2018-02-20 21:30:22 +08:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0+ */
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* ipmi_smi.h
|
|
|
|
*
|
|
|
|
* MontaVista IPMI system management interface
|
|
|
|
*
|
|
|
|
* Author: MontaVista Software, Inc.
|
|
|
|
* Corey Minyard <minyard@mvista.com>
|
|
|
|
* source@mvista.com
|
|
|
|
*
|
|
|
|
* Copyright 2002 MontaVista Software Inc.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __LINUX_IPMI_SMI_H
|
|
|
|
#define __LINUX_IPMI_SMI_H
|
|
|
|
|
|
|
|
#include <linux/ipmi_msgdefs.h>
|
|
|
|
#include <linux/proc_fs.h>
|
2006-03-26 17:37:21 +08:00
|
|
|
#include <linux/platform_device.h>
|
2010-12-08 10:10:16 +08:00
|
|
|
#include <linux/ipmi.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2012-01-31 00:46:54 +08:00
|
|
|
struct device;
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* This files describes the interface for IPMI system management interface
|
|
|
|
drivers to bind into the IPMI message handler. */
|
|
|
|
|
|
|
|
/* Structure for the low-level drivers. */
|
|
|
|
typedef struct ipmi_smi *ipmi_smi_t;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Messages to/from the lower layer. The smi interface will take one
|
|
|
|
* of these to send. After the send has occurred and a response has
|
|
|
|
* been received, it will report this same data structure back up to
|
|
|
|
* the upper layer. If an error occurs, it should fill in the
|
|
|
|
* response with an error code in the completion code location. When
|
|
|
|
* asynchronous data is received, one of these is allocated, the
|
|
|
|
* data_size is set to zero and the response holds the data from the
|
|
|
|
* get message or get event command that the interface initiated.
|
|
|
|
* Note that it is the interfaces responsibility to detect
|
|
|
|
* asynchronous data and messages and request them from the
|
|
|
|
* interface.
|
|
|
|
*/
|
2008-04-29 16:01:09 +08:00
|
|
|
struct ipmi_smi_msg {
|
2005-04-17 06:20:36 +08:00
|
|
|
struct list_head link;
|
|
|
|
|
|
|
|
long msgid;
|
|
|
|
void *user_data;
|
|
|
|
|
|
|
|
int data_size;
|
|
|
|
unsigned char data[IPMI_MAX_MSG_LENGTH];
|
|
|
|
|
|
|
|
int rsp_size;
|
|
|
|
unsigned char rsp[IPMI_MAX_MSG_LENGTH];
|
|
|
|
|
|
|
|
/* Will be called when the system is done with the message
|
2008-04-29 16:01:09 +08:00
|
|
|
(presumably to free it). */
|
2005-04-17 06:20:36 +08:00
|
|
|
void (*done)(struct ipmi_smi_msg *msg);
|
|
|
|
};
|
|
|
|
|
2008-04-29 16:01:09 +08:00
|
|
|
struct ipmi_smi_handlers {
|
2005-04-17 06:20:36 +08:00
|
|
|
struct module *owner;
|
|
|
|
|
2006-03-31 18:30:39 +08:00
|
|
|
/* The low-level interface cannot start sending messages to
|
|
|
|
the upper layer until this function is called. This may
|
|
|
|
not be NULL, the lower layer must take the interface from
|
|
|
|
this call. */
|
|
|
|
int (*start_processing)(void *send_info,
|
|
|
|
ipmi_smi_t new_intf);
|
|
|
|
|
2010-12-08 10:10:16 +08:00
|
|
|
/*
|
|
|
|
* Get the detailed private info of the low level interface and store
|
|
|
|
* it into the structure of ipmi_smi_data. For example: the
|
|
|
|
* ACPI device handle will be returned for the pnp_acpi IPMI device.
|
|
|
|
*/
|
|
|
|
int (*get_smi_info)(void *send_info, struct ipmi_smi_info *data);
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* Called to enqueue an SMI message to be sent. This
|
|
|
|
operation is not allowed to fail. If an error occurs, it
|
|
|
|
should report back the error in a received message. It may
|
|
|
|
do this in the current call context, since no write locks
|
2014-11-07 21:57:31 +08:00
|
|
|
are held when this is run. Message are delivered one at
|
|
|
|
a time by the message handler, a new message will not be
|
|
|
|
delivered until the previous message is returned. */
|
2005-04-17 06:20:36 +08:00
|
|
|
void (*sender)(void *send_info,
|
2014-11-07 21:57:31 +08:00
|
|
|
struct ipmi_smi_msg *msg);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/* Called by the upper layer to request that we try to get
|
|
|
|
events from the BMC we are attached to. */
|
|
|
|
void (*request_events)(void *send_info);
|
|
|
|
|
2014-04-14 22:46:54 +08:00
|
|
|
/* Called by the upper layer when some user requires that the
|
|
|
|
interface watch for events, received messages, watchdog
|
|
|
|
pretimeouts, or not. Used by the SMI to know if it should
|
|
|
|
watch for these. This may be NULL if the SMI does not
|
|
|
|
implement it. */
|
2014-04-14 22:46:56 +08:00
|
|
|
void (*set_need_watch)(void *send_info, bool enable);
|
2014-04-14 22:46:54 +08:00
|
|
|
|
2015-07-27 13:55:16 +08:00
|
|
|
/*
|
|
|
|
* Called when flushing all pending messages.
|
|
|
|
*/
|
|
|
|
void (*flush_messages)(void *send_info);
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* Called when the interface should go into "run to
|
|
|
|
completion" mode. If this call sets the value to true, the
|
|
|
|
interface should make sure that all messages are flushed
|
|
|
|
out and that none are pending, and any new requests are run
|
|
|
|
to completion immediately. */
|
2014-04-14 22:46:56 +08:00
|
|
|
void (*set_run_to_completion)(void *send_info, bool run_to_completion);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/* Called to poll for work to do. This is so upper layers can
|
|
|
|
poll for operations during things like crash dumps. */
|
|
|
|
void (*poll)(void *send_info);
|
|
|
|
|
2006-12-07 12:41:02 +08:00
|
|
|
/* Enable/disable firmware maintenance mode. Note that this
|
|
|
|
is *not* the modes defined, this is simply an on/off
|
|
|
|
setting. The message handler does the mode handling. Note
|
2007-10-20 05:10:43 +08:00
|
|
|
that this is called from interrupt context, so it cannot
|
2006-12-07 12:41:02 +08:00
|
|
|
block. */
|
2014-04-14 22:46:56 +08:00
|
|
|
void (*set_maintenance_mode)(void *send_info, bool enable);
|
2006-12-07 12:41:02 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* Tell the handler that we are using it/not using it. The
|
|
|
|
message handler get the modules that this handler belongs
|
|
|
|
to; this function lets the SMI claim any modules that it
|
|
|
|
uses. These may be NULL if this is not required. */
|
|
|
|
int (*inc_usecount)(void *send_info);
|
|
|
|
void (*dec_usecount)(void *send_info);
|
|
|
|
};
|
|
|
|
|
2006-03-26 17:37:21 +08:00
|
|
|
struct ipmi_device_id {
|
|
|
|
unsigned char device_id;
|
|
|
|
unsigned char device_revision;
|
|
|
|
unsigned char firmware_revision_1;
|
|
|
|
unsigned char firmware_revision_2;
|
|
|
|
unsigned char ipmi_version;
|
|
|
|
unsigned char additional_device_support;
|
|
|
|
unsigned int manufacturer_id;
|
|
|
|
unsigned int product_id;
|
|
|
|
unsigned char aux_firmware_revision[4];
|
|
|
|
unsigned int aux_firmware_revision_set : 1;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define ipmi_version_major(v) ((v)->ipmi_version & 0xf)
|
|
|
|
#define ipmi_version_minor(v) ((v)->ipmi_version >> 4)
|
|
|
|
|
2017-08-25 15:47:23 +08:00
|
|
|
/* Take a pointer to an IPMI response and extract device id information from
|
|
|
|
* it. @netfn is in the IPMI_NETFN_ format, so may need to be shifted from
|
|
|
|
* a SI response.
|
|
|
|
*/
|
|
|
|
static inline int ipmi_demangle_device_id(uint8_t netfn, uint8_t cmd,
|
|
|
|
const unsigned char *data,
|
2007-10-18 18:07:11 +08:00
|
|
|
unsigned int data_len,
|
|
|
|
struct ipmi_device_id *id)
|
2006-03-26 17:37:21 +08:00
|
|
|
{
|
2017-08-25 15:47:23 +08:00
|
|
|
if (data_len < 7)
|
2007-10-18 18:07:11 +08:00
|
|
|
return -EINVAL;
|
2017-08-25 15:47:23 +08:00
|
|
|
if (netfn != IPMI_NETFN_APP_RESPONSE || cmd != IPMI_GET_DEVICE_ID_CMD)
|
2007-10-18 18:07:11 +08:00
|
|
|
/* Strange, didn't get the response we expected. */
|
|
|
|
return -EINVAL;
|
2017-08-25 15:47:23 +08:00
|
|
|
if (data[0] != 0)
|
2007-10-18 18:07:11 +08:00
|
|
|
/* That's odd, it shouldn't be able to fail. */
|
|
|
|
return -EINVAL;
|
|
|
|
|
2017-08-25 15:47:23 +08:00
|
|
|
data++;
|
|
|
|
data_len--;
|
|
|
|
|
2006-03-26 17:37:21 +08:00
|
|
|
id->device_id = data[0];
|
|
|
|
id->device_revision = data[1];
|
|
|
|
id->firmware_revision_1 = data[2];
|
|
|
|
id->firmware_revision_2 = data[3];
|
|
|
|
id->ipmi_version = data[4];
|
|
|
|
id->additional_device_support = data[5];
|
2007-10-30 05:37:13 +08:00
|
|
|
if (data_len >= 11) {
|
2007-10-18 18:07:11 +08:00
|
|
|
id->manufacturer_id = (data[6] | (data[7] << 8) |
|
|
|
|
(data[8] << 16));
|
|
|
|
id->product_id = data[9] | (data[10] << 8);
|
|
|
|
} else {
|
|
|
|
id->manufacturer_id = 0;
|
|
|
|
id->product_id = 0;
|
|
|
|
}
|
2006-03-26 17:37:21 +08:00
|
|
|
if (data_len >= 15) {
|
|
|
|
memcpy(id->aux_firmware_revision, data+11, 4);
|
|
|
|
id->aux_firmware_revision_set = 1;
|
|
|
|
} else
|
|
|
|
id->aux_firmware_revision_set = 0;
|
2007-10-18 18:07:11 +08:00
|
|
|
|
|
|
|
return 0;
|
2006-03-26 17:37:21 +08:00
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* Add a low-level interface to the IPMI driver. Note that if the
|
2006-03-31 18:30:39 +08:00
|
|
|
interface doesn't know its slave address, it should pass in zero.
|
|
|
|
The low-level interface should not deliver any messages to the
|
|
|
|
upper layer until the start_processing() function in the handlers
|
|
|
|
is called, and the lower layer must get the interface from that
|
|
|
|
call. */
|
2015-06-13 23:34:25 +08:00
|
|
|
int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
|
2005-04-17 06:20:36 +08:00
|
|
|
void *send_info,
|
2006-03-26 17:37:21 +08:00
|
|
|
struct device *dev,
|
2006-03-31 18:30:39 +08:00
|
|
|
unsigned char slave_addr);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Remove a low-level interface from the IPMI driver. This will
|
|
|
|
* return an error if the interface is still in use by a user.
|
|
|
|
*/
|
|
|
|
int ipmi_unregister_smi(ipmi_smi_t intf);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The lower layer reports received messages through this interface.
|
2012-09-20 09:48:02 +08:00
|
|
|
* The data_size should be zero if this is an asynchronous message. If
|
2005-04-17 06:20:36 +08:00
|
|
|
* the lower layer gets an error sending a message, it should format
|
|
|
|
* an error response in the message response.
|
|
|
|
*/
|
|
|
|
void ipmi_smi_msg_received(ipmi_smi_t intf,
|
|
|
|
struct ipmi_smi_msg *msg);
|
|
|
|
|
|
|
|
/* The lower layer received a watchdog pre-timeout on interface. */
|
|
|
|
void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf);
|
|
|
|
|
|
|
|
struct ipmi_smi_msg *ipmi_alloc_smi_msg(void);
|
|
|
|
static inline void ipmi_free_smi_msg(struct ipmi_smi_msg *msg)
|
|
|
|
{
|
|
|
|
msg->done(msg);
|
|
|
|
}
|
|
|
|
|
2017-09-17 04:51:25 +08:00
|
|
|
#ifdef CONFIG_IPMI_PROC_INTERFACE
|
2005-04-17 06:20:36 +08:00
|
|
|
/* Allow the lower layer to add things to the proc filesystem
|
|
|
|
directory for this interface. Note that the entry will
|
|
|
|
automatically be dstroyed when the interface is destroyed. */
|
|
|
|
int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
|
2011-05-27 07:25:55 +08:00
|
|
|
const struct file_operations *proc_ops,
|
2009-03-26 03:48:06 +08:00
|
|
|
void *data);
|
2017-09-17 04:51:25 +08:00
|
|
|
#endif
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
#endif /* __LINUX_IPMI_SMI_H */
|