linux-sg2042/arch/x86/kernel/ftrace.c

513 lines
12 KiB
C
Raw Normal View History

ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
/*
* Code for replacing ftrace calls with jumps.
*
* Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
*
* Thanks goes to Ingo Molnar, for suggesting the idea.
* Mathieu Desnoyers, for suggesting postponing the modifications.
* Arjan van de Ven, for keeping me straight, and explaining to me
* the dangers of modifying code on the run.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
#include <linux/spinlock.h>
#include <linux/hardirq.h>
#include <linux/uaccess.h>
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
#include <linux/ftrace.h>
#include <linux/percpu.h>
#include <linux/sched.h>
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
#include <linux/init.h>
#include <linux/list.h>
tracing/syscalls: use a dedicated file header Impact: fix build warnings and possibe compat misbehavior on IA64 Building a kernel on ia64 might trigger these ugly build warnings: CC arch/ia64/ia32/sys_ia32.o In file included from arch/ia64/ia32/sys_ia32.c:55: arch/ia64/ia32/ia32priv.h:290:1: warning: "elf_check_arch" redefined In file included from include/linux/elf.h:7, from include/linux/module.h:14, from include/linux/ftrace.h:8, from include/linux/syscalls.h:68, from arch/ia64/ia32/sys_ia32.c:18: arch/ia64/include/asm/elf.h:19:1: warning: this is the location of the previous definition [...] sys_ia32.c includes linux/syscalls.h which in turn includes linux/ftrace.h to import the syscalls tracing prototypes. But including ftrace.h can pull too much things for a low level file, especially on ia64 where the ia32 private headers conflict with higher level headers. Now we isolate the syscall tracing headers in their own lightweight file. Reported-by: Tony Luck <tony.luck@intel.com> Tested-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Jason Baron <jbaron@redhat.com> Cc: "Frank Ch. Eigler" <fche@redhat.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Jiaying Zhang <jiayingz@google.com> Cc: Michael Rubin <mrubin@google.com> Cc: Martin Bligh <mbligh@google.com> Cc: Michael Davidson <md@google.com> LKML-Reference: <20090408184058.GB6017@nowhere> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-09 02:40:59 +08:00
#include <trace/syscall.h>
#include <asm/cacheflush.h>
#include <asm/ftrace.h>
#include <asm/nops.h>
#include <asm/nmi.h>
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
#ifdef CONFIG_DYNAMIC_FTRACE
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
ftrace: Remove memory barriers from NMI code when not needed The code in stop_machine that modifies the kernel text has a bit of logic to handle the case of NMIs. stop_machine does not prevent NMIs from executing, and if an NMI were to trigger on another CPU as the modifying CPU is changing the NMI text, a GPF could result. To prevent the GPF, the NMI calls ftrace_nmi_enter() which may modify the code first, then any other NMIs will just change the text to the same content which will do no harm. The code that stop_machine called must wait for NMIs to finish while it changes each location in the kernel. That code may also change the text to what the NMI changed it to. The key is that the text will never change content while another CPU is executing it. To make the above work, the call to ftrace_nmi_enter() must also do a smp_mb() as well as atomic_inc(). But for applications like perf that require a high number of NMIs for profiling, this can have a dramatic effect on the system. Not only is it doing a full memory barrier on both nmi_enter() as well as nmi_exit() it is also modifying a global variable with an atomic operation. This kills performance on large SMP machines. Since the memory barriers are only needed when ftrace is in the process of modifying the text (which is seldom), this patch adds a "modifying_code" variable that gets set before stop machine is executed and cleared afterwards. The NMIs will check this variable and store it in a per CPU "save_modifying_code" variable that it will use to check if it needs to do the memory barriers and atomic dec on NMI exit. Acked-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-02-25 21:42:06 +08:00
/*
* modifying_code is set to notify NMIs that they need to use
* memory barriers when entering or exiting. But we don't want
* to burden NMIs with unnecessary memory barriers when code
* modification is not being done (which is most of the time).
*
* A mutex is already held when ftrace_arch_code_modify_prepare
* and post_process are called. No locks need to be taken here.
*
* Stop machine will make sure currently running NMIs are done
* and new NMIs will see the updated variable before we need
* to worry about NMIs doing memory barriers.
*/
static int modifying_code __read_mostly;
static DEFINE_PER_CPU(int, save_modifying_code);
int ftrace_arch_code_modify_prepare(void)
{
set_kernel_text_rw();
ftrace: Remove memory barriers from NMI code when not needed The code in stop_machine that modifies the kernel text has a bit of logic to handle the case of NMIs. stop_machine does not prevent NMIs from executing, and if an NMI were to trigger on another CPU as the modifying CPU is changing the NMI text, a GPF could result. To prevent the GPF, the NMI calls ftrace_nmi_enter() which may modify the code first, then any other NMIs will just change the text to the same content which will do no harm. The code that stop_machine called must wait for NMIs to finish while it changes each location in the kernel. That code may also change the text to what the NMI changed it to. The key is that the text will never change content while another CPU is executing it. To make the above work, the call to ftrace_nmi_enter() must also do a smp_mb() as well as atomic_inc(). But for applications like perf that require a high number of NMIs for profiling, this can have a dramatic effect on the system. Not only is it doing a full memory barrier on both nmi_enter() as well as nmi_exit() it is also modifying a global variable with an atomic operation. This kills performance on large SMP machines. Since the memory barriers are only needed when ftrace is in the process of modifying the text (which is seldom), this patch adds a "modifying_code" variable that gets set before stop machine is executed and cleared afterwards. The NMIs will check this variable and store it in a per CPU "save_modifying_code" variable that it will use to check if it needs to do the memory barriers and atomic dec on NMI exit. Acked-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-02-25 21:42:06 +08:00
modifying_code = 1;
return 0;
}
int ftrace_arch_code_modify_post_process(void)
{
ftrace: Remove memory barriers from NMI code when not needed The code in stop_machine that modifies the kernel text has a bit of logic to handle the case of NMIs. stop_machine does not prevent NMIs from executing, and if an NMI were to trigger on another CPU as the modifying CPU is changing the NMI text, a GPF could result. To prevent the GPF, the NMI calls ftrace_nmi_enter() which may modify the code first, then any other NMIs will just change the text to the same content which will do no harm. The code that stop_machine called must wait for NMIs to finish while it changes each location in the kernel. That code may also change the text to what the NMI changed it to. The key is that the text will never change content while another CPU is executing it. To make the above work, the call to ftrace_nmi_enter() must also do a smp_mb() as well as atomic_inc(). But for applications like perf that require a high number of NMIs for profiling, this can have a dramatic effect on the system. Not only is it doing a full memory barrier on both nmi_enter() as well as nmi_exit() it is also modifying a global variable with an atomic operation. This kills performance on large SMP machines. Since the memory barriers are only needed when ftrace is in the process of modifying the text (which is seldom), this patch adds a "modifying_code" variable that gets set before stop machine is executed and cleared afterwards. The NMIs will check this variable and store it in a per CPU "save_modifying_code" variable that it will use to check if it needs to do the memory barriers and atomic dec on NMI exit. Acked-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-02-25 21:42:06 +08:00
modifying_code = 0;
set_kernel_text_ro();
return 0;
}
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
union ftrace_code_union {
char code[MCOUNT_INSN_SIZE];
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
struct {
char e8;
int offset;
} __attribute__((packed));
};
static int ftrace_calc_offset(long ip, long addr)
{
return (int)(addr - ip);
}
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 08:21:19 +08:00
static unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
{
static union ftrace_code_union calc;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
calc.e8 = 0xe8;
calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr);
/*
* No locking needed, this must be called via kstop_machine
* which in essence is like running on a uniprocessor machine.
*/
return calc.code;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
}
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
/*
* Modifying code must take extra care. On an SMP machine, if
* the code being modified is also being executed on another CPU
* that CPU will have undefined results and possibly take a GPF.
* We use kstop_machine to stop other CPUS from exectuing code.
* But this does not stop NMIs from happening. We still need
* to protect against that. We separate out the modification of
* the code to take care of this.
*
* Two buffers are added: An IP buffer and a "code" buffer.
*
* 1) Put the instruction pointer into the IP buffer
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
* and the new code into the "code" buffer.
* 2) Wait for any running NMIs to finish and set a flag that says
* we are modifying code, it is done in an atomic operation.
* 3) Write the code
* 4) clear the flag.
* 5) Wait for any running NMIs to finish.
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
*
* If an NMI is executed, the first thing it does is to call
* "ftrace_nmi_enter". This will check if the flag is set to write
* and if it is, it will write what is in the IP and "code" buffers.
*
* The trick is, it does not matter if everyone is writing the same
* content to the code location. Also, if a CPU is executing code
* it is OK to write to that code location if the contents being written
* are the same as what exists.
*/
#define MOD_CODE_WRITE_FLAG (1 << 31) /* set when NMI should do the write */
static atomic_t nmi_running = ATOMIC_INIT(0);
static int mod_code_status; /* holds return value of text write */
static void *mod_code_ip; /* holds the IP to write to */
static void *mod_code_newcode; /* holds the text to write to the IP */
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
static unsigned nmi_wait_count;
static atomic_t nmi_update_count = ATOMIC_INIT(0);
int ftrace_arch_read_dyn_info(char *buf, int size)
{
int r;
r = snprintf(buf, size, "%u %u",
nmi_wait_count,
atomic_read(&nmi_update_count));
return r;
}
static void clear_mod_flag(void)
{
int old = atomic_read(&nmi_running);
for (;;) {
int new = old & ~MOD_CODE_WRITE_FLAG;
if (old == new)
break;
old = atomic_cmpxchg(&nmi_running, old, new);
}
}
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
static void ftrace_mod_code(void)
{
/*
* Yes, more than one CPU process can be writing to mod_code_status.
* (and the code itself)
* But if one were to fail, then they all should, and if one were
* to succeed, then they all should.
*/
mod_code_status = probe_kernel_write(mod_code_ip, mod_code_newcode,
MCOUNT_INSN_SIZE);
/* if we fail, then kill any new writers */
if (mod_code_status)
clear_mod_flag();
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
}
void ftrace_nmi_enter(void)
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
{
ftrace: Remove memory barriers from NMI code when not needed The code in stop_machine that modifies the kernel text has a bit of logic to handle the case of NMIs. stop_machine does not prevent NMIs from executing, and if an NMI were to trigger on another CPU as the modifying CPU is changing the NMI text, a GPF could result. To prevent the GPF, the NMI calls ftrace_nmi_enter() which may modify the code first, then any other NMIs will just change the text to the same content which will do no harm. The code that stop_machine called must wait for NMIs to finish while it changes each location in the kernel. That code may also change the text to what the NMI changed it to. The key is that the text will never change content while another CPU is executing it. To make the above work, the call to ftrace_nmi_enter() must also do a smp_mb() as well as atomic_inc(). But for applications like perf that require a high number of NMIs for profiling, this can have a dramatic effect on the system. Not only is it doing a full memory barrier on both nmi_enter() as well as nmi_exit() it is also modifying a global variable with an atomic operation. This kills performance on large SMP machines. Since the memory barriers are only needed when ftrace is in the process of modifying the text (which is seldom), this patch adds a "modifying_code" variable that gets set before stop machine is executed and cleared afterwards. The NMIs will check this variable and store it in a per CPU "save_modifying_code" variable that it will use to check if it needs to do the memory barriers and atomic dec on NMI exit. Acked-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-02-25 21:42:06 +08:00
__get_cpu_var(save_modifying_code) = modifying_code;
if (!__get_cpu_var(save_modifying_code))
return;
if (atomic_inc_return(&nmi_running) & MOD_CODE_WRITE_FLAG) {
smp_rmb();
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
ftrace_mod_code();
atomic_inc(&nmi_update_count);
}
/* Must have previous changes seen before executions */
smp_mb();
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
}
void ftrace_nmi_exit(void)
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
{
ftrace: Remove memory barriers from NMI code when not needed The code in stop_machine that modifies the kernel text has a bit of logic to handle the case of NMIs. stop_machine does not prevent NMIs from executing, and if an NMI were to trigger on another CPU as the modifying CPU is changing the NMI text, a GPF could result. To prevent the GPF, the NMI calls ftrace_nmi_enter() which may modify the code first, then any other NMIs will just change the text to the same content which will do no harm. The code that stop_machine called must wait for NMIs to finish while it changes each location in the kernel. That code may also change the text to what the NMI changed it to. The key is that the text will never change content while another CPU is executing it. To make the above work, the call to ftrace_nmi_enter() must also do a smp_mb() as well as atomic_inc(). But for applications like perf that require a high number of NMIs for profiling, this can have a dramatic effect on the system. Not only is it doing a full memory barrier on both nmi_enter() as well as nmi_exit() it is also modifying a global variable with an atomic operation. This kills performance on large SMP machines. Since the memory barriers are only needed when ftrace is in the process of modifying the text (which is seldom), this patch adds a "modifying_code" variable that gets set before stop machine is executed and cleared afterwards. The NMIs will check this variable and store it in a per CPU "save_modifying_code" variable that it will use to check if it needs to do the memory barriers and atomic dec on NMI exit. Acked-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-02-25 21:42:06 +08:00
if (!__get_cpu_var(save_modifying_code))
return;
/* Finish all executions before clearing nmi_running */
smp_mb();
atomic_dec(&nmi_running);
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
}
static void wait_for_nmi_and_set_mod_flag(void)
{
if (!atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG))
return;
do {
cpu_relax();
} while (atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG));
nmi_wait_count++;
}
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
static void wait_for_nmi(void)
{
if (!atomic_read(&nmi_running))
return;
do {
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
cpu_relax();
} while (atomic_read(&nmi_running));
nmi_wait_count++;
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
}
static inline int
within(unsigned long addr, unsigned long start, unsigned long end)
{
return addr >= start && addr < end;
}
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
static int
do_ftrace_mod_code(unsigned long ip, void *new_code)
{
/*
* On x86_64, kernel text mappings are mapped read-only with
* CONFIG_DEBUG_RODATA. So we use the kernel identity mapping instead
* of the kernel text mapping to modify the kernel text.
*
* For 32bit kernels, these mappings are same and we can use
* kernel identity mapping to modify code.
*/
if (within(ip, (unsigned long)_text, (unsigned long)_etext))
ip = (unsigned long)__va(__pa(ip));
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
mod_code_ip = (void *)ip;
mod_code_newcode = new_code;
/* The buffers need to be visible before we let NMIs write them */
smp_mb();
wait_for_nmi_and_set_mod_flag();
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
/* Make sure all running NMIs have finished before we write the code */
smp_mb();
ftrace_mod_code();
/* Make sure the write happens before clearing the bit */
smp_mb();
clear_mod_flag();
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
wait_for_nmi();
return mod_code_status;
}
static unsigned char ftrace_nop[MCOUNT_INSN_SIZE];
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 08:21:19 +08:00
static unsigned char *ftrace_nop_replace(void)
{
return ftrace_nop;
}
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 08:21:19 +08:00
static int
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
ftrace_modify_code(unsigned long ip, unsigned char *old_code,
unsigned char *new_code)
{
unsigned char replaced[MCOUNT_INSN_SIZE];
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
/*
* Note: Due to modules and __init, code can
* disappear and change, we need to protect against faulting
* as well as code changing. We do this by using the
* probe_kernel_* functions.
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
*
* No real locking needed, this code is run through
* kstop_machine, or before SMP starts.
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
*/
/* read the text we want to modify */
if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE))
return -EFAULT;
/* Make sure it is what we expect it to be */
if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0)
return -EINVAL;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
/* replace the text with the new text */
ftrace: nmi safe code modification Impact: fix crashes that can occur in NMI handlers, if their code is modified Modifying code is something that needs special care. On SMP boxes, if code that is being modified is also being executed on another CPU, that CPU will have undefined results. The dynamic ftrace uses kstop_machine to make the system act like a uniprocessor system. But this does not address NMIs, that can still run on other CPUs. One approach to handle this is to make all code that are used by NMIs not be traced. But NMIs can call notifiers that spread throughout the kernel and this will be very hard to maintain, and the chance of missing a function is very high. The approach that this patch takes is to have the NMIs modify the code if the modification is taking place. The way this works is that just writing to code executing on another CPU is not harmful if what is written is the same as what exists. Two buffers are used: an IP buffer and a "code" buffer. The steps that the patcher takes are: 1) Put in the instruction pointer into the IP buffer and the new code into the "code" buffer. 2) Set a flag that says we are modifying code 3) Wait for any running NMIs to finish. 4) Write the code 5) clear the flag. 6) Wait for any running NMIs to finish. If an NMI is executed, it will also write the pending code. Multiple writes are OK, because what is being written is the same. Then the patcher must wait for all running NMIs to finish before going to the next line that must be patched. This is basically the RCU approach to code modification. Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven for his guidence on what is safe and what is not. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-31 04:08:32 +08:00
if (do_ftrace_mod_code(ip, new_code))
return -EPERM;
sync_core();
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
return 0;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
}
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 08:21:19 +08:00
int ftrace_make_nop(struct module *mod,
struct dyn_ftrace *rec, unsigned long addr)
{
unsigned char *new, *old;
unsigned long ip = rec->ip;
old = ftrace_call_replace(ip, addr);
new = ftrace_nop_replace();
return ftrace_modify_code(rec->ip, old, new);
}
int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
{
unsigned char *new, *old;
unsigned long ip = rec->ip;
old = ftrace_nop_replace();
new = ftrace_call_replace(ip, addr);
return ftrace_modify_code(rec->ip, old, new);
}
int ftrace_update_ftrace_func(ftrace_func_t func)
{
unsigned long ip = (unsigned long)(&ftrace_call);
unsigned char old[MCOUNT_INSN_SIZE], *new;
int ret;
memcpy(old, &ftrace_call, MCOUNT_INSN_SIZE);
new = ftrace_call_replace(ip, (unsigned long)func);
ret = ftrace_modify_code(ip, old, new);
return ret;
}
int __init ftrace_dyn_arch_init(void *data)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
{
extern const unsigned char ftrace_test_p6nop[];
extern const unsigned char ftrace_test_nop5[];
extern const unsigned char ftrace_test_jmp[];
int faulted = 0;
/*
* There is no good nop for all x86 archs.
* We will default to using the P6_NOP5, but first we
* will test to make sure that the nop will actually
* work on this CPU. If it faults, we will then
* go to a lesser efficient 5 byte nop. If that fails
* we then just use a jmp as our nop. This isn't the most
* efficient nop, but we can not use a multi part nop
* since we would then risk being preempted in the middle
* of that nop, and if we enabled tracing then, it might
* cause a system crash.
*
* TODO: check the cpuid to determine the best nop.
*/
asm volatile (
"ftrace_test_jmp:"
"jmp ftrace_test_p6nop\n"
"nop\n"
"nop\n"
"nop\n" /* 2 byte jmp + 3 bytes */
"ftrace_test_p6nop:"
P6_NOP5
"jmp 1f\n"
"ftrace_test_nop5:"
".byte 0x66,0x66,0x66,0x66,0x90\n"
"1:"
".section .fixup, \"ax\"\n"
"2: movl $1, %0\n"
" jmp ftrace_test_nop5\n"
"3: movl $2, %0\n"
" jmp 1b\n"
".previous\n"
_ASM_EXTABLE(ftrace_test_p6nop, 2b)
_ASM_EXTABLE(ftrace_test_nop5, 3b)
: "=r"(faulted) : "0" (faulted));
switch (faulted) {
case 0:
pr_info("converting mcount calls to 0f 1f 44 00 00\n");
memcpy(ftrace_nop, ftrace_test_p6nop, MCOUNT_INSN_SIZE);
break;
case 1:
pr_info("converting mcount calls to 66 66 66 66 90\n");
memcpy(ftrace_nop, ftrace_test_nop5, MCOUNT_INSN_SIZE);
break;
case 2:
pr_info("converting mcount calls to jmp . + 5\n");
memcpy(ftrace_nop, ftrace_test_jmp, MCOUNT_INSN_SIZE);
break;
}
/* The return code is retured via data */
*(unsigned long *)data = 0;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
return 0;
}
#endif
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
#ifdef CONFIG_DYNAMIC_FTRACE
extern void ftrace_graph_call(void);
static int ftrace_mod_jmp(unsigned long ip,
int old_offset, int new_offset)
{
unsigned char code[MCOUNT_INSN_SIZE];
if (probe_kernel_read(code, (void *)ip, MCOUNT_INSN_SIZE))
return -EFAULT;
if (code[0] != 0xe9 || old_offset != *(int *)(&code[1]))
return -EINVAL;
*(int *)(&code[1]) = new_offset;
if (do_ftrace_mod_code(ip, &code))
return -EPERM;
return 0;
}
int ftrace_enable_ftrace_graph_caller(void)
{
unsigned long ip = (unsigned long)(&ftrace_graph_call);
int old_offset, new_offset;
old_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE);
new_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE);
return ftrace_mod_jmp(ip, old_offset, new_offset);
}
int ftrace_disable_ftrace_graph_caller(void)
{
unsigned long ip = (unsigned long)(&ftrace_graph_call);
int old_offset, new_offset;
old_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE);
new_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE);
return ftrace_mod_jmp(ip, old_offset, new_offset);
}
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
#endif /* !CONFIG_DYNAMIC_FTRACE */
/*
* Hook the return address and push it in the stack of return addrs
* in current thread info.
*/
function-graph: add stack frame test In case gcc does something funny with the stack frames, or the return from function code, we would like to detect that. An arch may implement passing of a variable that is unique to the function and can be saved on entering a function and can be tested when exiting the function. Usually the frame pointer can be used for this purpose. This patch also implements this for x86. Where it passes in the stack frame of the parent function, and will test that frame on exit. There was a case in x86_32 with optimize for size (-Os) where, for a few functions, gcc would align the stack frame and place a copy of the return address into it. The function graph tracer modified the copy and not the actual return address. On return from the funtion, it did not go to the tracer hook, but returned to the parent. This broke the function graph tracer, because the return of the parent (where gcc did not do this funky manipulation) returned to the location that the child function was suppose to. This caused strange kernel crashes. This test detected the problem and pointed out where the issue was. This modifies the parameters of one of the functions that the arch specific code calls, so it includes changes to arch code to accommodate the new prototype. Note, I notice that the parsic arch implements its own push_return_trace. This is now a generic function and the ftrace_push_return_trace should be used instead. This patch does not touch that code. Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Helge Deller <deller@gmx.de> Cc: Kyle McMartin <kyle@mcmartin.ca> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-06-19 00:45:08 +08:00
void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr,
unsigned long frame_pointer)
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
{
unsigned long old;
int faulted;
tracing/function-return-tracer: set a more human readable output Impact: feature This patch sets a C-like output for the function graph tracing. For this aim, we now call two handler for each function: one on the entry and one other on return. This way we can draw a well-ordered call stack. The pid of the previous trace is loosely stored to be compared against the one of the current trace to see if there were a context switch. Without this little feature, the call tree would seem broken at some locations. We could use the sched_tracer to capture these sched_events but this way of processing is much more simpler. 2 spaces have been chosen for indentation to fit the screen while deep calls. The time of execution in nanosecs is printed just after closed braces, it seems more easy this way to find the corresponding function. If the time was printed as a first column, it would be not so easy to find the corresponding function if it is called on a deep depth. I plan to output the return value but on 32 bits CPU, the return value can be 32 or 64, and its difficult to guess on which case we are. I don't know what would be the better solution on X86-32: only print eax (low-part) or even edx (high-part). Actually it's thee same problem when a function return a 8 bits value, the high part of eax could contain junk values... Here is an example of trace: sys_read() { fget_light() { } 526 vfs_read() { rw_verify_area() { security_file_permission() { cap_file_permission() { } 519 } 1564 } 2640 do_sync_read() { pipe_read() { __might_sleep() { } 511 pipe_wait() { prepare_to_wait() { } 760 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { update_min_vruntime() { } 504 } 1587 clear_buddies() { } 512 add_cfs_task_weight() { } 519 update_min_vruntime() { } 511 } 5602 dequeue_entity() { update_curr() { update_min_vruntime() { } 496 } 1631 clear_buddies() { } 496 update_min_vruntime() { } 527 } 4580 hrtick_update() { hrtick_start_fair() { } 488 } 1489 } 13700 } 14949 } 16016 msecs_to_jiffies() { } 496 put_prev_task_fair() { } 504 pick_next_task_fair() { } 489 pick_next_task_rt() { } 496 pick_next_task_fair() { } 489 pick_next_task_idle() { } 489 ------------8<---------- thread 4 ------------8<---------- finish_task_switch() { } 1203 do_softirq() { __do_softirq() { __local_bh_disable() { } 669 rcu_process_callbacks() { __rcu_process_callbacks() { cpu_quiet() { rcu_start_batch() { } 503 } 1647 } 3128 __rcu_process_callbacks() { } 542 } 5362 _local_bh_enable() { } 587 } 8880 } 9986 kthread_should_stop() { } 669 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { calc_delta_mine() { } 511 update_min_vruntime() { } 511 } 2813 Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-26 07:57:25 +08:00
struct ftrace_graph_ent trace;
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
unsigned long return_hooker = (unsigned long)
&return_to_handler;
if (unlikely(atomic_read(&current->tracing_graph_pause)))
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
return;
/*
* Protect against fault, even if it shouldn't
* happen. This tool is too much intrusive to
* ignore such a protection.
*/
asm volatile(
"1: " _ASM_MOV " (%[parent]), %[old]\n"
"2: " _ASM_MOV " %[return_hooker], (%[parent])\n"
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
" movl $0, %[faulted]\n"
"3:\n"
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
".section .fixup, \"ax\"\n"
"4: movl $1, %[faulted]\n"
" jmp 3b\n"
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
".previous\n"
_ASM_EXTABLE(1b, 4b)
_ASM_EXTABLE(2b, 4b)
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
: [old] "=&r" (old), [faulted] "=r" (faulted)
: [parent] "r" (parent), [return_hooker] "r" (return_hooker)
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
: "memory"
);
if (unlikely(faulted)) {
ftrace_graph_stop();
WARN_ON(1);
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
return;
}
function-graph: add stack frame test In case gcc does something funny with the stack frames, or the return from function code, we would like to detect that. An arch may implement passing of a variable that is unique to the function and can be saved on entering a function and can be tested when exiting the function. Usually the frame pointer can be used for this purpose. This patch also implements this for x86. Where it passes in the stack frame of the parent function, and will test that frame on exit. There was a case in x86_32 with optimize for size (-Os) where, for a few functions, gcc would align the stack frame and place a copy of the return address into it. The function graph tracer modified the copy and not the actual return address. On return from the funtion, it did not go to the tracer hook, but returned to the parent. This broke the function graph tracer, because the return of the parent (where gcc did not do this funky manipulation) returned to the location that the child function was suppose to. This caused strange kernel crashes. This test detected the problem and pointed out where the issue was. This modifies the parameters of one of the functions that the arch specific code calls, so it includes changes to arch code to accommodate the new prototype. Note, I notice that the parsic arch implements its own push_return_trace. This is now a generic function and the ftrace_push_return_trace should be used instead. This patch does not touch that code. Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Helge Deller <deller@gmx.de> Cc: Kyle McMartin <kyle@mcmartin.ca> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-06-19 00:45:08 +08:00
if (ftrace_push_return_trace(old, self_addr, &trace.depth,
frame_pointer) == -EBUSY) {
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
*parent = old;
tracing/function-return-tracer: set a more human readable output Impact: feature This patch sets a C-like output for the function graph tracing. For this aim, we now call two handler for each function: one on the entry and one other on return. This way we can draw a well-ordered call stack. The pid of the previous trace is loosely stored to be compared against the one of the current trace to see if there were a context switch. Without this little feature, the call tree would seem broken at some locations. We could use the sched_tracer to capture these sched_events but this way of processing is much more simpler. 2 spaces have been chosen for indentation to fit the screen while deep calls. The time of execution in nanosecs is printed just after closed braces, it seems more easy this way to find the corresponding function. If the time was printed as a first column, it would be not so easy to find the corresponding function if it is called on a deep depth. I plan to output the return value but on 32 bits CPU, the return value can be 32 or 64, and its difficult to guess on which case we are. I don't know what would be the better solution on X86-32: only print eax (low-part) or even edx (high-part). Actually it's thee same problem when a function return a 8 bits value, the high part of eax could contain junk values... Here is an example of trace: sys_read() { fget_light() { } 526 vfs_read() { rw_verify_area() { security_file_permission() { cap_file_permission() { } 519 } 1564 } 2640 do_sync_read() { pipe_read() { __might_sleep() { } 511 pipe_wait() { prepare_to_wait() { } 760 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { update_min_vruntime() { } 504 } 1587 clear_buddies() { } 512 add_cfs_task_weight() { } 519 update_min_vruntime() { } 511 } 5602 dequeue_entity() { update_curr() { update_min_vruntime() { } 496 } 1631 clear_buddies() { } 496 update_min_vruntime() { } 527 } 4580 hrtick_update() { hrtick_start_fair() { } 488 } 1489 } 13700 } 14949 } 16016 msecs_to_jiffies() { } 496 put_prev_task_fair() { } 504 pick_next_task_fair() { } 489 pick_next_task_rt() { } 496 pick_next_task_fair() { } 489 pick_next_task_idle() { } 489 ------------8<---------- thread 4 ------------8<---------- finish_task_switch() { } 1203 do_softirq() { __do_softirq() { __local_bh_disable() { } 669 rcu_process_callbacks() { __rcu_process_callbacks() { cpu_quiet() { rcu_start_batch() { } 503 } 1647 } 3128 __rcu_process_callbacks() { } 542 } 5362 _local_bh_enable() { } 587 } 8880 } 9986 kthread_should_stop() { } 669 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { calc_delta_mine() { } 511 update_min_vruntime() { } 511 } 2813 Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-26 07:57:25 +08:00
return;
}
trace.func = self_addr;
/* Only trace if the calling function expects to */
if (!ftrace_graph_entry(&trace)) {
current->curr_ret_stack--;
*parent = old;
}
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
}
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */