linux-sg2042/drivers/xen/pvcalls-front.c

620 lines
15 KiB
C
Raw Normal View History

/*
* (c) 2017 Stefano Stabellini <stefano@aporeto.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
xen/pvcalls: implement socket command and handle events Send a PVCALLS_SOCKET command to the backend, use the masked req_prod_pvt as req_id. This way, req_id is guaranteed to be between 0 and PVCALLS_NR_REQ_PER_RING. We already have a slot in the rsp array ready for the response, and there cannot be two outstanding responses with the same req_id. Wait for the response by waiting on the inflight_req waitqueue and check for the req_id field in rsp[req_id]. Use atomic accesses and barriers to read the field. Note that the barriers are simple smp barriers (as opposed to virt barriers) because they are for internal frontend synchronization, not frontend<->backend communication. Once a response is received, clear the corresponding rsp slot by setting req_id to PVCALLS_INVALID_ID. Note that PVCALLS_INVALID_ID is invalid only from the frontend point of view. It is not part of the PVCalls protocol. pvcalls_front_event_handler is in charge of copying responses from the ring to the appropriate rsp slot. It is done by copying the body of the response first, then by copying req_id atomically. After the copies, wake up anybody waiting on waitqueue. socket_lock protects accesses to the ring. Convert the pointer to sock_mapping into an uintptr_t and use it as id for the new socket to pass to the backend. The struct will be fully initialized later on connect or bind. sock->sk->sk_send_head is not used for ip sockets: reuse the field to store a pointer to the struct sock_mapping corresponding to the socket. This way, we can easily get the struct sock_mapping from the struct socket. Signed-off-by: Stefano Stabellini <stefano@aporeto.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> CC: boris.ostrovsky@oracle.com CC: jgross@suse.com Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
2017-10-31 06:40:54 +08:00
#include <linux/net.h>
#include <linux/socket.h>
#include <net/sock.h>
#include <xen/events.h>
#include <xen/grant_table.h>
#include <xen/xen.h>
#include <xen/xenbus.h>
#include <xen/interface/io/pvcalls.h>
xen/pvcalls: implement socket command and handle events Send a PVCALLS_SOCKET command to the backend, use the masked req_prod_pvt as req_id. This way, req_id is guaranteed to be between 0 and PVCALLS_NR_REQ_PER_RING. We already have a slot in the rsp array ready for the response, and there cannot be two outstanding responses with the same req_id. Wait for the response by waiting on the inflight_req waitqueue and check for the req_id field in rsp[req_id]. Use atomic accesses and barriers to read the field. Note that the barriers are simple smp barriers (as opposed to virt barriers) because they are for internal frontend synchronization, not frontend<->backend communication. Once a response is received, clear the corresponding rsp slot by setting req_id to PVCALLS_INVALID_ID. Note that PVCALLS_INVALID_ID is invalid only from the frontend point of view. It is not part of the PVCalls protocol. pvcalls_front_event_handler is in charge of copying responses from the ring to the appropriate rsp slot. It is done by copying the body of the response first, then by copying req_id atomically. After the copies, wake up anybody waiting on waitqueue. socket_lock protects accesses to the ring. Convert the pointer to sock_mapping into an uintptr_t and use it as id for the new socket to pass to the backend. The struct will be fully initialized later on connect or bind. sock->sk->sk_send_head is not used for ip sockets: reuse the field to store a pointer to the struct sock_mapping corresponding to the socket. This way, we can easily get the struct sock_mapping from the struct socket. Signed-off-by: Stefano Stabellini <stefano@aporeto.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> CC: boris.ostrovsky@oracle.com CC: jgross@suse.com Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
2017-10-31 06:40:54 +08:00
#include "pvcalls-front.h"
#define PVCALLS_INVALID_ID UINT_MAX
#define PVCALLS_RING_ORDER XENBUS_MAX_RING_GRANT_ORDER
#define PVCALLS_NR_RSP_PER_RING __CONST_RING_SIZE(xen_pvcalls, XEN_PAGE_SIZE)
struct pvcalls_bedata {
struct xen_pvcalls_front_ring ring;
grant_ref_t ref;
int irq;
struct list_head socket_mappings;
spinlock_t socket_lock;
wait_queue_head_t inflight_req;
struct xen_pvcalls_response rsp[PVCALLS_NR_RSP_PER_RING];
};
/* Only one front/back connection supported. */
static struct xenbus_device *pvcalls_front_dev;
static atomic_t pvcalls_refcount;
/* first increment refcount, then proceed */
#define pvcalls_enter() { \
atomic_inc(&pvcalls_refcount); \
}
/* first complete other operations, then decrement refcount */
#define pvcalls_exit() { \
atomic_dec(&pvcalls_refcount); \
}
struct sock_mapping {
bool active_socket;
struct list_head list;
struct socket *sock;
union {
struct {
int irq;
grant_ref_t ref;
struct pvcalls_data_intf *ring;
struct pvcalls_data data;
struct mutex in_mutex;
struct mutex out_mutex;
wait_queue_head_t inflight_conn_req;
} active;
struct {
/* Socket status */
#define PVCALLS_STATUS_UNINITALIZED 0
#define PVCALLS_STATUS_BIND 1
#define PVCALLS_STATUS_LISTEN 2
uint8_t status;
} passive;
};
};
xen/pvcalls: implement socket command and handle events Send a PVCALLS_SOCKET command to the backend, use the masked req_prod_pvt as req_id. This way, req_id is guaranteed to be between 0 and PVCALLS_NR_REQ_PER_RING. We already have a slot in the rsp array ready for the response, and there cannot be two outstanding responses with the same req_id. Wait for the response by waiting on the inflight_req waitqueue and check for the req_id field in rsp[req_id]. Use atomic accesses and barriers to read the field. Note that the barriers are simple smp barriers (as opposed to virt barriers) because they are for internal frontend synchronization, not frontend<->backend communication. Once a response is received, clear the corresponding rsp slot by setting req_id to PVCALLS_INVALID_ID. Note that PVCALLS_INVALID_ID is invalid only from the frontend point of view. It is not part of the PVCalls protocol. pvcalls_front_event_handler is in charge of copying responses from the ring to the appropriate rsp slot. It is done by copying the body of the response first, then by copying req_id atomically. After the copies, wake up anybody waiting on waitqueue. socket_lock protects accesses to the ring. Convert the pointer to sock_mapping into an uintptr_t and use it as id for the new socket to pass to the backend. The struct will be fully initialized later on connect or bind. sock->sk->sk_send_head is not used for ip sockets: reuse the field to store a pointer to the struct sock_mapping corresponding to the socket. This way, we can easily get the struct sock_mapping from the struct socket. Signed-off-by: Stefano Stabellini <stefano@aporeto.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> CC: boris.ostrovsky@oracle.com CC: jgross@suse.com Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
2017-10-31 06:40:54 +08:00
static inline int get_request(struct pvcalls_bedata *bedata, int *req_id)
{
*req_id = bedata->ring.req_prod_pvt & (RING_SIZE(&bedata->ring) - 1);
if (RING_FULL(&bedata->ring) ||
bedata->rsp[*req_id].req_id != PVCALLS_INVALID_ID)
return -EAGAIN;
return 0;
}
static irqreturn_t pvcalls_front_event_handler(int irq, void *dev_id)
{
xen/pvcalls: implement socket command and handle events Send a PVCALLS_SOCKET command to the backend, use the masked req_prod_pvt as req_id. This way, req_id is guaranteed to be between 0 and PVCALLS_NR_REQ_PER_RING. We already have a slot in the rsp array ready for the response, and there cannot be two outstanding responses with the same req_id. Wait for the response by waiting on the inflight_req waitqueue and check for the req_id field in rsp[req_id]. Use atomic accesses and barriers to read the field. Note that the barriers are simple smp barriers (as opposed to virt barriers) because they are for internal frontend synchronization, not frontend<->backend communication. Once a response is received, clear the corresponding rsp slot by setting req_id to PVCALLS_INVALID_ID. Note that PVCALLS_INVALID_ID is invalid only from the frontend point of view. It is not part of the PVCalls protocol. pvcalls_front_event_handler is in charge of copying responses from the ring to the appropriate rsp slot. It is done by copying the body of the response first, then by copying req_id atomically. After the copies, wake up anybody waiting on waitqueue. socket_lock protects accesses to the ring. Convert the pointer to sock_mapping into an uintptr_t and use it as id for the new socket to pass to the backend. The struct will be fully initialized later on connect or bind. sock->sk->sk_send_head is not used for ip sockets: reuse the field to store a pointer to the struct sock_mapping corresponding to the socket. This way, we can easily get the struct sock_mapping from the struct socket. Signed-off-by: Stefano Stabellini <stefano@aporeto.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> CC: boris.ostrovsky@oracle.com CC: jgross@suse.com Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
2017-10-31 06:40:54 +08:00
struct xenbus_device *dev = dev_id;
struct pvcalls_bedata *bedata;
struct xen_pvcalls_response *rsp;
uint8_t *src, *dst;
int req_id = 0, more = 0, done = 0;
if (dev == NULL)
return IRQ_HANDLED;
pvcalls_enter();
bedata = dev_get_drvdata(&dev->dev);
if (bedata == NULL) {
pvcalls_exit();
return IRQ_HANDLED;
}
again:
while (RING_HAS_UNCONSUMED_RESPONSES(&bedata->ring)) {
rsp = RING_GET_RESPONSE(&bedata->ring, bedata->ring.rsp_cons);
req_id = rsp->req_id;
dst = (uint8_t *)&bedata->rsp[req_id] + sizeof(rsp->req_id);
src = (uint8_t *)rsp + sizeof(rsp->req_id);
memcpy(dst, src, sizeof(*rsp) - sizeof(rsp->req_id));
/*
* First copy the rest of the data, then req_id. It is
* paired with the barrier when accessing bedata->rsp.
*/
smp_wmb();
bedata->rsp[req_id].req_id = rsp->req_id;
done = 1;
bedata->ring.rsp_cons++;
}
RING_FINAL_CHECK_FOR_RESPONSES(&bedata->ring, more);
if (more)
goto again;
if (done)
wake_up(&bedata->inflight_req);
pvcalls_exit();
return IRQ_HANDLED;
}
static void pvcalls_front_free_map(struct pvcalls_bedata *bedata,
struct sock_mapping *map)
{
}
static irqreturn_t pvcalls_front_conn_handler(int irq, void *sock_map)
{
struct sock_mapping *map = sock_map;
if (map == NULL)
return IRQ_HANDLED;
wake_up_interruptible(&map->active.inflight_conn_req);
return IRQ_HANDLED;
}
xen/pvcalls: implement socket command and handle events Send a PVCALLS_SOCKET command to the backend, use the masked req_prod_pvt as req_id. This way, req_id is guaranteed to be between 0 and PVCALLS_NR_REQ_PER_RING. We already have a slot in the rsp array ready for the response, and there cannot be two outstanding responses with the same req_id. Wait for the response by waiting on the inflight_req waitqueue and check for the req_id field in rsp[req_id]. Use atomic accesses and barriers to read the field. Note that the barriers are simple smp barriers (as opposed to virt barriers) because they are for internal frontend synchronization, not frontend<->backend communication. Once a response is received, clear the corresponding rsp slot by setting req_id to PVCALLS_INVALID_ID. Note that PVCALLS_INVALID_ID is invalid only from the frontend point of view. It is not part of the PVCalls protocol. pvcalls_front_event_handler is in charge of copying responses from the ring to the appropriate rsp slot. It is done by copying the body of the response first, then by copying req_id atomically. After the copies, wake up anybody waiting on waitqueue. socket_lock protects accesses to the ring. Convert the pointer to sock_mapping into an uintptr_t and use it as id for the new socket to pass to the backend. The struct will be fully initialized later on connect or bind. sock->sk->sk_send_head is not used for ip sockets: reuse the field to store a pointer to the struct sock_mapping corresponding to the socket. This way, we can easily get the struct sock_mapping from the struct socket. Signed-off-by: Stefano Stabellini <stefano@aporeto.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> CC: boris.ostrovsky@oracle.com CC: jgross@suse.com Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
2017-10-31 06:40:54 +08:00
int pvcalls_front_socket(struct socket *sock)
{
struct pvcalls_bedata *bedata;
struct sock_mapping *map = NULL;
struct xen_pvcalls_request *req;
int notify, req_id, ret;
/*
* PVCalls only supports domain AF_INET,
* type SOCK_STREAM and protocol 0 sockets for now.
*
* Check socket type here, AF_INET and protocol checks are done
* by the caller.
*/
if (sock->type != SOCK_STREAM)
return -EOPNOTSUPP;
pvcalls_enter();
if (!pvcalls_front_dev) {
pvcalls_exit();
return -EACCES;
}
bedata = dev_get_drvdata(&pvcalls_front_dev->dev);
map = kzalloc(sizeof(*map), GFP_KERNEL);
if (map == NULL) {
pvcalls_exit();
return -ENOMEM;
}
spin_lock(&bedata->socket_lock);
ret = get_request(bedata, &req_id);
if (ret < 0) {
kfree(map);
spin_unlock(&bedata->socket_lock);
pvcalls_exit();
return ret;
}
/*
* sock->sk->sk_send_head is not used for ip sockets: reuse the
* field to store a pointer to the struct sock_mapping
* corresponding to the socket. This way, we can easily get the
* struct sock_mapping from the struct socket.
*/
sock->sk->sk_send_head = (void *)map;
list_add_tail(&map->list, &bedata->socket_mappings);
req = RING_GET_REQUEST(&bedata->ring, req_id);
req->req_id = req_id;
req->cmd = PVCALLS_SOCKET;
req->u.socket.id = (uintptr_t) map;
req->u.socket.domain = AF_INET;
req->u.socket.type = SOCK_STREAM;
req->u.socket.protocol = IPPROTO_IP;
bedata->ring.req_prod_pvt++;
RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&bedata->ring, notify);
spin_unlock(&bedata->socket_lock);
if (notify)
notify_remote_via_irq(bedata->irq);
wait_event(bedata->inflight_req,
READ_ONCE(bedata->rsp[req_id].req_id) == req_id);
/* read req_id, then the content */
smp_rmb();
ret = bedata->rsp[req_id].ret;
bedata->rsp[req_id].req_id = PVCALLS_INVALID_ID;
pvcalls_exit();
return ret;
}
static int create_active(struct sock_mapping *map, int *evtchn)
{
void *bytes;
int ret = -ENOMEM, irq = -1, i;
*evtchn = -1;
init_waitqueue_head(&map->active.inflight_conn_req);
map->active.ring = (struct pvcalls_data_intf *)
__get_free_page(GFP_KERNEL | __GFP_ZERO);
if (map->active.ring == NULL)
goto out_error;
map->active.ring->ring_order = PVCALLS_RING_ORDER;
bytes = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
PVCALLS_RING_ORDER);
if (bytes == NULL)
goto out_error;
for (i = 0; i < (1 << PVCALLS_RING_ORDER); i++)
map->active.ring->ref[i] = gnttab_grant_foreign_access(
pvcalls_front_dev->otherend_id,
pfn_to_gfn(virt_to_pfn(bytes) + i), 0);
map->active.ref = gnttab_grant_foreign_access(
pvcalls_front_dev->otherend_id,
pfn_to_gfn(virt_to_pfn((void *)map->active.ring)), 0);
map->active.data.in = bytes;
map->active.data.out = bytes +
XEN_FLEX_RING_SIZE(PVCALLS_RING_ORDER);
ret = xenbus_alloc_evtchn(pvcalls_front_dev, evtchn);
if (ret)
goto out_error;
irq = bind_evtchn_to_irqhandler(*evtchn, pvcalls_front_conn_handler,
0, "pvcalls-frontend", map);
if (irq < 0) {
ret = irq;
goto out_error;
}
map->active.irq = irq;
map->active_socket = true;
mutex_init(&map->active.in_mutex);
mutex_init(&map->active.out_mutex);
return 0;
out_error:
if (irq >= 0)
unbind_from_irqhandler(irq, map);
else if (*evtchn >= 0)
xenbus_free_evtchn(pvcalls_front_dev, *evtchn);
kfree(map->active.data.in);
kfree(map->active.ring);
return ret;
}
int pvcalls_front_connect(struct socket *sock, struct sockaddr *addr,
int addr_len, int flags)
{
struct pvcalls_bedata *bedata;
struct sock_mapping *map = NULL;
struct xen_pvcalls_request *req;
int notify, req_id, ret, evtchn;
if (addr->sa_family != AF_INET || sock->type != SOCK_STREAM)
return -EOPNOTSUPP;
pvcalls_enter();
if (!pvcalls_front_dev) {
pvcalls_exit();
return -ENOTCONN;
}
bedata = dev_get_drvdata(&pvcalls_front_dev->dev);
map = (struct sock_mapping *)sock->sk->sk_send_head;
if (!map) {
pvcalls_exit();
return -ENOTSOCK;
}
spin_lock(&bedata->socket_lock);
ret = get_request(bedata, &req_id);
if (ret < 0) {
spin_unlock(&bedata->socket_lock);
pvcalls_exit();
return ret;
}
ret = create_active(map, &evtchn);
if (ret < 0) {
spin_unlock(&bedata->socket_lock);
pvcalls_exit();
return ret;
}
req = RING_GET_REQUEST(&bedata->ring, req_id);
req->req_id = req_id;
req->cmd = PVCALLS_CONNECT;
req->u.connect.id = (uintptr_t)map;
req->u.connect.len = addr_len;
req->u.connect.flags = flags;
req->u.connect.ref = map->active.ref;
req->u.connect.evtchn = evtchn;
memcpy(req->u.connect.addr, addr, sizeof(*addr));
map->sock = sock;
bedata->ring.req_prod_pvt++;
RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&bedata->ring, notify);
spin_unlock(&bedata->socket_lock);
if (notify)
notify_remote_via_irq(bedata->irq);
wait_event(bedata->inflight_req,
READ_ONCE(bedata->rsp[req_id].req_id) == req_id);
/* read req_id, then the content */
smp_rmb();
ret = bedata->rsp[req_id].ret;
bedata->rsp[req_id].req_id = PVCALLS_INVALID_ID;
pvcalls_exit();
return ret;
}
int pvcalls_front_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
{
struct pvcalls_bedata *bedata;
struct sock_mapping *map = NULL;
struct xen_pvcalls_request *req;
int notify, req_id, ret;
if (addr->sa_family != AF_INET || sock->type != SOCK_STREAM)
return -EOPNOTSUPP;
pvcalls_enter();
if (!pvcalls_front_dev) {
pvcalls_exit();
return -ENOTCONN;
}
bedata = dev_get_drvdata(&pvcalls_front_dev->dev);
map = (struct sock_mapping *) sock->sk->sk_send_head;
if (map == NULL) {
pvcalls_exit();
return -ENOTSOCK;
}
spin_lock(&bedata->socket_lock);
ret = get_request(bedata, &req_id);
if (ret < 0) {
spin_unlock(&bedata->socket_lock);
pvcalls_exit();
return ret;
}
req = RING_GET_REQUEST(&bedata->ring, req_id);
req->req_id = req_id;
map->sock = sock;
req->cmd = PVCALLS_BIND;
req->u.bind.id = (uintptr_t)map;
memcpy(req->u.bind.addr, addr, sizeof(*addr));
req->u.bind.len = addr_len;
map->active_socket = false;
bedata->ring.req_prod_pvt++;
RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&bedata->ring, notify);
spin_unlock(&bedata->socket_lock);
if (notify)
notify_remote_via_irq(bedata->irq);
wait_event(bedata->inflight_req,
READ_ONCE(bedata->rsp[req_id].req_id) == req_id);
/* read req_id, then the content */
smp_rmb();
ret = bedata->rsp[req_id].ret;
bedata->rsp[req_id].req_id = PVCALLS_INVALID_ID;
map->passive.status = PVCALLS_STATUS_BIND;
pvcalls_exit();
return 0;
}
static const struct xenbus_device_id pvcalls_front_ids[] = {
{ "pvcalls" },
{ "" }
};
static int pvcalls_front_remove(struct xenbus_device *dev)
{
struct pvcalls_bedata *bedata;
struct sock_mapping *map = NULL, *n;
bedata = dev_get_drvdata(&pvcalls_front_dev->dev);
dev_set_drvdata(&dev->dev, NULL);
pvcalls_front_dev = NULL;
if (bedata->irq >= 0)
unbind_from_irqhandler(bedata->irq, dev);
list_for_each_entry_safe(map, n, &bedata->socket_mappings, list) {
map->sock->sk->sk_send_head = NULL;
if (map->active_socket) {
map->active.ring->in_error = -EBADF;
wake_up_interruptible(&map->active.inflight_conn_req);
}
}
smp_mb();
while (atomic_read(&pvcalls_refcount) > 0)
cpu_relax();
list_for_each_entry_safe(map, n, &bedata->socket_mappings, list) {
if (map->active_socket) {
/* No need to lock, refcount is 0 */
pvcalls_front_free_map(bedata, map);
} else {
list_del(&map->list);
kfree(map);
}
}
if (bedata->ref >= 0)
gnttab_end_foreign_access(bedata->ref, 0, 0);
kfree(bedata->ring.sring);
kfree(bedata);
xenbus_switch_state(dev, XenbusStateClosed);
return 0;
}
static int pvcalls_front_probe(struct xenbus_device *dev,
const struct xenbus_device_id *id)
{
int ret = -ENOMEM, evtchn, i;
unsigned int max_page_order, function_calls, len;
char *versions;
grant_ref_t gref_head = 0;
struct xenbus_transaction xbt;
struct pvcalls_bedata *bedata = NULL;
struct xen_pvcalls_sring *sring;
if (pvcalls_front_dev != NULL) {
dev_err(&dev->dev, "only one PV Calls connection supported\n");
return -EINVAL;
}
versions = xenbus_read(XBT_NIL, dev->otherend, "versions", &len);
if (!len)
return -EINVAL;
if (strcmp(versions, "1")) {
kfree(versions);
return -EINVAL;
}
kfree(versions);
max_page_order = xenbus_read_unsigned(dev->otherend,
"max-page-order", 0);
if (max_page_order < PVCALLS_RING_ORDER)
return -ENODEV;
function_calls = xenbus_read_unsigned(dev->otherend,
"function-calls", 0);
/* See XENBUS_FUNCTIONS_CALLS in pvcalls.h */
if (function_calls != 1)
return -ENODEV;
pr_info("%s max-page-order is %u\n", __func__, max_page_order);
bedata = kzalloc(sizeof(struct pvcalls_bedata), GFP_KERNEL);
if (!bedata)
return -ENOMEM;
dev_set_drvdata(&dev->dev, bedata);
pvcalls_front_dev = dev;
init_waitqueue_head(&bedata->inflight_req);
INIT_LIST_HEAD(&bedata->socket_mappings);
spin_lock_init(&bedata->socket_lock);
bedata->irq = -1;
bedata->ref = -1;
for (i = 0; i < PVCALLS_NR_RSP_PER_RING; i++)
bedata->rsp[i].req_id = PVCALLS_INVALID_ID;
sring = (struct xen_pvcalls_sring *) __get_free_page(GFP_KERNEL |
__GFP_ZERO);
if (!sring)
goto error;
SHARED_RING_INIT(sring);
FRONT_RING_INIT(&bedata->ring, sring, XEN_PAGE_SIZE);
ret = xenbus_alloc_evtchn(dev, &evtchn);
if (ret)
goto error;
bedata->irq = bind_evtchn_to_irqhandler(evtchn,
pvcalls_front_event_handler,
0, "pvcalls-frontend", dev);
if (bedata->irq < 0) {
ret = bedata->irq;
goto error;
}
ret = gnttab_alloc_grant_references(1, &gref_head);
if (ret < 0)
goto error;
bedata->ref = gnttab_claim_grant_reference(&gref_head);
if (bedata->ref < 0) {
ret = bedata->ref;
goto error;
}
gnttab_grant_foreign_access_ref(bedata->ref, dev->otherend_id,
virt_to_gfn((void *)sring), 0);
again:
ret = xenbus_transaction_start(&xbt);
if (ret) {
xenbus_dev_fatal(dev, ret, "starting transaction");
goto error;
}
ret = xenbus_printf(xbt, dev->nodename, "version", "%u", 1);
if (ret)
goto error_xenbus;
ret = xenbus_printf(xbt, dev->nodename, "ring-ref", "%d", bedata->ref);
if (ret)
goto error_xenbus;
ret = xenbus_printf(xbt, dev->nodename, "port", "%u",
evtchn);
if (ret)
goto error_xenbus;
ret = xenbus_transaction_end(xbt, 0);
if (ret) {
if (ret == -EAGAIN)
goto again;
xenbus_dev_fatal(dev, ret, "completing transaction");
goto error;
}
xenbus_switch_state(dev, XenbusStateInitialised);
return 0;
error_xenbus:
xenbus_transaction_end(xbt, 1);
xenbus_dev_fatal(dev, ret, "writing xenstore");
error:
pvcalls_front_remove(dev);
return ret;
}
static void pvcalls_front_changed(struct xenbus_device *dev,
enum xenbus_state backend_state)
{
switch (backend_state) {
case XenbusStateReconfiguring:
case XenbusStateReconfigured:
case XenbusStateInitialising:
case XenbusStateInitialised:
case XenbusStateUnknown:
break;
case XenbusStateInitWait:
break;
case XenbusStateConnected:
xenbus_switch_state(dev, XenbusStateConnected);
break;
case XenbusStateClosed:
if (dev->state == XenbusStateClosed)
break;
/* Missed the backend's CLOSING state -- fallthrough */
case XenbusStateClosing:
xenbus_frontend_closed(dev);
break;
}
}
static struct xenbus_driver pvcalls_front_driver = {
.ids = pvcalls_front_ids,
.probe = pvcalls_front_probe,
.remove = pvcalls_front_remove,
.otherend_changed = pvcalls_front_changed,
};
static int __init pvcalls_frontend_init(void)
{
if (!xen_domain())
return -ENODEV;
pr_info("Initialising Xen pvcalls frontend driver\n");
return xenbus_register_frontend(&pvcalls_front_driver);
}
module_init(pvcalls_frontend_init);