linux-sg2042/include/linux/pagemap.h

668 lines
19 KiB
C
Raw Normal View History

#ifndef _LINUX_PAGEMAP_H
#define _LINUX_PAGEMAP_H
/*
* Copyright 1995 Linus Torvalds
*/
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/compiler.h>
#include <asm/uaccess.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:30 +08:00
#include <linux/hardirq.h> /* for in_interrupt() */
#include <linux/hugetlb_inline.h>
/*
* Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
* allocation mode flags.
*/
enum mapping_flags {
AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
AS_BALLOON_MAP = __GFP_BITS_SHIFT + 4, /* balloon page special map */
mm + fs: store shadow entries in page cache Reclaim will be leaving shadow entries in the page cache radix tree upon evicting the real page. As those pages are found from the LRU, an iput() can lead to the inode being freed concurrently. At this point, reclaim must no longer install shadow pages because the inode freeing code needs to ensure the page tree is really empty. Add an address_space flag, AS_EXITING, that the inode freeing code sets under the tree lock before doing the final truncate. Reclaim will check for this flag before installing shadow pages. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:49 +08:00
AS_EXITING = __GFP_BITS_SHIFT + 5, /* final truncate in progress */
};
static inline void mapping_set_error(struct address_space *mapping, int error)
{
if (unlikely(error)) {
if (error == -ENOSPC)
set_bit(AS_ENOSPC, &mapping->flags);
else
set_bit(AS_EIO, &mapping->flags);
}
}
Ramfs and Ram Disk pages are unevictable Christoph Lameter pointed out that ram disk pages also clutter the LRU lists. When vmscan finds them dirty and tries to clean them, the ram disk writeback function just redirties the page so that it goes back onto the active list. Round and round she goes... With the ram disk driver [rd.c] replaced by the newer 'brd.c', this is no longer the case, as ram disk pages are no longer maintained on the lru. [This makes them unmigratable for defrag or memory hot remove, but that can be addressed by a separate patch series.] However, the ramfs pages behave like ram disk pages used to, so: Define new address_space flag [shares address_space flags member with mapping's gfp mask] to indicate that the address space contains all unevictable pages. This will provide for efficient testing of ramfs pages in page_evictable(). Also provide wrapper functions to set/test the unevictable state to minimize #ifdefs in ramfs driver and any other users of this facility. Set the unevictable state on address_space structures for new ramfs inodes. Test the unevictable state in page_evictable() to cull unevictable pages. These changes depend on [CONFIG_]UNEVICTABLE_LRU. [riel@redhat.com: undo the brd.c part] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Debugged-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:42 +08:00
static inline void mapping_set_unevictable(struct address_space *mapping)
{
set_bit(AS_UNEVICTABLE, &mapping->flags);
}
static inline void mapping_clear_unevictable(struct address_space *mapping)
{
clear_bit(AS_UNEVICTABLE, &mapping->flags);
}
Ramfs and Ram Disk pages are unevictable Christoph Lameter pointed out that ram disk pages also clutter the LRU lists. When vmscan finds them dirty and tries to clean them, the ram disk writeback function just redirties the page so that it goes back onto the active list. Round and round she goes... With the ram disk driver [rd.c] replaced by the newer 'brd.c', this is no longer the case, as ram disk pages are no longer maintained on the lru. [This makes them unmigratable for defrag or memory hot remove, but that can be addressed by a separate patch series.] However, the ramfs pages behave like ram disk pages used to, so: Define new address_space flag [shares address_space flags member with mapping's gfp mask] to indicate that the address space contains all unevictable pages. This will provide for efficient testing of ramfs pages in page_evictable(). Also provide wrapper functions to set/test the unevictable state to minimize #ifdefs in ramfs driver and any other users of this facility. Set the unevictable state on address_space structures for new ramfs inodes. Test the unevictable state in page_evictable() to cull unevictable pages. These changes depend on [CONFIG_]UNEVICTABLE_LRU. [riel@redhat.com: undo the brd.c part] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Debugged-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:42 +08:00
static inline int mapping_unevictable(struct address_space *mapping)
{
mm: remove likely() from mapping_unevictable() The mapping_unevictable() has a likely() around the mapping parameter. This mapping parameter comes from page_mapping() which has an unlikely() that the page will be set as PAGE_MAPPING_ANON, and if so, it will return NULL. One would think that this unlikely() means that the mapping returned by page_mapping() would not be NULL, but where page_mapping() is used just above mapping_unevictable(), that unlikely() is incorrect most of the time. This means that the "likely(mapping)" in mapping_unevictable() is incorrect most of the time. Running the annotated branch profiler on my main box which runs firefox, evolution, xchat and is part of my distcc farm, I had this: correct incorrect % Function File Line ------- --------- - -------- ---- ---- 12872836 1269443893 98 mapping_unevictable pagemap.h 51 35935762 1270265395 97 page_mapping mm.h 659 1306198001 143659 0 page_mapping mm.h 657 203131478 121586 0 page_mapping mm.h 657 5415491 1116 0 page_mapping mm.h 657 74899487 1116 0 page_mapping mm.h 657 203132845 224 0 page_mapping mm.h 659 5415464 27 0 page_mapping mm.h 659 13552 0 0 page_mapping mm.h 657 13552 0 0 page_mapping mm.h 659 242630 0 0 page_mapping mm.h 657 242630 0 0 page_mapping mm.h 659 74899487 0 0 page_mapping mm.h 659 The page_mapping() is a static inline, which is why it shows up multiple times. The mapping_unevictable() is also a static inline but seems to be used only once in my setup. The unlikely in page_mapping() was correct a total of 1909540379 times and incorrect 1270533123 times, with a 39% being incorrect. Perhaps this is enough to remove the unlikely from page_mapping() as well. Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Nick Piggin <npiggin@kernel.dk> Acked-by: Rik van Riel <riel@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:16 +08:00
if (mapping)
return test_bit(AS_UNEVICTABLE, &mapping->flags);
return !!mapping;
Ramfs and Ram Disk pages are unevictable Christoph Lameter pointed out that ram disk pages also clutter the LRU lists. When vmscan finds them dirty and tries to clean them, the ram disk writeback function just redirties the page so that it goes back onto the active list. Round and round she goes... With the ram disk driver [rd.c] replaced by the newer 'brd.c', this is no longer the case, as ram disk pages are no longer maintained on the lru. [This makes them unmigratable for defrag or memory hot remove, but that can be addressed by a separate patch series.] However, the ramfs pages behave like ram disk pages used to, so: Define new address_space flag [shares address_space flags member with mapping's gfp mask] to indicate that the address space contains all unevictable pages. This will provide for efficient testing of ramfs pages in page_evictable(). Also provide wrapper functions to set/test the unevictable state to minimize #ifdefs in ramfs driver and any other users of this facility. Set the unevictable state on address_space structures for new ramfs inodes. Test the unevictable state in page_evictable() to cull unevictable pages. These changes depend on [CONFIG_]UNEVICTABLE_LRU. [riel@redhat.com: undo the brd.c part] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Debugged-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:42 +08:00
}
static inline void mapping_set_balloon(struct address_space *mapping)
{
set_bit(AS_BALLOON_MAP, &mapping->flags);
}
static inline void mapping_clear_balloon(struct address_space *mapping)
{
clear_bit(AS_BALLOON_MAP, &mapping->flags);
}
static inline int mapping_balloon(struct address_space *mapping)
{
return mapping && test_bit(AS_BALLOON_MAP, &mapping->flags);
}
mm + fs: store shadow entries in page cache Reclaim will be leaving shadow entries in the page cache radix tree upon evicting the real page. As those pages are found from the LRU, an iput() can lead to the inode being freed concurrently. At this point, reclaim must no longer install shadow pages because the inode freeing code needs to ensure the page tree is really empty. Add an address_space flag, AS_EXITING, that the inode freeing code sets under the tree lock before doing the final truncate. Reclaim will check for this flag before installing shadow pages. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:49 +08:00
static inline void mapping_set_exiting(struct address_space *mapping)
{
set_bit(AS_EXITING, &mapping->flags);
}
static inline int mapping_exiting(struct address_space *mapping)
{
return test_bit(AS_EXITING, &mapping->flags);
}
static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
{
return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
}
/*
* This is non-atomic. Only to be used before the mapping is activated.
* Probably needs a barrier...
*/
static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
{
m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
(__force unsigned long)mask;
}
/*
* The page cache can done in larger chunks than
* one page, because it allows for more efficient
* throughput (it can then be mapped into user
* space in smaller chunks for same flexibility).
*
* Or rather, it _will_ be done in larger chunks.
*/
#define PAGE_CACHE_SHIFT PAGE_SHIFT
#define PAGE_CACHE_SIZE PAGE_SIZE
#define PAGE_CACHE_MASK PAGE_MASK
#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
#define page_cache_get(page) get_page(page)
#define page_cache_release(page) put_page(page)
void release_pages(struct page **pages, int nr, bool cold);
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:30 +08:00
/*
* speculatively take a reference to a page.
* If the page is free (_count == 0), then _count is untouched, and 0
* is returned. Otherwise, _count is incremented by 1 and 1 is returned.
*
* This function must be called inside the same rcu_read_lock() section as has
* been used to lookup the page in the pagecache radix-tree (or page table):
* this allows allocators to use a synchronize_rcu() to stabilize _count.
*
* Unless an RCU grace period has passed, the count of all pages coming out
* of the allocator must be considered unstable. page_count may return higher
* than expected, and put_page must be able to do the right thing when the
* page has been finished with, no matter what it is subsequently allocated
* for (because put_page is what is used here to drop an invalid speculative
* reference).
*
* This is the interesting part of the lockless pagecache (and lockless
* get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
* has the following pattern:
* 1. find page in radix tree
* 2. conditionally increment refcount
* 3. check the page is still in pagecache (if no, goto 1)
*
* Remove-side that cares about stability of _count (eg. reclaim) has the
* following (with tree_lock held for write):
* A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
* B. remove page from pagecache
* C. free the page
*
* There are 2 critical interleavings that matter:
* - 2 runs before A: in this case, A sees elevated refcount and bails out
* - A runs before 2: in this case, 2 sees zero refcount and retries;
* subsequently, B will complete and 1 will find no page, causing the
* lookup to return NULL.
*
* It is possible that between 1 and 2, the page is removed then the exact same
* page is inserted into the same position in pagecache. That's OK: the
* old find_get_page using tree_lock could equally have run before or after
* such a re-insertion, depending on order that locks are granted.
*
* Lookups racing against pagecache insertion isn't a big problem: either 1
* will find the page or it will not. Likewise, the old find_get_page could run
* either before the insertion or afterwards, depending on timing.
*/
static inline int page_cache_get_speculative(struct page *page)
{
VM_BUG_ON(in_interrupt());
#ifdef CONFIG_TINY_RCU
# ifdef CONFIG_PREEMPT_COUNT
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:30 +08:00
VM_BUG_ON(!in_atomic());
# endif
/*
* Preempt must be disabled here - we rely on rcu_read_lock doing
* this for us.
*
* Pagecache won't be truncated from interrupt context, so if we have
* found a page in the radix tree here, we have pinned its refcount by
* disabling preempt, and hence no need for the "speculative get" that
* SMP requires.
*/
VM_BUG_ON_PAGE(page_count(page) == 0, page);
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:30 +08:00
atomic_inc(&page->_count);
#else
if (unlikely(!get_page_unless_zero(page))) {
/*
* Either the page has been freed, or will be freed.
* In either case, retry here and the caller should
* do the right thing (see comments above).
*/
return 0;
}
#endif
VM_BUG_ON_PAGE(PageTail(page), page);
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:30 +08:00
return 1;
}
/*
* Same as above, but add instead of inc (could just be merged)
*/
static inline int page_cache_add_speculative(struct page *page, int count)
{
VM_BUG_ON(in_interrupt());
#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
# ifdef CONFIG_PREEMPT_COUNT
VM_BUG_ON(!in_atomic());
# endif
VM_BUG_ON_PAGE(page_count(page) == 0, page);
atomic_add(count, &page->_count);
#else
if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
return 0;
#endif
VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
return 1;
}
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:30 +08:00
static inline int page_freeze_refs(struct page *page, int count)
{
return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
}
static inline void page_unfreeze_refs(struct page *page, int count)
{
VM_BUG_ON_PAGE(page_count(page) != 0, page);
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:30 +08:00
VM_BUG_ON(count == 0);
atomic_set(&page->_count, count);
}
#ifdef CONFIG_NUMA
extern struct page *__page_cache_alloc(gfp_t gfp);
#else
static inline struct page *__page_cache_alloc(gfp_t gfp)
{
return alloc_pages(gfp, 0);
}
#endif
static inline struct page *page_cache_alloc(struct address_space *x)
{
return __page_cache_alloc(mapping_gfp_mask(x));
}
static inline struct page *page_cache_alloc_cold(struct address_space *x)
{
return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
}
static inline struct page *page_cache_alloc_readahead(struct address_space *x)
{
return __page_cache_alloc(mapping_gfp_mask(x) |
__GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
}
typedef int filler_t(void *, struct page *);
mm: filemap: move radix tree hole searching here The radix tree hole searching code is only used for page cache, for example the readahead code trying to get a a picture of the area surrounding a fault. It sufficed to rely on the radix tree definition of holes, which is "empty tree slot". But this is about to change, though, as shadow page descriptors will be stored in the page cache after the actual pages get evicted from memory. Move the functions over to mm/filemap.c and make them native page cache operations, where they can later be adapted to handle the new definition of "page cache hole". Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:44 +08:00
pgoff_t page_cache_next_hole(struct address_space *mapping,
pgoff_t index, unsigned long max_scan);
pgoff_t page_cache_prev_hole(struct address_space *mapping,
pgoff_t index, unsigned long max_scan);
mm: non-atomically mark page accessed during page cache allocation where possible aops->write_begin may allocate a new page and make it visible only to have mark_page_accessed called almost immediately after. Once the page is visible the atomic operations are necessary which is noticable overhead when writing to an in-memory filesystem like tmpfs but should also be noticable with fast storage. The objective of the patch is to initialse the accessed information with non-atomic operations before the page is visible. The bulk of filesystems directly or indirectly use grab_cache_page_write_begin or find_or_create_page for the initial allocation of a page cache page. This patch adds an init_page_accessed() helper which behaves like the first call to mark_page_accessed() but may called before the page is visible and can be done non-atomically. The primary APIs of concern in this care are the following and are used by most filesystems. find_get_page find_lock_page find_or_create_page grab_cache_page_nowait grab_cache_page_write_begin All of them are very similar in detail to the patch creates a core helper pagecache_get_page() which takes a flags parameter that affects its behavior such as whether the page should be marked accessed or not. Then old API is preserved but is basically a thin wrapper around this core function. Each of the filesystems are then updated to avoid calling mark_page_accessed when it is known that the VM interfaces have already done the job. There is a slight snag in that the timing of the mark_page_accessed() has now changed so in rare cases it's possible a page gets to the end of the LRU as PageReferenced where as previously it might have been repromoted. This is expected to be rare but it's worth the filesystem people thinking about it in case they see a problem with the timing change. It is also the case that some filesystems may be marking pages accessed that previously did not but it makes sense that filesystems have consistent behaviour in this regard. The test case used to evaulate this is a simple dd of a large file done multiple times with the file deleted on each iterations. The size of the file is 1/10th physical memory to avoid dirty page balancing. In the async case it will be possible that the workload completes without even hitting the disk and will have variable results but highlight the impact of mark_page_accessed for async IO. The sync results are expected to be more stable. The exception is tmpfs where the normal case is for the "IO" to not hit the disk. The test machine was single socket and UMA to avoid any scheduling or NUMA artifacts. Throughput and wall times are presented for sync IO, only wall times are shown for async as the granularity reported by dd and the variability is unsuitable for comparison. As async results were variable do to writback timings, I'm only reporting the maximum figures. The sync results were stable enough to make the mean and stddev uninteresting. The performance results are reported based on a run with no profiling. Profile data is based on a separate run with oprofile running. async dd 3.15.0-rc3 3.15.0-rc3 vanilla accessed-v2 ext3 Max elapsed 13.9900 ( 0.00%) 11.5900 ( 17.16%) tmpfs Max elapsed 0.5100 ( 0.00%) 0.4900 ( 3.92%) btrfs Max elapsed 12.8100 ( 0.00%) 12.7800 ( 0.23%) ext4 Max elapsed 18.6000 ( 0.00%) 13.3400 ( 28.28%) xfs Max elapsed 12.5600 ( 0.00%) 2.0900 ( 83.36%) The XFS figure is a bit strange as it managed to avoid a worst case by sheer luck but the average figures looked reasonable. samples percentage ext3 86107 0.9783 vmlinux-3.15.0-rc4-vanilla mark_page_accessed ext3 23833 0.2710 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed ext3 5036 0.0573 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed ext4 64566 0.8961 vmlinux-3.15.0-rc4-vanilla mark_page_accessed ext4 5322 0.0713 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed ext4 2869 0.0384 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed xfs 62126 1.7675 vmlinux-3.15.0-rc4-vanilla mark_page_accessed xfs 1904 0.0554 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed xfs 103 0.0030 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed btrfs 10655 0.1338 vmlinux-3.15.0-rc4-vanilla mark_page_accessed btrfs 2020 0.0273 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed btrfs 587 0.0079 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed tmpfs 59562 3.2628 vmlinux-3.15.0-rc4-vanilla mark_page_accessed tmpfs 1210 0.0696 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed tmpfs 94 0.0054 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed [akpm@linux-foundation.org: don't run init_page_accessed() against an uninitialised pointer] Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Tested-by: Prabhakar Lad <prabhakar.csengg@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:10:31 +08:00
#define FGP_ACCESSED 0x00000001
#define FGP_LOCK 0x00000002
#define FGP_CREAT 0x00000004
#define FGP_WRITE 0x00000008
#define FGP_NOFS 0x00000010
#define FGP_NOWAIT 0x00000020
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask);
/**
* find_get_page - find and get a page reference
* @mapping: the address_space to search
* @offset: the page index
*
* Looks up the page cache slot at @mapping & @offset. If there is a
* page cache page, it is returned with an increased refcount.
*
* Otherwise, %NULL is returned.
*/
static inline struct page *find_get_page(struct address_space *mapping,
pgoff_t offset)
{
return pagecache_get_page(mapping, offset, 0, 0, 0);
}
static inline struct page *find_get_page_flags(struct address_space *mapping,
pgoff_t offset, int fgp_flags)
{
return pagecache_get_page(mapping, offset, fgp_flags, 0, 0);
}
/**
* find_lock_page - locate, pin and lock a pagecache page
* pagecache_get_page - find and get a page reference
* @mapping: the address_space to search
* @offset: the page index
*
* Looks up the page cache slot at @mapping & @offset. If there is a
* page cache page, it is returned locked and with an increased
* refcount.
*
* Otherwise, %NULL is returned.
*
* find_lock_page() may sleep.
*/
static inline struct page *find_lock_page(struct address_space *mapping,
pgoff_t offset)
{
return pagecache_get_page(mapping, offset, FGP_LOCK, 0, 0);
}
/**
* find_or_create_page - locate or add a pagecache page
* @mapping: the page's address_space
* @index: the page's index into the mapping
* @gfp_mask: page allocation mode
*
* Looks up the page cache slot at @mapping & @offset. If there is a
* page cache page, it is returned locked and with an increased
* refcount.
*
* If the page is not present, a new page is allocated using @gfp_mask
* and added to the page cache and the VM's LRU list. The page is
* returned locked and with an increased refcount.
*
* On memory exhaustion, %NULL is returned.
*
* find_or_create_page() may sleep, even if @gfp_flags specifies an
* atomic allocation!
*/
static inline struct page *find_or_create_page(struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
return pagecache_get_page(mapping, offset,
FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
gfp_mask, gfp_mask & GFP_RECLAIM_MASK);
}
/**
* grab_cache_page_nowait - returns locked page at given index in given cache
* @mapping: target address_space
* @index: the page index
*
* Same as grab_cache_page(), but do not wait if the page is unavailable.
* This is intended for speculative data generators, where the data can
* be regenerated if the page couldn't be grabbed. This routine should
* be safe to call while holding the lock for another page.
*
* Clear __GFP_FS when allocating the page to avoid recursion into the fs
* and deadlock against the caller's locked page.
*/
static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
pgoff_t index)
{
return pagecache_get_page(mapping, index,
FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
mapping_gfp_mask(mapping),
GFP_NOFS);
}
2014-04-04 05:47:46 +08:00
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
unsigned int nr_entries, struct page **entries,
pgoff_t *indices);
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
unsigned int nr_pages, struct page **pages);
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
unsigned int nr_pages, struct page **pages);
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
int tag, unsigned int nr_pages, struct page **pages);
fs: symlink write_begin allocation context fix With the write_begin/write_end aops, page_symlink was broken because it could no longer pass a GFP_NOFS type mask into the point where the allocations happened. They are done in write_begin, which would always assume that the filesystem can be entered from reclaim. This bug could cause filesystem deadlocks. The funny thing with having a gfp_t mask there is that it doesn't really allow the caller to arbitrarily tinker with the context in which it can be called. It couldn't ever be GFP_ATOMIC, for example, because it needs to take the page lock. The only thing any callers care about is __GFP_FS anyway, so turn that into a single flag. Add a new flag for write_begin, AOP_FLAG_NOFS. Filesystems can now act on this flag in their write_begin function. Change __grab_cache_page to accept a nofs argument as well, to honour that flag (while we're there, change the name to grab_cache_page_write_begin which is more instructive and does away with random leading underscores). This is really a more flexible way to go in the end anyway -- if a filesystem happens to want any extra allocations aside from the pagecache ones in ints write_begin function, it may now use GFP_KERNEL (rather than GFP_NOFS) for common case allocations (eg. ocfs2_alloc_write_ctxt, for a random example). [kosaki.motohiro@jp.fujitsu.com: fix ubifs] [kosaki.motohiro@jp.fujitsu.com: fix fuse] Signed-off-by: Nick Piggin <npiggin@suse.de> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <stable@kernel.org> [2.6.28.x] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Cleaned up the calling convention: just pass in the AOP flags untouched to the grab_cache_page_write_begin() function. That just simplifies everybody, and may even allow future expansion of the logic. - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-05 04:00:53 +08:00
struct page *grab_cache_page_write_begin(struct address_space *mapping,
pgoff_t index, unsigned flags);
/*
* Returns locked page at given index in given cache, creating it if needed.
*/
static inline struct page *grab_cache_page(struct address_space *mapping,
pgoff_t index)
{
return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
}
extern struct page * read_cache_page(struct address_space *mapping,
pgoff_t index, filler_t *filler, void *data);
extern struct page * read_cache_page_gfp(struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask);
extern int read_cache_pages(struct address_space *mapping,
struct list_head *pages, filler_t *filler, void *data);
static inline struct page *read_mapping_page(struct address_space *mapping,
pgoff_t index, void *data)
{
filler_t *filler = (filler_t *)mapping->a_ops->readpage;
return read_cache_page(mapping, index, filler, data);
}
/*
* Return byte-offset into filesystem object for page.
*/
static inline loff_t page_offset(struct page *page)
{
return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
}
static inline loff_t page_file_offset(struct page *page)
{
return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT;
}
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 08:29:16 +08:00
extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
unsigned long address);
static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
unsigned long address)
{
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 08:29:16 +08:00
pgoff_t pgoff;
if (unlikely(is_vm_hugetlb_page(vma)))
return linear_hugepage_index(vma, address);
pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
pgoff += vma->vm_pgoff;
return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
}
extern void __lock_page(struct page *page);
extern int __lock_page_killable(struct page *page);
mm: retry page fault when blocking on disk transfer This change reduces mmap_sem hold times that are caused by waiting for disk transfers when accessing file mapped VMAs. It introduces the VM_FAULT_ALLOW_RETRY flag, which indicates that the call site wants mmap_sem to be released if blocking on a pending disk transfer. In that case, filemap_fault() returns the VM_FAULT_RETRY status bit and do_page_fault() will then re-acquire mmap_sem and retry the page fault. It is expected that the retry will hit the same page which will now be cached, and thus it will complete with a low mmap_sem hold time. Tests: - microbenchmark: thread A mmaps a large file and does random read accesses to the mmaped area - achieves about 55 iterations/s. Thread B does mmap/munmap in a loop at a separate location - achieves 55 iterations/s before, 15000 iterations/s after. - We are seeing related effects in some applications in house, which show significant performance regressions when running without this change. [akpm@linux-foundation.org: fix warning & crash] Signed-off-by: Michel Lespinasse <walken@google.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Cc: Ying Han <yinghan@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Acked-by: "H. Peter Anvin" <hpa@zytor.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-27 05:21:57 +08:00
extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
unsigned int flags);
extern void unlock_page(struct page *page);
static inline void __set_page_locked(struct page *page)
{
__set_bit(PG_locked, &page->flags);
}
static inline void __clear_page_locked(struct page *page)
{
__clear_bit(PG_locked, &page->flags);
}
static inline int trylock_page(struct page *page)
{
return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
}
/*
* lock_page may only be called if we have the page's inode pinned.
*/
static inline void lock_page(struct page *page)
{
might_sleep();
if (!trylock_page(page))
__lock_page(page);
}
/*
* lock_page_killable is like lock_page but can be interrupted by fatal
* signals. It returns 0 if it locked the page and -EINTR if it was
* killed while waiting.
*/
static inline int lock_page_killable(struct page *page)
{
might_sleep();
if (!trylock_page(page))
return __lock_page_killable(page);
return 0;
}
mm: retry page fault when blocking on disk transfer This change reduces mmap_sem hold times that are caused by waiting for disk transfers when accessing file mapped VMAs. It introduces the VM_FAULT_ALLOW_RETRY flag, which indicates that the call site wants mmap_sem to be released if blocking on a pending disk transfer. In that case, filemap_fault() returns the VM_FAULT_RETRY status bit and do_page_fault() will then re-acquire mmap_sem and retry the page fault. It is expected that the retry will hit the same page which will now be cached, and thus it will complete with a low mmap_sem hold time. Tests: - microbenchmark: thread A mmaps a large file and does random read accesses to the mmaped area - achieves about 55 iterations/s. Thread B does mmap/munmap in a loop at a separate location - achieves 55 iterations/s before, 15000 iterations/s after. - We are seeing related effects in some applications in house, which show significant performance regressions when running without this change. [akpm@linux-foundation.org: fix warning & crash] Signed-off-by: Michel Lespinasse <walken@google.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Cc: Ying Han <yinghan@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Acked-by: "H. Peter Anvin" <hpa@zytor.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-27 05:21:57 +08:00
/*
* lock_page_or_retry - Lock the page, unless this would block and the
* caller indicated that it can handle a retry.
*/
static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
unsigned int flags)
{
might_sleep();
return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
}
/*
* This is exported only for wait_on_page_locked/wait_on_page_writeback.
* Never use this directly!
*/
extern void wait_on_page_bit(struct page *page, int bit_nr);
extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
static inline int wait_on_page_locked_killable(struct page *page)
{
if (PageLocked(page))
return wait_on_page_bit_killable(page, PG_locked);
return 0;
}
/*
* Wait for a page to be unlocked.
*
* This must be called with the caller "holding" the page,
* ie with increased "page->count" so that the page won't
* go away during the wait..
*/
static inline void wait_on_page_locked(struct page *page)
{
if (PageLocked(page))
wait_on_page_bit(page, PG_locked);
}
/*
* Wait for a page to complete writeback
*/
static inline void wait_on_page_writeback(struct page *page)
{
if (PageWriteback(page))
wait_on_page_bit(page, PG_writeback);
}
extern void end_page_writeback(struct page *page);
mm: only enforce stable page writes if the backing device requires it Create a helper function to check if a backing device requires stable page writes and, if so, performs the necessary wait. Then, make it so that all points in the memory manager that handle making pages writable use the helper function. This should provide stable page write support to most filesystems, while eliminating unnecessary waiting for devices that don't require the feature. Before this patchset, all filesystems would block, regardless of whether or not it was necessary. ext3 would wait, but still generate occasional checksum errors. The network filesystems were left to do their own thing, so they'd wait too. After this patchset, all the disk filesystems except ext3 and btrfs will wait only if the hardware requires it. ext3 (if necessary) snapshots pages instead of blocking, and btrfs provides its own bdi so the mm will never wait. Network filesystems haven't been touched, so either they provide their own stable page guarantees or they don't block at all. The blocking behavior is back to what it was before 3.0 if you don't have a disk requiring stable page writes. Here's the result of using dbench to test latency on ext2: 3.8.0-rc3: Operation Count AvgLat MaxLat ---------------------------------------- WriteX 109347 0.028 59.817 ReadX 347180 0.004 3.391 Flush 15514 29.828 287.283 Throughput 57.429 MB/sec 4 clients 4 procs max_latency=287.290 ms 3.8.0-rc3 + patches: WriteX 105556 0.029 4.273 ReadX 335004 0.005 4.112 Flush 14982 30.540 298.634 Throughput 55.4496 MB/sec 4 clients 4 procs max_latency=298.650 ms As you can see, the maximum write latency drops considerably with this patch enabled. The other filesystems (ext3/ext4/xfs/btrfs) behave similarly, but see the cover letter for those results. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Acked-by: Steven Whitehouse <swhiteho@redhat.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Ron Minnich <rminnich@sandia.gov> Cc: Latchesar Ionkov <lucho@ionkov.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-22 08:42:51 +08:00
void wait_for_stable_page(struct page *page);
void page_endio(struct page *page, int rw, int err);
/*
* Add an arbitrary waiter to a page's wait queue
*/
extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
/*
* Fault a userspace page into pagetables. Return non-zero on a fault.
*
* This assumes that two userspace pages are always sufficient. That's
* not true if PAGE_CACHE_SIZE > PAGE_SIZE.
*/
static inline int fault_in_pages_writeable(char __user *uaddr, int size)
{
int ret;
mm: fix pagecache write deadlocks Modify the core write() code so that it won't take a pagefault while holding a lock on the pagecache page. There are a number of different deadlocks possible if we try to do such a thing: 1. generic_buffered_write 2. lock_page 3. prepare_write 4. unlock_page+vmtruncate 5. copy_from_user 6. mmap_sem(r) 7. handle_mm_fault 8. lock_page (filemap_nopage) 9. commit_write 10. unlock_page a. sys_munmap / sys_mlock / others b. mmap_sem(w) c. make_pages_present d. get_user_pages e. handle_mm_fault f. lock_page (filemap_nopage) 2,8 - recursive deadlock if page is same 2,8;2,8 - ABBA deadlock is page is different 2,6;b,f - ABBA deadlock if page is same The solution is as follows: 1. If we find the destination page is uptodate, continue as normal, but use atomic usercopies which do not take pagefaults and do not zero the uncopied tail of the destination. The destination is already uptodate, so we can commit_write the full length even if there was a partial copy: it does not matter that the tail was not modified, because if it is dirtied and written back to disk it will not cause any problems (uptodate *means* that the destination page is as new or newer than the copy on disk). 1a. The above requires that fault_in_pages_readable correctly returns access information, because atomic usercopies cannot distinguish between non-present pages in a readable mapping, from lack of a readable mapping. 2. If we find the destination page is non uptodate, unlock it (this could be made slightly more optimal), then allocate a temporary page to copy the source data into. Relock the destination page and continue with the copy. However, instead of a usercopy (which might take a fault), copy the data from the pinned temporary page via the kernel address space. (also, rename maxlen to seglen, because it was confusing) This increases the CPU/memory copy cost by almost 50% on the affected workloads. That will be solved by introducing a new set of pagecache write aops in a subsequent patch. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:59 +08:00
if (unlikely(size == 0))
return 0;
/*
* Writing zeroes into userspace here is OK, because we know that if
* the zero gets there, we'll be overwriting it.
*/
ret = __put_user(0, uaddr);
if (ret == 0) {
char __user *end = uaddr + size - 1;
/*
* If the page was already mapped, this will get a cache miss
* for sure, so try to avoid doing it.
*/
if (((unsigned long)uaddr & PAGE_MASK) !=
((unsigned long)end & PAGE_MASK))
ret = __put_user(0, end);
}
return ret;
}
mm: fix pagecache write deadlocks Modify the core write() code so that it won't take a pagefault while holding a lock on the pagecache page. There are a number of different deadlocks possible if we try to do such a thing: 1. generic_buffered_write 2. lock_page 3. prepare_write 4. unlock_page+vmtruncate 5. copy_from_user 6. mmap_sem(r) 7. handle_mm_fault 8. lock_page (filemap_nopage) 9. commit_write 10. unlock_page a. sys_munmap / sys_mlock / others b. mmap_sem(w) c. make_pages_present d. get_user_pages e. handle_mm_fault f. lock_page (filemap_nopage) 2,8 - recursive deadlock if page is same 2,8;2,8 - ABBA deadlock is page is different 2,6;b,f - ABBA deadlock if page is same The solution is as follows: 1. If we find the destination page is uptodate, continue as normal, but use atomic usercopies which do not take pagefaults and do not zero the uncopied tail of the destination. The destination is already uptodate, so we can commit_write the full length even if there was a partial copy: it does not matter that the tail was not modified, because if it is dirtied and written back to disk it will not cause any problems (uptodate *means* that the destination page is as new or newer than the copy on disk). 1a. The above requires that fault_in_pages_readable correctly returns access information, because atomic usercopies cannot distinguish between non-present pages in a readable mapping, from lack of a readable mapping. 2. If we find the destination page is non uptodate, unlock it (this could be made slightly more optimal), then allocate a temporary page to copy the source data into. Relock the destination page and continue with the copy. However, instead of a usercopy (which might take a fault), copy the data from the pinned temporary page via the kernel address space. (also, rename maxlen to seglen, because it was confusing) This increases the CPU/memory copy cost by almost 50% on the affected workloads. That will be solved by introducing a new set of pagecache write aops in a subsequent patch. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:59 +08:00
static inline int fault_in_pages_readable(const char __user *uaddr, int size)
{
volatile char c;
int ret;
mm: fix pagecache write deadlocks Modify the core write() code so that it won't take a pagefault while holding a lock on the pagecache page. There are a number of different deadlocks possible if we try to do such a thing: 1. generic_buffered_write 2. lock_page 3. prepare_write 4. unlock_page+vmtruncate 5. copy_from_user 6. mmap_sem(r) 7. handle_mm_fault 8. lock_page (filemap_nopage) 9. commit_write 10. unlock_page a. sys_munmap / sys_mlock / others b. mmap_sem(w) c. make_pages_present d. get_user_pages e. handle_mm_fault f. lock_page (filemap_nopage) 2,8 - recursive deadlock if page is same 2,8;2,8 - ABBA deadlock is page is different 2,6;b,f - ABBA deadlock if page is same The solution is as follows: 1. If we find the destination page is uptodate, continue as normal, but use atomic usercopies which do not take pagefaults and do not zero the uncopied tail of the destination. The destination is already uptodate, so we can commit_write the full length even if there was a partial copy: it does not matter that the tail was not modified, because if it is dirtied and written back to disk it will not cause any problems (uptodate *means* that the destination page is as new or newer than the copy on disk). 1a. The above requires that fault_in_pages_readable correctly returns access information, because atomic usercopies cannot distinguish between non-present pages in a readable mapping, from lack of a readable mapping. 2. If we find the destination page is non uptodate, unlock it (this could be made slightly more optimal), then allocate a temporary page to copy the source data into. Relock the destination page and continue with the copy. However, instead of a usercopy (which might take a fault), copy the data from the pinned temporary page via the kernel address space. (also, rename maxlen to seglen, because it was confusing) This increases the CPU/memory copy cost by almost 50% on the affected workloads. That will be solved by introducing a new set of pagecache write aops in a subsequent patch. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:59 +08:00
if (unlikely(size == 0))
return 0;
ret = __get_user(c, uaddr);
if (ret == 0) {
const char __user *end = uaddr + size - 1;
if (((unsigned long)uaddr & PAGE_MASK) !=
((unsigned long)end & PAGE_MASK)) {
ret = __get_user(c, end);
(void)c;
}
}
mm: fix pagecache write deadlocks Modify the core write() code so that it won't take a pagefault while holding a lock on the pagecache page. There are a number of different deadlocks possible if we try to do such a thing: 1. generic_buffered_write 2. lock_page 3. prepare_write 4. unlock_page+vmtruncate 5. copy_from_user 6. mmap_sem(r) 7. handle_mm_fault 8. lock_page (filemap_nopage) 9. commit_write 10. unlock_page a. sys_munmap / sys_mlock / others b. mmap_sem(w) c. make_pages_present d. get_user_pages e. handle_mm_fault f. lock_page (filemap_nopage) 2,8 - recursive deadlock if page is same 2,8;2,8 - ABBA deadlock is page is different 2,6;b,f - ABBA deadlock if page is same The solution is as follows: 1. If we find the destination page is uptodate, continue as normal, but use atomic usercopies which do not take pagefaults and do not zero the uncopied tail of the destination. The destination is already uptodate, so we can commit_write the full length even if there was a partial copy: it does not matter that the tail was not modified, because if it is dirtied and written back to disk it will not cause any problems (uptodate *means* that the destination page is as new or newer than the copy on disk). 1a. The above requires that fault_in_pages_readable correctly returns access information, because atomic usercopies cannot distinguish between non-present pages in a readable mapping, from lack of a readable mapping. 2. If we find the destination page is non uptodate, unlock it (this could be made slightly more optimal), then allocate a temporary page to copy the source data into. Relock the destination page and continue with the copy. However, instead of a usercopy (which might take a fault), copy the data from the pinned temporary page via the kernel address space. (also, rename maxlen to seglen, because it was confusing) This increases the CPU/memory copy cost by almost 50% on the affected workloads. That will be solved by introducing a new set of pagecache write aops in a subsequent patch. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:59 +08:00
return ret;
}
/*
* Multipage variants of the above prefault helpers, useful if more than
* PAGE_SIZE of data needs to be prefaulted. These are separate from the above
* functions (which only handle up to PAGE_SIZE) to avoid clobbering the
* filemap.c hotpaths.
*/
static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
{
int ret = 0;
char __user *end = uaddr + size - 1;
if (unlikely(size == 0))
return ret;
/*
* Writing zeroes into userspace here is OK, because we know that if
* the zero gets there, we'll be overwriting it.
*/
while (uaddr <= end) {
ret = __put_user(0, uaddr);
if (ret != 0)
return ret;
uaddr += PAGE_SIZE;
}
/* Check whether the range spilled into the next page. */
if (((unsigned long)uaddr & PAGE_MASK) ==
((unsigned long)end & PAGE_MASK))
ret = __put_user(0, end);
return ret;
}
static inline int fault_in_multipages_readable(const char __user *uaddr,
int size)
{
volatile char c;
int ret = 0;
const char __user *end = uaddr + size - 1;
if (unlikely(size == 0))
return ret;
while (uaddr <= end) {
ret = __get_user(c, uaddr);
if (ret != 0)
return ret;
uaddr += PAGE_SIZE;
}
/* Check whether the range spilled into the next page. */
if (((unsigned long)uaddr & PAGE_MASK) ==
((unsigned long)end & PAGE_MASK)) {
ret = __get_user(c, end);
(void)c;
}
return ret;
}
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask);
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask);
mm: introduce delete_from_page_cache() Presently we increase the page refcount in add_to_page_cache() but don't decrease it in remove_from_page_cache(). Such asymmetry adds confusion, requiring that callers notice it and a comment explaining why they release a page reference. It's not a good API. A long time ago, Hugh tried it (http://lkml.org/lkml/2004/10/24/140) but gave up because reiser4's drop_page() had to unlock the page between removing it from page cache and doing the page_cache_release(). But now the situation is changed. I think at least things in current mainline don't have any obstacles. The problem is for out-of-mainline filesystems - if they have done such things as reiser4, this patch could be a problem but they will discover this at compile time since we remove remove_from_page_cache(). This patch: This function works as just wrapper remove_from_page_cache(). The difference is that it decreases page references in itself. So caller have to make sure it has a page reference before calling. This patch is ready for removing remove_from_page_cache(). Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Edward Shishkin <edward.shishkin@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:53 +08:00
extern void delete_from_page_cache(struct page *page);
mm + fs: store shadow entries in page cache Reclaim will be leaving shadow entries in the page cache radix tree upon evicting the real page. As those pages are found from the LRU, an iput() can lead to the inode being freed concurrently. At this point, reclaim must no longer install shadow pages because the inode freeing code needs to ensure the page tree is really empty. Add an address_space flag, AS_EXITING, that the inode freeing code sets under the tree lock before doing the final truncate. Reclaim will check for this flag before installing shadow pages. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:49 +08:00
extern void __delete_from_page_cache(struct page *page, void *shadow);
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
/*
* Like add_to_page_cache_locked, but used to add newly allocated pages:
* the page is new, so we can just run __set_page_locked() against it.
*/
static inline int add_to_page_cache(struct page *page,
struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
{
int error;
__set_page_locked(page);
error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
if (unlikely(error))
__clear_page_locked(page);
return error;
}
#endif /* _LINUX_PAGEMAP_H */