651 lines
17 KiB
C
651 lines
17 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* EDAC driver for Intel(R) Xeon(R) Skylake processors
|
||
|
* Copyright (c) 2016, Intel Corporation.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/processor.h>
|
||
|
#include <asm/cpu_device_id.h>
|
||
|
#include <asm/intel-family.h>
|
||
|
#include <asm/mce.h>
|
||
|
|
||
|
#include "edac_module.h"
|
||
|
#include "skx_common.h"
|
||
|
|
||
|
#define EDAC_MOD_STR "skx_edac"
|
||
|
|
||
|
/*
|
||
|
* Debug macros
|
||
|
*/
|
||
|
#define skx_printk(level, fmt, arg...) \
|
||
|
edac_printk(level, "skx", fmt, ##arg)
|
||
|
|
||
|
#define skx_mc_printk(mci, level, fmt, arg...) \
|
||
|
edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
|
||
|
|
||
|
static struct list_head *skx_edac_list;
|
||
|
|
||
|
static u64 skx_tolm, skx_tohm;
|
||
|
static int skx_num_sockets;
|
||
|
static unsigned int nvdimm_count;
|
||
|
|
||
|
#define MASK26 0x3FFFFFF /* Mask for 2^26 */
|
||
|
#define MASK29 0x1FFFFFFF /* Mask for 2^29 */
|
||
|
|
||
|
static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
|
||
|
{
|
||
|
struct skx_dev *d;
|
||
|
|
||
|
list_for_each_entry(d, skx_edac_list, list) {
|
||
|
if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
|
||
|
return d;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
enum munittype {
|
||
|
CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
|
||
|
};
|
||
|
|
||
|
struct munit {
|
||
|
u16 did;
|
||
|
u16 devfn[SKX_NUM_IMC];
|
||
|
u8 busidx;
|
||
|
u8 per_socket;
|
||
|
enum munittype mtype;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* List of PCI device ids that we need together with some device
|
||
|
* number and function numbers to tell which memory controller the
|
||
|
* device belongs to.
|
||
|
*/
|
||
|
static const struct munit skx_all_munits[] = {
|
||
|
{ 0x2054, { }, 1, 1, SAD_ALL },
|
||
|
{ 0x2055, { }, 1, 1, UTIL_ALL },
|
||
|
{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
|
||
|
{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
|
||
|
{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
|
||
|
{ 0x208e, { }, 1, 0, SAD },
|
||
|
{ }
|
||
|
};
|
||
|
|
||
|
static int get_all_munits(const struct munit *m)
|
||
|
{
|
||
|
struct pci_dev *pdev, *prev;
|
||
|
struct skx_dev *d;
|
||
|
u32 reg;
|
||
|
int i = 0, ndev = 0;
|
||
|
|
||
|
prev = NULL;
|
||
|
for (;;) {
|
||
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
|
||
|
if (!pdev)
|
||
|
break;
|
||
|
ndev++;
|
||
|
if (m->per_socket == SKX_NUM_IMC) {
|
||
|
for (i = 0; i < SKX_NUM_IMC; i++)
|
||
|
if (m->devfn[i] == pdev->devfn)
|
||
|
break;
|
||
|
if (i == SKX_NUM_IMC)
|
||
|
goto fail;
|
||
|
}
|
||
|
d = get_skx_dev(pdev->bus, m->busidx);
|
||
|
if (!d)
|
||
|
goto fail;
|
||
|
|
||
|
/* Be sure that the device is enabled */
|
||
|
if (unlikely(pci_enable_device(pdev) < 0)) {
|
||
|
skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n",
|
||
|
PCI_VENDOR_ID_INTEL, m->did);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
switch (m->mtype) {
|
||
|
case CHAN0: case CHAN1: case CHAN2:
|
||
|
pci_dev_get(pdev);
|
||
|
d->imc[i].chan[m->mtype].cdev = pdev;
|
||
|
break;
|
||
|
case SAD_ALL:
|
||
|
pci_dev_get(pdev);
|
||
|
d->sad_all = pdev;
|
||
|
break;
|
||
|
case UTIL_ALL:
|
||
|
pci_dev_get(pdev);
|
||
|
d->util_all = pdev;
|
||
|
break;
|
||
|
case SAD:
|
||
|
/*
|
||
|
* one of these devices per core, including cores
|
||
|
* that don't exist on this SKU. Ignore any that
|
||
|
* read a route table of zero, make sure all the
|
||
|
* non-zero values match.
|
||
|
*/
|
||
|
pci_read_config_dword(pdev, 0xB4, ®);
|
||
|
if (reg != 0) {
|
||
|
if (d->mcroute == 0) {
|
||
|
d->mcroute = reg;
|
||
|
} else if (d->mcroute != reg) {
|
||
|
skx_printk(KERN_ERR, "mcroute mismatch\n");
|
||
|
goto fail;
|
||
|
}
|
||
|
}
|
||
|
ndev--;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
prev = pdev;
|
||
|
}
|
||
|
|
||
|
return ndev;
|
||
|
fail:
|
||
|
pci_dev_put(pdev);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
static const struct x86_cpu_id skx_cpuids[] = {
|
||
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
|
||
|
{ }
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
|
||
|
|
||
|
#define SKX_GET_MTMTR(dev, reg) \
|
||
|
pci_read_config_dword((dev), 0x87c, &(reg))
|
||
|
|
||
|
static bool skx_check_ecc(struct pci_dev *pdev)
|
||
|
{
|
||
|
u32 mtmtr;
|
||
|
|
||
|
SKX_GET_MTMTR(pdev, mtmtr);
|
||
|
|
||
|
return !!GET_BITFIELD(mtmtr, 2, 2);
|
||
|
}
|
||
|
|
||
|
static int skx_get_dimm_config(struct mem_ctl_info *mci)
|
||
|
{
|
||
|
struct skx_pvt *pvt = mci->pvt_info;
|
||
|
struct skx_imc *imc = pvt->imc;
|
||
|
u32 mtr, amap, mcddrtcfg;
|
||
|
struct dimm_info *dimm;
|
||
|
int i, j;
|
||
|
int ndimms;
|
||
|
|
||
|
for (i = 0; i < SKX_NUM_CHANNELS; i++) {
|
||
|
ndimms = 0;
|
||
|
pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
|
||
|
pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
|
||
|
for (j = 0; j < SKX_NUM_DIMMS; j++) {
|
||
|
dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
|
||
|
mci->n_layers, i, j, 0);
|
||
|
pci_read_config_dword(imc->chan[i].cdev,
|
||
|
0x80 + 4 * j, &mtr);
|
||
|
if (IS_DIMM_PRESENT(mtr)) {
|
||
|
ndimms += skx_get_dimm_info(mtr, amap, dimm, imc, i, j);
|
||
|
} else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) {
|
||
|
ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
|
||
|
EDAC_MOD_STR);
|
||
|
nvdimm_count++;
|
||
|
}
|
||
|
}
|
||
|
if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
|
||
|
skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define SKX_MAX_SAD 24
|
||
|
|
||
|
#define SKX_GET_SAD(d, i, reg) \
|
||
|
pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
|
||
|
#define SKX_GET_ILV(d, i, reg) \
|
||
|
pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))
|
||
|
|
||
|
#define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
|
||
|
#define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
|
||
|
#define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
|
||
|
#define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
|
||
|
#define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
|
||
|
#define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
|
||
|
#define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
|
||
|
|
||
|
#define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
|
||
|
#define SKX_ILV_TARGET(tgt) ((tgt) & 7)
|
||
|
|
||
|
static bool skx_sad_decode(struct decoded_addr *res)
|
||
|
{
|
||
|
struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list);
|
||
|
u64 addr = res->addr;
|
||
|
int i, idx, tgt, lchan, shift;
|
||
|
u32 sad, ilv;
|
||
|
u64 limit, prev_limit;
|
||
|
int remote = 0;
|
||
|
|
||
|
/* Simple sanity check for I/O space or out of range */
|
||
|
if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
|
||
|
edac_dbg(0, "Address 0x%llx out of range\n", addr);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
restart:
|
||
|
prev_limit = 0;
|
||
|
for (i = 0; i < SKX_MAX_SAD; i++) {
|
||
|
SKX_GET_SAD(d, i, sad);
|
||
|
limit = SKX_SAD_LIMIT(sad);
|
||
|
if (SKX_SAD_ENABLE(sad)) {
|
||
|
if (addr >= prev_limit && addr <= limit)
|
||
|
goto sad_found;
|
||
|
}
|
||
|
prev_limit = limit + 1;
|
||
|
}
|
||
|
edac_dbg(0, "No SAD entry for 0x%llx\n", addr);
|
||
|
return false;
|
||
|
|
||
|
sad_found:
|
||
|
SKX_GET_ILV(d, i, ilv);
|
||
|
|
||
|
switch (SKX_SAD_INTERLEAVE(sad)) {
|
||
|
case 0:
|
||
|
idx = GET_BITFIELD(addr, 6, 8);
|
||
|
break;
|
||
|
case 1:
|
||
|
idx = GET_BITFIELD(addr, 8, 10);
|
||
|
break;
|
||
|
case 2:
|
||
|
idx = GET_BITFIELD(addr, 12, 14);
|
||
|
break;
|
||
|
case 3:
|
||
|
idx = GET_BITFIELD(addr, 30, 32);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
|
||
|
|
||
|
/* If point to another node, find it and start over */
|
||
|
if (SKX_ILV_REMOTE(tgt)) {
|
||
|
if (remote) {
|
||
|
edac_dbg(0, "Double remote!\n");
|
||
|
return false;
|
||
|
}
|
||
|
remote = 1;
|
||
|
list_for_each_entry(d, skx_edac_list, list) {
|
||
|
if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
|
||
|
goto restart;
|
||
|
}
|
||
|
edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (SKX_SAD_MOD3(sad) == 0) {
|
||
|
lchan = SKX_ILV_TARGET(tgt);
|
||
|
} else {
|
||
|
switch (SKX_SAD_MOD3MODE(sad)) {
|
||
|
case 0:
|
||
|
shift = 6;
|
||
|
break;
|
||
|
case 1:
|
||
|
shift = 8;
|
||
|
break;
|
||
|
case 2:
|
||
|
shift = 12;
|
||
|
break;
|
||
|
default:
|
||
|
edac_dbg(0, "illegal mod3mode\n");
|
||
|
return false;
|
||
|
}
|
||
|
switch (SKX_SAD_MOD3ASMOD2(sad)) {
|
||
|
case 0:
|
||
|
lchan = (addr >> shift) % 3;
|
||
|
break;
|
||
|
case 1:
|
||
|
lchan = (addr >> shift) % 2;
|
||
|
break;
|
||
|
case 2:
|
||
|
lchan = (addr >> shift) % 2;
|
||
|
lchan = (lchan << 1) | !lchan;
|
||
|
break;
|
||
|
case 3:
|
||
|
lchan = ((addr >> shift) % 2) << 1;
|
||
|
break;
|
||
|
}
|
||
|
lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
|
||
|
}
|
||
|
|
||
|
res->dev = d;
|
||
|
res->socket = d->imc[0].src_id;
|
||
|
res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
|
||
|
res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
|
||
|
|
||
|
edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
|
||
|
res->addr, res->socket, res->imc, res->channel);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#define SKX_MAX_TAD 8
|
||
|
|
||
|
#define SKX_GET_TADBASE(d, mc, i, reg) \
|
||
|
pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
|
||
|
#define SKX_GET_TADWAYNESS(d, mc, i, reg) \
|
||
|
pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
|
||
|
#define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
|
||
|
pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))
|
||
|
|
||
|
#define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
|
||
|
#define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
|
||
|
#define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
|
||
|
#define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
|
||
|
#define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
|
||
|
#define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
|
||
|
#define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
|
||
|
|
||
|
/* which bit used for both socket and channel interleave */
|
||
|
static int skx_granularity[] = { 6, 8, 12, 30 };
|
||
|
|
||
|
static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
|
||
|
{
|
||
|
addr >>= shift;
|
||
|
addr /= ways;
|
||
|
addr <<= shift;
|
||
|
|
||
|
return addr | (lowbits & ((1ull << shift) - 1));
|
||
|
}
|
||
|
|
||
|
static bool skx_tad_decode(struct decoded_addr *res)
|
||
|
{
|
||
|
int i;
|
||
|
u32 base, wayness, chnilvoffset;
|
||
|
int skt_interleave_bit, chn_interleave_bit;
|
||
|
u64 channel_addr;
|
||
|
|
||
|
for (i = 0; i < SKX_MAX_TAD; i++) {
|
||
|
SKX_GET_TADBASE(res->dev, res->imc, i, base);
|
||
|
SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
|
||
|
if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
|
||
|
goto tad_found;
|
||
|
}
|
||
|
edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr);
|
||
|
return false;
|
||
|
|
||
|
tad_found:
|
||
|
res->sktways = SKX_TAD_SKTWAYS(wayness);
|
||
|
res->chanways = SKX_TAD_CHNWAYS(wayness);
|
||
|
skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
|
||
|
chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
|
||
|
|
||
|
SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
|
||
|
channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
|
||
|
|
||
|
if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
|
||
|
/* Must handle channel first, then socket */
|
||
|
channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
|
||
|
res->chanways, channel_addr);
|
||
|
channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
|
||
|
res->sktways, channel_addr);
|
||
|
} else {
|
||
|
/* Handle socket then channel. Preserve low bits from original address */
|
||
|
channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
|
||
|
res->sktways, res->addr);
|
||
|
channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
|
||
|
res->chanways, res->addr);
|
||
|
}
|
||
|
|
||
|
res->chan_addr = channel_addr;
|
||
|
|
||
|
edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
|
||
|
res->addr, res->chan_addr, res->sktways, res->chanways);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#define SKX_MAX_RIR 4
|
||
|
|
||
|
#define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
|
||
|
pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
|
||
|
0x108 + 4 * (i), &(reg))
|
||
|
#define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
|
||
|
pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
|
||
|
0x120 + 16 * (idx) + 4 * (i), &(reg))
|
||
|
|
||
|
#define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
|
||
|
#define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
|
||
|
#define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
|
||
|
#define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
|
||
|
#define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
|
||
|
|
||
|
static bool skx_rir_decode(struct decoded_addr *res)
|
||
|
{
|
||
|
int i, idx, chan_rank;
|
||
|
int shift;
|
||
|
u32 rirway, rirlv;
|
||
|
u64 rank_addr, prev_limit = 0, limit;
|
||
|
|
||
|
if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
|
||
|
shift = 6;
|
||
|
else
|
||
|
shift = 13;
|
||
|
|
||
|
for (i = 0; i < SKX_MAX_RIR; i++) {
|
||
|
SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
|
||
|
limit = SKX_RIR_LIMIT(rirway);
|
||
|
if (SKX_RIR_VALID(rirway)) {
|
||
|
if (prev_limit <= res->chan_addr &&
|
||
|
res->chan_addr <= limit)
|
||
|
goto rir_found;
|
||
|
}
|
||
|
prev_limit = limit;
|
||
|
}
|
||
|
edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr);
|
||
|
return false;
|
||
|
|
||
|
rir_found:
|
||
|
rank_addr = res->chan_addr >> shift;
|
||
|
rank_addr /= SKX_RIR_WAYS(rirway);
|
||
|
rank_addr <<= shift;
|
||
|
rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
|
||
|
|
||
|
res->rank_address = rank_addr;
|
||
|
idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
|
||
|
|
||
|
SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
|
||
|
res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
|
||
|
chan_rank = SKX_RIR_CHAN_RANK(rirlv);
|
||
|
res->channel_rank = chan_rank;
|
||
|
res->dimm = chan_rank / 4;
|
||
|
res->rank = chan_rank % 4;
|
||
|
|
||
|
edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
|
||
|
res->addr, res->dimm, res->rank,
|
||
|
res->channel_rank, res->rank_address);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static u8 skx_close_row[] = {
|
||
|
15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
|
||
|
};
|
||
|
|
||
|
static u8 skx_close_column[] = {
|
||
|
3, 4, 5, 14, 19, 23, 24, 25, 26, 27
|
||
|
};
|
||
|
|
||
|
static u8 skx_open_row[] = {
|
||
|
14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
|
||
|
};
|
||
|
|
||
|
static u8 skx_open_column[] = {
|
||
|
3, 4, 5, 6, 7, 8, 9, 10, 11, 12
|
||
|
};
|
||
|
|
||
|
static u8 skx_open_fine_column[] = {
|
||
|
3, 4, 5, 7, 8, 9, 10, 11, 12, 13
|
||
|
};
|
||
|
|
||
|
static int skx_bits(u64 addr, int nbits, u8 *bits)
|
||
|
{
|
||
|
int i, res = 0;
|
||
|
|
||
|
for (i = 0; i < nbits; i++)
|
||
|
res |= ((addr >> bits[i]) & 1) << i;
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
|
||
|
{
|
||
|
int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
|
||
|
|
||
|
if (do_xor)
|
||
|
ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static bool skx_mad_decode(struct decoded_addr *r)
|
||
|
{
|
||
|
struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
|
||
|
int bg0 = dimm->fine_grain_bank ? 6 : 13;
|
||
|
|
||
|
if (dimm->close_pg) {
|
||
|
r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
|
||
|
r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
|
||
|
r->column |= 0x400; /* C10 is autoprecharge, always set */
|
||
|
r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
|
||
|
r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
|
||
|
} else {
|
||
|
r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
|
||
|
if (dimm->fine_grain_bank)
|
||
|
r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
|
||
|
else
|
||
|
r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
|
||
|
r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
|
||
|
r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
|
||
|
}
|
||
|
r->row &= (1u << dimm->rowbits) - 1;
|
||
|
|
||
|
edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
|
||
|
r->addr, r->row, r->column, r->bank_address,
|
||
|
r->bank_group);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool skx_decode(struct decoded_addr *res)
|
||
|
{
|
||
|
return skx_sad_decode(res) && skx_tad_decode(res) &&
|
||
|
skx_rir_decode(res) && skx_mad_decode(res);
|
||
|
}
|
||
|
|
||
|
static struct notifier_block skx_mce_dec = {
|
||
|
.notifier_call = skx_mce_check_error,
|
||
|
.priority = MCE_PRIO_EDAC,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* skx_init:
|
||
|
* make sure we are running on the correct cpu model
|
||
|
* search for all the devices we need
|
||
|
* check which DIMMs are present.
|
||
|
*/
|
||
|
static int __init skx_init(void)
|
||
|
{
|
||
|
const struct x86_cpu_id *id;
|
||
|
const struct munit *m;
|
||
|
const char *owner;
|
||
|
int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8};
|
||
|
u8 mc = 0, src_id, node_id;
|
||
|
struct skx_dev *d;
|
||
|
|
||
|
edac_dbg(2, "\n");
|
||
|
|
||
|
owner = edac_get_owner();
|
||
|
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
|
||
|
return -EBUSY;
|
||
|
|
||
|
id = x86_match_cpu(skx_cpuids);
|
||
|
if (!id)
|
||
|
return -ENODEV;
|
||
|
|
||
|
rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
rc = skx_get_all_bus_mappings(0x2016, 0xcc, SKX, &skx_edac_list);
|
||
|
if (rc < 0)
|
||
|
goto fail;
|
||
|
if (rc == 0) {
|
||
|
edac_dbg(2, "No memory controllers found\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
skx_num_sockets = rc;
|
||
|
|
||
|
for (m = skx_all_munits; m->did; m++) {
|
||
|
rc = get_all_munits(m);
|
||
|
if (rc < 0)
|
||
|
goto fail;
|
||
|
if (rc != m->per_socket * skx_num_sockets) {
|
||
|
edac_dbg(2, "Expected %d, got %d of 0x%x\n",
|
||
|
m->per_socket * skx_num_sockets, rc, m->did);
|
||
|
rc = -ENODEV;
|
||
|
goto fail;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
list_for_each_entry(d, skx_edac_list, list) {
|
||
|
rc = skx_get_src_id(d, &src_id);
|
||
|
if (rc < 0)
|
||
|
goto fail;
|
||
|
rc = skx_get_node_id(d, &node_id);
|
||
|
if (rc < 0)
|
||
|
goto fail;
|
||
|
edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
|
||
|
for (i = 0; i < SKX_NUM_IMC; i++) {
|
||
|
d->imc[i].mc = mc++;
|
||
|
d->imc[i].lmc = i;
|
||
|
d->imc[i].src_id = src_id;
|
||
|
d->imc[i].node_id = node_id;
|
||
|
rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev,
|
||
|
"Skylake Socket", EDAC_MOD_STR,
|
||
|
skx_get_dimm_config);
|
||
|
if (rc < 0)
|
||
|
goto fail;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
skx_set_decode(skx_decode);
|
||
|
|
||
|
if (nvdimm_count && skx_adxl_get() == -ENODEV)
|
||
|
skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n");
|
||
|
|
||
|
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
|
||
|
opstate_init();
|
||
|
|
||
|
setup_skx_debug("skx_test");
|
||
|
|
||
|
mce_register_decode_chain(&skx_mce_dec);
|
||
|
|
||
|
return 0;
|
||
|
fail:
|
||
|
skx_remove();
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void __exit skx_exit(void)
|
||
|
{
|
||
|
edac_dbg(2, "\n");
|
||
|
mce_unregister_decode_chain(&skx_mce_dec);
|
||
|
teardown_skx_debug();
|
||
|
if (nvdimm_count)
|
||
|
skx_adxl_put();
|
||
|
skx_remove();
|
||
|
}
|
||
|
|
||
|
module_init(skx_init);
|
||
|
module_exit(skx_exit);
|
||
|
|
||
|
module_param(edac_op_state, int, 0444);
|
||
|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|
||
|
|
||
|
MODULE_LICENSE("GPL v2");
|
||
|
MODULE_AUTHOR("Tony Luck");
|
||
|
MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");
|