linux-sg2042/kernel/auditsc.c

2427 lines
64 KiB
C
Raw Normal View History

/* auditsc.c -- System-call auditing support
* Handles all system-call specific auditing features.
*
* Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
* Copyright 2005 Hewlett-Packard Development Company, L.P.
* Copyright (C) 2005, 2006 IBM Corporation
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Written by Rickard E. (Rik) Faith <faith@redhat.com>
*
* Many of the ideas implemented here are from Stephen C. Tweedie,
* especially the idea of avoiding a copy by using getname.
*
* The method for actual interception of syscall entry and exit (not in
* this file -- see entry.S) is based on a GPL'd patch written by
* okir@suse.de and Copyright 2003 SuSE Linux AG.
*
* POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
* 2006.
*
* The support of additional filter rules compares (>, <, >=, <=) was
* added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
*
* Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
* filesystem information.
*
* Subject and object context labeling support added by <danjones@us.ibm.com>
* and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <asm/types.h>
#include <linux/atomic.h>
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/mm.h>
#include <linux/export.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/mount.h>
#include <linux/socket.h>
#include <linux/mqueue.h>
#include <linux/audit.h>
#include <linux/personality.h>
#include <linux/time.h>
#include <linux/netlink.h>
#include <linux/compiler.h>
#include <asm/unistd.h>
#include <linux/security.h>
#include <linux/list.h>
#include <linux/tty.h>
#include <linux/binfmts.h>
#include <linux/highmem.h>
#include <linux/syscalls.h>
#include <asm/syscall.h>
#include <linux/capability.h>
#include <linux/fs_struct.h>
#include <linux/compat.h>
audit: Audit proc/<pid>/cmdline aka proctitle During an audit event, cache and print the value of the process's proctitle value (proc/<pid>/cmdline). This is useful in situations where processes are started via fork'd virtual machines where the comm field is incorrect. Often times, setting the comm field still is insufficient as the comm width is not very wide and most virtual machine "package names" do not fit. Also, during execution, many threads have their comm field set as well. By tying it back to the global cmdline value for the process, audit records will be more complete in systems with these properties. An example of where this is useful and applicable is in the realm of Android. With Android, their is no fork/exec for VM instances. The bare, preloaded Dalvik VM listens for a fork and specialize request. When this request comes in, the VM forks, and the loads the specific application (specializing). This was done to take advantage of COW and to not require a load of basic packages by the VM on very app spawn. When this spawn occurs, the package name is set via setproctitle() and shows up in procfs. Many of these package names are longer then 16 bytes, the historical width of task->comm. Having the cmdline in the audit records will couple the application back to the record directly. Also, on my Debian development box, some audit records were more useful then what was printed under comm. The cached proctitle is tied to the life-cycle of the audit_context structure and is built on demand. Proctitle is controllable by userspace, and thus should not be trusted. It is meant as an aid to assist in debugging. The proctitle event is emitted during syscall audits, and can be filtered with auditctl. Example: type=AVC msg=audit(1391217013.924:386): avc: denied { getattr } for pid=1971 comm="mkdir" name="/" dev="selinuxfs" ino=1 scontext=system_u:system_r:consolekit_t:s0-s0:c0.c255 tcontext=system_u:object_r:security_t:s0 tclass=filesystem type=SYSCALL msg=audit(1391217013.924:386): arch=c000003e syscall=137 success=yes exit=0 a0=7f019dfc8bd7 a1=7fffa6aed2c0 a2=fffffffffff4bd25 a3=7fffa6aed050 items=0 ppid=1967 pid=1971 auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=4294967295 comm="mkdir" exe="/bin/mkdir" subj=system_u:system_r:consolekit_t:s0-s0:c0.c255 key=(null) type=UNKNOWN[1327] msg=audit(1391217013.924:386): proctitle=6D6B646972002D70002F7661722F72756E2F636F6E736F6C65 Acked-by: Steve Grubb <sgrubb@redhat.com> (wrt record formating) Signed-off-by: William Roberts <wroberts@tresys.com> Signed-off-by: Eric Paris <eparis@redhat.com>
2014-02-12 02:12:01 +08:00
#include <linux/ctype.h>
#include <linux/string.h>
#include <uapi/linux/limits.h>
#include "audit.h"
Audit: push audit success and retcode into arch ptrace.h The audit system previously expected arches calling to audit_syscall_exit to supply as arguments if the syscall was a success and what the return code was. Audit also provides a helper AUDITSC_RESULT which was supposed to simplify things by converting from negative retcodes to an audit internal magic value stating success or failure. This helper was wrong and could indicate that a valid pointer returned to userspace was a failed syscall. The fix is to fix the layering foolishness. We now pass audit_syscall_exit a struct pt_reg and it in turns calls back into arch code to collect the return value and to determine if the syscall was a success or failure. We also define a generic is_syscall_success() macro which determines success/failure based on if the value is < -MAX_ERRNO. This works for arches like x86 which do not use a separate mechanism to indicate syscall failure. We make both the is_syscall_success() and regs_return_value() static inlines instead of macros. The reason is because the audit function must take a void* for the regs. (uml calls theirs struct uml_pt_regs instead of just struct pt_regs so audit_syscall_exit can't take a struct pt_regs). Since the audit function takes a void* we need to use static inlines to cast it back to the arch correct structure to dereference it. The other major change is that on some arches, like ia64, MIPS and ppc, we change regs_return_value() to give us the negative value on syscall failure. THE only other user of this macro, kretprobe_example.c, won't notice and it makes the value signed consistently for the audit functions across all archs. In arch/sh/kernel/ptrace_64.c I see that we were using regs[9] in the old audit code as the return value. But the ptrace_64.h code defined the macro regs_return_value() as regs[3]. I have no idea which one is correct, but this patch now uses the regs_return_value() function, so it now uses regs[3]. For powerpc we previously used regs->result but now use the regs_return_value() function which uses regs->gprs[3]. regs->gprs[3] is always positive so the regs_return_value(), much like ia64 makes it negative before calling the audit code when appropriate. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: H. Peter Anvin <hpa@zytor.com> [for x86 portion] Acked-by: Tony Luck <tony.luck@intel.com> [for ia64] Acked-by: Richard Weinberger <richard@nod.at> [for uml] Acked-by: David S. Miller <davem@davemloft.net> [for sparc] Acked-by: Ralf Baechle <ralf@linux-mips.org> [for mips] Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [for ppc]
2012-01-04 03:23:06 +08:00
/* flags stating the success for a syscall */
#define AUDITSC_INVALID 0
#define AUDITSC_SUCCESS 1
#define AUDITSC_FAILURE 2
/* no execve audit message should be longer than this (userspace limits) */
#define MAX_EXECVE_AUDIT_LEN 7500
audit: Audit proc/<pid>/cmdline aka proctitle During an audit event, cache and print the value of the process's proctitle value (proc/<pid>/cmdline). This is useful in situations where processes are started via fork'd virtual machines where the comm field is incorrect. Often times, setting the comm field still is insufficient as the comm width is not very wide and most virtual machine "package names" do not fit. Also, during execution, many threads have their comm field set as well. By tying it back to the global cmdline value for the process, audit records will be more complete in systems with these properties. An example of where this is useful and applicable is in the realm of Android. With Android, their is no fork/exec for VM instances. The bare, preloaded Dalvik VM listens for a fork and specialize request. When this request comes in, the VM forks, and the loads the specific application (specializing). This was done to take advantage of COW and to not require a load of basic packages by the VM on very app spawn. When this spawn occurs, the package name is set via setproctitle() and shows up in procfs. Many of these package names are longer then 16 bytes, the historical width of task->comm. Having the cmdline in the audit records will couple the application back to the record directly. Also, on my Debian development box, some audit records were more useful then what was printed under comm. The cached proctitle is tied to the life-cycle of the audit_context structure and is built on demand. Proctitle is controllable by userspace, and thus should not be trusted. It is meant as an aid to assist in debugging. The proctitle event is emitted during syscall audits, and can be filtered with auditctl. Example: type=AVC msg=audit(1391217013.924:386): avc: denied { getattr } for pid=1971 comm="mkdir" name="/" dev="selinuxfs" ino=1 scontext=system_u:system_r:consolekit_t:s0-s0:c0.c255 tcontext=system_u:object_r:security_t:s0 tclass=filesystem type=SYSCALL msg=audit(1391217013.924:386): arch=c000003e syscall=137 success=yes exit=0 a0=7f019dfc8bd7 a1=7fffa6aed2c0 a2=fffffffffff4bd25 a3=7fffa6aed050 items=0 ppid=1967 pid=1971 auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=4294967295 comm="mkdir" exe="/bin/mkdir" subj=system_u:system_r:consolekit_t:s0-s0:c0.c255 key=(null) type=UNKNOWN[1327] msg=audit(1391217013.924:386): proctitle=6D6B646972002D70002F7661722F72756E2F636F6E736F6C65 Acked-by: Steve Grubb <sgrubb@redhat.com> (wrt record formating) Signed-off-by: William Roberts <wroberts@tresys.com> Signed-off-by: Eric Paris <eparis@redhat.com>
2014-02-12 02:12:01 +08:00
/* max length to print of cmdline/proctitle value during audit */
#define MAX_PROCTITLE_AUDIT_LEN 128
/* number of audit rules */
int audit_n_rules;
/* determines whether we collect data for signals sent */
int audit_signals;
struct audit_aux_data {
struct audit_aux_data *next;
int type;
};
#define AUDIT_AUX_IPCPERM 0
/* Number of target pids per aux struct. */
#define AUDIT_AUX_PIDS 16
struct audit_aux_data_pids {
struct audit_aux_data d;
pid_t target_pid[AUDIT_AUX_PIDS];
kuid_t target_auid[AUDIT_AUX_PIDS];
kuid_t target_uid[AUDIT_AUX_PIDS];
unsigned int target_sessionid[AUDIT_AUX_PIDS];
u32 target_sid[AUDIT_AUX_PIDS];
char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
int pid_count;
};
Any time fcaps or a setuid app under SECURE_NOROOT is used to result in a non-zero pE we will crate a new audit record which contains the entire set of known information about the executable in question, fP, fI, fE, fversion and includes the process's pE, pI, pP. Before and after the bprm capability are applied. This record type will only be emitted from execve syscalls. an example of making ping use fcaps instead of setuid: setcap "cat_net_raw+pe" /bin/ping type=SYSCALL msg=audit(1225742021.015:236): arch=c000003e syscall=59 success=yes exit=0 a0=1457f30 a1=14606b0 a2=1463940 a3=321b770a70 items=2 ppid=2929 pid=2963 auid=0 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500 tty=pts0 ses=3 comm="ping" exe="/bin/ping" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null) type=UNKNOWN[1321] msg=audit(1225742021.015:236): fver=2 fp=0000000000002000 fi=0000000000000000 fe=1 old_pp=0000000000000000 old_pi=0000000000000000 old_pe=0000000000000000 new_pp=0000000000002000 new_pi=0000000000000000 new_pe=0000000000002000 type=EXECVE msg=audit(1225742021.015:236): argc=2 a0="ping" a1="127.0.0.1" type=CWD msg=audit(1225742021.015:236): cwd="/home/test" type=PATH msg=audit(1225742021.015:236): item=0 name="/bin/ping" inode=49256 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ping_exec_t:s0 cap_fp=0000000000002000 cap_fe=1 cap_fver=2 type=PATH msg=audit(1225742021.015:236): item=1 name=(null) inode=507915 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ld_so_t:s0 Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-11 18:48:18 +08:00
struct audit_aux_data_bprm_fcaps {
struct audit_aux_data d;
struct audit_cap_data fcap;
unsigned int fcap_ver;
struct audit_cap_data old_pcap;
struct audit_cap_data new_pcap;
};
struct audit_tree_refs {
struct audit_tree_refs *next;
struct audit_chunk *c[31];
};
static int audit_match_perm(struct audit_context *ctx, int mask)
{
unsigned n;
if (unlikely(!ctx))
return 0;
n = ctx->major;
switch (audit_classify_syscall(ctx->arch, n)) {
case 0: /* native */
if ((mask & AUDIT_PERM_WRITE) &&
audit_match_class(AUDIT_CLASS_WRITE, n))
return 1;
if ((mask & AUDIT_PERM_READ) &&
audit_match_class(AUDIT_CLASS_READ, n))
return 1;
if ((mask & AUDIT_PERM_ATTR) &&
audit_match_class(AUDIT_CLASS_CHATTR, n))
return 1;
return 0;
case 1: /* 32bit on biarch */
if ((mask & AUDIT_PERM_WRITE) &&
audit_match_class(AUDIT_CLASS_WRITE_32, n))
return 1;
if ((mask & AUDIT_PERM_READ) &&
audit_match_class(AUDIT_CLASS_READ_32, n))
return 1;
if ((mask & AUDIT_PERM_ATTR) &&
audit_match_class(AUDIT_CLASS_CHATTR_32, n))
return 1;
return 0;
case 2: /* open */
return mask & ACC_MODE(ctx->argv[1]);
case 3: /* openat */
return mask & ACC_MODE(ctx->argv[2]);
case 4: /* socketcall */
return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
case 5: /* execve */
return mask & AUDIT_PERM_EXEC;
default:
return 0;
}
}
static int audit_match_filetype(struct audit_context *ctx, int val)
{
struct audit_names *n;
umode_t mode = (umode_t)val;
if (unlikely(!ctx))
return 0;
list_for_each_entry(n, &ctx->names_list, list) {
if ((n->ino != AUDIT_INO_UNSET) &&
((n->mode & S_IFMT) == mode))
return 1;
}
return 0;
}
/*
* We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
* ->first_trees points to its beginning, ->trees - to the current end of data.
* ->tree_count is the number of free entries in array pointed to by ->trees.
* Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
* "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
* it's going to remain 1-element for almost any setup) until we free context itself.
* References in it _are_ dropped - at the same time we free/drop aux stuff.
*/
#ifdef CONFIG_AUDIT_TREE
static void audit_set_auditable(struct audit_context *ctx)
{
if (!ctx->prio) {
ctx->prio = 1;
ctx->current_state = AUDIT_RECORD_CONTEXT;
}
}
static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
{
struct audit_tree_refs *p = ctx->trees;
int left = ctx->tree_count;
if (likely(left)) {
p->c[--left] = chunk;
ctx->tree_count = left;
return 1;
}
if (!p)
return 0;
p = p->next;
if (p) {
p->c[30] = chunk;
ctx->trees = p;
ctx->tree_count = 30;
return 1;
}
return 0;
}
static int grow_tree_refs(struct audit_context *ctx)
{
struct audit_tree_refs *p = ctx->trees;
ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
if (!ctx->trees) {
ctx->trees = p;
return 0;
}
if (p)
p->next = ctx->trees;
else
ctx->first_trees = ctx->trees;
ctx->tree_count = 31;
return 1;
}
#endif
static void unroll_tree_refs(struct audit_context *ctx,
struct audit_tree_refs *p, int count)
{
#ifdef CONFIG_AUDIT_TREE
struct audit_tree_refs *q;
int n;
if (!p) {
/* we started with empty chain */
p = ctx->first_trees;
count = 31;
/* if the very first allocation has failed, nothing to do */
if (!p)
return;
}
n = count;
for (q = p; q != ctx->trees; q = q->next, n = 31) {
while (n--) {
audit_put_chunk(q->c[n]);
q->c[n] = NULL;
}
}
while (n-- > ctx->tree_count) {
audit_put_chunk(q->c[n]);
q->c[n] = NULL;
}
ctx->trees = p;
ctx->tree_count = count;
#endif
}
static void free_tree_refs(struct audit_context *ctx)
{
struct audit_tree_refs *p, *q;
for (p = ctx->first_trees; p; p = q) {
q = p->next;
kfree(p);
}
}
static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
{
#ifdef CONFIG_AUDIT_TREE
struct audit_tree_refs *p;
int n;
if (!tree)
return 0;
/* full ones */
for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
for (n = 0; n < 31; n++)
if (audit_tree_match(p->c[n], tree))
return 1;
}
/* partial */
if (p) {
for (n = ctx->tree_count; n < 31; n++)
if (audit_tree_match(p->c[n], tree))
return 1;
}
#endif
return 0;
}
static int audit_compare_uid(kuid_t uid,
struct audit_names *name,
struct audit_field *f,
struct audit_context *ctx)
{
struct audit_names *n;
int rc;
if (name) {
rc = audit_uid_comparator(uid, f->op, name->uid);
if (rc)
return rc;
}
if (ctx) {
list_for_each_entry(n, &ctx->names_list, list) {
rc = audit_uid_comparator(uid, f->op, n->uid);
if (rc)
return rc;
}
}
return 0;
}
static int audit_compare_gid(kgid_t gid,
struct audit_names *name,
struct audit_field *f,
struct audit_context *ctx)
{
struct audit_names *n;
int rc;
if (name) {
rc = audit_gid_comparator(gid, f->op, name->gid);
if (rc)
return rc;
}
if (ctx) {
list_for_each_entry(n, &ctx->names_list, list) {
rc = audit_gid_comparator(gid, f->op, n->gid);
if (rc)
return rc;
}
}
return 0;
}
static int audit_field_compare(struct task_struct *tsk,
const struct cred *cred,
struct audit_field *f,
struct audit_context *ctx,
struct audit_names *name)
{
switch (f->val) {
/* process to file object comparisons */
case AUDIT_COMPARE_UID_TO_OBJ_UID:
return audit_compare_uid(cred->uid, name, f, ctx);
case AUDIT_COMPARE_GID_TO_OBJ_GID:
return audit_compare_gid(cred->gid, name, f, ctx);
case AUDIT_COMPARE_EUID_TO_OBJ_UID:
return audit_compare_uid(cred->euid, name, f, ctx);
case AUDIT_COMPARE_EGID_TO_OBJ_GID:
return audit_compare_gid(cred->egid, name, f, ctx);
case AUDIT_COMPARE_AUID_TO_OBJ_UID:
return audit_compare_uid(tsk->loginuid, name, f, ctx);
case AUDIT_COMPARE_SUID_TO_OBJ_UID:
return audit_compare_uid(cred->suid, name, f, ctx);
case AUDIT_COMPARE_SGID_TO_OBJ_GID:
return audit_compare_gid(cred->sgid, name, f, ctx);
case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
return audit_compare_uid(cred->fsuid, name, f, ctx);
case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
return audit_compare_gid(cred->fsgid, name, f, ctx);
/* uid comparisons */
case AUDIT_COMPARE_UID_TO_AUID:
return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
case AUDIT_COMPARE_UID_TO_EUID:
return audit_uid_comparator(cred->uid, f->op, cred->euid);
case AUDIT_COMPARE_UID_TO_SUID:
return audit_uid_comparator(cred->uid, f->op, cred->suid);
case AUDIT_COMPARE_UID_TO_FSUID:
return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
/* auid comparisons */
case AUDIT_COMPARE_AUID_TO_EUID:
return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
case AUDIT_COMPARE_AUID_TO_SUID:
return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
case AUDIT_COMPARE_AUID_TO_FSUID:
return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
/* euid comparisons */
case AUDIT_COMPARE_EUID_TO_SUID:
return audit_uid_comparator(cred->euid, f->op, cred->suid);
case AUDIT_COMPARE_EUID_TO_FSUID:
return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
/* suid comparisons */
case AUDIT_COMPARE_SUID_TO_FSUID:
return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
/* gid comparisons */
case AUDIT_COMPARE_GID_TO_EGID:
return audit_gid_comparator(cred->gid, f->op, cred->egid);
case AUDIT_COMPARE_GID_TO_SGID:
return audit_gid_comparator(cred->gid, f->op, cred->sgid);
case AUDIT_COMPARE_GID_TO_FSGID:
return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
/* egid comparisons */
case AUDIT_COMPARE_EGID_TO_SGID:
return audit_gid_comparator(cred->egid, f->op, cred->sgid);
case AUDIT_COMPARE_EGID_TO_FSGID:
return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
/* sgid comparison */
case AUDIT_COMPARE_SGID_TO_FSGID:
return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
default:
WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
return 0;
}
return 0;
}
/* Determine if any context name data matches a rule's watch data */
/* Compare a task_struct with an audit_rule. Return 1 on match, 0
* otherwise.
*
* If task_creation is true, this is an explicit indication that we are
* filtering a task rule at task creation time. This and tsk == current are
* the only situations where tsk->cred may be accessed without an rcu read lock.
*/
static int audit_filter_rules(struct task_struct *tsk,
struct audit_krule *rule,
struct audit_context *ctx,
struct audit_names *name,
enum audit_state *state,
bool task_creation)
{
const struct cred *cred;
int i, need_sid = 1;
u32 sid;
cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
for (i = 0; i < rule->field_count; i++) {
struct audit_field *f = &rule->fields[i];
struct audit_names *n;
int result = 0;
pid_t pid;
switch (f->type) {
case AUDIT_PID:
pid = task_pid_nr(tsk);
result = audit_comparator(pid, f->op, f->val);
break;
case AUDIT_PPID:
if (ctx) {
if (!ctx->ppid)
ctx->ppid = task_ppid_nr(tsk);
result = audit_comparator(ctx->ppid, f->op, f->val);
}
break;
case AUDIT_EXE:
result = audit_exe_compare(tsk, rule->exe);
break;
case AUDIT_UID:
result = audit_uid_comparator(cred->uid, f->op, f->uid);
break;
case AUDIT_EUID:
result = audit_uid_comparator(cred->euid, f->op, f->uid);
break;
case AUDIT_SUID:
result = audit_uid_comparator(cred->suid, f->op, f->uid);
break;
case AUDIT_FSUID:
result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
break;
case AUDIT_GID:
result = audit_gid_comparator(cred->gid, f->op, f->gid);
if (f->op == Audit_equal) {
if (!result)
result = in_group_p(f->gid);
} else if (f->op == Audit_not_equal) {
if (result)
result = !in_group_p(f->gid);
}
break;
case AUDIT_EGID:
result = audit_gid_comparator(cred->egid, f->op, f->gid);
if (f->op == Audit_equal) {
if (!result)
result = in_egroup_p(f->gid);
} else if (f->op == Audit_not_equal) {
if (result)
result = !in_egroup_p(f->gid);
}
break;
case AUDIT_SGID:
result = audit_gid_comparator(cred->sgid, f->op, f->gid);
break;
case AUDIT_FSGID:
result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
break;
case AUDIT_PERS:
result = audit_comparator(tsk->personality, f->op, f->val);
break;
case AUDIT_ARCH:
if (ctx)
result = audit_comparator(ctx->arch, f->op, f->val);
break;
case AUDIT_EXIT:
if (ctx && ctx->return_valid)
result = audit_comparator(ctx->return_code, f->op, f->val);
break;
case AUDIT_SUCCESS:
if (ctx && ctx->return_valid) {
if (f->val)
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
else
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
}
break;
case AUDIT_DEVMAJOR:
if (name) {
if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
audit_comparator(MAJOR(name->rdev), f->op, f->val))
++result;
} else if (ctx) {
list_for_each_entry(n, &ctx->names_list, list) {
if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
++result;
break;
}
}
}
break;
case AUDIT_DEVMINOR:
if (name) {
if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
audit_comparator(MINOR(name->rdev), f->op, f->val))
++result;
} else if (ctx) {
list_for_each_entry(n, &ctx->names_list, list) {
if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
audit_comparator(MINOR(n->rdev), f->op, f->val)) {
++result;
break;
}
}
}
break;
case AUDIT_INODE:
if (name)
result = audit_comparator(name->ino, f->op, f->val);
else if (ctx) {
list_for_each_entry(n, &ctx->names_list, list) {
if (audit_comparator(n->ino, f->op, f->val)) {
++result;
break;
}
}
}
break;
case AUDIT_OBJ_UID:
if (name) {
result = audit_uid_comparator(name->uid, f->op, f->uid);
} else if (ctx) {
list_for_each_entry(n, &ctx->names_list, list) {
if (audit_uid_comparator(n->uid, f->op, f->uid)) {
++result;
break;
}
}
}
break;
case AUDIT_OBJ_GID:
if (name) {
result = audit_gid_comparator(name->gid, f->op, f->gid);
} else if (ctx) {
list_for_each_entry(n, &ctx->names_list, list) {
if (audit_gid_comparator(n->gid, f->op, f->gid)) {
++result;
break;
}
}
}
break;
case AUDIT_WATCH:
if (name)
result = audit_watch_compare(rule->watch, name->ino, name->dev);
break;
case AUDIT_DIR:
if (ctx)
result = match_tree_refs(ctx, rule->tree);
break;
case AUDIT_LOGINUID:
result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
break;
case AUDIT_LOGINUID_SET:
result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
break;
case AUDIT_SUBJ_USER:
case AUDIT_SUBJ_ROLE:
case AUDIT_SUBJ_TYPE:
case AUDIT_SUBJ_SEN:
case AUDIT_SUBJ_CLR:
/* NOTE: this may return negative values indicating
a temporary error. We simply treat this as a
match for now to avoid losing information that
may be wanted. An error message will also be
logged upon error */
if (f->lsm_rule) {
if (need_sid) {
security_task_getsecid(tsk, &sid);
need_sid = 0;
}
result = security_audit_rule_match(sid, f->type,
f->op,
f->lsm_rule,
ctx);
}
break;
case AUDIT_OBJ_USER:
case AUDIT_OBJ_ROLE:
case AUDIT_OBJ_TYPE:
case AUDIT_OBJ_LEV_LOW:
case AUDIT_OBJ_LEV_HIGH:
/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
also applies here */
if (f->lsm_rule) {
/* Find files that match */
if (name) {
result = security_audit_rule_match(
name->osid, f->type, f->op,
f->lsm_rule, ctx);
} else if (ctx) {
list_for_each_entry(n, &ctx->names_list, list) {
if (security_audit_rule_match(n->osid, f->type,
f->op, f->lsm_rule,
ctx)) {
++result;
break;
}
}
}
/* Find ipc objects that match */
if (!ctx || ctx->type != AUDIT_IPC)
break;
if (security_audit_rule_match(ctx->ipc.osid,
f->type, f->op,
f->lsm_rule, ctx))
++result;
}
break;
case AUDIT_ARG0:
case AUDIT_ARG1:
case AUDIT_ARG2:
case AUDIT_ARG3:
if (ctx)
result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
break;
case AUDIT_FILTERKEY:
/* ignore this field for filtering */
result = 1;
break;
case AUDIT_PERM:
result = audit_match_perm(ctx, f->val);
break;
case AUDIT_FILETYPE:
result = audit_match_filetype(ctx, f->val);
break;
case AUDIT_FIELD_COMPARE:
result = audit_field_compare(tsk, cred, f, ctx, name);
break;
}
if (!result)
return 0;
}
if (ctx) {
if (rule->prio <= ctx->prio)
return 0;
if (rule->filterkey) {
kfree(ctx->filterkey);
ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
}
ctx->prio = rule->prio;
}
switch (rule->action) {
case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
}
return 1;
}
/* At process creation time, we can determine if system-call auditing is
* completely disabled for this task. Since we only have the task
* structure at this point, we can only check uid and gid.
*/
static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
{
struct audit_entry *e;
enum audit_state state;
rcu_read_lock();
list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
&state, true)) {
if (state == AUDIT_RECORD_CONTEXT)
*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
rcu_read_unlock();
return state;
}
}
rcu_read_unlock();
return AUDIT_BUILD_CONTEXT;
}
static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
{
int word, bit;
if (val > 0xffffffff)
return false;
word = AUDIT_WORD(val);
if (word >= AUDIT_BITMASK_SIZE)
return false;
bit = AUDIT_BIT(val);
return rule->mask[word] & bit;
}
/* At syscall entry and exit time, this filter is called if the
* audit_state is not low enough that auditing cannot take place, but is
* also not high enough that we already know we have to write an audit
* record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
*/
static enum audit_state audit_filter_syscall(struct task_struct *tsk,
struct audit_context *ctx,
struct list_head *list)
{
struct audit_entry *e;
enum audit_state state;
if (audit_pid && tsk->tgid == audit_pid)
return AUDIT_DISABLED;
rcu_read_lock();
if (!list_empty(list)) {
list_for_each_entry_rcu(e, list, list) {
if (audit_in_mask(&e->rule, ctx->major) &&
audit_filter_rules(tsk, &e->rule, ctx, NULL,
&state, false)) {
rcu_read_unlock();
ctx->current_state = state;
return state;
}
}
}
rcu_read_unlock();
return AUDIT_BUILD_CONTEXT;
}
/*
* Given an audit_name check the inode hash table to see if they match.
* Called holding the rcu read lock to protect the use of audit_inode_hash
*/
static int audit_filter_inode_name(struct task_struct *tsk,
struct audit_names *n,
struct audit_context *ctx) {
int h = audit_hash_ino((u32)n->ino);
struct list_head *list = &audit_inode_hash[h];
struct audit_entry *e;
enum audit_state state;
if (list_empty(list))
return 0;
list_for_each_entry_rcu(e, list, list) {
if (audit_in_mask(&e->rule, ctx->major) &&
audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
ctx->current_state = state;
return 1;
}
}
return 0;
}
/* At syscall exit time, this filter is called if any audit_names have been
* collected during syscall processing. We only check rules in sublists at hash
* buckets applicable to the inode numbers in audit_names.
* Regarding audit_state, same rules apply as for audit_filter_syscall().
*/
void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
{
struct audit_names *n;
if (audit_pid && tsk->tgid == audit_pid)
return;
rcu_read_lock();
list_for_each_entry(n, &ctx->names_list, list) {
if (audit_filter_inode_name(tsk, n, ctx))
break;
}
rcu_read_unlock();
}
/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
static inline struct audit_context *audit_take_context(struct task_struct *tsk,
int return_valid,
long return_code)
{
struct audit_context *context = tsk->audit_context;
if (!context)
return NULL;
context->return_valid = return_valid;
/*
* we need to fix up the return code in the audit logs if the actual
* return codes are later going to be fixed up by the arch specific
* signal handlers
*
* This is actually a test for:
* (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
* (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
*
* but is faster than a bunch of ||
*/
if (unlikely(return_code <= -ERESTARTSYS) &&
(return_code >= -ERESTART_RESTARTBLOCK) &&
(return_code != -ENOIOCTLCMD))
context->return_code = -EINTR;
else
context->return_code = return_code;
if (context->in_syscall && !context->dummy) {
audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
audit_filter_inodes(tsk, context);
}
tsk->audit_context = NULL;
return context;
}
audit: Audit proc/<pid>/cmdline aka proctitle During an audit event, cache and print the value of the process's proctitle value (proc/<pid>/cmdline). This is useful in situations where processes are started via fork'd virtual machines where the comm field is incorrect. Often times, setting the comm field still is insufficient as the comm width is not very wide and most virtual machine "package names" do not fit. Also, during execution, many threads have their comm field set as well. By tying it back to the global cmdline value for the process, audit records will be more complete in systems with these properties. An example of where this is useful and applicable is in the realm of Android. With Android, their is no fork/exec for VM instances. The bare, preloaded Dalvik VM listens for a fork and specialize request. When this request comes in, the VM forks, and the loads the specific application (specializing). This was done to take advantage of COW and to not require a load of basic packages by the VM on very app spawn. When this spawn occurs, the package name is set via setproctitle() and shows up in procfs. Many of these package names are longer then 16 bytes, the historical width of task->comm. Having the cmdline in the audit records will couple the application back to the record directly. Also, on my Debian development box, some audit records were more useful then what was printed under comm. The cached proctitle is tied to the life-cycle of the audit_context structure and is built on demand. Proctitle is controllable by userspace, and thus should not be trusted. It is meant as an aid to assist in debugging. The proctitle event is emitted during syscall audits, and can be filtered with auditctl. Example: type=AVC msg=audit(1391217013.924:386): avc: denied { getattr } for pid=1971 comm="mkdir" name="/" dev="selinuxfs" ino=1 scontext=system_u:system_r:consolekit_t:s0-s0:c0.c255 tcontext=system_u:object_r:security_t:s0 tclass=filesystem type=SYSCALL msg=audit(1391217013.924:386): arch=c000003e syscall=137 success=yes exit=0 a0=7f019dfc8bd7 a1=7fffa6aed2c0 a2=fffffffffff4bd25 a3=7fffa6aed050 items=0 ppid=1967 pid=1971 auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=4294967295 comm="mkdir" exe="/bin/mkdir" subj=system_u:system_r:consolekit_t:s0-s0:c0.c255 key=(null) type=UNKNOWN[1327] msg=audit(1391217013.924:386): proctitle=6D6B646972002D70002F7661722F72756E2F636F6E736F6C65 Acked-by: Steve Grubb <sgrubb@redhat.com> (wrt record formating) Signed-off-by: William Roberts <wroberts@tresys.com> Signed-off-by: Eric Paris <eparis@redhat.com>
2014-02-12 02:12:01 +08:00
static inline void audit_proctitle_free(struct audit_context *context)
{
kfree(context->proctitle.value);
context->proctitle.value = NULL;
context->proctitle.len = 0;
}
static inline void audit_free_names(struct audit_context *context)
{
struct audit_names *n, *next;
list_for_each_entry_safe(n, next, &context->names_list, list) {
list_del(&n->list);
if (n->name)
putname(n->name);
if (n->should_free)
kfree(n);
}
context->name_count = 0;
path_put(&context->pwd);
context->pwd.dentry = NULL;
context->pwd.mnt = NULL;
}
static inline void audit_free_aux(struct audit_context *context)
{
struct audit_aux_data *aux;
while ((aux = context->aux)) {
context->aux = aux->next;
kfree(aux);
}
while ((aux = context->aux_pids)) {
context->aux_pids = aux->next;
kfree(aux);
}
}
static inline struct audit_context *audit_alloc_context(enum audit_state state)
{
struct audit_context *context;
context = kzalloc(sizeof(*context), GFP_KERNEL);
if (!context)
return NULL;
context->state = state;
context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
INIT_LIST_HEAD(&context->killed_trees);
INIT_LIST_HEAD(&context->names_list);
return context;
}
/**
* audit_alloc - allocate an audit context block for a task
* @tsk: task
*
* Filter on the task information and allocate a per-task audit context
* if necessary. Doing so turns on system call auditing for the
* specified task. This is called from copy_process, so no lock is
* needed.
*/
int audit_alloc(struct task_struct *tsk)
{
struct audit_context *context;
enum audit_state state;
char *key = NULL;
if (likely(!audit_ever_enabled))
return 0; /* Return if not auditing. */
state = audit_filter_task(tsk, &key);
if (state == AUDIT_DISABLED) {
clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
return 0;
}
if (!(context = audit_alloc_context(state))) {
kfree(key);
audit_log_lost("out of memory in audit_alloc");
return -ENOMEM;
}
context->filterkey = key;
tsk->audit_context = context;
set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
return 0;
}
static inline void audit_free_context(struct audit_context *context)
{
audit_free_names(context);
unroll_tree_refs(context, NULL, 0);
free_tree_refs(context);
audit_free_aux(context);
kfree(context->filterkey);
kfree(context->sockaddr);
audit: Audit proc/<pid>/cmdline aka proctitle During an audit event, cache and print the value of the process's proctitle value (proc/<pid>/cmdline). This is useful in situations where processes are started via fork'd virtual machines where the comm field is incorrect. Often times, setting the comm field still is insufficient as the comm width is not very wide and most virtual machine "package names" do not fit. Also, during execution, many threads have their comm field set as well. By tying it back to the global cmdline value for the process, audit records will be more complete in systems with these properties. An example of where this is useful and applicable is in the realm of Android. With Android, their is no fork/exec for VM instances. The bare, preloaded Dalvik VM listens for a fork and specialize request. When this request comes in, the VM forks, and the loads the specific application (specializing). This was done to take advantage of COW and to not require a load of basic packages by the VM on very app spawn. When this spawn occurs, the package name is set via setproctitle() and shows up in procfs. Many of these package names are longer then 16 bytes, the historical width of task->comm. Having the cmdline in the audit records will couple the application back to the record directly. Also, on my Debian development box, some audit records were more useful then what was printed under comm. The cached proctitle is tied to the life-cycle of the audit_context structure and is built on demand. Proctitle is controllable by userspace, and thus should not be trusted. It is meant as an aid to assist in debugging. The proctitle event is emitted during syscall audits, and can be filtered with auditctl. Example: type=AVC msg=audit(1391217013.924:386): avc: denied { getattr } for pid=1971 comm="mkdir" name="/" dev="selinuxfs" ino=1 scontext=system_u:system_r:consolekit_t:s0-s0:c0.c255 tcontext=system_u:object_r:security_t:s0 tclass=filesystem type=SYSCALL msg=audit(1391217013.924:386): arch=c000003e syscall=137 success=yes exit=0 a0=7f019dfc8bd7 a1=7fffa6aed2c0 a2=fffffffffff4bd25 a3=7fffa6aed050 items=0 ppid=1967 pid=1971 auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=4294967295 comm="mkdir" exe="/bin/mkdir" subj=system_u:system_r:consolekit_t:s0-s0:c0.c255 key=(null) type=UNKNOWN[1327] msg=audit(1391217013.924:386): proctitle=6D6B646972002D70002F7661722F72756E2F636F6E736F6C65 Acked-by: Steve Grubb <sgrubb@redhat.com> (wrt record formating) Signed-off-by: William Roberts <wroberts@tresys.com> Signed-off-by: Eric Paris <eparis@redhat.com>
2014-02-12 02:12:01 +08:00
audit_proctitle_free(context);
kfree(context);
}
static int audit_log_pid_context(struct audit_context *context, pid_t pid,
kuid_t auid, kuid_t uid, unsigned int sessionid,
u32 sid, char *comm)
{
struct audit_buffer *ab;
char *ctx = NULL;
u32 len;
int rc = 0;
ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
if (!ab)
return rc;
audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
from_kuid(&init_user_ns, auid),
from_kuid(&init_user_ns, uid), sessionid);
if (sid) {
if (security_secid_to_secctx(sid, &ctx, &len)) {
audit_log_format(ab, " obj=(none)");
rc = 1;
} else {
audit_log_format(ab, " obj=%s", ctx);
security_release_secctx(ctx, len);
}
}
audit_log_format(ab, " ocomm=");
audit_log_untrustedstring(ab, comm);
audit_log_end(ab);
return rc;
}
/*
* to_send and len_sent accounting are very loose estimates. We aren't
* really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
* within about 500 bytes (next page boundary)
*
* why snprintf? an int is up to 12 digits long. if we just assumed when
* logging that a[%d]= was going to be 16 characters long we would be wasting
* space in every audit message. In one 7500 byte message we can log up to
* about 1000 min size arguments. That comes down to about 50% waste of space
* if we didn't do the snprintf to find out how long arg_num_len was.
*/
static int audit_log_single_execve_arg(struct audit_context *context,
struct audit_buffer **ab,
int arg_num,
size_t *len_sent,
const char __user *p,
char *buf)
{
char arg_num_len_buf[12];
const char __user *tmp_p = p;
/* how many digits are in arg_num? 5 is the length of ' a=""' */
size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
size_t len, len_left, to_send;
size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
unsigned int i, has_cntl = 0, too_long = 0;
int ret;
/* strnlen_user includes the null we don't want to send */
len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
/*
* We just created this mm, if we can't find the strings
* we just copied into it something is _very_ wrong. Similar
* for strings that are too long, we should not have created
* any.
*/
if (WARN_ON_ONCE(len < 0 || len > MAX_ARG_STRLEN - 1)) {
send_sig(SIGKILL, current, 0);
return -1;
}
/* walk the whole argument looking for non-ascii chars */
do {
if (len_left > MAX_EXECVE_AUDIT_LEN)
to_send = MAX_EXECVE_AUDIT_LEN;
else
to_send = len_left;
ret = copy_from_user(buf, tmp_p, to_send);
/*
* There is no reason for this copy to be short. We just
* copied them here, and the mm hasn't been exposed to user-
* space yet.
*/
if (ret) {
WARN_ON(1);
send_sig(SIGKILL, current, 0);
return -1;
}
buf[to_send] = '\0';
has_cntl = audit_string_contains_control(buf, to_send);
if (has_cntl) {
/*
* hex messages get logged as 2 bytes, so we can only
* send half as much in each message
*/
max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
break;
}
len_left -= to_send;
tmp_p += to_send;
} while (len_left > 0);
len_left = len;
if (len > max_execve_audit_len)
too_long = 1;
/* rewalk the argument actually logging the message */
for (i = 0; len_left > 0; i++) {
int room_left;
if (len_left > max_execve_audit_len)
to_send = max_execve_audit_len;
else
to_send = len_left;
/* do we have space left to send this argument in this ab? */
room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
if (has_cntl)
room_left -= (to_send * 2);
else
room_left -= to_send;
if (room_left < 0) {
*len_sent = 0;
audit_log_end(*ab);
*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
if (!*ab)
return 0;
}
/*
* first record needs to say how long the original string was
* so we can be sure nothing was lost.
*/
if ((i == 0) && (too_long))
audit_log_format(*ab, " a%d_len=%zu", arg_num,
has_cntl ? 2*len : len);
/*
* normally arguments are small enough to fit and we already
* filled buf above when we checked for control characters
* so don't bother with another copy_from_user
*/
if (len >= max_execve_audit_len)
ret = copy_from_user(buf, p, to_send);
else
ret = 0;
if (ret) {
WARN_ON(1);
send_sig(SIGKILL, current, 0);
return -1;
}
buf[to_send] = '\0';
/* actually log it */
audit_log_format(*ab, " a%d", arg_num);
if (too_long)
audit_log_format(*ab, "[%d]", i);
audit_log_format(*ab, "=");
if (has_cntl)
audit_log_n_hex(*ab, buf, to_send);
else
audit_log_string(*ab, buf);
p += to_send;
len_left -= to_send;
*len_sent += arg_num_len;
if (has_cntl)
*len_sent += to_send * 2;
else
*len_sent += to_send;
}
/* include the null we didn't log */
return len + 1;
}
static void audit_log_execve_info(struct audit_context *context,
struct audit_buffer **ab)
{
int i, len;
size_t len_sent = 0;
const char __user *p;
char *buf;
p = (const char __user *)current->mm->arg_start;
audit_log_format(*ab, "argc=%d", context->execve.argc);
/*
* we need some kernel buffer to hold the userspace args. Just
* allocate one big one rather than allocating one of the right size
* for every single argument inside audit_log_single_execve_arg()
* should be <8k allocation so should be pretty safe.
*/
buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
if (!buf) {
audit_panic("out of memory for argv string");
return;
}
for (i = 0; i < context->execve.argc; i++) {
len = audit_log_single_execve_arg(context, ab, i,
&len_sent, p, buf);
if (len <= 0)
break;
p += len;
}
kfree(buf);
}
static void show_special(struct audit_context *context, int *call_panic)
{
struct audit_buffer *ab;
int i;
ab = audit_log_start(context, GFP_KERNEL, context->type);
if (!ab)
return;
switch (context->type) {
case AUDIT_SOCKETCALL: {
int nargs = context->socketcall.nargs;
audit_log_format(ab, "nargs=%d", nargs);
for (i = 0; i < nargs; i++)
audit_log_format(ab, " a%d=%lx", i,
context->socketcall.args[i]);
break; }
case AUDIT_IPC: {
u32 osid = context->ipc.osid;
audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
from_kuid(&init_user_ns, context->ipc.uid),
from_kgid(&init_user_ns, context->ipc.gid),
context->ipc.mode);
if (osid) {
char *ctx = NULL;
u32 len;
if (security_secid_to_secctx(osid, &ctx, &len)) {
audit_log_format(ab, " osid=%u", osid);
*call_panic = 1;
} else {
audit_log_format(ab, " obj=%s", ctx);
security_release_secctx(ctx, len);
}
}
if (context->ipc.has_perm) {
audit_log_end(ab);
ab = audit_log_start(context, GFP_KERNEL,
AUDIT_IPC_SET_PERM);
if (unlikely(!ab))
return;
audit_log_format(ab,
"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
context->ipc.qbytes,
context->ipc.perm_uid,
context->ipc.perm_gid,
context->ipc.perm_mode);
}
break; }
case AUDIT_MQ_OPEN: {
audit_log_format(ab,
2011-07-26 17:26:10 +08:00
"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
"mq_msgsize=%ld mq_curmsgs=%ld",
context->mq_open.oflag, context->mq_open.mode,
context->mq_open.attr.mq_flags,
context->mq_open.attr.mq_maxmsg,
context->mq_open.attr.mq_msgsize,
context->mq_open.attr.mq_curmsgs);
break; }
case AUDIT_MQ_SENDRECV: {
audit_log_format(ab,
"mqdes=%d msg_len=%zd msg_prio=%u "
"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
context->mq_sendrecv.mqdes,
context->mq_sendrecv.msg_len,
context->mq_sendrecv.msg_prio,
context->mq_sendrecv.abs_timeout.tv_sec,
context->mq_sendrecv.abs_timeout.tv_nsec);
break; }
case AUDIT_MQ_NOTIFY: {
audit_log_format(ab, "mqdes=%d sigev_signo=%d",
context->mq_notify.mqdes,
context->mq_notify.sigev_signo);
break; }
case AUDIT_MQ_GETSETATTR: {
struct mq_attr *attr = &context->mq_getsetattr.mqstat;
audit_log_format(ab,
"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
"mq_curmsgs=%ld ",
context->mq_getsetattr.mqdes,
attr->mq_flags, attr->mq_maxmsg,
attr->mq_msgsize, attr->mq_curmsgs);
break; }
case AUDIT_CAPSET: {
audit_log_format(ab, "pid=%d", context->capset.pid);
audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
break; }
case AUDIT_MMAP: {
audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
context->mmap.flags);
break; }
case AUDIT_EXECVE: {
audit_log_execve_info(context, &ab);
break; }
}
audit_log_end(ab);
}
audit: Audit proc/<pid>/cmdline aka proctitle During an audit event, cache and print the value of the process's proctitle value (proc/<pid>/cmdline). This is useful in situations where processes are started via fork'd virtual machines where the comm field is incorrect. Often times, setting the comm field still is insufficient as the comm width is not very wide and most virtual machine "package names" do not fit. Also, during execution, many threads have their comm field set as well. By tying it back to the global cmdline value for the process, audit records will be more complete in systems with these properties. An example of where this is useful and applicable is in the realm of Android. With Android, their is no fork/exec for VM instances. The bare, preloaded Dalvik VM listens for a fork and specialize request. When this request comes in, the VM forks, and the loads the specific application (specializing). This was done to take advantage of COW and to not require a load of basic packages by the VM on very app spawn. When this spawn occurs, the package name is set via setproctitle() and shows up in procfs. Many of these package names are longer then 16 bytes, the historical width of task->comm. Having the cmdline in the audit records will couple the application back to the record directly. Also, on my Debian development box, some audit records were more useful then what was printed under comm. The cached proctitle is tied to the life-cycle of the audit_context structure and is built on demand. Proctitle is controllable by userspace, and thus should not be trusted. It is meant as an aid to assist in debugging. The proctitle event is emitted during syscall audits, and can be filtered with auditctl. Example: type=AVC msg=audit(1391217013.924:386): avc: denied { getattr } for pid=1971 comm="mkdir" name="/" dev="selinuxfs" ino=1 scontext=system_u:system_r:consolekit_t:s0-s0:c0.c255 tcontext=system_u:object_r:security_t:s0 tclass=filesystem type=SYSCALL msg=audit(1391217013.924:386): arch=c000003e syscall=137 success=yes exit=0 a0=7f019dfc8bd7 a1=7fffa6aed2c0 a2=fffffffffff4bd25 a3=7fffa6aed050 items=0 ppid=1967 pid=1971 auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=4294967295 comm="mkdir" exe="/bin/mkdir" subj=system_u:system_r:consolekit_t:s0-s0:c0.c255 key=(null) type=UNKNOWN[1327] msg=audit(1391217013.924:386): proctitle=6D6B646972002D70002F7661722F72756E2F636F6E736F6C65 Acked-by: Steve Grubb <sgrubb@redhat.com> (wrt record formating) Signed-off-by: William Roberts <wroberts@tresys.com> Signed-off-by: Eric Paris <eparis@redhat.com>
2014-02-12 02:12:01 +08:00
static inline int audit_proctitle_rtrim(char *proctitle, int len)
{
char *end = proctitle + len - 1;
while (end > proctitle && !isprint(*end))
end--;
/* catch the case where proctitle is only 1 non-print character */
len = end - proctitle + 1;
len -= isprint(proctitle[len-1]) == 0;
return len;
}
static void audit_log_proctitle(struct task_struct *tsk,
struct audit_context *context)
{
int res;
char *buf;
char *msg = "(null)";
int len = strlen(msg);
struct audit_buffer *ab;
ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
if (!ab)
return; /* audit_panic or being filtered */
audit_log_format(ab, "proctitle=");
/* Not cached */
if (!context->proctitle.value) {
buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
if (!buf)
goto out;
/* Historically called this from procfs naming */
res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
if (res == 0) {
kfree(buf);
goto out;
}
res = audit_proctitle_rtrim(buf, res);
if (res == 0) {
kfree(buf);
goto out;
}
context->proctitle.value = buf;
context->proctitle.len = res;
}
msg = context->proctitle.value;
len = context->proctitle.len;
out:
audit_log_n_untrustedstring(ab, msg, len);
audit_log_end(ab);
}
static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
{
int i, call_panic = 0;
struct audit_buffer *ab;
struct audit_aux_data *aux;
struct audit_names *n;
/* tsk == current */
context->personality = tsk->personality;
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
if (!ab)
return; /* audit_panic has been called */
audit_log_format(ab, "arch=%x syscall=%d",
context->arch, context->major);
if (context->personality != PER_LINUX)
audit_log_format(ab, " per=%lx", context->personality);
if (context->return_valid)
audit_log_format(ab, " success=%s exit=%ld",
(context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
context->return_code);
audit_log_format(ab,
" a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
context->argv[0],
context->argv[1],
context->argv[2],
context->argv[3],
context->name_count);
audit_log_task_info(ab, tsk);
audit_log_key(ab, context->filterkey);
audit_log_end(ab);
for (aux = context->aux; aux; aux = aux->next) {
ab = audit_log_start(context, GFP_KERNEL, aux->type);
if (!ab)
continue; /* audit_panic has been called */
switch (aux->type) {
Any time fcaps or a setuid app under SECURE_NOROOT is used to result in a non-zero pE we will crate a new audit record which contains the entire set of known information about the executable in question, fP, fI, fE, fversion and includes the process's pE, pI, pP. Before and after the bprm capability are applied. This record type will only be emitted from execve syscalls. an example of making ping use fcaps instead of setuid: setcap "cat_net_raw+pe" /bin/ping type=SYSCALL msg=audit(1225742021.015:236): arch=c000003e syscall=59 success=yes exit=0 a0=1457f30 a1=14606b0 a2=1463940 a3=321b770a70 items=2 ppid=2929 pid=2963 auid=0 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500 tty=pts0 ses=3 comm="ping" exe="/bin/ping" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null) type=UNKNOWN[1321] msg=audit(1225742021.015:236): fver=2 fp=0000000000002000 fi=0000000000000000 fe=1 old_pp=0000000000000000 old_pi=0000000000000000 old_pe=0000000000000000 new_pp=0000000000002000 new_pi=0000000000000000 new_pe=0000000000002000 type=EXECVE msg=audit(1225742021.015:236): argc=2 a0="ping" a1="127.0.0.1" type=CWD msg=audit(1225742021.015:236): cwd="/home/test" type=PATH msg=audit(1225742021.015:236): item=0 name="/bin/ping" inode=49256 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ping_exec_t:s0 cap_fp=0000000000002000 cap_fe=1 cap_fver=2 type=PATH msg=audit(1225742021.015:236): item=1 name=(null) inode=507915 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ld_so_t:s0 Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-11 18:48:18 +08:00
case AUDIT_BPRM_FCAPS: {
struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
audit_log_format(ab, "fver=%x", axs->fcap_ver);
audit_log_cap(ab, "fp", &axs->fcap.permitted);
audit_log_cap(ab, "fi", &axs->fcap.inheritable);
audit_log_format(ab, " fe=%d", axs->fcap.fE);
audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
break; }
}
audit_log_end(ab);
}
if (context->type)
show_special(context, &call_panic);
if (context->fds[0] >= 0) {
ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
if (ab) {
audit_log_format(ab, "fd0=%d fd1=%d",
context->fds[0], context->fds[1]);
audit_log_end(ab);
}
}
if (context->sockaddr_len) {
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
if (ab) {
audit_log_format(ab, "saddr=");
audit_log_n_hex(ab, (void *)context->sockaddr,
context->sockaddr_len);
audit_log_end(ab);
}
}
for (aux = context->aux_pids; aux; aux = aux->next) {
struct audit_aux_data_pids *axs = (void *)aux;
for (i = 0; i < axs->pid_count; i++)
if (audit_log_pid_context(context, axs->target_pid[i],
axs->target_auid[i],
axs->target_uid[i],
axs->target_sessionid[i],
axs->target_sid[i],
axs->target_comm[i]))
call_panic = 1;
}
if (context->target_pid &&
audit_log_pid_context(context, context->target_pid,
context->target_auid, context->target_uid,
context->target_sessionid,
context->target_sid, context->target_comm))
call_panic = 1;
if (context->pwd.dentry && context->pwd.mnt) {
ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
if (ab) {
audit_log_d_path(ab, " cwd=", &context->pwd);
audit_log_end(ab);
}
}
i = 0;
audit: fix mq_open and mq_unlink to add the MQ root as a hidden parent audit_names record The old audit PATH records for mq_open looked like this: type=PATH msg=audit(1366282323.982:869): item=1 name=(null) inode=6777 dev=00:0c mode=041777 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282323.982:869): item=0 name="test_mq" inode=26732 dev=00:0c mode=0100700 ouid=0 ogid=0 rdev=00:00 obj=staff_u:object_r:user_tmpfs_t:s15:c0.c1023 ...with the audit related changes that went into 3.7, they now look like this: type=PATH msg=audit(1366282236.776:3606): item=2 name=(null) inode=66655 dev=00:0c mode=0100700 ouid=0 ogid=0 rdev=00:00 obj=staff_u:object_r:user_tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282236.776:3606): item=1 name=(null) inode=6926 dev=00:0c mode=041777 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282236.776:3606): item=0 name="test_mq" Both of these look wrong to me. As Steve Grubb pointed out: "What we need is 1 PATH record that identifies the MQ. The other PATH records probably should not be there." Fix it to record the mq root as a parent, and flag it such that it should be hidden from view when the names are logged, since the root of the mq filesystem isn't terribly interesting. With this change, we get a single PATH record that looks more like this: type=PATH msg=audit(1368021604.836:484): item=0 name="test_mq" inode=16914 dev=00:0c mode=0100644 ouid=0 ogid=0 rdev=00:00 obj=unconfined_u:object_r:user_tmpfs_t:s0 In order to do this, a new audit_inode_parent_hidden() function is added. If we do it this way, then we avoid having the existing callers of audit_inode needing to do any sort of flag conversion if auditing is inactive. Signed-off-by: Jeff Layton <jlayton@redhat.com> Reported-by: Jiri Jaburek <jjaburek@redhat.com> Cc: Steve Grubb <sgrubb@redhat.com> Cc: Eric Paris <eparis@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:59:36 +08:00
list_for_each_entry(n, &context->names_list, list) {
if (n->hidden)
continue;
audit_log_name(context, n, NULL, i++, &call_panic);
audit: fix mq_open and mq_unlink to add the MQ root as a hidden parent audit_names record The old audit PATH records for mq_open looked like this: type=PATH msg=audit(1366282323.982:869): item=1 name=(null) inode=6777 dev=00:0c mode=041777 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282323.982:869): item=0 name="test_mq" inode=26732 dev=00:0c mode=0100700 ouid=0 ogid=0 rdev=00:00 obj=staff_u:object_r:user_tmpfs_t:s15:c0.c1023 ...with the audit related changes that went into 3.7, they now look like this: type=PATH msg=audit(1366282236.776:3606): item=2 name=(null) inode=66655 dev=00:0c mode=0100700 ouid=0 ogid=0 rdev=00:00 obj=staff_u:object_r:user_tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282236.776:3606): item=1 name=(null) inode=6926 dev=00:0c mode=041777 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282236.776:3606): item=0 name="test_mq" Both of these look wrong to me. As Steve Grubb pointed out: "What we need is 1 PATH record that identifies the MQ. The other PATH records probably should not be there." Fix it to record the mq root as a parent, and flag it such that it should be hidden from view when the names are logged, since the root of the mq filesystem isn't terribly interesting. With this change, we get a single PATH record that looks more like this: type=PATH msg=audit(1368021604.836:484): item=0 name="test_mq" inode=16914 dev=00:0c mode=0100644 ouid=0 ogid=0 rdev=00:00 obj=unconfined_u:object_r:user_tmpfs_t:s0 In order to do this, a new audit_inode_parent_hidden() function is added. If we do it this way, then we avoid having the existing callers of audit_inode needing to do any sort of flag conversion if auditing is inactive. Signed-off-by: Jeff Layton <jlayton@redhat.com> Reported-by: Jiri Jaburek <jjaburek@redhat.com> Cc: Steve Grubb <sgrubb@redhat.com> Cc: Eric Paris <eparis@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:59:36 +08:00
}
audit: Audit proc/<pid>/cmdline aka proctitle During an audit event, cache and print the value of the process's proctitle value (proc/<pid>/cmdline). This is useful in situations where processes are started via fork'd virtual machines where the comm field is incorrect. Often times, setting the comm field still is insufficient as the comm width is not very wide and most virtual machine "package names" do not fit. Also, during execution, many threads have their comm field set as well. By tying it back to the global cmdline value for the process, audit records will be more complete in systems with these properties. An example of where this is useful and applicable is in the realm of Android. With Android, their is no fork/exec for VM instances. The bare, preloaded Dalvik VM listens for a fork and specialize request. When this request comes in, the VM forks, and the loads the specific application (specializing). This was done to take advantage of COW and to not require a load of basic packages by the VM on very app spawn. When this spawn occurs, the package name is set via setproctitle() and shows up in procfs. Many of these package names are longer then 16 bytes, the historical width of task->comm. Having the cmdline in the audit records will couple the application back to the record directly. Also, on my Debian development box, some audit records were more useful then what was printed under comm. The cached proctitle is tied to the life-cycle of the audit_context structure and is built on demand. Proctitle is controllable by userspace, and thus should not be trusted. It is meant as an aid to assist in debugging. The proctitle event is emitted during syscall audits, and can be filtered with auditctl. Example: type=AVC msg=audit(1391217013.924:386): avc: denied { getattr } for pid=1971 comm="mkdir" name="/" dev="selinuxfs" ino=1 scontext=system_u:system_r:consolekit_t:s0-s0:c0.c255 tcontext=system_u:object_r:security_t:s0 tclass=filesystem type=SYSCALL msg=audit(1391217013.924:386): arch=c000003e syscall=137 success=yes exit=0 a0=7f019dfc8bd7 a1=7fffa6aed2c0 a2=fffffffffff4bd25 a3=7fffa6aed050 items=0 ppid=1967 pid=1971 auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=4294967295 comm="mkdir" exe="/bin/mkdir" subj=system_u:system_r:consolekit_t:s0-s0:c0.c255 key=(null) type=UNKNOWN[1327] msg=audit(1391217013.924:386): proctitle=6D6B646972002D70002F7661722F72756E2F636F6E736F6C65 Acked-by: Steve Grubb <sgrubb@redhat.com> (wrt record formating) Signed-off-by: William Roberts <wroberts@tresys.com> Signed-off-by: Eric Paris <eparis@redhat.com>
2014-02-12 02:12:01 +08:00
audit_log_proctitle(tsk, context);
/* Send end of event record to help user space know we are finished */
ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
if (ab)
audit_log_end(ab);
if (call_panic)
audit_panic("error converting sid to string");
}
/**
* audit_free - free a per-task audit context
* @tsk: task whose audit context block to free
*
* Called from copy_process and do_exit
*/
void __audit_free(struct task_struct *tsk)
{
struct audit_context *context;
context = audit_take_context(tsk, 0, 0);
if (!context)
return;
/* Check for system calls that do not go through the exit
* function (e.g., exit_group), then free context block.
* We use GFP_ATOMIC here because we might be doing this
* in the context of the idle thread */
/* that can happen only if we are called from do_exit() */
if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
audit_log_exit(context, tsk);
if (!list_empty(&context->killed_trees))
audit_kill_trees(&context->killed_trees);
audit_free_context(context);
}
/**
* audit_syscall_entry - fill in an audit record at syscall entry
* @major: major syscall type (function)
* @a1: additional syscall register 1
* @a2: additional syscall register 2
* @a3: additional syscall register 3
* @a4: additional syscall register 4
*
* Fill in audit context at syscall entry. This only happens if the
* audit context was created when the task was created and the state or
* filters demand the audit context be built. If the state from the
* per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
* then the record will be written at syscall exit time (otherwise, it
* will only be written if another part of the kernel requests that it
* be written).
*/
void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
unsigned long a3, unsigned long a4)
{
struct task_struct *tsk = current;
struct audit_context *context = tsk->audit_context;
enum audit_state state;
if (!context)
return;
BUG_ON(context->in_syscall || context->name_count);
if (!audit_enabled)
return;
context->arch = syscall_get_arch();
context->major = major;
context->argv[0] = a1;
context->argv[1] = a2;
context->argv[2] = a3;
context->argv[3] = a4;
state = context->state;
context->dummy = !audit_n_rules;
if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
context->prio = 0;
state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
}
if (state == AUDIT_DISABLED)
return;
context->serial = 0;
context->ctime = CURRENT_TIME;
context->in_syscall = 1;
context->current_state = state;
context->ppid = 0;
}
/**
* audit_syscall_exit - deallocate audit context after a system call
* @success: success value of the syscall
* @return_code: return value of the syscall
*
* Tear down after system call. If the audit context has been marked as
* auditable (either because of the AUDIT_RECORD_CONTEXT state from
* filtering, or because some other part of the kernel wrote an audit
* message), then write out the syscall information. In call cases,
* free the names stored from getname().
*/
Audit: push audit success and retcode into arch ptrace.h The audit system previously expected arches calling to audit_syscall_exit to supply as arguments if the syscall was a success and what the return code was. Audit also provides a helper AUDITSC_RESULT which was supposed to simplify things by converting from negative retcodes to an audit internal magic value stating success or failure. This helper was wrong and could indicate that a valid pointer returned to userspace was a failed syscall. The fix is to fix the layering foolishness. We now pass audit_syscall_exit a struct pt_reg and it in turns calls back into arch code to collect the return value and to determine if the syscall was a success or failure. We also define a generic is_syscall_success() macro which determines success/failure based on if the value is < -MAX_ERRNO. This works for arches like x86 which do not use a separate mechanism to indicate syscall failure. We make both the is_syscall_success() and regs_return_value() static inlines instead of macros. The reason is because the audit function must take a void* for the regs. (uml calls theirs struct uml_pt_regs instead of just struct pt_regs so audit_syscall_exit can't take a struct pt_regs). Since the audit function takes a void* we need to use static inlines to cast it back to the arch correct structure to dereference it. The other major change is that on some arches, like ia64, MIPS and ppc, we change regs_return_value() to give us the negative value on syscall failure. THE only other user of this macro, kretprobe_example.c, won't notice and it makes the value signed consistently for the audit functions across all archs. In arch/sh/kernel/ptrace_64.c I see that we were using regs[9] in the old audit code as the return value. But the ptrace_64.h code defined the macro regs_return_value() as regs[3]. I have no idea which one is correct, but this patch now uses the regs_return_value() function, so it now uses regs[3]. For powerpc we previously used regs->result but now use the regs_return_value() function which uses regs->gprs[3]. regs->gprs[3] is always positive so the regs_return_value(), much like ia64 makes it negative before calling the audit code when appropriate. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: H. Peter Anvin <hpa@zytor.com> [for x86 portion] Acked-by: Tony Luck <tony.luck@intel.com> [for ia64] Acked-by: Richard Weinberger <richard@nod.at> [for uml] Acked-by: David S. Miller <davem@davemloft.net> [for sparc] Acked-by: Ralf Baechle <ralf@linux-mips.org> [for mips] Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [for ppc]
2012-01-04 03:23:06 +08:00
void __audit_syscall_exit(int success, long return_code)
{
struct task_struct *tsk = current;
struct audit_context *context;
Audit: push audit success and retcode into arch ptrace.h The audit system previously expected arches calling to audit_syscall_exit to supply as arguments if the syscall was a success and what the return code was. Audit also provides a helper AUDITSC_RESULT which was supposed to simplify things by converting from negative retcodes to an audit internal magic value stating success or failure. This helper was wrong and could indicate that a valid pointer returned to userspace was a failed syscall. The fix is to fix the layering foolishness. We now pass audit_syscall_exit a struct pt_reg and it in turns calls back into arch code to collect the return value and to determine if the syscall was a success or failure. We also define a generic is_syscall_success() macro which determines success/failure based on if the value is < -MAX_ERRNO. This works for arches like x86 which do not use a separate mechanism to indicate syscall failure. We make both the is_syscall_success() and regs_return_value() static inlines instead of macros. The reason is because the audit function must take a void* for the regs. (uml calls theirs struct uml_pt_regs instead of just struct pt_regs so audit_syscall_exit can't take a struct pt_regs). Since the audit function takes a void* we need to use static inlines to cast it back to the arch correct structure to dereference it. The other major change is that on some arches, like ia64, MIPS and ppc, we change regs_return_value() to give us the negative value on syscall failure. THE only other user of this macro, kretprobe_example.c, won't notice and it makes the value signed consistently for the audit functions across all archs. In arch/sh/kernel/ptrace_64.c I see that we were using regs[9] in the old audit code as the return value. But the ptrace_64.h code defined the macro regs_return_value() as regs[3]. I have no idea which one is correct, but this patch now uses the regs_return_value() function, so it now uses regs[3]. For powerpc we previously used regs->result but now use the regs_return_value() function which uses regs->gprs[3]. regs->gprs[3] is always positive so the regs_return_value(), much like ia64 makes it negative before calling the audit code when appropriate. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: H. Peter Anvin <hpa@zytor.com> [for x86 portion] Acked-by: Tony Luck <tony.luck@intel.com> [for ia64] Acked-by: Richard Weinberger <richard@nod.at> [for uml] Acked-by: David S. Miller <davem@davemloft.net> [for sparc] Acked-by: Ralf Baechle <ralf@linux-mips.org> [for mips] Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [for ppc]
2012-01-04 03:23:06 +08:00
if (success)
success = AUDITSC_SUCCESS;
else
success = AUDITSC_FAILURE;
context = audit_take_context(tsk, success, return_code);
if (!context)
return;
if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
audit_log_exit(context, tsk);
context->in_syscall = 0;
context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
if (!list_empty(&context->killed_trees))
audit_kill_trees(&context->killed_trees);
audit_free_names(context);
unroll_tree_refs(context, NULL, 0);
audit_free_aux(context);
context->aux = NULL;
context->aux_pids = NULL;
context->target_pid = 0;
context->target_sid = 0;
context->sockaddr_len = 0;
context->type = 0;
context->fds[0] = -1;
if (context->state != AUDIT_RECORD_CONTEXT) {
kfree(context->filterkey);
context->filterkey = NULL;
}
tsk->audit_context = context;
}
static inline void handle_one(const struct inode *inode)
{
#ifdef CONFIG_AUDIT_TREE
struct audit_context *context;
struct audit_tree_refs *p;
struct audit_chunk *chunk;
int count;
if (likely(hlist_empty(&inode->i_fsnotify_marks)))
return;
context = current->audit_context;
p = context->trees;
count = context->tree_count;
rcu_read_lock();
chunk = audit_tree_lookup(inode);
rcu_read_unlock();
if (!chunk)
return;
if (likely(put_tree_ref(context, chunk)))
return;
if (unlikely(!grow_tree_refs(context))) {
pr_warn("out of memory, audit has lost a tree reference\n");
audit_set_auditable(context);
audit_put_chunk(chunk);
unroll_tree_refs(context, p, count);
return;
}
put_tree_ref(context, chunk);
#endif
}
static void handle_path(const struct dentry *dentry)
{
#ifdef CONFIG_AUDIT_TREE
struct audit_context *context;
struct audit_tree_refs *p;
const struct dentry *d, *parent;
struct audit_chunk *drop;
unsigned long seq;
int count;
context = current->audit_context;
p = context->trees;
count = context->tree_count;
retry:
drop = NULL;
d = dentry;
rcu_read_lock();
seq = read_seqbegin(&rename_lock);
for(;;) {
struct inode *inode = d_backing_inode(d);
if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
struct audit_chunk *chunk;
chunk = audit_tree_lookup(inode);
if (chunk) {
if (unlikely(!put_tree_ref(context, chunk))) {
drop = chunk;
break;
}
}
}
parent = d->d_parent;
if (parent == d)
break;
d = parent;
}
if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
rcu_read_unlock();
if (!drop) {
/* just a race with rename */
unroll_tree_refs(context, p, count);
goto retry;
}
audit_put_chunk(drop);
if (grow_tree_refs(context)) {
/* OK, got more space */
unroll_tree_refs(context, p, count);
goto retry;
}
/* too bad */
pr_warn("out of memory, audit has lost a tree reference\n");
unroll_tree_refs(context, p, count);
audit_set_auditable(context);
return;
}
rcu_read_unlock();
#endif
}
static struct audit_names *audit_alloc_name(struct audit_context *context,
unsigned char type)
{
struct audit_names *aname;
if (context->name_count < AUDIT_NAMES) {
aname = &context->preallocated_names[context->name_count];
memset(aname, 0, sizeof(*aname));
} else {
aname = kzalloc(sizeof(*aname), GFP_NOFS);
if (!aname)
return NULL;
aname->should_free = true;
}
aname->ino = AUDIT_INO_UNSET;
aname->type = type;
list_add_tail(&aname->list, &context->names_list);
context->name_count++;
return aname;
}
/**
* audit_reusename - fill out filename with info from existing entry
* @uptr: userland ptr to pathname
*
* Search the audit_names list for the current audit context. If there is an
* existing entry with a matching "uptr" then return the filename
* associated with that audit_name. If not, return NULL.
*/
struct filename *
__audit_reusename(const __user char *uptr)
{
struct audit_context *context = current->audit_context;
struct audit_names *n;
list_for_each_entry(n, &context->names_list, list) {
if (!n->name)
continue;
if (n->name->uptr == uptr) {
n->name->refcnt++;
return n->name;
}
}
return NULL;
}
/**
* audit_getname - add a name to the list
* @name: name to add
*
* Add a name to the list of audit names for this context.
* Called from fs/namei.c:getname().
*/
void __audit_getname(struct filename *name)
{
struct audit_context *context = current->audit_context;
struct audit_names *n;
if (!context->in_syscall)
return;
n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
if (!n)
return;
n->name = name;
n->name_len = AUDIT_NAME_FULL;
name->aname = n;
name->refcnt++;
if (!context->pwd.dentry)
get_fs_pwd(current->fs, &context->pwd);
}
/**
* __audit_inode - store the inode and device from a lookup
* @name: name being audited
* @dentry: dentry being audited
audit: fix mq_open and mq_unlink to add the MQ root as a hidden parent audit_names record The old audit PATH records for mq_open looked like this: type=PATH msg=audit(1366282323.982:869): item=1 name=(null) inode=6777 dev=00:0c mode=041777 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282323.982:869): item=0 name="test_mq" inode=26732 dev=00:0c mode=0100700 ouid=0 ogid=0 rdev=00:00 obj=staff_u:object_r:user_tmpfs_t:s15:c0.c1023 ...with the audit related changes that went into 3.7, they now look like this: type=PATH msg=audit(1366282236.776:3606): item=2 name=(null) inode=66655 dev=00:0c mode=0100700 ouid=0 ogid=0 rdev=00:00 obj=staff_u:object_r:user_tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282236.776:3606): item=1 name=(null) inode=6926 dev=00:0c mode=041777 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282236.776:3606): item=0 name="test_mq" Both of these look wrong to me. As Steve Grubb pointed out: "What we need is 1 PATH record that identifies the MQ. The other PATH records probably should not be there." Fix it to record the mq root as a parent, and flag it such that it should be hidden from view when the names are logged, since the root of the mq filesystem isn't terribly interesting. With this change, we get a single PATH record that looks more like this: type=PATH msg=audit(1368021604.836:484): item=0 name="test_mq" inode=16914 dev=00:0c mode=0100644 ouid=0 ogid=0 rdev=00:00 obj=unconfined_u:object_r:user_tmpfs_t:s0 In order to do this, a new audit_inode_parent_hidden() function is added. If we do it this way, then we avoid having the existing callers of audit_inode needing to do any sort of flag conversion if auditing is inactive. Signed-off-by: Jeff Layton <jlayton@redhat.com> Reported-by: Jiri Jaburek <jjaburek@redhat.com> Cc: Steve Grubb <sgrubb@redhat.com> Cc: Eric Paris <eparis@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:59:36 +08:00
* @flags: attributes for this particular entry
*/
void __audit_inode(struct filename *name, const struct dentry *dentry,
audit: fix mq_open and mq_unlink to add the MQ root as a hidden parent audit_names record The old audit PATH records for mq_open looked like this: type=PATH msg=audit(1366282323.982:869): item=1 name=(null) inode=6777 dev=00:0c mode=041777 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282323.982:869): item=0 name="test_mq" inode=26732 dev=00:0c mode=0100700 ouid=0 ogid=0 rdev=00:00 obj=staff_u:object_r:user_tmpfs_t:s15:c0.c1023 ...with the audit related changes that went into 3.7, they now look like this: type=PATH msg=audit(1366282236.776:3606): item=2 name=(null) inode=66655 dev=00:0c mode=0100700 ouid=0 ogid=0 rdev=00:00 obj=staff_u:object_r:user_tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282236.776:3606): item=1 name=(null) inode=6926 dev=00:0c mode=041777 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282236.776:3606): item=0 name="test_mq" Both of these look wrong to me. As Steve Grubb pointed out: "What we need is 1 PATH record that identifies the MQ. The other PATH records probably should not be there." Fix it to record the mq root as a parent, and flag it such that it should be hidden from view when the names are logged, since the root of the mq filesystem isn't terribly interesting. With this change, we get a single PATH record that looks more like this: type=PATH msg=audit(1368021604.836:484): item=0 name="test_mq" inode=16914 dev=00:0c mode=0100644 ouid=0 ogid=0 rdev=00:00 obj=unconfined_u:object_r:user_tmpfs_t:s0 In order to do this, a new audit_inode_parent_hidden() function is added. If we do it this way, then we avoid having the existing callers of audit_inode needing to do any sort of flag conversion if auditing is inactive. Signed-off-by: Jeff Layton <jlayton@redhat.com> Reported-by: Jiri Jaburek <jjaburek@redhat.com> Cc: Steve Grubb <sgrubb@redhat.com> Cc: Eric Paris <eparis@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:59:36 +08:00
unsigned int flags)
{
struct audit_context *context = current->audit_context;
struct inode *inode = d_backing_inode(dentry);
struct audit_names *n;
audit: fix mq_open and mq_unlink to add the MQ root as a hidden parent audit_names record The old audit PATH records for mq_open looked like this: type=PATH msg=audit(1366282323.982:869): item=1 name=(null) inode=6777 dev=00:0c mode=041777 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282323.982:869): item=0 name="test_mq" inode=26732 dev=00:0c mode=0100700 ouid=0 ogid=0 rdev=00:00 obj=staff_u:object_r:user_tmpfs_t:s15:c0.c1023 ...with the audit related changes that went into 3.7, they now look like this: type=PATH msg=audit(1366282236.776:3606): item=2 name=(null) inode=66655 dev=00:0c mode=0100700 ouid=0 ogid=0 rdev=00:00 obj=staff_u:object_r:user_tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282236.776:3606): item=1 name=(null) inode=6926 dev=00:0c mode=041777 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282236.776:3606): item=0 name="test_mq" Both of these look wrong to me. As Steve Grubb pointed out: "What we need is 1 PATH record that identifies the MQ. The other PATH records probably should not be there." Fix it to record the mq root as a parent, and flag it such that it should be hidden from view when the names are logged, since the root of the mq filesystem isn't terribly interesting. With this change, we get a single PATH record that looks more like this: type=PATH msg=audit(1368021604.836:484): item=0 name="test_mq" inode=16914 dev=00:0c mode=0100644 ouid=0 ogid=0 rdev=00:00 obj=unconfined_u:object_r:user_tmpfs_t:s0 In order to do this, a new audit_inode_parent_hidden() function is added. If we do it this way, then we avoid having the existing callers of audit_inode needing to do any sort of flag conversion if auditing is inactive. Signed-off-by: Jeff Layton <jlayton@redhat.com> Reported-by: Jiri Jaburek <jjaburek@redhat.com> Cc: Steve Grubb <sgrubb@redhat.com> Cc: Eric Paris <eparis@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:59:36 +08:00
bool parent = flags & AUDIT_INODE_PARENT;
if (!context->in_syscall)
return;
if (!name)
goto out_alloc;
/*
* If we have a pointer to an audit_names entry already, then we can
* just use it directly if the type is correct.
*/
n = name->aname;
if (n) {
if (parent) {
if (n->type == AUDIT_TYPE_PARENT ||
n->type == AUDIT_TYPE_UNKNOWN)
goto out;
} else {
if (n->type != AUDIT_TYPE_PARENT)
goto out;
}
}
list_for_each_entry_reverse(n, &context->names_list, list) {
if (n->ino) {
/* valid inode number, use that for the comparison */
if (n->ino != inode->i_ino ||
n->dev != inode->i_sb->s_dev)
continue;
} else if (n->name) {
/* inode number has not been set, check the name */
if (strcmp(n->name->name, name->name))
continue;
} else
/* no inode and no name (?!) ... this is odd ... */
continue;
/* match the correct record type */
if (parent) {
if (n->type == AUDIT_TYPE_PARENT ||
n->type == AUDIT_TYPE_UNKNOWN)
goto out;
} else {
if (n->type != AUDIT_TYPE_PARENT)
goto out;
}
}
out_alloc:
audit: correctly record file names with different path name types There is a problem with the audit system when multiple audit records are created for the same path, each with a different path name type. The root cause of the problem is in __audit_inode() when an exact match (both the path name and path name type) is not found for a path name record; the existing code creates a new path name record, but it never sets the path name in this record, leaving it NULL. This patch corrects this problem by assigning the path name to these newly created records. There are many ways to reproduce this problem, but one of the easiest is the following (assuming auditd is running): # mkdir /root/tmp/test # touch /root/tmp/test/567 # auditctl -a always,exit -F dir=/root/tmp/test # touch /root/tmp/test/567 Afterwards, or while the commands above are running, check the audit log and pay special attention to the PATH records. A faulty kernel will display something like the following for the file creation: type=SYSCALL msg=audit(1416957442.025:93): arch=c000003e syscall=2 success=yes exit=3 ... comm="touch" exe="/usr/bin/touch" type=CWD msg=audit(1416957442.025:93): cwd="/root/tmp" type=PATH msg=audit(1416957442.025:93): item=0 name="test/" inode=401409 ... nametype=PARENT type=PATH msg=audit(1416957442.025:93): item=1 name=(null) inode=393804 ... nametype=NORMAL type=PATH msg=audit(1416957442.025:93): item=2 name=(null) inode=393804 ... nametype=NORMAL While a patched kernel will show the following: type=SYSCALL msg=audit(1416955786.566:89): arch=c000003e syscall=2 success=yes exit=3 ... comm="touch" exe="/usr/bin/touch" type=CWD msg=audit(1416955786.566:89): cwd="/root/tmp" type=PATH msg=audit(1416955786.566:89): item=0 name="test/" inode=401409 ... nametype=PARENT type=PATH msg=audit(1416955786.566:89): item=1 name="test/567" inode=393804 ... nametype=NORMAL This issue was brought up by a number of people, but special credit should go to hujianyang@huawei.com for reporting the problem along with an explanation of the problem and a patch. While the original patch did have some problems (see the archive link below), it did demonstrate the problem and helped kickstart the fix presented here. * https://lkml.org/lkml/2014/9/5/66 Reported-by: hujianyang <hujianyang@huawei.com> Signed-off-by: Paul Moore <pmoore@redhat.com> Acked-by: Richard Guy Briggs <rgb@redhat.com>
2014-12-23 01:27:39 +08:00
/* unable to find an entry with both a matching name and type */
n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
if (!n)
return;
if (name) {
n->name = name;
name->refcnt++;
}
audit: correctly record file names with different path name types There is a problem with the audit system when multiple audit records are created for the same path, each with a different path name type. The root cause of the problem is in __audit_inode() when an exact match (both the path name and path name type) is not found for a path name record; the existing code creates a new path name record, but it never sets the path name in this record, leaving it NULL. This patch corrects this problem by assigning the path name to these newly created records. There are many ways to reproduce this problem, but one of the easiest is the following (assuming auditd is running): # mkdir /root/tmp/test # touch /root/tmp/test/567 # auditctl -a always,exit -F dir=/root/tmp/test # touch /root/tmp/test/567 Afterwards, or while the commands above are running, check the audit log and pay special attention to the PATH records. A faulty kernel will display something like the following for the file creation: type=SYSCALL msg=audit(1416957442.025:93): arch=c000003e syscall=2 success=yes exit=3 ... comm="touch" exe="/usr/bin/touch" type=CWD msg=audit(1416957442.025:93): cwd="/root/tmp" type=PATH msg=audit(1416957442.025:93): item=0 name="test/" inode=401409 ... nametype=PARENT type=PATH msg=audit(1416957442.025:93): item=1 name=(null) inode=393804 ... nametype=NORMAL type=PATH msg=audit(1416957442.025:93): item=2 name=(null) inode=393804 ... nametype=NORMAL While a patched kernel will show the following: type=SYSCALL msg=audit(1416955786.566:89): arch=c000003e syscall=2 success=yes exit=3 ... comm="touch" exe="/usr/bin/touch" type=CWD msg=audit(1416955786.566:89): cwd="/root/tmp" type=PATH msg=audit(1416955786.566:89): item=0 name="test/" inode=401409 ... nametype=PARENT type=PATH msg=audit(1416955786.566:89): item=1 name="test/567" inode=393804 ... nametype=NORMAL This issue was brought up by a number of people, but special credit should go to hujianyang@huawei.com for reporting the problem along with an explanation of the problem and a patch. While the original patch did have some problems (see the archive link below), it did demonstrate the problem and helped kickstart the fix presented here. * https://lkml.org/lkml/2014/9/5/66 Reported-by: hujianyang <hujianyang@huawei.com> Signed-off-by: Paul Moore <pmoore@redhat.com> Acked-by: Richard Guy Briggs <rgb@redhat.com>
2014-12-23 01:27:39 +08:00
out:
if (parent) {
n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
n->type = AUDIT_TYPE_PARENT;
audit: fix mq_open and mq_unlink to add the MQ root as a hidden parent audit_names record The old audit PATH records for mq_open looked like this: type=PATH msg=audit(1366282323.982:869): item=1 name=(null) inode=6777 dev=00:0c mode=041777 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282323.982:869): item=0 name="test_mq" inode=26732 dev=00:0c mode=0100700 ouid=0 ogid=0 rdev=00:00 obj=staff_u:object_r:user_tmpfs_t:s15:c0.c1023 ...with the audit related changes that went into 3.7, they now look like this: type=PATH msg=audit(1366282236.776:3606): item=2 name=(null) inode=66655 dev=00:0c mode=0100700 ouid=0 ogid=0 rdev=00:00 obj=staff_u:object_r:user_tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282236.776:3606): item=1 name=(null) inode=6926 dev=00:0c mode=041777 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:tmpfs_t:s15:c0.c1023 type=PATH msg=audit(1366282236.776:3606): item=0 name="test_mq" Both of these look wrong to me. As Steve Grubb pointed out: "What we need is 1 PATH record that identifies the MQ. The other PATH records probably should not be there." Fix it to record the mq root as a parent, and flag it such that it should be hidden from view when the names are logged, since the root of the mq filesystem isn't terribly interesting. With this change, we get a single PATH record that looks more like this: type=PATH msg=audit(1368021604.836:484): item=0 name="test_mq" inode=16914 dev=00:0c mode=0100644 ouid=0 ogid=0 rdev=00:00 obj=unconfined_u:object_r:user_tmpfs_t:s0 In order to do this, a new audit_inode_parent_hidden() function is added. If we do it this way, then we avoid having the existing callers of audit_inode needing to do any sort of flag conversion if auditing is inactive. Signed-off-by: Jeff Layton <jlayton@redhat.com> Reported-by: Jiri Jaburek <jjaburek@redhat.com> Cc: Steve Grubb <sgrubb@redhat.com> Cc: Eric Paris <eparis@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:59:36 +08:00
if (flags & AUDIT_INODE_HIDDEN)
n->hidden = true;
} else {
n->name_len = AUDIT_NAME_FULL;
n->type = AUDIT_TYPE_NORMAL;
}
handle_path(dentry);
audit_copy_inode(n, dentry, inode);
}
void __audit_file(const struct file *file)
{
__audit_inode(NULL, file->f_path.dentry, 0);
}
/**
* __audit_inode_child - collect inode info for created/removed objects
* @parent: inode of dentry parent
* @dentry: dentry being audited
* @type: AUDIT_TYPE_* value that we're looking for
*
* For syscalls that create or remove filesystem objects, audit_inode
* can only collect information for the filesystem object's parent.
* This call updates the audit context with the child's information.
* Syscalls that create a new filesystem object must be hooked after
* the object is created. Syscalls that remove a filesystem object
* must be hooked prior, in order to capture the target inode during
* unsuccessful attempts.
*/
void __audit_inode_child(struct inode *parent,
const struct dentry *dentry,
const unsigned char type)
{
struct audit_context *context = current->audit_context;
struct inode *inode = d_backing_inode(dentry);
const char *dname = dentry->d_name.name;
struct audit_names *n, *found_parent = NULL, *found_child = NULL;
if (!context->in_syscall)
return;
if (inode)
handle_one(inode);
/* look for a parent entry first */
list_for_each_entry(n, &context->names_list, list) {
if (!n->name ||
(n->type != AUDIT_TYPE_PARENT &&
n->type != AUDIT_TYPE_UNKNOWN))
continue;
if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
!audit_compare_dname_path(dname,
n->name->name, n->name_len)) {
if (n->type == AUDIT_TYPE_UNKNOWN)
n->type = AUDIT_TYPE_PARENT;
found_parent = n;
break;
}
}
/* is there a matching child entry? */
list_for_each_entry(n, &context->names_list, list) {
/* can only match entries that have a name */
if (!n->name ||
(n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
continue;
if (!strcmp(dname, n->name->name) ||
!audit_compare_dname_path(dname, n->name->name,
found_parent ?
found_parent->name_len :
AUDIT_NAME_FULL)) {
if (n->type == AUDIT_TYPE_UNKNOWN)
n->type = type;
found_child = n;
break;
}
}
if (!found_parent) {
/* create a new, "anonymous" parent record */
n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
if (!n)
return;
audit_copy_inode(n, NULL, parent);
}
if (!found_child) {
found_child = audit_alloc_name(context, type);
if (!found_child)
return;
/* Re-use the name belonging to the slot for a matching parent
* directory. All names for this context are relinquished in
* audit_free_names() */
if (found_parent) {
found_child->name = found_parent->name;
found_child->name_len = AUDIT_NAME_FULL;
found_child->name->refcnt++;
}
}
if (inode)
audit_copy_inode(found_child, dentry, inode);
else
found_child->ino = AUDIT_INO_UNSET;
}
EXPORT_SYMBOL_GPL(__audit_inode_child);
/**
* auditsc_get_stamp - get local copies of audit_context values
* @ctx: audit_context for the task
* @t: timespec to store time recorded in the audit_context
* @serial: serial value that is recorded in the audit_context
*
* Also sets the context as auditable.
*/
int auditsc_get_stamp(struct audit_context *ctx,
struct timespec *t, unsigned int *serial)
{
if (!ctx->in_syscall)
return 0;
if (!ctx->serial)
ctx->serial = audit_serial();
t->tv_sec = ctx->ctime.tv_sec;
t->tv_nsec = ctx->ctime.tv_nsec;
*serial = ctx->serial;
if (!ctx->prio) {
ctx->prio = 1;
ctx->current_state = AUDIT_RECORD_CONTEXT;
}
return 1;
}
/* global counter which is incremented every time something logs in */
static atomic_t session_id = ATOMIC_INIT(0);
static int audit_set_loginuid_perm(kuid_t loginuid)
{
/* if we are unset, we don't need privs */
if (!audit_loginuid_set(current))
return 0;
/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
return -EPERM;
/* it is set, you need permission */
if (!capable(CAP_AUDIT_CONTROL))
return -EPERM;
/* reject if this is not an unset and we don't allow that */
if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
return -EPERM;
return 0;
}
static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
unsigned int oldsessionid, unsigned int sessionid,
int rc)
{
struct audit_buffer *ab;
uid_t uid, oldloginuid, loginuid;
if (!audit_enabled)
return;
uid = from_kuid(&init_user_ns, task_uid(current));
oldloginuid = from_kuid(&init_user_ns, koldloginuid);
loginuid = from_kuid(&init_user_ns, kloginuid),
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
if (!ab)
return;
audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
audit_log_task_context(ab);
audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
oldloginuid, loginuid, oldsessionid, sessionid, !rc);
audit_log_end(ab);
}
/**
* audit_set_loginuid - set current task's audit_context loginuid
* @loginuid: loginuid value
*
* Returns 0.
*
* Called (set) from fs/proc/base.c::proc_loginuid_write().
*/
int audit_set_loginuid(kuid_t loginuid)
{
struct task_struct *task = current;
unsigned int oldsessionid, sessionid = (unsigned int)-1;
kuid_t oldloginuid;
int rc;
oldloginuid = audit_get_loginuid(current);
oldsessionid = audit_get_sessionid(current);
rc = audit_set_loginuid_perm(loginuid);
if (rc)
goto out;
/* are we setting or clearing? */
if (uid_valid(loginuid))
sessionid = (unsigned int)atomic_inc_return(&session_id);
task->sessionid = sessionid;
task->loginuid = loginuid;
out:
audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
return rc;
}
/**
* __audit_mq_open - record audit data for a POSIX MQ open
* @oflag: open flag
* @mode: mode bits
* @attr: queue attributes
*
*/
2011-07-26 17:26:10 +08:00
void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
{
struct audit_context *context = current->audit_context;
if (attr)
memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
else
memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
context->mq_open.oflag = oflag;
context->mq_open.mode = mode;
context->type = AUDIT_MQ_OPEN;
}
/**
* __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
* @mqdes: MQ descriptor
* @msg_len: Message length
* @msg_prio: Message priority
* @abs_timeout: Message timeout in absolute time
*
*/
void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
const struct timespec *abs_timeout)
{
struct audit_context *context = current->audit_context;
struct timespec *p = &context->mq_sendrecv.abs_timeout;
if (abs_timeout)
memcpy(p, abs_timeout, sizeof(struct timespec));
else
memset(p, 0, sizeof(struct timespec));
context->mq_sendrecv.mqdes = mqdes;
context->mq_sendrecv.msg_len = msg_len;
context->mq_sendrecv.msg_prio = msg_prio;
context->type = AUDIT_MQ_SENDRECV;
}
/**
* __audit_mq_notify - record audit data for a POSIX MQ notify
* @mqdes: MQ descriptor
* @notification: Notification event
*
*/
void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
{
struct audit_context *context = current->audit_context;
if (notification)
context->mq_notify.sigev_signo = notification->sigev_signo;
else
context->mq_notify.sigev_signo = 0;
context->mq_notify.mqdes = mqdes;
context->type = AUDIT_MQ_NOTIFY;
}
/**
* __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
* @mqdes: MQ descriptor
* @mqstat: MQ flags
*
*/
void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
{
struct audit_context *context = current->audit_context;
context->mq_getsetattr.mqdes = mqdes;
context->mq_getsetattr.mqstat = *mqstat;
context->type = AUDIT_MQ_GETSETATTR;
}
/**
[PATCH] Rework of IPC auditing 1) The audit_ipc_perms() function has been split into two different functions: - audit_ipc_obj() - audit_ipc_set_perm() There's a key shift here... The audit_ipc_obj() collects the uid, gid, mode, and SElinux context label of the current ipc object. This audit_ipc_obj() hook is now found in several places. Most notably, it is hooked in ipcperms(), which is called in various places around the ipc code permforming a MAC check. Additionally there are several places where *checkid() is used to validate that an operation is being performed on a valid object while not necessarily having a nearby ipcperms() call. In these locations, audit_ipc_obj() is called to ensure that the information is captured by the audit system. The audit_set_new_perm() function is called any time the permissions on the ipc object changes. In this case, the NEW permissions are recorded (and note that an audit_ipc_obj() call exists just a few lines before each instance). 2) Support for an AUDIT_IPC_SET_PERM audit message type. This allows for separate auxiliary audit records for normal operations on an IPC object and permissions changes. Note that the same struct audit_aux_data_ipcctl is used and populated, however there are separate audit_log_format statements based on the type of the message. Finally, the AUDIT_IPC block of code in audit_free_aux() was extended to handle aux messages of this new type. No more mem leaks I hope ;-) Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2006-04-03 05:07:33 +08:00
* audit_ipc_obj - record audit data for ipc object
* @ipcp: ipc permissions
*
*/
void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
[PATCH] Rework of IPC auditing 1) The audit_ipc_perms() function has been split into two different functions: - audit_ipc_obj() - audit_ipc_set_perm() There's a key shift here... The audit_ipc_obj() collects the uid, gid, mode, and SElinux context label of the current ipc object. This audit_ipc_obj() hook is now found in several places. Most notably, it is hooked in ipcperms(), which is called in various places around the ipc code permforming a MAC check. Additionally there are several places where *checkid() is used to validate that an operation is being performed on a valid object while not necessarily having a nearby ipcperms() call. In these locations, audit_ipc_obj() is called to ensure that the information is captured by the audit system. The audit_set_new_perm() function is called any time the permissions on the ipc object changes. In this case, the NEW permissions are recorded (and note that an audit_ipc_obj() call exists just a few lines before each instance). 2) Support for an AUDIT_IPC_SET_PERM audit message type. This allows for separate auxiliary audit records for normal operations on an IPC object and permissions changes. Note that the same struct audit_aux_data_ipcctl is used and populated, however there are separate audit_log_format statements based on the type of the message. Finally, the AUDIT_IPC block of code in audit_free_aux() was extended to handle aux messages of this new type. No more mem leaks I hope ;-) Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2006-04-03 05:07:33 +08:00
{
struct audit_context *context = current->audit_context;
context->ipc.uid = ipcp->uid;
context->ipc.gid = ipcp->gid;
context->ipc.mode = ipcp->mode;
context->ipc.has_perm = 0;
security_ipc_getsecid(ipcp, &context->ipc.osid);
context->type = AUDIT_IPC;
[PATCH] Rework of IPC auditing 1) The audit_ipc_perms() function has been split into two different functions: - audit_ipc_obj() - audit_ipc_set_perm() There's a key shift here... The audit_ipc_obj() collects the uid, gid, mode, and SElinux context label of the current ipc object. This audit_ipc_obj() hook is now found in several places. Most notably, it is hooked in ipcperms(), which is called in various places around the ipc code permforming a MAC check. Additionally there are several places where *checkid() is used to validate that an operation is being performed on a valid object while not necessarily having a nearby ipcperms() call. In these locations, audit_ipc_obj() is called to ensure that the information is captured by the audit system. The audit_set_new_perm() function is called any time the permissions on the ipc object changes. In this case, the NEW permissions are recorded (and note that an audit_ipc_obj() call exists just a few lines before each instance). 2) Support for an AUDIT_IPC_SET_PERM audit message type. This allows for separate auxiliary audit records for normal operations on an IPC object and permissions changes. Note that the same struct audit_aux_data_ipcctl is used and populated, however there are separate audit_log_format statements based on the type of the message. Finally, the AUDIT_IPC block of code in audit_free_aux() was extended to handle aux messages of this new type. No more mem leaks I hope ;-) Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2006-04-03 05:07:33 +08:00
}
/**
* audit_ipc_set_perm - record audit data for new ipc permissions
* @qbytes: msgq bytes
* @uid: msgq user id
* @gid: msgq group id
* @mode: msgq mode (permissions)
*
* Called only after audit_ipc_obj().
*/
void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
{
struct audit_context *context = current->audit_context;
context->ipc.qbytes = qbytes;
context->ipc.perm_uid = uid;
context->ipc.perm_gid = gid;
context->ipc.perm_mode = mode;
context->ipc.has_perm = 1;
}
void __audit_bprm(struct linux_binprm *bprm)
{
struct audit_context *context = current->audit_context;
context->type = AUDIT_EXECVE;
context->execve.argc = bprm->argc;
}
/**
* audit_socketcall - record audit data for sys_socketcall
* @nargs: number of args, which should not be more than AUDITSC_ARGS.
* @args: args array
*
*/
int __audit_socketcall(int nargs, unsigned long *args)
{
struct audit_context *context = current->audit_context;
if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
return -EINVAL;
context->type = AUDIT_SOCKETCALL;
context->socketcall.nargs = nargs;
memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
return 0;
}
/**
* __audit_fd_pair - record audit data for pipe and socketpair
* @fd1: the first file descriptor
* @fd2: the second file descriptor
*
*/
void __audit_fd_pair(int fd1, int fd2)
{
struct audit_context *context = current->audit_context;
context->fds[0] = fd1;
context->fds[1] = fd2;
}
/**
* audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
* @len: data length in user space
* @a: data address in kernel space
*
* Returns 0 for success or NULL context or < 0 on error.
*/
int __audit_sockaddr(int len, void *a)
{
struct audit_context *context = current->audit_context;
if (!context->sockaddr) {
void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
if (!p)
return -ENOMEM;
context->sockaddr = p;
}
context->sockaddr_len = len;
memcpy(context->sockaddr, a, len);
return 0;
}
void __audit_ptrace(struct task_struct *t)
{
struct audit_context *context = current->audit_context;
context->target_pid = task_pid_nr(t);
context->target_auid = audit_get_loginuid(t);
context->target_uid = task_uid(t);
context->target_sessionid = audit_get_sessionid(t);
security_task_getsecid(t, &context->target_sid);
memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
}
/**
* audit_signal_info - record signal info for shutting down audit subsystem
* @sig: signal value
* @t: task being signaled
*
* If the audit subsystem is being terminated, record the task (pid)
* and uid that is doing that.
*/
int __audit_signal_info(int sig, struct task_struct *t)
{
struct audit_aux_data_pids *axp;
struct task_struct *tsk = current;
struct audit_context *ctx = tsk->audit_context;
kuid_t uid = current_uid(), t_uid = task_uid(t);
if (audit_pid && t->tgid == audit_pid) {
if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
audit_sig_pid = task_pid_nr(tsk);
if (uid_valid(tsk->loginuid))
audit_sig_uid = tsk->loginuid;
else
audit_sig_uid = uid;
security_task_getsecid(tsk, &audit_sig_sid);
}
if (!audit_signals || audit_dummy_context())
return 0;
}
/* optimize the common case by putting first signal recipient directly
* in audit_context */
if (!ctx->target_pid) {
ctx->target_pid = task_tgid_nr(t);
ctx->target_auid = audit_get_loginuid(t);
ctx->target_uid = t_uid;
ctx->target_sessionid = audit_get_sessionid(t);
security_task_getsecid(t, &ctx->target_sid);
memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
return 0;
}
axp = (void *)ctx->aux_pids;
if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
if (!axp)
return -ENOMEM;
axp->d.type = AUDIT_OBJ_PID;
axp->d.next = ctx->aux_pids;
ctx->aux_pids = (void *)axp;
}
BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
axp->target_pid[axp->pid_count] = task_tgid_nr(t);
axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
axp->target_uid[axp->pid_count] = t_uid;
axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
axp->pid_count++;
return 0;
}
Any time fcaps or a setuid app under SECURE_NOROOT is used to result in a non-zero pE we will crate a new audit record which contains the entire set of known information about the executable in question, fP, fI, fE, fversion and includes the process's pE, pI, pP. Before and after the bprm capability are applied. This record type will only be emitted from execve syscalls. an example of making ping use fcaps instead of setuid: setcap "cat_net_raw+pe" /bin/ping type=SYSCALL msg=audit(1225742021.015:236): arch=c000003e syscall=59 success=yes exit=0 a0=1457f30 a1=14606b0 a2=1463940 a3=321b770a70 items=2 ppid=2929 pid=2963 auid=0 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500 tty=pts0 ses=3 comm="ping" exe="/bin/ping" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null) type=UNKNOWN[1321] msg=audit(1225742021.015:236): fver=2 fp=0000000000002000 fi=0000000000000000 fe=1 old_pp=0000000000000000 old_pi=0000000000000000 old_pe=0000000000000000 new_pp=0000000000002000 new_pi=0000000000000000 new_pe=0000000000002000 type=EXECVE msg=audit(1225742021.015:236): argc=2 a0="ping" a1="127.0.0.1" type=CWD msg=audit(1225742021.015:236): cwd="/home/test" type=PATH msg=audit(1225742021.015:236): item=0 name="/bin/ping" inode=49256 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ping_exec_t:s0 cap_fp=0000000000002000 cap_fe=1 cap_fver=2 type=PATH msg=audit(1225742021.015:236): item=1 name=(null) inode=507915 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ld_so_t:s0 Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-11 18:48:18 +08:00
/**
* __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
* @bprm: pointer to the bprm being processed
* @new: the proposed new credentials
* @old: the old credentials
Any time fcaps or a setuid app under SECURE_NOROOT is used to result in a non-zero pE we will crate a new audit record which contains the entire set of known information about the executable in question, fP, fI, fE, fversion and includes the process's pE, pI, pP. Before and after the bprm capability are applied. This record type will only be emitted from execve syscalls. an example of making ping use fcaps instead of setuid: setcap "cat_net_raw+pe" /bin/ping type=SYSCALL msg=audit(1225742021.015:236): arch=c000003e syscall=59 success=yes exit=0 a0=1457f30 a1=14606b0 a2=1463940 a3=321b770a70 items=2 ppid=2929 pid=2963 auid=0 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500 tty=pts0 ses=3 comm="ping" exe="/bin/ping" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null) type=UNKNOWN[1321] msg=audit(1225742021.015:236): fver=2 fp=0000000000002000 fi=0000000000000000 fe=1 old_pp=0000000000000000 old_pi=0000000000000000 old_pe=0000000000000000 new_pp=0000000000002000 new_pi=0000000000000000 new_pe=0000000000002000 type=EXECVE msg=audit(1225742021.015:236): argc=2 a0="ping" a1="127.0.0.1" type=CWD msg=audit(1225742021.015:236): cwd="/home/test" type=PATH msg=audit(1225742021.015:236): item=0 name="/bin/ping" inode=49256 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ping_exec_t:s0 cap_fp=0000000000002000 cap_fe=1 cap_fver=2 type=PATH msg=audit(1225742021.015:236): item=1 name=(null) inode=507915 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ld_so_t:s0 Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-11 18:48:18 +08:00
*
* Simply check if the proc already has the caps given by the file and if not
* store the priv escalation info for later auditing at the end of the syscall
*
* -Eric
*/
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
const struct cred *new, const struct cred *old)
Any time fcaps or a setuid app under SECURE_NOROOT is used to result in a non-zero pE we will crate a new audit record which contains the entire set of known information about the executable in question, fP, fI, fE, fversion and includes the process's pE, pI, pP. Before and after the bprm capability are applied. This record type will only be emitted from execve syscalls. an example of making ping use fcaps instead of setuid: setcap "cat_net_raw+pe" /bin/ping type=SYSCALL msg=audit(1225742021.015:236): arch=c000003e syscall=59 success=yes exit=0 a0=1457f30 a1=14606b0 a2=1463940 a3=321b770a70 items=2 ppid=2929 pid=2963 auid=0 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500 tty=pts0 ses=3 comm="ping" exe="/bin/ping" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null) type=UNKNOWN[1321] msg=audit(1225742021.015:236): fver=2 fp=0000000000002000 fi=0000000000000000 fe=1 old_pp=0000000000000000 old_pi=0000000000000000 old_pe=0000000000000000 new_pp=0000000000002000 new_pi=0000000000000000 new_pe=0000000000002000 type=EXECVE msg=audit(1225742021.015:236): argc=2 a0="ping" a1="127.0.0.1" type=CWD msg=audit(1225742021.015:236): cwd="/home/test" type=PATH msg=audit(1225742021.015:236): item=0 name="/bin/ping" inode=49256 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ping_exec_t:s0 cap_fp=0000000000002000 cap_fe=1 cap_fver=2 type=PATH msg=audit(1225742021.015:236): item=1 name=(null) inode=507915 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ld_so_t:s0 Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-11 18:48:18 +08:00
{
struct audit_aux_data_bprm_fcaps *ax;
struct audit_context *context = current->audit_context;
struct cpu_vfs_cap_data vcaps;
ax = kmalloc(sizeof(*ax), GFP_KERNEL);
if (!ax)
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
return -ENOMEM;
Any time fcaps or a setuid app under SECURE_NOROOT is used to result in a non-zero pE we will crate a new audit record which contains the entire set of known information about the executable in question, fP, fI, fE, fversion and includes the process's pE, pI, pP. Before and after the bprm capability are applied. This record type will only be emitted from execve syscalls. an example of making ping use fcaps instead of setuid: setcap "cat_net_raw+pe" /bin/ping type=SYSCALL msg=audit(1225742021.015:236): arch=c000003e syscall=59 success=yes exit=0 a0=1457f30 a1=14606b0 a2=1463940 a3=321b770a70 items=2 ppid=2929 pid=2963 auid=0 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500 tty=pts0 ses=3 comm="ping" exe="/bin/ping" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null) type=UNKNOWN[1321] msg=audit(1225742021.015:236): fver=2 fp=0000000000002000 fi=0000000000000000 fe=1 old_pp=0000000000000000 old_pi=0000000000000000 old_pe=0000000000000000 new_pp=0000000000002000 new_pi=0000000000000000 new_pe=0000000000002000 type=EXECVE msg=audit(1225742021.015:236): argc=2 a0="ping" a1="127.0.0.1" type=CWD msg=audit(1225742021.015:236): cwd="/home/test" type=PATH msg=audit(1225742021.015:236): item=0 name="/bin/ping" inode=49256 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ping_exec_t:s0 cap_fp=0000000000002000 cap_fe=1 cap_fver=2 type=PATH msg=audit(1225742021.015:236): item=1 name=(null) inode=507915 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ld_so_t:s0 Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-11 18:48:18 +08:00
ax->d.type = AUDIT_BPRM_FCAPS;
ax->d.next = context->aux;
context->aux = (void *)ax;
get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
Any time fcaps or a setuid app under SECURE_NOROOT is used to result in a non-zero pE we will crate a new audit record which contains the entire set of known information about the executable in question, fP, fI, fE, fversion and includes the process's pE, pI, pP. Before and after the bprm capability are applied. This record type will only be emitted from execve syscalls. an example of making ping use fcaps instead of setuid: setcap "cat_net_raw+pe" /bin/ping type=SYSCALL msg=audit(1225742021.015:236): arch=c000003e syscall=59 success=yes exit=0 a0=1457f30 a1=14606b0 a2=1463940 a3=321b770a70 items=2 ppid=2929 pid=2963 auid=0 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500 tty=pts0 ses=3 comm="ping" exe="/bin/ping" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null) type=UNKNOWN[1321] msg=audit(1225742021.015:236): fver=2 fp=0000000000002000 fi=0000000000000000 fe=1 old_pp=0000000000000000 old_pi=0000000000000000 old_pe=0000000000000000 new_pp=0000000000002000 new_pi=0000000000000000 new_pe=0000000000002000 type=EXECVE msg=audit(1225742021.015:236): argc=2 a0="ping" a1="127.0.0.1" type=CWD msg=audit(1225742021.015:236): cwd="/home/test" type=PATH msg=audit(1225742021.015:236): item=0 name="/bin/ping" inode=49256 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ping_exec_t:s0 cap_fp=0000000000002000 cap_fe=1 cap_fver=2 type=PATH msg=audit(1225742021.015:236): item=1 name=(null) inode=507915 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ld_so_t:s0 Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-11 18:48:18 +08:00
ax->fcap.permitted = vcaps.permitted;
ax->fcap.inheritable = vcaps.inheritable;
ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
ax->old_pcap.permitted = old->cap_permitted;
ax->old_pcap.inheritable = old->cap_inheritable;
ax->old_pcap.effective = old->cap_effective;
Any time fcaps or a setuid app under SECURE_NOROOT is used to result in a non-zero pE we will crate a new audit record which contains the entire set of known information about the executable in question, fP, fI, fE, fversion and includes the process's pE, pI, pP. Before and after the bprm capability are applied. This record type will only be emitted from execve syscalls. an example of making ping use fcaps instead of setuid: setcap "cat_net_raw+pe" /bin/ping type=SYSCALL msg=audit(1225742021.015:236): arch=c000003e syscall=59 success=yes exit=0 a0=1457f30 a1=14606b0 a2=1463940 a3=321b770a70 items=2 ppid=2929 pid=2963 auid=0 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500 tty=pts0 ses=3 comm="ping" exe="/bin/ping" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null) type=UNKNOWN[1321] msg=audit(1225742021.015:236): fver=2 fp=0000000000002000 fi=0000000000000000 fe=1 old_pp=0000000000000000 old_pi=0000000000000000 old_pe=0000000000000000 new_pp=0000000000002000 new_pi=0000000000000000 new_pe=0000000000002000 type=EXECVE msg=audit(1225742021.015:236): argc=2 a0="ping" a1="127.0.0.1" type=CWD msg=audit(1225742021.015:236): cwd="/home/test" type=PATH msg=audit(1225742021.015:236): item=0 name="/bin/ping" inode=49256 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ping_exec_t:s0 cap_fp=0000000000002000 cap_fe=1 cap_fver=2 type=PATH msg=audit(1225742021.015:236): item=1 name=(null) inode=507915 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ld_so_t:s0 Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-11 18:48:18 +08:00
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
ax->new_pcap.permitted = new->cap_permitted;
ax->new_pcap.inheritable = new->cap_inheritable;
ax->new_pcap.effective = new->cap_effective;
return 0;
Any time fcaps or a setuid app under SECURE_NOROOT is used to result in a non-zero pE we will crate a new audit record which contains the entire set of known information about the executable in question, fP, fI, fE, fversion and includes the process's pE, pI, pP. Before and after the bprm capability are applied. This record type will only be emitted from execve syscalls. an example of making ping use fcaps instead of setuid: setcap "cat_net_raw+pe" /bin/ping type=SYSCALL msg=audit(1225742021.015:236): arch=c000003e syscall=59 success=yes exit=0 a0=1457f30 a1=14606b0 a2=1463940 a3=321b770a70 items=2 ppid=2929 pid=2963 auid=0 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500 tty=pts0 ses=3 comm="ping" exe="/bin/ping" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null) type=UNKNOWN[1321] msg=audit(1225742021.015:236): fver=2 fp=0000000000002000 fi=0000000000000000 fe=1 old_pp=0000000000000000 old_pi=0000000000000000 old_pe=0000000000000000 new_pp=0000000000002000 new_pi=0000000000000000 new_pe=0000000000002000 type=EXECVE msg=audit(1225742021.015:236): argc=2 a0="ping" a1="127.0.0.1" type=CWD msg=audit(1225742021.015:236): cwd="/home/test" type=PATH msg=audit(1225742021.015:236): item=0 name="/bin/ping" inode=49256 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ping_exec_t:s0 cap_fp=0000000000002000 cap_fe=1 cap_fver=2 type=PATH msg=audit(1225742021.015:236): item=1 name=(null) inode=507915 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ld_so_t:s0 Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-11 18:48:18 +08:00
}
/**
* __audit_log_capset - store information about the arguments to the capset syscall
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
* @new: the new credentials
* @old: the old (current) credentials
*
* Record the arguments userspace sent to sys_capset for later printing by the
* audit system if applicable
*/
void __audit_log_capset(const struct cred *new, const struct cred *old)
{
struct audit_context *context = current->audit_context;
context->capset.pid = task_pid_nr(current);
context->capset.cap.effective = new->cap_effective;
context->capset.cap.inheritable = new->cap_effective;
context->capset.cap.permitted = new->cap_permitted;
context->type = AUDIT_CAPSET;
}
void __audit_mmap_fd(int fd, int flags)
{
struct audit_context *context = current->audit_context;
context->mmap.fd = fd;
context->mmap.flags = flags;
context->type = AUDIT_MMAP;
}
static void audit_log_task(struct audit_buffer *ab)
{
kuid_t auid, uid;
kgid_t gid;
unsigned int sessionid;
char comm[sizeof(current->comm)];
auid = audit_get_loginuid(current);
sessionid = audit_get_sessionid(current);
current_uid_gid(&uid, &gid);
audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
from_kuid(&init_user_ns, auid),
from_kuid(&init_user_ns, uid),
from_kgid(&init_user_ns, gid),
sessionid);
audit_log_task_context(ab);
audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
audit_log_untrustedstring(ab, get_task_comm(comm, current));
audit_log_d_path_exe(ab, current->mm);
}
/**
* audit_core_dumps - record information about processes that end abnormally
* @signr: signal value
*
* If a process ends with a core dump, something fishy is going on and we
* should record the event for investigation.
*/
void audit_core_dumps(long signr)
{
struct audit_buffer *ab;
if (!audit_enabled)
return;
if (signr == SIGQUIT) /* don't care for those */
return;
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
if (unlikely(!ab))
return;
audit_log_task(ab);
audit_log_format(ab, " sig=%ld", signr);
audit_log_end(ab);
}
void __audit_seccomp(unsigned long syscall, long signr, int code)
{
struct audit_buffer *ab;
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
if (unlikely(!ab))
return;
audit_log_task(ab);
audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
signr, syscall_get_arch(), syscall, is_compat_task(),
KSTK_EIP(current), code);
audit_log_end(ab);
}
struct list_head *audit_killed_trees(void)
{
struct audit_context *ctx = current->audit_context;
if (likely(!ctx || !ctx->in_syscall))
return NULL;
return &ctx->killed_trees;
}