License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2016-01-05 06:41:45 +08:00
|
|
|
/*
|
|
|
|
* To speed up listener socket lookup, create an array to store all sockets
|
|
|
|
* listening on the same port. This allows a decision to be made after finding
|
2016-01-05 06:41:47 +08:00
|
|
|
* the first socket. An optional BPF program can also be configured for
|
|
|
|
* selecting the socket index from the array of available sockets.
|
2016-01-05 06:41:45 +08:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <net/sock_reuseport.h>
|
2016-01-05 06:41:47 +08:00
|
|
|
#include <linux/bpf.h>
|
2016-01-05 06:41:45 +08:00
|
|
|
#include <linux/rcupdate.h>
|
|
|
|
|
|
|
|
#define INIT_SOCKS 128
|
|
|
|
|
|
|
|
static DEFINE_SPINLOCK(reuseport_lock);
|
|
|
|
|
2017-04-03 06:18:23 +08:00
|
|
|
static struct sock_reuseport *__reuseport_alloc(unsigned int max_socks)
|
2016-01-05 06:41:45 +08:00
|
|
|
{
|
2017-04-03 06:18:23 +08:00
|
|
|
unsigned int size = sizeof(struct sock_reuseport) +
|
2016-01-05 06:41:45 +08:00
|
|
|
sizeof(struct sock *) * max_socks;
|
|
|
|
struct sock_reuseport *reuse = kzalloc(size, GFP_ATOMIC);
|
|
|
|
|
|
|
|
if (!reuse)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
reuse->max_socks = max_socks;
|
|
|
|
|
2016-01-05 06:41:47 +08:00
|
|
|
RCU_INIT_POINTER(reuse->prog, NULL);
|
2016-01-05 06:41:45 +08:00
|
|
|
return reuse;
|
|
|
|
}
|
|
|
|
|
|
|
|
int reuseport_alloc(struct sock *sk)
|
|
|
|
{
|
|
|
|
struct sock_reuseport *reuse;
|
|
|
|
|
|
|
|
/* bh lock used since this function call may precede hlist lock in
|
|
|
|
* soft irq of receive path or setsockopt from process context
|
|
|
|
*/
|
|
|
|
spin_lock_bh(&reuseport_lock);
|
2017-10-20 03:00:29 +08:00
|
|
|
|
|
|
|
/* Allocation attempts can occur concurrently via the setsockopt path
|
|
|
|
* and the bind/hash path. Nothing to do when we lose the race.
|
|
|
|
*/
|
|
|
|
if (rcu_dereference_protected(sk->sk_reuseport_cb,
|
|
|
|
lockdep_is_held(&reuseport_lock)))
|
|
|
|
goto out;
|
|
|
|
|
2016-01-05 06:41:45 +08:00
|
|
|
reuse = __reuseport_alloc(INIT_SOCKS);
|
|
|
|
if (!reuse) {
|
|
|
|
spin_unlock_bh(&reuseport_lock);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
reuse->socks[0] = sk;
|
|
|
|
reuse->num_socks = 1;
|
|
|
|
rcu_assign_pointer(sk->sk_reuseport_cb, reuse);
|
|
|
|
|
2017-10-20 03:00:29 +08:00
|
|
|
out:
|
2016-01-05 06:41:45 +08:00
|
|
|
spin_unlock_bh(&reuseport_lock);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(reuseport_alloc);
|
|
|
|
|
|
|
|
static struct sock_reuseport *reuseport_grow(struct sock_reuseport *reuse)
|
|
|
|
{
|
|
|
|
struct sock_reuseport *more_reuse;
|
|
|
|
u32 more_socks_size, i;
|
|
|
|
|
|
|
|
more_socks_size = reuse->max_socks * 2U;
|
|
|
|
if (more_socks_size > U16_MAX)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
more_reuse = __reuseport_alloc(more_socks_size);
|
|
|
|
if (!more_reuse)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
more_reuse->max_socks = more_socks_size;
|
|
|
|
more_reuse->num_socks = reuse->num_socks;
|
2016-01-05 06:41:47 +08:00
|
|
|
more_reuse->prog = reuse->prog;
|
2016-01-05 06:41:45 +08:00
|
|
|
|
|
|
|
memcpy(more_reuse->socks, reuse->socks,
|
|
|
|
reuse->num_socks * sizeof(struct sock *));
|
|
|
|
|
|
|
|
for (i = 0; i < reuse->num_socks; ++i)
|
|
|
|
rcu_assign_pointer(reuse->socks[i]->sk_reuseport_cb,
|
|
|
|
more_reuse);
|
|
|
|
|
2016-01-05 06:41:47 +08:00
|
|
|
/* Note: we use kfree_rcu here instead of reuseport_free_rcu so
|
|
|
|
* that reuse and more_reuse can temporarily share a reference
|
|
|
|
* to prog.
|
|
|
|
*/
|
2016-01-05 06:41:45 +08:00
|
|
|
kfree_rcu(reuse, rcu);
|
|
|
|
return more_reuse;
|
|
|
|
}
|
|
|
|
|
2018-02-03 02:27:27 +08:00
|
|
|
static void reuseport_free_rcu(struct rcu_head *head)
|
|
|
|
{
|
|
|
|
struct sock_reuseport *reuse;
|
|
|
|
|
|
|
|
reuse = container_of(head, struct sock_reuseport, rcu);
|
|
|
|
if (reuse->prog)
|
|
|
|
bpf_prog_destroy(reuse->prog);
|
|
|
|
kfree(reuse);
|
|
|
|
}
|
|
|
|
|
2016-01-05 06:41:45 +08:00
|
|
|
/**
|
|
|
|
* reuseport_add_sock - Add a socket to the reuseport group of another.
|
|
|
|
* @sk: New socket to add to the group.
|
|
|
|
* @sk2: Socket belonging to the existing reuseport group.
|
|
|
|
* May return ENOMEM and not add socket to group under memory pressure.
|
|
|
|
*/
|
2016-01-20 03:27:08 +08:00
|
|
|
int reuseport_add_sock(struct sock *sk, struct sock *sk2)
|
2016-01-05 06:41:45 +08:00
|
|
|
{
|
2018-02-03 02:27:27 +08:00
|
|
|
struct sock_reuseport *old_reuse, *reuse;
|
2016-01-05 06:41:45 +08:00
|
|
|
|
2016-01-20 03:27:08 +08:00
|
|
|
if (!rcu_access_pointer(sk2->sk_reuseport_cb)) {
|
|
|
|
int err = reuseport_alloc(sk2);
|
|
|
|
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2016-01-05 06:41:45 +08:00
|
|
|
spin_lock_bh(&reuseport_lock);
|
|
|
|
reuse = rcu_dereference_protected(sk2->sk_reuseport_cb,
|
2018-02-03 02:27:27 +08:00
|
|
|
lockdep_is_held(&reuseport_lock));
|
|
|
|
old_reuse = rcu_dereference_protected(sk->sk_reuseport_cb,
|
|
|
|
lockdep_is_held(&reuseport_lock));
|
|
|
|
if (old_reuse && old_reuse->num_socks != 1) {
|
|
|
|
spin_unlock_bh(&reuseport_lock);
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
2016-01-05 06:41:45 +08:00
|
|
|
|
|
|
|
if (reuse->num_socks == reuse->max_socks) {
|
|
|
|
reuse = reuseport_grow(reuse);
|
|
|
|
if (!reuse) {
|
|
|
|
spin_unlock_bh(&reuseport_lock);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
reuse->socks[reuse->num_socks] = sk;
|
|
|
|
/* paired with smp_rmb() in reuseport_select_sock() */
|
|
|
|
smp_wmb();
|
|
|
|
reuse->num_socks++;
|
|
|
|
rcu_assign_pointer(sk->sk_reuseport_cb, reuse);
|
|
|
|
|
|
|
|
spin_unlock_bh(&reuseport_lock);
|
|
|
|
|
2018-02-03 02:27:27 +08:00
|
|
|
if (old_reuse)
|
|
|
|
call_rcu(&old_reuse->rcu, reuseport_free_rcu);
|
2016-01-05 06:41:45 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void reuseport_detach_sock(struct sock *sk)
|
|
|
|
{
|
|
|
|
struct sock_reuseport *reuse;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
spin_lock_bh(&reuseport_lock);
|
|
|
|
reuse = rcu_dereference_protected(sk->sk_reuseport_cb,
|
|
|
|
lockdep_is_held(&reuseport_lock));
|
|
|
|
rcu_assign_pointer(sk->sk_reuseport_cb, NULL);
|
|
|
|
|
|
|
|
for (i = 0; i < reuse->num_socks; i++) {
|
|
|
|
if (reuse->socks[i] == sk) {
|
|
|
|
reuse->socks[i] = reuse->socks[reuse->num_socks - 1];
|
|
|
|
reuse->num_socks--;
|
|
|
|
if (reuse->num_socks == 0)
|
2016-01-05 06:41:47 +08:00
|
|
|
call_rcu(&reuse->rcu, reuseport_free_rcu);
|
2016-01-05 06:41:45 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
spin_unlock_bh(&reuseport_lock);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(reuseport_detach_sock);
|
|
|
|
|
2016-01-05 06:41:47 +08:00
|
|
|
static struct sock *run_bpf(struct sock_reuseport *reuse, u16 socks,
|
|
|
|
struct bpf_prog *prog, struct sk_buff *skb,
|
|
|
|
int hdr_len)
|
|
|
|
{
|
|
|
|
struct sk_buff *nskb = NULL;
|
|
|
|
u32 index;
|
|
|
|
|
|
|
|
if (skb_shared(skb)) {
|
|
|
|
nskb = skb_clone(skb, GFP_ATOMIC);
|
|
|
|
if (!nskb)
|
|
|
|
return NULL;
|
|
|
|
skb = nskb;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* temporarily advance data past protocol header */
|
|
|
|
if (!pskb_pull(skb, hdr_len)) {
|
2016-01-05 23:57:13 +08:00
|
|
|
kfree_skb(nskb);
|
2016-01-05 06:41:47 +08:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
index = bpf_prog_run_save_cb(prog, skb);
|
|
|
|
__skb_push(skb, hdr_len);
|
|
|
|
|
|
|
|
consume_skb(nskb);
|
|
|
|
|
|
|
|
if (index >= socks)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
return reuse->socks[index];
|
|
|
|
}
|
|
|
|
|
2016-01-05 06:41:45 +08:00
|
|
|
/**
|
|
|
|
* reuseport_select_sock - Select a socket from an SO_REUSEPORT group.
|
|
|
|
* @sk: First socket in the group.
|
2016-01-05 06:41:47 +08:00
|
|
|
* @hash: When no BPF filter is available, use this hash to select.
|
|
|
|
* @skb: skb to run through BPF filter.
|
|
|
|
* @hdr_len: BPF filter expects skb data pointer at payload data. If
|
|
|
|
* the skb does not yet point at the payload, this parameter represents
|
|
|
|
* how far the pointer needs to advance to reach the payload.
|
2016-01-05 06:41:45 +08:00
|
|
|
* Returns a socket that should receive the packet (or NULL on error).
|
|
|
|
*/
|
2016-01-05 06:41:47 +08:00
|
|
|
struct sock *reuseport_select_sock(struct sock *sk,
|
|
|
|
u32 hash,
|
|
|
|
struct sk_buff *skb,
|
|
|
|
int hdr_len)
|
2016-01-05 06:41:45 +08:00
|
|
|
{
|
|
|
|
struct sock_reuseport *reuse;
|
2016-01-05 06:41:47 +08:00
|
|
|
struct bpf_prog *prog;
|
2016-01-05 06:41:45 +08:00
|
|
|
struct sock *sk2 = NULL;
|
|
|
|
u16 socks;
|
|
|
|
|
|
|
|
rcu_read_lock();
|
|
|
|
reuse = rcu_dereference(sk->sk_reuseport_cb);
|
|
|
|
|
|
|
|
/* if memory allocation failed or add call is not yet complete */
|
|
|
|
if (!reuse)
|
|
|
|
goto out;
|
|
|
|
|
2016-01-05 06:41:47 +08:00
|
|
|
prog = rcu_dereference(reuse->prog);
|
2016-01-05 06:41:45 +08:00
|
|
|
socks = READ_ONCE(reuse->num_socks);
|
|
|
|
if (likely(socks)) {
|
|
|
|
/* paired with smp_wmb() in reuseport_add_sock() */
|
|
|
|
smp_rmb();
|
|
|
|
|
2016-01-05 06:41:47 +08:00
|
|
|
if (prog && skb)
|
|
|
|
sk2 = run_bpf(reuse, socks, prog, skb, hdr_len);
|
2017-11-30 22:39:34 +08:00
|
|
|
|
|
|
|
/* no bpf or invalid bpf result: fall back to hash usage */
|
|
|
|
if (!sk2)
|
2016-01-05 06:41:47 +08:00
|
|
|
sk2 = reuse->socks[reciprocal_scale(hash, socks)];
|
2016-01-05 06:41:45 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
rcu_read_unlock();
|
|
|
|
return sk2;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(reuseport_select_sock);
|
2016-01-05 06:41:47 +08:00
|
|
|
|
|
|
|
struct bpf_prog *
|
|
|
|
reuseport_attach_prog(struct sock *sk, struct bpf_prog *prog)
|
|
|
|
{
|
|
|
|
struct sock_reuseport *reuse;
|
|
|
|
struct bpf_prog *old_prog;
|
|
|
|
|
|
|
|
spin_lock_bh(&reuseport_lock);
|
|
|
|
reuse = rcu_dereference_protected(sk->sk_reuseport_cb,
|
|
|
|
lockdep_is_held(&reuseport_lock));
|
|
|
|
old_prog = rcu_dereference_protected(reuse->prog,
|
|
|
|
lockdep_is_held(&reuseport_lock));
|
|
|
|
rcu_assign_pointer(reuse->prog, prog);
|
|
|
|
spin_unlock_bh(&reuseport_lock);
|
|
|
|
|
|
|
|
return old_prog;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(reuseport_attach_prog);
|