to turn up at the new
* location, where they happen to coincide with different KSM
* pages recently unmapped. But leave vma->vm_flags as it was,
* so KSM can come around to merge on vma and new_vma afterwards.
*/
err = ksm_madvise(vma, old_addr, old_addr + old_len,
MADV_UNMERGEABLE, &vm_flags);
if (err)
return err;
ksm: prevent mremap move poisoning KSM's scan allows for user pages to be COWed or unmapped at any time, without requiring any notification. But its stable tree does assume that when it finds a KSM page where it placed a KSM page, then it is the same KSM page that it placed there. mremap move could break that assumption: if an area containing a KSM page was unmapped, then an area containing a different KSM page was moved with mremap into the place of the original, before KSM's scan came around to notice. That could then poison a node of the stable tree, so that memcmps would "lie" and upset the ordering of the tree. Probably noone will ever need mremap move on a VM_MERGEABLE area; except that prohibiting it would make trouble for schemes in which we try making everything VM_MERGEABLE e.g. for testing: an mremap which normally works would then fail mysteriously. There's no need to go to any trouble, such as re-sorting KSM's list of rmap_items to match the new layout: simply unmerge the area to COW all its KSM pages before moving, but leave VM_MERGEABLE on so that they're remerged later. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Chris Wright <chrisw@redhat.com> Signed-off-by: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Avi Kivity <avi@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 08:02:05 +08:00
new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff);
if (!new_vma)
return -ENOMEM;
moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len);
if (moved_len < old_len) {
/*
* On error, move entries back from new area to old,
* which will succeed since page tables still there,
* and then proceed to unmap new area instead of old.
*/
move_page_tables(new_vma, new_addr, vma, old_addr, moved_len);
vma = new_vma;
old_len = new_len;
old_addr = new_addr;
new_addr = -ENOMEM;
}
/* Conceal VM_ACCOUNT so old reservation is not undone */
if (vm_flags & VM_ACCOUNT) {
vma->vm_flags &= ~VM_ACCOUNT;
excess = vma->vm_end - vma->vm_start - old_len;
if (old_addr > vma->vm_start &&
old_addr + old_len < vma->vm_end)
split = 1;
}
/*
[PATCH] mm: update_hiwaters just in time update_mem_hiwater has attracted various criticisms, in particular from those concerned with mm scalability. Originally it was called whenever rss or total_vm got raised. Then many of those callsites were replaced by a timer tick call from account_system_time. Now Frank van Maarseveen reports that to be found inadequate. How about this? Works for Frank. Replace update_mem_hiwater, a poor combination of two unrelated ops, by macros update_hiwater_rss and update_hiwater_vm. Don't attempt to keep mm->hiwater_rss up to date at timer tick, nor every time we raise rss (usually by 1): those are hot paths. Do the opposite, update only when about to lower rss (usually by many), or just before final accounting in do_exit. Handle mm->hiwater_vm in the same way, though it's much less of an issue. Demand that whoever collects these hiwater statistics do the work of taking the maximum with rss or total_vm. And there has been no collector of these hiwater statistics in the tree. The new convention needs an example, so match Frank's usage by adding a VmPeak line above VmSize to /proc/<pid>/status, and also a VmHWM line above VmRSS (High-Water-Mark or High-Water-Memory). There was a particular anomaly during mremap move, that hiwater_vm might be captured too high. A fleeting such anomaly remains, but it's quickly corrected now, whereas before it would stick. What locking? None: if the app is racy then these statistics will be racy, it's not worth any overhead to make them exact. But whenever it suits, hiwater_vm is updated under exclusive mmap_sem, and hiwater_rss under page_table_lock (for now) or with preemption disabled (later on): without going to any trouble, minimize the time between reading current values and updating, to minimize those occasions when a racing thread bumps a count up and back down in between. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:18 +08:00
* If we failed to move page tables we still do total_vm increment
* since do_munmap() will decrement it by old_len == new_len.
*
* Since total_vm is about to be raised artificially high for a
* moment, we need to restore high watermark afterwards: if stats
* are taken meanwhile, total_vm and hiwater_vm appear too high.
* If this were a serious issue, we'd add a flag to do_munmap().
*/
[PATCH] mm: update_hiwaters just in time update_mem_hiwater has attracted various criticisms, in particular from those concerned with mm scalability. Originally it was called whenever rss or total_vm got raised. Then many of those callsites were replaced by a timer tick call from account_system_time. Now Frank van Maarseveen reports that to be found inadequate. How about this? Works for Frank. Replace update_mem_hiwater, a poor combination of two unrelated ops, by macros update_hiwater_rss and update_hiwater_vm. Don't attempt to keep mm->hiwater_rss up to date at timer tick, nor every time we raise rss (usually by 1): those are hot paths. Do the opposite, update only when about to lower rss (usually by many), or just before final accounting in do_exit. Handle mm->hiwater_vm in the same way, though it's much less of an issue. Demand that whoever collects these hiwater statistics do the work of taking the maximum with rss or total_vm. And there has been no collector of these hiwater statistics in the tree. The new convention needs an example, so match Frank's usage by adding a VmPeak line above VmSize to /proc/<pid>/status, and also a VmHWM line above VmRSS (High-Water-Mark or High-Water-Memory). There was a particular anomaly during mremap move, that hiwater_vm might be captured too high. A fleeting such anomaly remains, but it's quickly corrected now, whereas before it would stick. What locking? None: if the app is racy then these statistics will be racy, it's not worth any overhead to make them exact. But whenever it suits, hiwater_vm is updated under exclusive mmap_sem, and hiwater_rss under page_table_lock (for now) or with preemption disabled (later on): without going to any trouble, minimize the time between reading current values and updating, to minimize those occasions when a racing thread bumps a count up and back down in between. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:18 +08:00
hiwater_vm = mm->hiwater_vm;
mm->total_vm += new_len >> PAGE_SHIFT;
vm_stat_account(mm, vma->vm_flags, vma->vm_file, new_len>>PAGE_SHIFT);
if (do_munmap(mm, old_addr, old_len) < 0) {
/* OOM: unable to split vma, just get accounts right */
vm_unacct_memory(excess >> PAGE_SHIFT);
excess = 0;
}
[PATCH] mm: update_hiwaters just in time update_mem_hiwater has attracted various criticisms, in particular from those concerned with mm scalability. Originally it was called whenever rss or total_vm got raised. Then many of those callsites were replaced by a timer tick call from account_system_time. Now Frank van Maarseveen reports that to be found inadequate. How about this? Works for Frank. Replace update_mem_hiwater, a poor combination of two unrelated ops, by macros update_hiwater_rss and update_hiwater_vm. Don't attempt to keep mm->hiwater_rss up to date at timer tick, nor every time we raise rss (usually by 1): those are hot paths. Do the opposite, update only when about to lower rss (usually by many), or just before final accounting in do_exit. Handle mm->hiwater_vm in the same way, though it's much less of an issue. Demand that whoever collects these hiwater statistics do the work of taking the maximum with rss or total_vm. And there has been no collector of these hiwater statistics in the tree. The new convention needs an example, so match Frank's usage by adding a VmPeak line above VmSize to /proc/<pid>/status, and also a VmHWM line above VmRSS (High-Water-Mark or High-Water-Memory). There was a particular anomaly during mremap move, that hiwater_vm might be captured too high. A fleeting such anomaly remains, but it's quickly corrected now, whereas before it would stick. What locking? None: if the app is racy then these statistics will be racy, it's not worth any overhead to make them exact. But whenever it suits, hiwater_vm is updated under exclusive mmap_sem, and hiwater_rss under page_table_lock (for now) or with preemption disabled (later on): without going to any trouble, minimize the time between reading current values and updating, to minimize those occasions when a racing thread bumps a count up and back down in between. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:18 +08:00
mm->hiwater_vm = hiwater_vm;
/* Restore VM_ACCOUNT if one or two pieces of vma left */
if (excess) {
vma->vm_flags |= VM_ACCOUNT;
if (split)
vma->vm_next->vm_flags |= VM_ACCOUNT;
}
if (vm_flags & VM_LOCKED) {
mm->locked_vm += new_len >> PAGE_SHIFT;
if (new_len > old_len)
mlock_vma_pages_range(new_vma, new_addr + old_len,
new_addr + new_len);
}
return new_addr;
}
static struct vm_area_struct *vma_to_resize(unsigned long addr,
unsigned long old_len, unsigned long new_len, unsigned long *p)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = find_vma(mm, addr);
if (!vma || vma->vm_start > addr)
goto Efault;
if (is_vm_hugetlb_page(vma))
goto Einval;
/* We can't remap across vm area boundaries */
if (old_len > vma->vm_end - addr)
goto Efault;
/* Need to be careful about a growing mapping */
if (new_len > old_len) {
unsigned long pgoff;
if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
goto Efault;
pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
pgoff += vma->vm_pgoff;
if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
goto Einval;
}
if (vma->vm_flags & VM_LOCKED) {
unsigned long locked, lock_limit;
locked = mm->locked_vm << PAGE_SHIFT;
lock_limit = rlimit(RLIMIT_MEMLOCK);
locked += new_len - old_len;
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
goto Eagain;
}
if (!may_expand_vm(mm, (new_len - old_len) >> PAGE_SHIFT))
goto Enomem;
if (vma->vm_flags & VM_ACCOUNT) {
unsigned long charged = (new_len - old_len) >> PAGE_SHIFT;
if (security_vm_enough_memory(charged))
goto Efault;
*p = charged;
}
return vma;
Efault: /* very odd choice for most of the cases, but... */
return ERR_PTR(-EFAULT);
Einval:
return ERR_PTR(-EINVAL);
Enomem:
return ERR_PTR(-ENOMEM);
Eagain:
return ERR_PTR(-EAGAIN);
}
static unsigned long mremap_to(unsigned long addr,
unsigned long old_len, unsigned long new_addr,
unsigned long new_len)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long ret = -EINVAL;
unsigned long charged = 0;
unsigned long map_flags;
if (new_addr & ~PAGE_MASK)
goto out;
if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
goto out;
/* Check if the location we're moving into overlaps the
* old location at all, and fail if it does.
*/
if ((new_addr <= addr) && (new_addr+new_len) > addr)
goto out;
if ((addr <= new_addr) && (addr+old_len) > new_addr)
goto out;
ret = security_file_mmap(NULL, 0, 0, 0, new_addr, 1);
if (ret)
goto out;
ret = do_munmap(mm, new_addr, new_len);
if (ret)
goto out;
if (old_len >= new_len) {
ret = do_munmap(mm, addr+new_len, old_len - new_len);
if (ret && old_len != new_len)
goto out;
old_len = new_len;
}
vma = vma_to_resize(addr, old_len, new_len, &charged);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto out;
}
map_flags = MAP_FIXED;
if (vma->vm_flags & VM_MAYSHARE)
map_flags |= MAP_SHARED;
ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
((addr - vma->vm_start) >> PAGE_SHIFT),
map_flags);
if (ret & ~PAGE_MASK)
goto out1;
ret = move_vma(vma, addr, old_len, new_len, new_addr);
if (!(ret & ~PAGE_MASK))
goto out;
out1:
vm_unacct_memory(charged);
out:
return ret;
}
static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
{
unsigned long end = vma->vm_end + delta;
if (end < vma->vm_end) /* overflow */
return 0;
if (vma->vm_next && vma->vm_next->vm_start < end) /* intersection */
return 0;
if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
0, MAP_FIXED) & ~PAGE_MASK)
return 0;
return 1;
}
/*
* Expand (or shrink) an existing mapping, potentially moving it at the
* same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
*
* MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
* This option implies MREMAP_MAYMOVE.
*/
unsigned long do_mremap(unsigned long addr,
unsigned long old_len, unsigned long new_len,
unsigned long flags, unsigned long new_addr)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long ret = -EINVAL;
unsigned long charged = 0;
if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE))
goto out;
if (addr & ~PAGE_MASK)
goto out;
old_len = PAGE_ALIGN(old_len);
new_len = PAGE_ALIGN(new_len);
/*
* We allow a zero old-len as a special case
* for DOS-emu "duplicate shm area" thing. But
* a zero new-len is nonsensical.
*/
if (!new_len)
goto out;
if (flags & MREMAP_FIXED) {
if (flags & MREMAP_MAYMOVE)
ret = mremap_to(addr, old_len, new_addr, new_len);
goto out;
}
/*
* Always allow a shrinking remap: that just unmaps
* the unnecessary pages..
* do_munmap does all the needed commit accounting
*/
if (old_len >= new_len) {
ret = do_munmap(mm, addr+new_len, old_len - new_len);
if (ret && old_len != new_len)
goto out;
ret = addr;
goto out;
}
/*
* Ok, we need to grow..
*/
vma = vma_to_resize(addr, old_len, new_len, &charged);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto out;
}
/* old_len exactly to the end of the area..
*/
if (old_len == vma->vm_end - addr) {
/* can we just expand the current mapping? */
if (vma_expandable(vma, new_len - old_len)) {
int pages = (new_len - old_len) >> PAGE_SHIFT;
mm: change anon_vma linking to fix multi-process server scalability issue The old anon_vma code can lead to scalability issues with heavily forking workloads. Specifically, each anon_vma will be shared between the parent process and all its child processes. In a workload with 1000 child processes and a VMA with 1000 anonymous pages per process that get COWed, this leads to a system with a million anonymous pages in the same anon_vma, each of which is mapped in just one of the 1000 processes. However, the current rmap code needs to walk them all, leading to O(N) scanning complexity for each page. This can result in systems where one CPU is walking the page tables of 1000 processes in page_referenced_one, while all other CPUs are stuck on the anon_vma lock. This leads to catastrophic failure for a benchmark like AIM7, where the total number of processes can reach in the tens of thousands. Real workloads are still a factor 10 less process intensive than AIM7, but they are catching up. This patch changes the way anon_vmas and VMAs are linked, which allows us to associate multiple anon_vmas with a VMA. At fork time, each child process gets its own anon_vmas, in which its COWed pages will be instantiated. The parents' anon_vma is also linked to the VMA, because non-COWed pages could be present in any of the children. This reduces rmap scanning complexity to O(1) for the pages of the 1000 child processes, with O(N) complexity for at most 1/N pages in the system. This reduces the average scanning cost in heavily forking workloads from O(N) to 2. The only real complexity in this patch stems from the fact that linking a VMA to anon_vmas now involves memory allocations. This means vma_adjust can fail, if it needs to attach a VMA to anon_vma structures. This in turn means error handling needs to be added to the calling functions. A second source of complexity is that, because there can be multiple anon_vmas, the anon_vma linking in vma_adjust can no longer be done under "the" anon_vma lock. To prevent the rmap code from walking up an incomplete VMA, this patch introduces the VM_LOCK_RMAP VMA flag. This bit flag uses the same slot as the NOMMU VM_MAPPED_COPY, with an ifdef in mm.h to make sure it is impossible to compile a kernel that needs both symbolic values for the same bitflag. Some test results: Without the anon_vma changes, when AIM7 hits around 9.7k users (on a test box with 16GB RAM and not quite enough IO), the system ends up running >99% in system time, with every CPU on the same anon_vma lock in the pageout code. With these changes, AIM7 hits the cross-over point around 29.7k users. This happens with ~99% IO wait time, there never seems to be any spike in system time. The anon_vma lock contention appears to be resolved. [akpm@linux-foundation.org: cleanups] Signed-off-by: Rik van Riel <riel@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:42:07 +08:00
if (vma_adjust(vma, vma->vm_start, addr + new_len,
vma->vm_pgoff, NULL)) {
ret = -ENOMEM;
goto out;
}
mm->total_vm += pages;
vm_stat_account(mm, vma->vm_flags, vma->vm_file, pages);
if (vma->vm_flags & VM_LOCKED) {
mm->locked_vm += pages;
mlock_vma_pages_range(vma, addr + old_len,
addr + new_len);
}
ret = addr;
goto out;
}
}
/*
* We weren't able to just expand or shrink the area,
* we need to create a new one and move it..
*/
ret = -ENOMEM;
if (flags & MREMAP_MAYMOVE) {
unsigned long map_flags = 0;
if (vma->vm_flags & VM_MAYSHARE)
map_flags |= MAP_SHARED;
new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
vma->vm_pgoff +
((addr - vma->vm_start) >> PAGE_SHIFT),
map_flags);
if (new_addr & ~PAGE_MASK) {
ret = new_addr;
goto out;
}
ret = security_file_mmap(NULL, 0, 0, 0, new_addr, 1);
if (ret)
goto out;
ret = move_vma(vma, addr, old_len, new_len, new_addr);
}
out:
if (ret & ~PAGE_MASK)
vm_unacct_memory(charged);
return ret;
}
SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
unsigned long, new_len, unsigned long, flags,
unsigned long, new_addr)
{
unsigned long ret;
down_write(&current->mm->mmap_sem);
ret = do_mremap(addr, old_len, new_len, flags, new_addr);
up_write(&current->mm->mmap_sem);
return ret;
}