linux-sg2042/drivers/media/platform/vivid/vivid-kthread-cap.c

916 lines
29 KiB
C
Raw Normal View History

/*
* vivid-kthread-cap.h - video/vbi capture thread support functions.
*
* Copyright 2014 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/font.h>
#include <linux/mutex.h>
#include <linux/videodev2.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/random.h>
#include <linux/v4l2-dv-timings.h>
#include <asm/div64.h>
#include <media/videobuf2-vmalloc.h>
#include <media/v4l2-dv-timings.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-event.h>
#include "vivid-core.h"
#include "vivid-vid-common.h"
#include "vivid-vid-cap.h"
#include "vivid-vid-out.h"
#include "vivid-radio-common.h"
#include "vivid-radio-rx.h"
#include "vivid-radio-tx.h"
#include "vivid-sdr-cap.h"
#include "vivid-vbi-cap.h"
#include "vivid-vbi-out.h"
#include "vivid-osd.h"
#include "vivid-ctrls.h"
#include "vivid-kthread-cap.h"
static inline v4l2_std_id vivid_get_std_cap(const struct vivid_dev *dev)
{
if (vivid_is_sdtv_cap(dev))
return dev->std_cap;
return 0;
}
static void copy_pix(struct vivid_dev *dev, int win_y, int win_x,
u16 *cap, const u16 *osd)
{
u16 out;
int left = dev->overlay_out_left;
int top = dev->overlay_out_top;
int fb_x = win_x + left;
int fb_y = win_y + top;
int i;
out = *cap;
*cap = *osd;
if (dev->bitmap_out) {
const u8 *p = dev->bitmap_out;
unsigned stride = (dev->compose_out.width + 7) / 8;
win_x -= dev->compose_out.left;
win_y -= dev->compose_out.top;
if (!(p[stride * win_y + win_x / 8] & (1 << (win_x & 7))))
return;
}
for (i = 0; i < dev->clipcount_out; i++) {
struct v4l2_rect *r = &dev->clips_out[i].c;
if (fb_y >= r->top && fb_y < r->top + r->height &&
fb_x >= r->left && fb_x < r->left + r->width)
return;
}
if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_CHROMAKEY) &&
*osd != dev->chromakey_out)
return;
if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_SRC_CHROMAKEY) &&
out == dev->chromakey_out)
return;
if (dev->fmt_cap->alpha_mask) {
if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_GLOBAL_ALPHA) &&
dev->global_alpha_out)
return;
if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_LOCAL_ALPHA) &&
*cap & dev->fmt_cap->alpha_mask)
return;
if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_LOCAL_INV_ALPHA) &&
!(*cap & dev->fmt_cap->alpha_mask))
return;
}
*cap = out;
}
static void blend_line(struct vivid_dev *dev, unsigned y_offset, unsigned x_offset,
u8 *vcapbuf, const u8 *vosdbuf,
unsigned width, unsigned pixsize)
{
unsigned x;
for (x = 0; x < width; x++, vcapbuf += pixsize, vosdbuf += pixsize) {
copy_pix(dev, y_offset, x_offset + x,
(u16 *)vcapbuf, (const u16 *)vosdbuf);
}
}
static void scale_line(const u8 *src, u8 *dst, unsigned srcw, unsigned dstw, unsigned twopixsize)
{
/* Coarse scaling with Bresenham */
unsigned int_part;
unsigned fract_part;
unsigned src_x = 0;
unsigned error = 0;
unsigned x;
/*
* We always combine two pixels to prevent color bleed in the packed
* yuv case.
*/
srcw /= 2;
dstw /= 2;
int_part = srcw / dstw;
fract_part = srcw % dstw;
for (x = 0; x < dstw; x++, dst += twopixsize) {
memcpy(dst, src + src_x * twopixsize, twopixsize);
src_x += int_part;
error += fract_part;
if (error >= dstw) {
error -= dstw;
src_x++;
}
}
}
/*
* Precalculate the rectangles needed to perform video looping:
*
* The nominal pipeline is that the video output buffer is cropped by
* crop_out, scaled to compose_out, overlaid with the output overlay,
* cropped on the capture side by crop_cap and scaled again to the video
* capture buffer using compose_cap.
*
* To keep things efficient we calculate the intersection of compose_out
* and crop_cap (since that's the only part of the video that will
* actually end up in the capture buffer), determine which part of the
* video output buffer that is and which part of the video capture buffer
* so we can scale the video straight from the output buffer to the capture
* buffer without any intermediate steps.
*
* If we need to deal with an output overlay, then there is no choice and
* that intermediate step still has to be taken. For the output overlay
* support we calculate the intersection of the framebuffer and the overlay
* window (which may be partially or wholly outside of the framebuffer
* itself) and the intersection of that with loop_vid_copy (i.e. the part of
* the actual looped video that will be overlaid). The result is calculated
* both in framebuffer coordinates (loop_fb_copy) and compose_out coordinates
* (loop_vid_overlay). Finally calculate the part of the capture buffer that
* will receive that overlaid video.
*/
static void vivid_precalc_copy_rects(struct vivid_dev *dev)
{
/* Framebuffer rectangle */
struct v4l2_rect r_fb = {
0, 0, dev->display_width, dev->display_height
};
/* Overlay window rectangle in framebuffer coordinates */
struct v4l2_rect r_overlay = {
dev->overlay_out_left, dev->overlay_out_top,
dev->compose_out.width, dev->compose_out.height
};
dev->loop_vid_copy = rect_intersect(&dev->crop_cap, &dev->compose_out);
dev->loop_vid_out = dev->loop_vid_copy;
rect_scale(&dev->loop_vid_out, &dev->compose_out, &dev->crop_out);
dev->loop_vid_out.left += dev->crop_out.left;
dev->loop_vid_out.top += dev->crop_out.top;
dev->loop_vid_cap = dev->loop_vid_copy;
rect_scale(&dev->loop_vid_cap, &dev->crop_cap, &dev->compose_cap);
dprintk(dev, 1,
"loop_vid_copy: %dx%d@%dx%d loop_vid_out: %dx%d@%dx%d loop_vid_cap: %dx%d@%dx%d\n",
dev->loop_vid_copy.width, dev->loop_vid_copy.height,
dev->loop_vid_copy.left, dev->loop_vid_copy.top,
dev->loop_vid_out.width, dev->loop_vid_out.height,
dev->loop_vid_out.left, dev->loop_vid_out.top,
dev->loop_vid_cap.width, dev->loop_vid_cap.height,
dev->loop_vid_cap.left, dev->loop_vid_cap.top);
r_overlay = rect_intersect(&r_fb, &r_overlay);
/* shift r_overlay to the same origin as compose_out */
r_overlay.left += dev->compose_out.left - dev->overlay_out_left;
r_overlay.top += dev->compose_out.top - dev->overlay_out_top;
dev->loop_vid_overlay = rect_intersect(&r_overlay, &dev->loop_vid_copy);
dev->loop_fb_copy = dev->loop_vid_overlay;
/* shift dev->loop_fb_copy back again to the fb origin */
dev->loop_fb_copy.left -= dev->compose_out.left - dev->overlay_out_left;
dev->loop_fb_copy.top -= dev->compose_out.top - dev->overlay_out_top;
dev->loop_vid_overlay_cap = dev->loop_vid_overlay;
rect_scale(&dev->loop_vid_overlay_cap, &dev->crop_cap, &dev->compose_cap);
dprintk(dev, 1,
"loop_fb_copy: %dx%d@%dx%d loop_vid_overlay: %dx%d@%dx%d loop_vid_overlay_cap: %dx%d@%dx%d\n",
dev->loop_fb_copy.width, dev->loop_fb_copy.height,
dev->loop_fb_copy.left, dev->loop_fb_copy.top,
dev->loop_vid_overlay.width, dev->loop_vid_overlay.height,
dev->loop_vid_overlay.left, dev->loop_vid_overlay.top,
dev->loop_vid_overlay_cap.width, dev->loop_vid_overlay_cap.height,
dev->loop_vid_overlay_cap.left, dev->loop_vid_overlay_cap.top);
}
static void *plane_vaddr(struct tpg_data *tpg, struct vivid_buffer *buf,
unsigned p, unsigned bpl[TPG_MAX_PLANES], unsigned h)
{
unsigned i;
void *vbuf;
if (p == 0 || tpg_g_buffers(tpg) > 1)
return vb2_plane_vaddr(&buf->vb, p);
vbuf = vb2_plane_vaddr(&buf->vb, 0);
for (i = 0; i < p; i++)
vbuf += bpl[i] * h / tpg->vdownsampling[i];
return vbuf;
}
static int vivid_copy_buffer(struct vivid_dev *dev, unsigned p, u8 *vcapbuf,
struct vivid_buffer *vid_cap_buf)
{
bool blank = dev->must_blank[vid_cap_buf->vb.v4l2_buf.index];
struct tpg_data *tpg = &dev->tpg;
struct vivid_buffer *vid_out_buf = NULL;
unsigned vdiv = dev->fmt_out->vdownsampling[p];
unsigned twopixsize = tpg_g_twopixelsize(tpg, p);
unsigned img_width = tpg_hdiv(tpg, p, dev->compose_cap.width);
unsigned img_height = dev->compose_cap.height;
unsigned stride_cap = tpg->bytesperline[p];
unsigned stride_out = dev->bytesperline_out[p];
unsigned stride_osd = dev->display_byte_stride;
unsigned hmax = (img_height * tpg->perc_fill) / 100;
u8 *voutbuf;
u8 *vosdbuf = NULL;
unsigned y;
bool blend = dev->bitmap_out || dev->clipcount_out || dev->fbuf_out_flags;
/* Coarse scaling with Bresenham */
unsigned vid_out_int_part;
unsigned vid_out_fract_part;
unsigned vid_out_y = 0;
unsigned vid_out_error = 0;
unsigned vid_overlay_int_part = 0;
unsigned vid_overlay_fract_part = 0;
unsigned vid_overlay_y = 0;
unsigned vid_overlay_error = 0;
unsigned vid_cap_left = tpg_hdiv(tpg, p, dev->loop_vid_cap.left);
unsigned vid_cap_right;
bool quick;
vid_out_int_part = dev->loop_vid_out.height / dev->loop_vid_cap.height;
vid_out_fract_part = dev->loop_vid_out.height % dev->loop_vid_cap.height;
if (!list_empty(&dev->vid_out_active))
vid_out_buf = list_entry(dev->vid_out_active.next,
struct vivid_buffer, list);
if (vid_out_buf == NULL)
return -ENODATA;
vid_cap_buf->vb.v4l2_buf.field = vid_out_buf->vb.v4l2_buf.field;
voutbuf = plane_vaddr(tpg, vid_out_buf, p,
dev->bytesperline_out, dev->fmt_out_rect.height);
if (p < dev->fmt_out->buffers)
voutbuf += vid_out_buf->vb.v4l2_planes[p].data_offset;
voutbuf += tpg_hdiv(tpg, p, dev->loop_vid_out.left) +
(dev->loop_vid_out.top / vdiv) * stride_out;
vcapbuf += tpg_hdiv(tpg, p, dev->compose_cap.left) +
(dev->compose_cap.top / vdiv) * stride_cap;
if (dev->loop_vid_copy.width == 0 || dev->loop_vid_copy.height == 0) {
/*
* If there is nothing to copy, then just fill the capture window
* with black.
*/
for (y = 0; y < hmax / vdiv; y++, vcapbuf += stride_cap)
memcpy(vcapbuf, tpg->black_line[p], img_width);
return 0;
}
if (dev->overlay_out_enabled &&
dev->loop_vid_overlay.width && dev->loop_vid_overlay.height) {
vosdbuf = dev->video_vbase;
vosdbuf += (dev->loop_fb_copy.left * twopixsize) / 2 +
dev->loop_fb_copy.top * stride_osd;
vid_overlay_int_part = dev->loop_vid_overlay.height /
dev->loop_vid_overlay_cap.height;
vid_overlay_fract_part = dev->loop_vid_overlay.height %
dev->loop_vid_overlay_cap.height;
}
vid_cap_right = tpg_hdiv(tpg, p, dev->loop_vid_cap.left + dev->loop_vid_cap.width);
/* quick is true if no video scaling is needed */
quick = dev->loop_vid_out.width == dev->loop_vid_cap.width;
dev->cur_scaled_line = dev->loop_vid_out.height;
for (y = 0; y < hmax; y += vdiv, vcapbuf += stride_cap) {
/* osdline is true if this line requires overlay blending */
bool osdline = vosdbuf && y >= dev->loop_vid_overlay_cap.top &&
y < dev->loop_vid_overlay_cap.top + dev->loop_vid_overlay_cap.height;
/*
* If this line of the capture buffer doesn't get any video, then
* just fill with black.
*/
if (y < dev->loop_vid_cap.top ||
y >= dev->loop_vid_cap.top + dev->loop_vid_cap.height) {
memcpy(vcapbuf, tpg->black_line[p], img_width);
continue;
}
/* fill the left border with black */
if (dev->loop_vid_cap.left)
memcpy(vcapbuf, tpg->black_line[p], vid_cap_left);
/* fill the right border with black */
if (vid_cap_right < img_width)
memcpy(vcapbuf + vid_cap_right, tpg->black_line[p],
img_width - vid_cap_right);
if (quick && !osdline) {
memcpy(vcapbuf + vid_cap_left,
voutbuf + vid_out_y * stride_out,
tpg_hdiv(tpg, p, dev->loop_vid_cap.width));
goto update_vid_out_y;
}
if (dev->cur_scaled_line == vid_out_y) {
memcpy(vcapbuf + vid_cap_left, dev->scaled_line,
tpg_hdiv(tpg, p, dev->loop_vid_cap.width));
goto update_vid_out_y;
}
if (!osdline) {
scale_line(voutbuf + vid_out_y * stride_out, dev->scaled_line,
tpg_hdiv(tpg, p, dev->loop_vid_out.width),
tpg_hdiv(tpg, p, dev->loop_vid_cap.width),
tpg_g_twopixelsize(tpg, p));
} else {
/*
* Offset in bytes within loop_vid_copy to the start of the
* loop_vid_overlay rectangle.
*/
unsigned offset =
((dev->loop_vid_overlay.left - dev->loop_vid_copy.left) *
twopixsize) / 2;
u8 *osd = vosdbuf + vid_overlay_y * stride_osd;
scale_line(voutbuf + vid_out_y * stride_out, dev->blended_line,
dev->loop_vid_out.width, dev->loop_vid_copy.width,
tpg_g_twopixelsize(tpg, p));
if (blend)
blend_line(dev, vid_overlay_y + dev->loop_vid_overlay.top,
dev->loop_vid_overlay.left,
dev->blended_line + offset, osd,
dev->loop_vid_overlay.width, twopixsize / 2);
else
memcpy(dev->blended_line + offset,
osd, (dev->loop_vid_overlay.width * twopixsize) / 2);
scale_line(dev->blended_line, dev->scaled_line,
dev->loop_vid_copy.width, dev->loop_vid_cap.width,
tpg_g_twopixelsize(tpg, p));
}
dev->cur_scaled_line = vid_out_y;
memcpy(vcapbuf + vid_cap_left, dev->scaled_line,
tpg_hdiv(tpg, p, dev->loop_vid_cap.width));
update_vid_out_y:
if (osdline) {
vid_overlay_y += vid_overlay_int_part;
vid_overlay_error += vid_overlay_fract_part;
if (vid_overlay_error >= dev->loop_vid_overlay_cap.height) {
vid_overlay_error -= dev->loop_vid_overlay_cap.height;
vid_overlay_y++;
}
}
vid_out_y += vid_out_int_part;
vid_out_error += vid_out_fract_part;
if (vid_out_error >= dev->loop_vid_cap.height / vdiv) {
vid_out_error -= dev->loop_vid_cap.height / vdiv;
vid_out_y++;
}
}
if (!blank)
return 0;
for (; y < img_height; y += vdiv, vcapbuf += stride_cap)
memcpy(vcapbuf, tpg->contrast_line[p], img_width);
return 0;
}
static void vivid_fillbuff(struct vivid_dev *dev, struct vivid_buffer *buf)
{
struct tpg_data *tpg = &dev->tpg;
unsigned factor = V4L2_FIELD_HAS_T_OR_B(dev->field_cap) ? 2 : 1;
unsigned line_height = 16 / factor;
bool is_tv = vivid_is_sdtv_cap(dev);
bool is_60hz = is_tv && (dev->std_cap & V4L2_STD_525_60);
unsigned p;
int line = 1;
u8 *basep[TPG_MAX_PLANES][2];
unsigned ms;
char str[100];
s32 gain;
bool is_loop = false;
if (dev->loop_video && dev->can_loop_video &&
((vivid_is_svid_cap(dev) && !VIVID_INVALID_SIGNAL(dev->std_signal_mode)) ||
(vivid_is_hdmi_cap(dev) && !VIVID_INVALID_SIGNAL(dev->dv_timings_signal_mode))))
is_loop = true;
buf->vb.v4l2_buf.sequence = dev->vid_cap_seq_count;
/*
* Take the timestamp now if the timestamp source is set to
* "Start of Exposure".
*/
if (dev->tstamp_src_is_soe)
v4l2_get_timestamp(&buf->vb.v4l2_buf.timestamp);
if (dev->field_cap == V4L2_FIELD_ALTERNATE) {
/*
* 60 Hz standards start with the bottom field, 50 Hz standards
* with the top field. So if the 0-based seq_count is even,
* then the field is TOP for 50 Hz and BOTTOM for 60 Hz
* standards.
*/
buf->vb.v4l2_buf.field = ((dev->vid_cap_seq_count & 1) ^ is_60hz) ?
V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
/*
* The sequence counter counts frames, not fields. So divide
* by two.
*/
buf->vb.v4l2_buf.sequence /= 2;
} else {
buf->vb.v4l2_buf.field = dev->field_cap;
}
tpg_s_field(tpg, buf->vb.v4l2_buf.field,
dev->field_cap == V4L2_FIELD_ALTERNATE);
tpg_s_perc_fill_blank(tpg, dev->must_blank[buf->vb.v4l2_buf.index]);
vivid_precalc_copy_rects(dev);
for (p = 0; p < tpg_g_planes(tpg); p++) {
void *vbuf = plane_vaddr(tpg, buf, p,
tpg->bytesperline, tpg->buf_height);
/*
* The first plane of a multiplanar format has a non-zero
* data_offset. This helps testing whether the application
* correctly supports non-zero data offsets.
*/
if (p < tpg_g_buffers(tpg) && dev->fmt_cap->data_offset[p]) {
memset(vbuf, dev->fmt_cap->data_offset[p] & 0xff,
dev->fmt_cap->data_offset[p]);
vbuf += dev->fmt_cap->data_offset[p];
}
tpg_calc_text_basep(tpg, basep, p, vbuf);
if (!is_loop || vivid_copy_buffer(dev, p, vbuf, buf))
tpg_fill_plane_buffer(tpg, vivid_get_std_cap(dev), p, vbuf);
}
dev->must_blank[buf->vb.v4l2_buf.index] = false;
/* Updates stream time, only update at the start of a new frame. */
if (dev->field_cap != V4L2_FIELD_ALTERNATE || (buf->vb.v4l2_buf.sequence & 1) == 0)
dev->ms_vid_cap = jiffies_to_msecs(jiffies - dev->jiffies_vid_cap);
ms = dev->ms_vid_cap;
if (dev->osd_mode <= 1) {
snprintf(str, sizeof(str), " %02d:%02d:%02d:%03d %u%s",
(ms / (60 * 60 * 1000)) % 24,
(ms / (60 * 1000)) % 60,
(ms / 1000) % 60,
ms % 1000,
buf->vb.v4l2_buf.sequence,
(dev->field_cap == V4L2_FIELD_ALTERNATE) ?
(buf->vb.v4l2_buf.field == V4L2_FIELD_TOP ?
" top" : " bottom") : "");
tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
}
if (dev->osd_mode == 0) {
snprintf(str, sizeof(str), " %dx%d, input %d ",
dev->src_rect.width, dev->src_rect.height, dev->input);
tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
gain = v4l2_ctrl_g_ctrl(dev->gain);
mutex_lock(dev->ctrl_hdl_user_vid.lock);
snprintf(str, sizeof(str),
" brightness %3d, contrast %3d, saturation %3d, hue %d ",
dev->brightness->cur.val,
dev->contrast->cur.val,
dev->saturation->cur.val,
dev->hue->cur.val);
tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
snprintf(str, sizeof(str),
" autogain %d, gain %3d, alpha 0x%02x ",
dev->autogain->cur.val, gain, dev->alpha->cur.val);
mutex_unlock(dev->ctrl_hdl_user_vid.lock);
tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
mutex_lock(dev->ctrl_hdl_user_aud.lock);
snprintf(str, sizeof(str),
" volume %3d, mute %d ",
dev->volume->cur.val, dev->mute->cur.val);
mutex_unlock(dev->ctrl_hdl_user_aud.lock);
tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
mutex_lock(dev->ctrl_hdl_user_gen.lock);
snprintf(str, sizeof(str), " int32 %d, int64 %lld, bitmask %08x ",
dev->int32->cur.val,
*dev->int64->p_cur.p_s64,
dev->bitmask->cur.val);
tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
snprintf(str, sizeof(str), " boolean %d, menu %s, string \"%s\" ",
dev->boolean->cur.val,
dev->menu->qmenu[dev->menu->cur.val],
dev->string->p_cur.p_char);
tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
snprintf(str, sizeof(str), " integer_menu %lld, value %d ",
dev->int_menu->qmenu_int[dev->int_menu->cur.val],
dev->int_menu->cur.val);
mutex_unlock(dev->ctrl_hdl_user_gen.lock);
tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
if (dev->button_pressed) {
dev->button_pressed--;
snprintf(str, sizeof(str), " button pressed!");
tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
}
}
/*
* If "End of Frame" is specified at the timestamp source, then take
* the timestamp now.
*/
if (!dev->tstamp_src_is_soe)
v4l2_get_timestamp(&buf->vb.v4l2_buf.timestamp);
buf->vb.v4l2_buf.timestamp.tv_sec += dev->time_wrap_offset;
}
/*
* Return true if this pixel coordinate is a valid video pixel.
*/
static bool valid_pix(struct vivid_dev *dev, int win_y, int win_x, int fb_y, int fb_x)
{
int i;
if (dev->bitmap_cap) {
/*
* Only if the corresponding bit in the bitmap is set can
* the video pixel be shown. Coordinates are relative to
* the overlay window set by VIDIOC_S_FMT.
*/
const u8 *p = dev->bitmap_cap;
unsigned stride = (dev->compose_cap.width + 7) / 8;
if (!(p[stride * win_y + win_x / 8] & (1 << (win_x & 7))))
return false;
}
for (i = 0; i < dev->clipcount_cap; i++) {
/*
* Only if the framebuffer coordinate is not in any of the
* clip rectangles will be video pixel be shown.
*/
struct v4l2_rect *r = &dev->clips_cap[i].c;
if (fb_y >= r->top && fb_y < r->top + r->height &&
fb_x >= r->left && fb_x < r->left + r->width)
return false;
}
return true;
}
/*
* Draw the image into the overlay buffer.
* Note that the combination of overlay and multiplanar is not supported.
*/
static void vivid_overlay(struct vivid_dev *dev, struct vivid_buffer *buf)
{
struct tpg_data *tpg = &dev->tpg;
unsigned pixsize = tpg_g_twopixelsize(tpg, 0) / 2;
void *vbase = dev->fb_vbase_cap;
void *vbuf = vb2_plane_vaddr(&buf->vb, 0);
unsigned img_width = dev->compose_cap.width;
unsigned img_height = dev->compose_cap.height;
unsigned stride = tpg->bytesperline[0];
/* if quick is true, then valid_pix() doesn't have to be called */
bool quick = dev->bitmap_cap == NULL && dev->clipcount_cap == 0;
int x, y, w, out_x = 0;
/*
* Overlay support is only supported for formats that have a twopixelsize
* that's >= 2. Warn and bail out if that's not the case.
*/
if (WARN_ON(pixsize == 0))
return;
if ((dev->overlay_cap_field == V4L2_FIELD_TOP ||
dev->overlay_cap_field == V4L2_FIELD_BOTTOM) &&
dev->overlay_cap_field != buf->vb.v4l2_buf.field)
return;
vbuf += dev->compose_cap.left * pixsize + dev->compose_cap.top * stride;
x = dev->overlay_cap_left;
w = img_width;
if (x < 0) {
out_x = -x;
w = w - out_x;
x = 0;
} else {
w = dev->fb_cap.fmt.width - x;
if (w > img_width)
w = img_width;
}
if (w <= 0)
return;
if (dev->overlay_cap_top >= 0)
vbase += dev->overlay_cap_top * dev->fb_cap.fmt.bytesperline;
for (y = dev->overlay_cap_top;
y < dev->overlay_cap_top + (int)img_height;
y++, vbuf += stride) {
int px;
if (y < 0 || y > dev->fb_cap.fmt.height)
continue;
if (quick) {
memcpy(vbase + x * pixsize,
vbuf + out_x * pixsize, w * pixsize);
vbase += dev->fb_cap.fmt.bytesperline;
continue;
}
for (px = 0; px < w; px++) {
if (!valid_pix(dev, y - dev->overlay_cap_top,
px + out_x, y, px + x))
continue;
memcpy(vbase + (px + x) * pixsize,
vbuf + (px + out_x) * pixsize,
pixsize);
}
vbase += dev->fb_cap.fmt.bytesperline;
}
}
static void vivid_thread_vid_cap_tick(struct vivid_dev *dev, int dropped_bufs)
{
struct vivid_buffer *vid_cap_buf = NULL;
struct vivid_buffer *vbi_cap_buf = NULL;
dprintk(dev, 1, "Video Capture Thread Tick\n");
while (dropped_bufs-- > 1)
tpg_update_mv_count(&dev->tpg,
dev->field_cap == V4L2_FIELD_NONE ||
dev->field_cap == V4L2_FIELD_ALTERNATE);
/* Drop a certain percentage of buffers. */
if (dev->perc_dropped_buffers &&
prandom_u32_max(100) < dev->perc_dropped_buffers)
goto update_mv;
spin_lock(&dev->slock);
if (!list_empty(&dev->vid_cap_active)) {
vid_cap_buf = list_entry(dev->vid_cap_active.next, struct vivid_buffer, list);
list_del(&vid_cap_buf->list);
}
if (!list_empty(&dev->vbi_cap_active)) {
if (dev->field_cap != V4L2_FIELD_ALTERNATE ||
(dev->vbi_cap_seq_count & 1)) {
vbi_cap_buf = list_entry(dev->vbi_cap_active.next,
struct vivid_buffer, list);
list_del(&vbi_cap_buf->list);
}
}
spin_unlock(&dev->slock);
if (!vid_cap_buf && !vbi_cap_buf)
goto update_mv;
if (vid_cap_buf) {
/* Fill buffer */
vivid_fillbuff(dev, vid_cap_buf);
dprintk(dev, 1, "filled buffer %d\n",
vid_cap_buf->vb.v4l2_buf.index);
/* Handle overlay */
if (dev->overlay_cap_owner && dev->fb_cap.base &&
dev->fb_cap.fmt.pixelformat == dev->fmt_cap->fourcc)
vivid_overlay(dev, vid_cap_buf);
vb2_buffer_done(&vid_cap_buf->vb, dev->dqbuf_error ?
VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
dprintk(dev, 2, "vid_cap buffer %d done\n",
vid_cap_buf->vb.v4l2_buf.index);
}
if (vbi_cap_buf) {
if (dev->stream_sliced_vbi_cap)
vivid_sliced_vbi_cap_process(dev, vbi_cap_buf);
else
vivid_raw_vbi_cap_process(dev, vbi_cap_buf);
vb2_buffer_done(&vbi_cap_buf->vb, dev->dqbuf_error ?
VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
dprintk(dev, 2, "vbi_cap %d done\n",
vbi_cap_buf->vb.v4l2_buf.index);
}
dev->dqbuf_error = false;
update_mv:
/* Update the test pattern movement counters */
tpg_update_mv_count(&dev->tpg, dev->field_cap == V4L2_FIELD_NONE ||
dev->field_cap == V4L2_FIELD_ALTERNATE);
}
static int vivid_thread_vid_cap(void *data)
{
struct vivid_dev *dev = data;
u64 numerators_since_start;
u64 buffers_since_start;
u64 next_jiffies_since_start;
unsigned long jiffies_since_start;
unsigned long cur_jiffies;
unsigned wait_jiffies;
unsigned numerator;
unsigned denominator;
int dropped_bufs;
dprintk(dev, 1, "Video Capture Thread Start\n");
set_freezable();
/* Resets frame counters */
dev->cap_seq_offset = 0;
dev->cap_seq_count = 0;
dev->cap_seq_resync = false;
dev->jiffies_vid_cap = jiffies;
for (;;) {
try_to_freeze();
if (kthread_should_stop())
break;
mutex_lock(&dev->mutex);
cur_jiffies = jiffies;
if (dev->cap_seq_resync) {
dev->jiffies_vid_cap = cur_jiffies;
dev->cap_seq_offset = dev->cap_seq_count + 1;
dev->cap_seq_count = 0;
dev->cap_seq_resync = false;
}
numerator = dev->timeperframe_vid_cap.numerator;
denominator = dev->timeperframe_vid_cap.denominator;
if (dev->field_cap == V4L2_FIELD_ALTERNATE)
denominator *= 2;
/* Calculate the number of jiffies since we started streaming */
jiffies_since_start = cur_jiffies - dev->jiffies_vid_cap;
/* Get the number of buffers streamed since the start */
buffers_since_start = (u64)jiffies_since_start * denominator +
(HZ * numerator) / 2;
do_div(buffers_since_start, HZ * numerator);
/*
* After more than 0xf0000000 (rounded down to a multiple of
* 'jiffies-per-day' to ease jiffies_to_msecs calculation)
* jiffies have passed since we started streaming reset the
* counters and keep track of the sequence offset.
*/
if (jiffies_since_start > JIFFIES_RESYNC) {
dev->jiffies_vid_cap = cur_jiffies;
dev->cap_seq_offset = buffers_since_start;
buffers_since_start = 0;
}
dropped_bufs = buffers_since_start + dev->cap_seq_offset - dev->cap_seq_count;
dev->cap_seq_count = buffers_since_start + dev->cap_seq_offset;
dev->vid_cap_seq_count = dev->cap_seq_count - dev->vid_cap_seq_start;
dev->vbi_cap_seq_count = dev->cap_seq_count - dev->vbi_cap_seq_start;
vivid_thread_vid_cap_tick(dev, dropped_bufs);
/*
* Calculate the number of 'numerators' streamed since we started,
* including the current buffer.
*/
numerators_since_start = ++buffers_since_start * numerator;
/* And the number of jiffies since we started */
jiffies_since_start = jiffies - dev->jiffies_vid_cap;
mutex_unlock(&dev->mutex);
/*
* Calculate when that next buffer is supposed to start
* in jiffies since we started streaming.
*/
next_jiffies_since_start = numerators_since_start * HZ +
denominator / 2;
do_div(next_jiffies_since_start, denominator);
/* If it is in the past, then just schedule asap */
if (next_jiffies_since_start < jiffies_since_start)
next_jiffies_since_start = jiffies_since_start;
wait_jiffies = next_jiffies_since_start - jiffies_since_start;
schedule_timeout_interruptible(wait_jiffies ? wait_jiffies : 1);
}
dprintk(dev, 1, "Video Capture Thread End\n");
return 0;
}
static void vivid_grab_controls(struct vivid_dev *dev, bool grab)
{
v4l2_ctrl_grab(dev->ctrl_has_crop_cap, grab);
v4l2_ctrl_grab(dev->ctrl_has_compose_cap, grab);
v4l2_ctrl_grab(dev->ctrl_has_scaler_cap, grab);
}
int vivid_start_generating_vid_cap(struct vivid_dev *dev, bool *pstreaming)
{
dprintk(dev, 1, "%s\n", __func__);
if (dev->kthread_vid_cap) {
u32 seq_count = dev->cap_seq_count + dev->seq_wrap * 128;
if (pstreaming == &dev->vid_cap_streaming)
dev->vid_cap_seq_start = seq_count;
else
dev->vbi_cap_seq_start = seq_count;
*pstreaming = true;
return 0;
}
/* Resets frame counters */
tpg_init_mv_count(&dev->tpg);
dev->vid_cap_seq_start = dev->seq_wrap * 128;
dev->vbi_cap_seq_start = dev->seq_wrap * 128;
dev->kthread_vid_cap = kthread_run(vivid_thread_vid_cap, dev,
"%s-vid-cap", dev->v4l2_dev.name);
if (IS_ERR(dev->kthread_vid_cap)) {
v4l2_err(&dev->v4l2_dev, "kernel_thread() failed\n");
return PTR_ERR(dev->kthread_vid_cap);
}
*pstreaming = true;
vivid_grab_controls(dev, true);
dprintk(dev, 1, "returning from %s\n", __func__);
return 0;
}
void vivid_stop_generating_vid_cap(struct vivid_dev *dev, bool *pstreaming)
{
dprintk(dev, 1, "%s\n", __func__);
if (dev->kthread_vid_cap == NULL)
return;
*pstreaming = false;
if (pstreaming == &dev->vid_cap_streaming) {
/* Release all active buffers */
while (!list_empty(&dev->vid_cap_active)) {
struct vivid_buffer *buf;
buf = list_entry(dev->vid_cap_active.next,
struct vivid_buffer, list);
list_del(&buf->list);
vb2_buffer_done(&buf->vb, VB2_BUF_STATE_ERROR);
dprintk(dev, 2, "vid_cap buffer %d done\n",
buf->vb.v4l2_buf.index);
}
}
if (pstreaming == &dev->vbi_cap_streaming) {
while (!list_empty(&dev->vbi_cap_active)) {
struct vivid_buffer *buf;
buf = list_entry(dev->vbi_cap_active.next,
struct vivid_buffer, list);
list_del(&buf->list);
vb2_buffer_done(&buf->vb, VB2_BUF_STATE_ERROR);
dprintk(dev, 2, "vbi_cap buffer %d done\n",
buf->vb.v4l2_buf.index);
}
}
if (dev->vid_cap_streaming || dev->vbi_cap_streaming)
return;
/* shutdown control thread */
vivid_grab_controls(dev, false);
mutex_unlock(&dev->mutex);
kthread_stop(dev->kthread_vid_cap);
dev->kthread_vid_cap = NULL;
mutex_lock(&dev->mutex);
}