linux-sg2042/drivers/iio/pressure/st_pressure_core.c

696 lines
17 KiB
C
Raw Normal View History

/*
* STMicroelectronics pressures driver
*
* Copyright 2013 STMicroelectronics Inc.
*
* Denis Ciocca <denis.ciocca@st.com>
*
* Licensed under the GPL-2.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/mutex.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/gpio.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/buffer.h>
#include <asm/unaligned.h>
#include <linux/iio/common/st_sensors.h>
#include "st_pressure.h"
/*
* About determining pressure scaling factors
* ------------------------------------------
*
* Datasheets specify typical pressure sensitivity so that pressure is computed
* according to the following equation :
* pressure[mBar] = raw / sensitivity
* where :
* raw the 24 bits long raw sampled pressure
* sensitivity a scaling factor specified by the datasheet in LSB/mBar
*
* IIO ABI expects pressure to be expressed as kPascal, hence pressure should be
* computed according to :
* pressure[kPascal] = pressure[mBar] / 10
* = raw / (sensitivity * 10) (1)
*
* Finally, st_press_read_raw() returns pressure scaling factor as an
* IIO_VAL_INT_PLUS_NANO with a zero integral part and "gain" as decimal part.
* Therefore, from (1), "gain" becomes :
* gain = 10^9 / (sensitivity * 10)
* = 10^8 / sensitivity
*
* About determining temperature scaling factors and offsets
* ---------------------------------------------------------
*
* Datasheets specify typical temperature sensitivity and offset so that
* temperature is computed according to the following equation :
* temp[Celsius] = offset[Celsius] + (raw / sensitivity)
* where :
* raw the 16 bits long raw sampled temperature
* offset a constant specified by the datasheet in degree Celsius
* (sometimes zero)
* sensitivity a scaling factor specified by the datasheet in LSB/Celsius
*
* IIO ABI expects temperature to be expressed as milli degree Celsius such as
* user space should compute temperature according to :
* temp[mCelsius] = temp[Celsius] * 10^3
* = (offset[Celsius] + (raw / sensitivity)) * 10^3
* = ((offset[Celsius] * sensitivity) + raw) *
* (10^3 / sensitivity) (2)
*
* IIO ABI expects user space to apply offset and scaling factors to raw samples
* according to :
* temp[mCelsius] = (OFFSET + raw) * SCALE
* where :
* OFFSET an arbitrary constant exposed by device
* SCALE an arbitrary scaling factor exposed by device
*
* Matching OFFSET and SCALE with members of (2) gives :
* OFFSET = offset[Celsius] * sensitivity (3)
* SCALE = 10^3 / sensitivity (4)
*
* st_press_read_raw() returns temperature scaling factor as an
* IIO_VAL_FRACTIONAL with a 10^3 numerator and "gain2" as denominator.
* Therefore, from (3), "gain2" becomes :
* gain2 = sensitivity
*
* When declared within channel, i.e. for a non zero specified offset,
* st_press_read_raw() will return the latter as an IIO_VAL_FRACTIONAL such as :
* numerator = OFFSET * 10^3
* denominator = 10^3
* giving from (4):
* numerator = offset[Celsius] * 10^3 * sensitivity
* = offset[mCelsius] * gain2
*/
#define MCELSIUS_PER_CELSIUS 1000
/* Default pressure sensitivity */
#define ST_PRESS_LSB_PER_MBAR 4096UL
#define ST_PRESS_KPASCAL_NANO_SCALE (100000000UL / \
ST_PRESS_LSB_PER_MBAR)
/* Default temperature sensitivity */
#define ST_PRESS_LSB_PER_CELSIUS 480UL
#define ST_PRESS_MILLI_CELSIUS_OFFSET 42500UL
/* FULLSCALE */
#define ST_PRESS_FS_AVL_1100MB 1100
#define ST_PRESS_FS_AVL_1260MB 1260
#define ST_PRESS_1_OUT_XL_ADDR 0x28
#define ST_TEMP_1_OUT_L_ADDR 0x2b
/* LPS001WP pressure resolution */
#define ST_PRESS_LPS001WP_LSB_PER_MBAR 16UL
/* LPS001WP temperature resolution */
#define ST_PRESS_LPS001WP_LSB_PER_CELSIUS 64UL
/* LPS001WP pressure gain */
#define ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN \
(100000000UL / ST_PRESS_LPS001WP_LSB_PER_MBAR)
/* LPS001WP pressure and temp L addresses */
#define ST_PRESS_LPS001WP_OUT_L_ADDR 0x28
#define ST_TEMP_LPS001WP_OUT_L_ADDR 0x2a
/* LPS25H pressure and temp L addresses */
#define ST_PRESS_LPS25H_OUT_XL_ADDR 0x28
#define ST_TEMP_LPS25H_OUT_L_ADDR 0x2b
/* LPS22HB temperature sensitivity */
#define ST_PRESS_LPS22HB_LSB_PER_CELSIUS 100UL
static const struct iio_chan_spec st_press_1_channels[] = {
{
.type = IIO_PRESSURE,
.address = ST_PRESS_1_OUT_XL_ADDR,
.scan_index = 0,
.scan_type = {
.sign = 's',
.realbits = 24,
.storagebits = 32,
.endianness = IIO_LE,
},
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
{
.type = IIO_TEMP,
.address = ST_TEMP_1_OUT_L_ADDR,
.scan_index = 1,
.scan_type = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_LE,
},
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
IIO_CHAN_SOFT_TIMESTAMP(2)
};
static const struct iio_chan_spec st_press_lps001wp_channels[] = {
{
.type = IIO_PRESSURE,
.address = ST_PRESS_LPS001WP_OUT_L_ADDR,
.scan_index = 0,
.scan_type = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_LE,
},
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
},
{
.type = IIO_TEMP,
.address = ST_TEMP_LPS001WP_OUT_L_ADDR,
.scan_index = 1,
.scan_type = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_LE,
},
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
},
IIO_CHAN_SOFT_TIMESTAMP(2)
};
static const struct iio_chan_spec st_press_lps22hb_channels[] = {
{
.type = IIO_PRESSURE,
.address = ST_PRESS_1_OUT_XL_ADDR,
.scan_index = 0,
.scan_type = {
.sign = 's',
.realbits = 24,
.storagebits = 32,
.endianness = IIO_LE,
},
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
{
.type = IIO_TEMP,
.address = ST_TEMP_1_OUT_L_ADDR,
.scan_index = 1,
.scan_type = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_LE,
},
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
IIO_CHAN_SOFT_TIMESTAMP(2)
};
static const struct st_sensor_settings st_press_sensors_settings[] = {
{
/*
* CUSTOM VALUES FOR LPS331AP SENSOR
* See LPS331AP datasheet:
* http://www2.st.com/resource/en/datasheet/lps331ap.pdf
*/
.wai = 0xbb,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LPS331AP_PRESS_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_press_1_channels,
.num_ch = ARRAY_SIZE(st_press_1_channels),
.odr = {
.addr = 0x20,
.mask = 0x70,
.odr_avl = {
{ .hz = 1, .value = 0x01 },
{ .hz = 7, .value = 0x05 },
{ .hz = 13, .value = 0x06 },
{ .hz = 25, .value = 0x07 },
},
},
.pw = {
.addr = 0x20,
.mask = 0x80,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.fs = {
.addr = 0x23,
.mask = 0x30,
.fs_avl = {
/*
* Pressure and temperature sensitivity values
* as defined in table 3 of LPS331AP datasheet.
*/
[0] = {
.num = ST_PRESS_FS_AVL_1260MB,
.gain = ST_PRESS_KPASCAL_NANO_SCALE,
.gain2 = ST_PRESS_LSB_PER_CELSIUS,
},
},
},
.bdu = {
.addr = 0x20,
.mask = 0x04,
},
.drdy_irq = {
.int1 = {
.addr = 0x22,
.mask = 0x04,
.addr_od = 0x22,
.mask_od = 0x40,
},
.int2 = {
.addr = 0x22,
.mask = 0x20,
.addr_od = 0x22,
.mask_od = 0x40,
},
.addr_ihl = 0x22,
.mask_ihl = 0x80,
.stat_drdy = {
.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
.mask = 0x03,
},
},
.sim = {
.addr = 0x20,
.value = BIT(0),
},
.multi_read_bit = true,
.bootime = 2,
},
{
/*
* CUSTOM VALUES FOR LPS001WP SENSOR
*/
.wai = 0xba,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LPS001WP_PRESS_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_press_lps001wp_channels,
.num_ch = ARRAY_SIZE(st_press_lps001wp_channels),
.odr = {
.addr = 0x20,
.mask = 0x30,
.odr_avl = {
{ .hz = 1, .value = 0x01 },
{ .hz = 7, .value = 0x02 },
{ .hz = 13, .value = 0x03 },
},
},
.pw = {
.addr = 0x20,
.mask = 0x40,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.fs = {
.fs_avl = {
/*
* Pressure and temperature resolution values
* as defined in table 3 of LPS001WP datasheet.
*/
[0] = {
.num = ST_PRESS_FS_AVL_1100MB,
.gain = ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN,
.gain2 = ST_PRESS_LPS001WP_LSB_PER_CELSIUS,
},
},
},
.bdu = {
.addr = 0x20,
.mask = 0x04,
},
.sim = {
.addr = 0x20,
.value = BIT(0),
},
.multi_read_bit = true,
.bootime = 2,
},
{
/*
* CUSTOM VALUES FOR LPS25H SENSOR
* See LPS25H datasheet:
* http://www2.st.com/resource/en/datasheet/lps25h.pdf
*/
.wai = 0xbd,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LPS25H_PRESS_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_press_1_channels,
.num_ch = ARRAY_SIZE(st_press_1_channels),
.odr = {
.addr = 0x20,
.mask = 0x70,
.odr_avl = {
{ .hz = 1, .value = 0x01 },
{ .hz = 7, .value = 0x02 },
{ .hz = 13, .value = 0x03 },
{ .hz = 25, .value = 0x04 },
},
},
.pw = {
.addr = 0x20,
.mask = 0x80,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.fs = {
.fs_avl = {
/*
* Pressure and temperature sensitivity values
* as defined in table 3 of LPS25H datasheet.
*/
[0] = {
.num = ST_PRESS_FS_AVL_1260MB,
.gain = ST_PRESS_KPASCAL_NANO_SCALE,
.gain2 = ST_PRESS_LSB_PER_CELSIUS,
},
},
},
.bdu = {
.addr = 0x20,
.mask = 0x04,
},
.drdy_irq = {
.int1 = {
.addr = 0x23,
.mask = 0x01,
.addr_od = 0x22,
.mask_od = 0x40,
},
.addr_ihl = 0x22,
.mask_ihl = 0x80,
.stat_drdy = {
.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
.mask = 0x03,
},
},
.sim = {
.addr = 0x20,
.value = BIT(0),
},
.multi_read_bit = true,
.bootime = 2,
},
{
/*
* CUSTOM VALUES FOR LPS22HB SENSOR
* See LPS22HB datasheet:
* http://www2.st.com/resource/en/datasheet/lps22hb.pdf
*/
.wai = 0xb1,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LPS22HB_PRESS_DEV_NAME,
[1] = LPS33HW_PRESS_DEV_NAME,
[2] = LPS35HW_PRESS_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_press_lps22hb_channels,
.num_ch = ARRAY_SIZE(st_press_lps22hb_channels),
.odr = {
.addr = 0x10,
.mask = 0x70,
.odr_avl = {
{ .hz = 1, .value = 0x01 },
{ .hz = 10, .value = 0x02 },
{ .hz = 25, .value = 0x03 },
{ .hz = 50, .value = 0x04 },
{ .hz = 75, .value = 0x05 },
},
},
.pw = {
.addr = 0x10,
.mask = 0x70,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.fs = {
.fs_avl = {
/*
* Pressure and temperature sensitivity values
* as defined in table 3 of LPS22HB datasheet.
*/
[0] = {
.num = ST_PRESS_FS_AVL_1260MB,
.gain = ST_PRESS_KPASCAL_NANO_SCALE,
.gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS,
},
},
},
.bdu = {
.addr = 0x10,
.mask = 0x02,
},
.drdy_irq = {
.int1 = {
.addr = 0x12,
.mask = 0x04,
.addr_od = 0x12,
.mask_od = 0x40,
},
.addr_ihl = 0x12,
.mask_ihl = 0x80,
.stat_drdy = {
.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
.mask = 0x03,
},
},
.sim = {
.addr = 0x10,
.value = BIT(0),
},
.multi_read_bit = false,
.bootime = 2,
},
};
static int st_press_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *ch,
int val,
int val2,
long mask)
{
int err;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
if (val2)
return -EINVAL;
mutex_lock(&indio_dev->mlock);
err = st_sensors_set_odr(indio_dev, val);
mutex_unlock(&indio_dev->mlock);
return err;
default:
return -EINVAL;
}
}
static int st_press_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *ch, int *val,
int *val2, long mask)
{
int err;
struct st_sensor_data *press_data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
err = st_sensors_read_info_raw(indio_dev, ch, val);
if (err < 0)
goto read_error;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
switch (ch->type) {
case IIO_PRESSURE:
*val = 0;
*val2 = press_data->current_fullscale->gain;
return IIO_VAL_INT_PLUS_NANO;
case IIO_TEMP:
*val = MCELSIUS_PER_CELSIUS;
*val2 = press_data->current_fullscale->gain2;
return IIO_VAL_FRACTIONAL;
default:
err = -EINVAL;
goto read_error;
}
case IIO_CHAN_INFO_OFFSET:
switch (ch->type) {
case IIO_TEMP:
*val = ST_PRESS_MILLI_CELSIUS_OFFSET *
press_data->current_fullscale->gain2;
*val2 = MCELSIUS_PER_CELSIUS;
break;
default:
err = -EINVAL;
goto read_error;
}
return IIO_VAL_FRACTIONAL;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = press_data->odr;
return IIO_VAL_INT;
default:
return -EINVAL;
}
read_error:
return err;
}
static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
static struct attribute *st_press_attributes[] = {
&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group st_press_attribute_group = {
.attrs = st_press_attributes,
};
static const struct iio_info press_info = {
.attrs = &st_press_attribute_group,
.read_raw = &st_press_read_raw,
.write_raw = &st_press_write_raw,
.debugfs_reg_access = &st_sensors_debugfs_reg_access,
};
#ifdef CONFIG_IIO_TRIGGER
static const struct iio_trigger_ops st_press_trigger_ops = {
.set_trigger_state = ST_PRESS_TRIGGER_SET_STATE,
iio: st_sensors: switch to a threaded interrupt commit 98ad8b41f58dff6b30713d7f09ae3834b8df7ded ("iio: st_sensors: verify interrupt event to status") caused a regression when reading ST sensors from a HRTimer trigger rather than the intrinsic interrupts: the HRTimer may trigger faster than the sensor provides new values, and as the check against new values available as a cause of the interrupt trigger was done in the poll function, this would bail out of the HRTimer interrupt with IRQ_NONE. So clearly we need to only check the new values available from the proper interrupt handler and not from the poll function, which should rather just read the raw values from the registers, put them into the buffer and be happy. To achieve this: switch the ST Sensors over to using a true threaded interrupt handler. In the interrupt thread, check if new values are available, else yield to the (potential) next device on the same interrupt line to check the registers. If the interrupt was ours, proceed to poll the values. Instead of relying on iio_trigger_generic_data_rdy_poll() as a top half to wake up the thread that polls the sensor for new data, have the thread call iio_trigger_poll_chained() after determining that is is the proper source of the interrupt. This is modelled on drivers/iio/accel/mma8452.c which is already using a properly threaded interrupt handler. In order to get the same precision in timestamps as previously, where samples would be timestamped in the poll function pf->timestamp when calling iio_trigger_generic_data_rdy_poll() we introduce a local timestamp in the sensor data, set it in the top half (fastpath) of the interrupt handler and provide that to the core when calling iio_push_to_buffers_with_timestamp(). Additionally: if the active scanmask is not set for the sensor no IRQs should be enabled and we need to bail out with IRQ_NONE. This can happen if spurious IRQs fire when installing the threaded interrupt handler. Tested with hard interrupt triggers on LIS331DL, then also tested with hrtimers on the same sensor by creating a 75Hz HRTimer and using it to poll the sensor. Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Cc: Giuseppe Barba <giuseppe.barba@st.com> Cc: Denis Ciocca <denis.ciocca@st.com> Reported-by: Crestez Dan Leonard <cdleonard@gmail.com> Tested-by: Crestez Dan Leonard <cdleonard@gmail.com> Tested-by: Jonathan Cameron <jic23@kernel.org> Fixes: 97865fe41322 ("iio: st_sensors: verify interrupt event to status") Signed-off-by: Jonathan Cameron <jic23@kernel.org>
2016-05-22 02:43:16 +08:00
.validate_device = st_sensors_validate_device,
};
#define ST_PRESS_TRIGGER_OPS (&st_press_trigger_ops)
#else
#define ST_PRESS_TRIGGER_OPS NULL
#endif
int st_press_common_probe(struct iio_dev *indio_dev)
{
struct st_sensor_data *press_data = iio_priv(indio_dev);
struct st_sensors_platform_data *pdata =
(struct st_sensors_platform_data *)press_data->dev->platform_data;
int irq = press_data->get_irq_data_ready(indio_dev);
int err;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &press_info;
mutex_init(&press_data->tb.buf_lock);
err = st_sensors_power_enable(indio_dev);
if (err)
return err;
err = st_sensors_check_device_support(indio_dev,
ARRAY_SIZE(st_press_sensors_settings),
st_press_sensors_settings);
if (err < 0)
goto st_press_power_off;
/*
* Skip timestamping channel while declaring available channels to
* common st_sensor layer. Look at st_sensors_get_buffer_element() to
* see how timestamps are explicitly pushed as last samples block
* element.
*/
press_data->num_data_channels = press_data->sensor_settings->num_ch - 1;
press_data->multiread_bit = press_data->sensor_settings->multi_read_bit;
indio_dev->channels = press_data->sensor_settings->ch;
indio_dev->num_channels = press_data->sensor_settings->num_ch;
press_data->current_fullscale =
(struct st_sensor_fullscale_avl *)
&press_data->sensor_settings->fs.fs_avl[0];
press_data->odr = press_data->sensor_settings->odr.odr_avl[0].hz;
/* Some devices don't support a data ready pin. */
if (!pdata && (press_data->sensor_settings->drdy_irq.int1.addr ||
press_data->sensor_settings->drdy_irq.int2.addr))
pdata = (struct st_sensors_platform_data *)&default_press_pdata;
err = st_sensors_init_sensor(indio_dev, pdata);
if (err < 0)
goto st_press_power_off;
err = st_press_allocate_ring(indio_dev);
if (err < 0)
goto st_press_power_off;
if (irq > 0) {
err = st_sensors_allocate_trigger(indio_dev,
ST_PRESS_TRIGGER_OPS);
if (err < 0)
goto st_press_probe_trigger_error;
}
err = iio_device_register(indio_dev);
if (err)
goto st_press_device_register_error;
dev_info(&indio_dev->dev, "registered pressure sensor %s\n",
indio_dev->name);
return err;
st_press_device_register_error:
if (irq > 0)
st_sensors_deallocate_trigger(indio_dev);
st_press_probe_trigger_error:
st_press_deallocate_ring(indio_dev);
st_press_power_off:
st_sensors_power_disable(indio_dev);
return err;
}
EXPORT_SYMBOL(st_press_common_probe);
void st_press_common_remove(struct iio_dev *indio_dev)
{
struct st_sensor_data *press_data = iio_priv(indio_dev);
st_sensors_power_disable(indio_dev);
iio_device_unregister(indio_dev);
if (press_data->get_irq_data_ready(indio_dev) > 0)
st_sensors_deallocate_trigger(indio_dev);
st_press_deallocate_ring(indio_dev);
}
EXPORT_SYMBOL(st_press_common_remove);
MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
MODULE_DESCRIPTION("STMicroelectronics pressures driver");
MODULE_LICENSE("GPL v2");