linux-sg2042/drivers/usb/gadget/udc/core.c

1613 lines
44 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/**
* udc.c - Core UDC Framework
*
* Copyright (C) 2010 Texas Instruments
* Author: Felipe Balbi <balbi@ti.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/err.h>
#include <linux/dma-mapping.h>
#include <linux/sched/task_stack.h>
#include <linux/workqueue.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb.h>
#include "trace.h"
/**
* struct usb_udc - describes one usb device controller
* @driver - the gadget driver pointer. For use by the class code
* @dev - the child device to the actual controller
* @gadget - the gadget. For use by the class code
* @list - for use by the udc class driver
* @vbus - for udcs who care about vbus status, this value is real vbus status;
* for udcs who do not care about vbus status, this value is always true
*
* This represents the internal data structure which is used by the UDC-class
* to hold information about udc driver and gadget together.
*/
struct usb_udc {
struct usb_gadget_driver *driver;
struct usb_gadget *gadget;
struct device dev;
struct list_head list;
bool vbus;
};
static struct class *udc_class;
static LIST_HEAD(udc_list);
static LIST_HEAD(gadget_driver_pending_list);
static DEFINE_MUTEX(udc_lock);
static int udc_bind_to_driver(struct usb_udc *udc,
struct usb_gadget_driver *driver);
/* ------------------------------------------------------------------------- */
/**
* usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
* @ep:the endpoint being configured
* @maxpacket_limit:value of maximum packet size limit
*
* This function should be used only in UDC drivers to initialize endpoint
* (usually in probe function).
*/
void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
unsigned maxpacket_limit)
{
ep->maxpacket_limit = maxpacket_limit;
ep->maxpacket = maxpacket_limit;
trace_usb_ep_set_maxpacket_limit(ep, 0);
}
EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
/**
* usb_ep_enable - configure endpoint, making it usable
* @ep:the endpoint being configured. may not be the endpoint named "ep0".
* drivers discover endpoints through the ep_list of a usb_gadget.
*
* When configurations are set, or when interface settings change, the driver
* will enable or disable the relevant endpoints. while it is enabled, an
* endpoint may be used for i/o until the driver receives a disconnect() from
* the host or until the endpoint is disabled.
*
* the ep0 implementation (which calls this routine) must ensure that the
* hardware capabilities of each endpoint match the descriptor provided
* for it. for example, an endpoint named "ep2in-bulk" would be usable
* for interrupt transfers as well as bulk, but it likely couldn't be used
* for iso transfers or for endpoint 14. some endpoints are fully
* configurable, with more generic names like "ep-a". (remember that for
* USB, "in" means "towards the USB master".)
*
* This routine must be called in process context.
*
* returns zero, or a negative error code.
*/
int usb_ep_enable(struct usb_ep *ep)
{
int ret = 0;
if (ep->enabled)
goto out;
ret = ep->ops->enable(ep, ep->desc);
if (ret)
goto out;
ep->enabled = true;
out:
trace_usb_ep_enable(ep, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_ep_enable);
/**
* usb_ep_disable - endpoint is no longer usable
* @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
*
* no other task may be using this endpoint when this is called.
* any pending and uncompleted requests will complete with status
* indicating disconnect (-ESHUTDOWN) before this call returns.
* gadget drivers must call usb_ep_enable() again before queueing
* requests to the endpoint.
*
* This routine must be called in process context.
*
* returns zero, or a negative error code.
*/
int usb_ep_disable(struct usb_ep *ep)
{
int ret = 0;
if (!ep->enabled)
goto out;
ret = ep->ops->disable(ep);
if (ret)
goto out;
ep->enabled = false;
out:
trace_usb_ep_disable(ep, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_ep_disable);
/**
* usb_ep_alloc_request - allocate a request object to use with this endpoint
* @ep:the endpoint to be used with with the request
* @gfp_flags:GFP_* flags to use
*
* Request objects must be allocated with this call, since they normally
* need controller-specific setup and may even need endpoint-specific
* resources such as allocation of DMA descriptors.
* Requests may be submitted with usb_ep_queue(), and receive a single
* completion callback. Free requests with usb_ep_free_request(), when
* they are no longer needed.
*
* Returns the request, or null if one could not be allocated.
*/
struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
gfp_t gfp_flags)
{
struct usb_request *req = NULL;
req = ep->ops->alloc_request(ep, gfp_flags);
trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
return req;
}
EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
/**
* usb_ep_free_request - frees a request object
* @ep:the endpoint associated with the request
* @req:the request being freed
*
* Reverses the effect of usb_ep_alloc_request().
* Caller guarantees the request is not queued, and that it will
* no longer be requeued (or otherwise used).
*/
void usb_ep_free_request(struct usb_ep *ep,
struct usb_request *req)
{
trace_usb_ep_free_request(ep, req, 0);
ep->ops->free_request(ep, req);
}
EXPORT_SYMBOL_GPL(usb_ep_free_request);
/**
* usb_ep_queue - queues (submits) an I/O request to an endpoint.
* @ep:the endpoint associated with the request
* @req:the request being submitted
* @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
* pre-allocate all necessary memory with the request.
*
* This tells the device controller to perform the specified request through
* that endpoint (reading or writing a buffer). When the request completes,
* including being canceled by usb_ep_dequeue(), the request's completion
* routine is called to return the request to the driver. Any endpoint
* (except control endpoints like ep0) may have more than one transfer
* request queued; they complete in FIFO order. Once a gadget driver
* submits a request, that request may not be examined or modified until it
* is given back to that driver through the completion callback.
*
* Each request is turned into one or more packets. The controller driver
* never merges adjacent requests into the same packet. OUT transfers
* will sometimes use data that's already buffered in the hardware.
* Drivers can rely on the fact that the first byte of the request's buffer
* always corresponds to the first byte of some USB packet, for both
* IN and OUT transfers.
*
* Bulk endpoints can queue any amount of data; the transfer is packetized
* automatically. The last packet will be short if the request doesn't fill it
* out completely. Zero length packets (ZLPs) should be avoided in portable
* protocols since not all usb hardware can successfully handle zero length
* packets. (ZLPs may be explicitly written, and may be implicitly written if
* the request 'zero' flag is set.) Bulk endpoints may also be used
* for interrupt transfers; but the reverse is not true, and some endpoints
* won't support every interrupt transfer. (Such as 768 byte packets.)
*
* Interrupt-only endpoints are less functional than bulk endpoints, for
* example by not supporting queueing or not handling buffers that are
* larger than the endpoint's maxpacket size. They may also treat data
* toggle differently.
*
* Control endpoints ... after getting a setup() callback, the driver queues
* one response (even if it would be zero length). That enables the
* status ack, after transferring data as specified in the response. Setup
* functions may return negative error codes to generate protocol stalls.
* (Note that some USB device controllers disallow protocol stall responses
* in some cases.) When control responses are deferred (the response is
* written after the setup callback returns), then usb_ep_set_halt() may be
* used on ep0 to trigger protocol stalls. Depending on the controller,
* it may not be possible to trigger a status-stage protocol stall when the
* data stage is over, that is, from within the response's completion
* routine.
*
* For periodic endpoints, like interrupt or isochronous ones, the usb host
* arranges to poll once per interval, and the gadget driver usually will
* have queued some data to transfer at that time.
*
* Note that @req's ->complete() callback must never be called from
* within usb_ep_queue() as that can create deadlock situations.
*
* This routine may be called in interrupt context.
*
* Returns zero, or a negative error code. Endpoints that are not enabled
* report errors; errors will also be
* reported when the usb peripheral is disconnected.
*
* If and only if @req is successfully queued (the return value is zero),
* @req->complete() will be called exactly once, when the Gadget core and
* UDC are finished with the request. When the completion function is called,
* control of the request is returned to the device driver which submitted it.
* The completion handler may then immediately free or reuse @req.
*/
int usb_ep_queue(struct usb_ep *ep,
struct usb_request *req, gfp_t gfp_flags)
{
int ret = 0;
if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
ret = -ESHUTDOWN;
goto out;
}
ret = ep->ops->queue(ep, req, gfp_flags);
out:
trace_usb_ep_queue(ep, req, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_ep_queue);
/**
* usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
* @ep:the endpoint associated with the request
* @req:the request being canceled
*
* If the request is still active on the endpoint, it is dequeued and
* eventually its completion routine is called (with status -ECONNRESET);
* else a negative error code is returned. This routine is asynchronous,
* that is, it may return before the completion routine runs.
*
* Note that some hardware can't clear out write fifos (to unlink the request
* at the head of the queue) except as part of disconnecting from usb. Such
* restrictions prevent drivers from supporting configuration changes,
* even to configuration zero (a "chapter 9" requirement).
*
* This routine may be called in interrupt context.
*/
int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
int ret;
ret = ep->ops->dequeue(ep, req);
trace_usb_ep_dequeue(ep, req, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_ep_dequeue);
/**
* usb_ep_set_halt - sets the endpoint halt feature.
* @ep: the non-isochronous endpoint being stalled
*
* Use this to stall an endpoint, perhaps as an error report.
* Except for control endpoints,
* the endpoint stays halted (will not stream any data) until the host
* clears this feature; drivers may need to empty the endpoint's request
* queue first, to make sure no inappropriate transfers happen.
*
* Note that while an endpoint CLEAR_FEATURE will be invisible to the
* gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
* current altsetting, see usb_ep_clear_halt(). When switching altsettings,
* it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
*
* This routine may be called in interrupt context.
*
* Returns zero, or a negative error code. On success, this call sets
* underlying hardware state that blocks data transfers.
* Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
* transfer requests are still queued, or if the controller hardware
* (usually a FIFO) still holds bytes that the host hasn't collected.
*/
int usb_ep_set_halt(struct usb_ep *ep)
{
int ret;
ret = ep->ops->set_halt(ep, 1);
trace_usb_ep_set_halt(ep, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_ep_set_halt);
/**
* usb_ep_clear_halt - clears endpoint halt, and resets toggle
* @ep:the bulk or interrupt endpoint being reset
*
* Use this when responding to the standard usb "set interface" request,
* for endpoints that aren't reconfigured, after clearing any other state
* in the endpoint's i/o queue.
*
* This routine may be called in interrupt context.
*
* Returns zero, or a negative error code. On success, this call clears
* the underlying hardware state reflecting endpoint halt and data toggle.
* Note that some hardware can't support this request (like pxa2xx_udc),
* and accordingly can't correctly implement interface altsettings.
*/
int usb_ep_clear_halt(struct usb_ep *ep)
{
int ret;
ret = ep->ops->set_halt(ep, 0);
trace_usb_ep_clear_halt(ep, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
/**
* usb_ep_set_wedge - sets the halt feature and ignores clear requests
* @ep: the endpoint being wedged
*
* Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
* requests. If the gadget driver clears the halt status, it will
* automatically unwedge the endpoint.
*
* This routine may be called in interrupt context.
*
* Returns zero on success, else negative errno.
*/
int usb_ep_set_wedge(struct usb_ep *ep)
{
int ret;
if (ep->ops->set_wedge)
ret = ep->ops->set_wedge(ep);
else
ret = ep->ops->set_halt(ep, 1);
trace_usb_ep_set_wedge(ep, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
/**
* usb_ep_fifo_status - returns number of bytes in fifo, or error
* @ep: the endpoint whose fifo status is being checked.
*
* FIFO endpoints may have "unclaimed data" in them in certain cases,
* such as after aborted transfers. Hosts may not have collected all
* the IN data written by the gadget driver (and reported by a request
* completion). The gadget driver may not have collected all the data
* written OUT to it by the host. Drivers that need precise handling for
* fault reporting or recovery may need to use this call.
*
* This routine may be called in interrupt context.
*
* This returns the number of such bytes in the fifo, or a negative
* errno if the endpoint doesn't use a FIFO or doesn't support such
* precise handling.
*/
int usb_ep_fifo_status(struct usb_ep *ep)
{
int ret;
if (ep->ops->fifo_status)
ret = ep->ops->fifo_status(ep);
else
ret = -EOPNOTSUPP;
trace_usb_ep_fifo_status(ep, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
/**
* usb_ep_fifo_flush - flushes contents of a fifo
* @ep: the endpoint whose fifo is being flushed.
*
* This call may be used to flush the "unclaimed data" that may exist in
* an endpoint fifo after abnormal transaction terminations. The call
* must never be used except when endpoint is not being used for any
* protocol translation.
*
* This routine may be called in interrupt context.
*/
void usb_ep_fifo_flush(struct usb_ep *ep)
{
if (ep->ops->fifo_flush)
ep->ops->fifo_flush(ep);
trace_usb_ep_fifo_flush(ep, 0);
}
EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
/* ------------------------------------------------------------------------- */
/**
* usb_gadget_frame_number - returns the current frame number
* @gadget: controller that reports the frame number
*
* Returns the usb frame number, normally eleven bits from a SOF packet,
* or negative errno if this device doesn't support this capability.
*/
int usb_gadget_frame_number(struct usb_gadget *gadget)
{
int ret;
ret = gadget->ops->get_frame(gadget);
trace_usb_gadget_frame_number(gadget, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
/**
* usb_gadget_wakeup - tries to wake up the host connected to this gadget
* @gadget: controller used to wake up the host
*
* Returns zero on success, else negative error code if the hardware
* doesn't support such attempts, or its support has not been enabled
* by the usb host. Drivers must return device descriptors that report
* their ability to support this, or hosts won't enable it.
*
* This may also try to use SRP to wake the host and start enumeration,
* even if OTG isn't otherwise in use. OTG devices may also start
* remote wakeup even when hosts don't explicitly enable it.
*/
int usb_gadget_wakeup(struct usb_gadget *gadget)
{
int ret = 0;
if (!gadget->ops->wakeup) {
ret = -EOPNOTSUPP;
goto out;
}
ret = gadget->ops->wakeup(gadget);
out:
trace_usb_gadget_wakeup(gadget, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
/**
* usb_gadget_set_selfpowered - sets the device selfpowered feature.
* @gadget:the device being declared as self-powered
*
* this affects the device status reported by the hardware driver
* to reflect that it now has a local power supply.
*
* returns zero on success, else negative errno.
*/
int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
{
int ret = 0;
if (!gadget->ops->set_selfpowered) {
ret = -EOPNOTSUPP;
goto out;
}
ret = gadget->ops->set_selfpowered(gadget, 1);
out:
trace_usb_gadget_set_selfpowered(gadget, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
/**
* usb_gadget_clear_selfpowered - clear the device selfpowered feature.
* @gadget:the device being declared as bus-powered
*
* this affects the device status reported by the hardware driver.
* some hardware may not support bus-powered operation, in which
* case this feature's value can never change.
*
* returns zero on success, else negative errno.
*/
int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
{
int ret = 0;
if (!gadget->ops->set_selfpowered) {
ret = -EOPNOTSUPP;
goto out;
}
ret = gadget->ops->set_selfpowered(gadget, 0);
out:
trace_usb_gadget_clear_selfpowered(gadget, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
/**
* usb_gadget_vbus_connect - Notify controller that VBUS is powered
* @gadget:The device which now has VBUS power.
* Context: can sleep
*
* This call is used by a driver for an external transceiver (or GPIO)
* that detects a VBUS power session starting. Common responses include
* resuming the controller, activating the D+ (or D-) pullup to let the
* host detect that a USB device is attached, and starting to draw power
* (8mA or possibly more, especially after SET_CONFIGURATION).
*
* Returns zero on success, else negative errno.
*/
int usb_gadget_vbus_connect(struct usb_gadget *gadget)
{
int ret = 0;
if (!gadget->ops->vbus_session) {
ret = -EOPNOTSUPP;
goto out;
}
ret = gadget->ops->vbus_session(gadget, 1);
out:
trace_usb_gadget_vbus_connect(gadget, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
/**
* usb_gadget_vbus_draw - constrain controller's VBUS power usage
* @gadget:The device whose VBUS usage is being described
* @mA:How much current to draw, in milliAmperes. This should be twice
* the value listed in the configuration descriptor bMaxPower field.
*
* This call is used by gadget drivers during SET_CONFIGURATION calls,
* reporting how much power the device may consume. For example, this
* could affect how quickly batteries are recharged.
*
* Returns zero on success, else negative errno.
*/
int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
int ret = 0;
if (!gadget->ops->vbus_draw) {
ret = -EOPNOTSUPP;
goto out;
}
ret = gadget->ops->vbus_draw(gadget, mA);
if (!ret)
gadget->mA = mA;
out:
trace_usb_gadget_vbus_draw(gadget, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
/**
* usb_gadget_vbus_disconnect - notify controller about VBUS session end
* @gadget:the device whose VBUS supply is being described
* Context: can sleep
*
* This call is used by a driver for an external transceiver (or GPIO)
* that detects a VBUS power session ending. Common responses include
* reversing everything done in usb_gadget_vbus_connect().
*
* Returns zero on success, else negative errno.
*/
int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
{
int ret = 0;
if (!gadget->ops->vbus_session) {
ret = -EOPNOTSUPP;
goto out;
}
ret = gadget->ops->vbus_session(gadget, 0);
out:
trace_usb_gadget_vbus_disconnect(gadget, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
/**
* usb_gadget_connect - software-controlled connect to USB host
* @gadget:the peripheral being connected
*
* Enables the D+ (or potentially D-) pullup. The host will start
* enumerating this gadget when the pullup is active and a VBUS session
* is active (the link is powered). This pullup is always enabled unless
* usb_gadget_disconnect() has been used to disable it.
*
* Returns zero on success, else negative errno.
*/
int usb_gadget_connect(struct usb_gadget *gadget)
{
int ret = 0;
if (!gadget->ops->pullup) {
ret = -EOPNOTSUPP;
goto out;
}
if (gadget->deactivated) {
/*
* If gadget is deactivated we only save new state.
* Gadget will be connected automatically after activation.
*/
gadget->connected = true;
goto out;
}
ret = gadget->ops->pullup(gadget, 1);
if (!ret)
gadget->connected = 1;
out:
trace_usb_gadget_connect(gadget, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_connect);
/**
* usb_gadget_disconnect - software-controlled disconnect from USB host
* @gadget:the peripheral being disconnected
*
* Disables the D+ (or potentially D-) pullup, which the host may see
* as a disconnect (when a VBUS session is active). Not all systems
* support software pullup controls.
*
* Following a successful disconnect, invoke the ->disconnect() callback
* for the current gadget driver so that UDC drivers don't need to.
*
* Returns zero on success, else negative errno.
*/
int usb_gadget_disconnect(struct usb_gadget *gadget)
{
int ret = 0;
if (!gadget->ops->pullup) {
ret = -EOPNOTSUPP;
goto out;
}
if (gadget->deactivated) {
/*
* If gadget is deactivated we only save new state.
* Gadget will stay disconnected after activation.
*/
gadget->connected = false;
goto out;
}
ret = gadget->ops->pullup(gadget, 0);
if (!ret) {
gadget->connected = 0;
gadget->udc->driver->disconnect(gadget);
}
out:
trace_usb_gadget_disconnect(gadget, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
/**
* usb_gadget_deactivate - deactivate function which is not ready to work
* @gadget: the peripheral being deactivated
*
* This routine may be used during the gadget driver bind() call to prevent
* the peripheral from ever being visible to the USB host, unless later
* usb_gadget_activate() is called. For example, user mode components may
* need to be activated before the system can talk to hosts.
*
* Returns zero on success, else negative errno.
*/
int usb_gadget_deactivate(struct usb_gadget *gadget)
{
int ret = 0;
if (gadget->deactivated)
goto out;
if (gadget->connected) {
ret = usb_gadget_disconnect(gadget);
if (ret)
goto out;
/*
* If gadget was being connected before deactivation, we want
* to reconnect it in usb_gadget_activate().
*/
gadget->connected = true;
}
gadget->deactivated = true;
out:
trace_usb_gadget_deactivate(gadget, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
/**
* usb_gadget_activate - activate function which is not ready to work
* @gadget: the peripheral being activated
*
* This routine activates gadget which was previously deactivated with
* usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
*
* Returns zero on success, else negative errno.
*/
int usb_gadget_activate(struct usb_gadget *gadget)
{
int ret = 0;
if (!gadget->deactivated)
goto out;
gadget->deactivated = false;
/*
* If gadget has been connected before deactivation, or became connected
* while it was being deactivated, we call usb_gadget_connect().
*/
if (gadget->connected)
ret = usb_gadget_connect(gadget);
out:
trace_usb_gadget_activate(gadget, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_activate);
/* ------------------------------------------------------------------------- */
#ifdef CONFIG_HAS_DMA
int usb_gadget_map_request_by_dev(struct device *dev,
struct usb_request *req, int is_in)
{
if (req->length == 0)
return 0;
if (req->num_sgs) {
int mapped;
mapped = dma_map_sg(dev, req->sg, req->num_sgs,
is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (mapped == 0) {
dev_err(dev, "failed to map SGs\n");
return -EFAULT;
}
req->num_mapped_sgs = mapped;
} else {
if (is_vmalloc_addr(req->buf)) {
dev_err(dev, "buffer is not dma capable\n");
return -EFAULT;
} else if (object_is_on_stack(req->buf)) {
dev_err(dev, "buffer is on stack\n");
return -EFAULT;
}
req->dma = dma_map_single(dev, req->buf, req->length,
is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (dma_mapping_error(dev, req->dma)) {
dev_err(dev, "failed to map buffer\n");
return -EFAULT;
}
req->dma_mapped = 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
int usb_gadget_map_request(struct usb_gadget *gadget,
struct usb_request *req, int is_in)
{
return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
}
EXPORT_SYMBOL_GPL(usb_gadget_map_request);
void usb_gadget_unmap_request_by_dev(struct device *dev,
struct usb_request *req, int is_in)
{
if (req->length == 0)
return;
if (req->num_mapped_sgs) {
dma_unmap_sg(dev, req->sg, req->num_sgs,
is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
req->num_mapped_sgs = 0;
} else if (req->dma_mapped) {
dma_unmap_single(dev, req->dma, req->length,
is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
req->dma_mapped = 0;
}
}
EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
void usb_gadget_unmap_request(struct usb_gadget *gadget,
struct usb_request *req, int is_in)
{
usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
}
EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
#endif /* CONFIG_HAS_DMA */
/* ------------------------------------------------------------------------- */
/**
* usb_gadget_giveback_request - give the request back to the gadget layer
* Context: in_interrupt()
*
* This is called by device controller drivers in order to return the
* completed request back to the gadget layer.
*/
void usb_gadget_giveback_request(struct usb_ep *ep,
struct usb_request *req)
{
if (likely(req->status == 0))
usb_led_activity(USB_LED_EVENT_GADGET);
trace_usb_gadget_giveback_request(ep, req, 0);
req->complete(ep, req);
}
EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
/* ------------------------------------------------------------------------- */
/**
* gadget_find_ep_by_name - returns ep whose name is the same as sting passed
* in second parameter or NULL if searched endpoint not found
* @g: controller to check for quirk
* @name: name of searched endpoint
*/
struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
{
struct usb_ep *ep;
gadget_for_each_ep(ep, g) {
if (!strcmp(ep->name, name))
return ep;
}
return NULL;
}
EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
/* ------------------------------------------------------------------------- */
int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
struct usb_ss_ep_comp_descriptor *ep_comp)
{
u8 type;
u16 max;
int num_req_streams = 0;
/* endpoint already claimed? */
if (ep->claimed)
return 0;
type = usb_endpoint_type(desc);
max = usb_endpoint_maxp(desc);
if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
return 0;
if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
return 0;
if (max > ep->maxpacket_limit)
return 0;
/* "high bandwidth" works only at high speed */
if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
return 0;
switch (type) {
case USB_ENDPOINT_XFER_CONTROL:
/* only support ep0 for portable CONTROL traffic */
return 0;
case USB_ENDPOINT_XFER_ISOC:
if (!ep->caps.type_iso)
return 0;
/* ISO: limit 1023 bytes full speed, 1024 high/super speed */
if (!gadget_is_dualspeed(gadget) && max > 1023)
return 0;
break;
case USB_ENDPOINT_XFER_BULK:
if (!ep->caps.type_bulk)
return 0;
if (ep_comp && gadget_is_superspeed(gadget)) {
/* Get the number of required streams from the
* EP companion descriptor and see if the EP
* matches it
*/
num_req_streams = ep_comp->bmAttributes & 0x1f;
if (num_req_streams > ep->max_streams)
return 0;
}
break;
case USB_ENDPOINT_XFER_INT:
/* Bulk endpoints handle interrupt transfers,
* except the toggle-quirky iso-synch kind
*/
if (!ep->caps.type_int && !ep->caps.type_bulk)
return 0;
/* INT: limit 64 bytes full speed, 1024 high/super speed */
if (!gadget_is_dualspeed(gadget) && max > 64)
return 0;
break;
}
return 1;
}
EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
/* ------------------------------------------------------------------------- */
static void usb_gadget_state_work(struct work_struct *work)
{
struct usb_gadget *gadget = work_to_gadget(work);
struct usb_udc *udc = gadget->udc;
if (udc)
sysfs_notify(&udc->dev.kobj, NULL, "state");
}
void usb_gadget_set_state(struct usb_gadget *gadget,
enum usb_device_state state)
{
gadget->state = state;
schedule_work(&gadget->work);
}
EXPORT_SYMBOL_GPL(usb_gadget_set_state);
/* ------------------------------------------------------------------------- */
static void usb_udc_connect_control(struct usb_udc *udc)
{
if (udc->vbus)
usb_gadget_connect(udc->gadget);
else
usb_gadget_disconnect(udc->gadget);
}
/**
* usb_udc_vbus_handler - updates the udc core vbus status, and try to
* connect or disconnect gadget
* @gadget: The gadget which vbus change occurs
* @status: The vbus status
*
* The udc driver calls it when it wants to connect or disconnect gadget
* according to vbus status.
*/
void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
{
struct usb_udc *udc = gadget->udc;
if (udc) {
udc->vbus = status;
usb_udc_connect_control(udc);
}
}
EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
/**
* usb_gadget_udc_reset - notifies the udc core that bus reset occurs
* @gadget: The gadget which bus reset occurs
* @driver: The gadget driver we want to notify
*
* If the udc driver has bus reset handler, it needs to call this when the bus
* reset occurs, it notifies the gadget driver that the bus reset occurs as
* well as updates gadget state.
*/
void usb_gadget_udc_reset(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
driver->reset(gadget);
usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
}
EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
/**
* usb_gadget_udc_start - tells usb device controller to start up
* @udc: The UDC to be started
*
* This call is issued by the UDC Class driver when it's about
* to register a gadget driver to the device controller, before
* calling gadget driver's bind() method.
*
* It allows the controller to be powered off until strictly
* necessary to have it powered on.
*
* Returns zero on success, else negative errno.
*/
static inline int usb_gadget_udc_start(struct usb_udc *udc)
{
return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
}
/**
* usb_gadget_udc_stop - tells usb device controller we don't need it anymore
* @gadget: The device we want to stop activity
* @driver: The driver to unbind from @gadget
*
* This call is issued by the UDC Class driver after calling
* gadget driver's unbind() method.
*
* The details are implementation specific, but it can go as
* far as powering off UDC completely and disable its data
* line pullups.
*/
static inline void usb_gadget_udc_stop(struct usb_udc *udc)
{
udc->gadget->ops->udc_stop(udc->gadget);
}
/**
* usb_gadget_udc_set_speed - tells usb device controller speed supported by
* current driver
* @udc: The device we want to set maximum speed
* @speed: The maximum speed to allowed to run
*
* This call is issued by the UDC Class driver before calling
* usb_gadget_udc_start() in order to make sure that we don't try to
* connect on speeds the gadget driver doesn't support.
*/
static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
enum usb_device_speed speed)
{
if (udc->gadget->ops->udc_set_speed) {
enum usb_device_speed s;
s = min(speed, udc->gadget->max_speed);
udc->gadget->ops->udc_set_speed(udc->gadget, s);
}
}
/**
* usb_udc_release - release the usb_udc struct
* @dev: the dev member within usb_udc
*
* This is called by driver's core in order to free memory once the last
* reference is released.
*/
static void usb_udc_release(struct device *dev)
{
struct usb_udc *udc;
udc = container_of(dev, struct usb_udc, dev);
dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
kfree(udc);
}
static const struct attribute_group *usb_udc_attr_groups[];
static void usb_udc_nop_release(struct device *dev)
{
dev_vdbg(dev, "%s\n", __func__);
}
/* should be called with udc_lock held */
static int check_pending_gadget_drivers(struct usb_udc *udc)
{
struct usb_gadget_driver *driver;
int ret = 0;
list_for_each_entry(driver, &gadget_driver_pending_list, pending)
if (!driver->udc_name || strcmp(driver->udc_name,
dev_name(&udc->dev)) == 0) {
ret = udc_bind_to_driver(udc, driver);
if (ret != -EPROBE_DEFER)
list_del(&driver->pending);
break;
}
return ret;
}
/**
* usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
* @parent: the parent device to this udc. Usually the controller driver's
* device.
* @gadget: the gadget to be added to the list.
* @release: a gadget release function.
*
* Returns zero on success, negative errno otherwise.
* Calls the gadget release function in the latter case.
*/
int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
void (*release)(struct device *dev))
{
struct usb_udc *udc;
int ret = -ENOMEM;
dev_set_name(&gadget->dev, "gadget");
INIT_WORK(&gadget->work, usb_gadget_state_work);
gadget->dev.parent = parent;
if (release)
gadget->dev.release = release;
else
gadget->dev.release = usb_udc_nop_release;
device_initialize(&gadget->dev);
udc = kzalloc(sizeof(*udc), GFP_KERNEL);
if (!udc)
goto err_put_gadget;
device_initialize(&udc->dev);
udc->dev.release = usb_udc_release;
udc->dev.class = udc_class;
udc->dev.groups = usb_udc_attr_groups;
udc->dev.parent = parent;
ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj));
if (ret)
goto err_put_udc;
ret = device_add(&gadget->dev);
if (ret)
goto err_put_udc;
udc->gadget = gadget;
gadget->udc = udc;
mutex_lock(&udc_lock);
list_add_tail(&udc->list, &udc_list);
ret = device_add(&udc->dev);
if (ret)
goto err_unlist_udc;
usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
udc->vbus = true;
/* pick up one of pending gadget drivers */
ret = check_pending_gadget_drivers(udc);
if (ret)
goto err_del_udc;
mutex_unlock(&udc_lock);
return 0;
err_del_udc:
device_del(&udc->dev);
err_unlist_udc:
list_del(&udc->list);
mutex_unlock(&udc_lock);
device_del(&gadget->dev);
err_put_udc:
put_device(&udc->dev);
err_put_gadget:
put_device(&gadget->dev);
return ret;
}
EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
/**
* usb_get_gadget_udc_name - get the name of the first UDC controller
* This functions returns the name of the first UDC controller in the system.
* Please note that this interface is usefull only for legacy drivers which
* assume that there is only one UDC controller in the system and they need to
* get its name before initialization. There is no guarantee that the UDC
* of the returned name will be still available, when gadget driver registers
* itself.
*
* Returns pointer to string with UDC controller name on success, NULL
* otherwise. Caller should kfree() returned string.
*/
char *usb_get_gadget_udc_name(void)
{
struct usb_udc *udc;
char *name = NULL;
/* For now we take the first available UDC */
mutex_lock(&udc_lock);
list_for_each_entry(udc, &udc_list, list) {
if (!udc->driver) {
name = kstrdup(udc->gadget->name, GFP_KERNEL);
break;
}
}
mutex_unlock(&udc_lock);
return name;
}
EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
/**
* usb_add_gadget_udc - adds a new gadget to the udc class driver list
* @parent: the parent device to this udc. Usually the controller
* driver's device.
* @gadget: the gadget to be added to the list
*
* Returns zero on success, negative errno otherwise.
*/
int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
{
return usb_add_gadget_udc_release(parent, gadget, NULL);
}
EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
static void usb_gadget_remove_driver(struct usb_udc *udc)
{
dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
udc->driver->function);
kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
usb_gadget_disconnect(udc->gadget);
udc->driver->unbind(udc->gadget);
usb_gadget_udc_stop(udc);
udc->driver = NULL;
udc->dev.driver = NULL;
udc->gadget->dev.driver = NULL;
}
/**
* usb_del_gadget_udc - deletes @udc from udc_list
* @gadget: the gadget to be removed.
*
* This, will call usb_gadget_unregister_driver() if
* the @udc is still busy.
*/
void usb_del_gadget_udc(struct usb_gadget *gadget)
{
struct usb_udc *udc = gadget->udc;
if (!udc)
return;
dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
mutex_lock(&udc_lock);
list_del(&udc->list);
if (udc->driver) {
struct usb_gadget_driver *driver = udc->driver;
usb_gadget_remove_driver(udc);
list_add(&driver->pending, &gadget_driver_pending_list);
}
mutex_unlock(&udc_lock);
kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
flush_work(&gadget->work);
device_unregister(&udc->dev);
device_unregister(&gadget->dev);
memset(&gadget->dev, 0x00, sizeof(gadget->dev));
}
EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
/* ------------------------------------------------------------------------- */
static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
{
int ret;
dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
driver->function);
udc->driver = driver;
udc->dev.driver = &driver->driver;
udc->gadget->dev.driver = &driver->driver;
usb_gadget_udc_set_speed(udc, driver->max_speed);
ret = driver->bind(udc->gadget, driver);
if (ret)
goto err1;
ret = usb_gadget_udc_start(udc);
if (ret) {
driver->unbind(udc->gadget);
goto err1;
}
usb_udc_connect_control(udc);
kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
return 0;
err1:
if (ret != -EISNAM)
dev_err(&udc->dev, "failed to start %s: %d\n",
udc->driver->function, ret);
udc->driver = NULL;
udc->dev.driver = NULL;
udc->gadget->dev.driver = NULL;
return ret;
}
int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
{
struct usb_udc *udc = NULL;
int ret = -ENODEV;
if (!driver || !driver->bind || !driver->setup)
return -EINVAL;
mutex_lock(&udc_lock);
if (driver->udc_name) {
list_for_each_entry(udc, &udc_list, list) {
ret = strcmp(driver->udc_name, dev_name(&udc->dev));
if (!ret)
break;
}
usb: gadget: udc: core: fix return code of usb_gadget_probe_driver() This fixes a regression which was introduced by commit f1bddbb, by reverting a small fragment of commit 855ed04. If the following conditions were met, usb_gadget_probe_driver() returned 0, although the call was unsuccessful: 1. A particular UDC was specified by thge gadget driver (using member "udc_name" of struct usb_gadget_driver). 2. The UDC with this name is available. 3. Another gadget driver is already bound to this gadget. 4. The gadget driver has the "match_existing_only" flag set. In this case, the return code variable "ret" is set to 0, the return code of a strcmp() call (to check for the second condition). This also fixes an oops which could occur in the following scenario: 1. Two usb gadget instances were configured using configfs. 2. The first gadget configuration was bound to a UDC (using the configfs attribute "UDC"). 3. It was tried to bind the second gadget configuration to the same UDC in the same way. This operation was then wrongly reported as being successful. 4. The second gadget configuration's "UDC" attribute is cleared, to unbind the (not really bound) second gadget configuration from the UDC. <BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff94f5e5e9>] __list_del_entry+0x29/0xc0 PGD 41b4c5067 PUD 41a598067 PMD 0 Oops: 0000 [#1] SMP Modules linked in: cdc_acm usb_f_fs usb_f_serial usb_f_acm u_serial libcomposite configfs dummy_hcd bnep intel_rapl x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel kvm snd_hda_codec_hdmi irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel aesni_intel aes_x86_64 lrw gf128mul glue_helper ablk_helper cryptd snd_hda_codec_realtek snd_hda_codec_generic serio_raw uvcvideo videobuf2_vmalloc btusb snd_usb_audio snd_hda_intel videobuf2_memops btrtl snd_hda_codec snd_hda_core snd_usbmidi_lib btbcm videobuf2_v4l2 btintel snd_hwdep videobuf2_core snd_seq_midi bluetooth snd_seq_midi_event videodev xpad efi_pstore snd_pcm_oss rfkill joydev media crc16 ff_memless snd_mixer_oss snd_rawmidi nls_ascii snd_pcm snd_seq snd_seq_device nls_cp437 mei_me snd_timer vfat sg udc_core lpc_ich fat efivars mfd_core mei snd soundcore battery nuvoton_cir rc_core evdev intel_smartconnect ie31200_edac edac_core shpchp tpm_tis tpm_tis_core tpm parport_pc ppdev lp parport efivarfs autofs4 btrfs xor raid6_pq hid_logitech_hidpp hid_logitech_dj hid_generic usbhid hid uas usb_storage sr_mod cdrom sd_mod ahci libahci nouveau i915 crc32c_intel i2c_algo_bit psmouse ttm xhci_pci libata scsi_mod ehci_pci drm_kms_helper xhci_hcd ehci_hcd r8169 mii usbcore drm nvme nvme_core fjes button [last unloaded: net2280] CPU: 5 PID: 829 Comm: bash Not tainted 4.9.0-rc7 #1 Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./Z77 Extreme3, BIOS P1.50 07/11/2013 task: ffff880419ce4040 task.stack: ffffc90002ed4000 RIP: 0010:[<ffffffff94f5e5e9>] [<ffffffff94f5e5e9>] __list_del_entry+0x29/0xc0 RSP: 0018:ffffc90002ed7d68 EFLAGS: 00010207 RAX: 0000000000000000 RBX: ffff88041787ec30 RCX: dead000000000200 RDX: 0000000000000000 RSI: ffff880417482002 RDI: ffff88041787ec30 RBP: ffffc90002ed7d68 R08: 0000000000000000 R09: 0000000000000010 R10: 0000000000000000 R11: ffff880419ce4040 R12: ffff88041787eb68 R13: ffff88041787eaa8 R14: ffff88041560a2c0 R15: 0000000000000001 FS: 00007fe4e49b8700(0000) GS:ffff88042f340000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000041b4c4000 CR4: 00000000001406e0 Stack: ffffc90002ed7d80 ffffffff94f5e68d ffffffffc0ae5ef0 ffffc90002ed7da0 ffffffffc0ae22aa ffff88041787e800 ffff88041787e800 ffffc90002ed7dc0 ffffffffc0d7a727 ffffffff952273fa ffff88041aba5760 ffffc90002ed7df8 Call Trace: [<ffffffff94f5e68d>] list_del+0xd/0x30 [<ffffffffc0ae22aa>] usb_gadget_unregister_driver+0xaa/0xc0 [udc_core] [<ffffffffc0d7a727>] unregister_gadget+0x27/0x60 [libcomposite] [<ffffffff952273fa>] ? mutex_lock+0x1a/0x30 [<ffffffffc0d7a9b8>] gadget_dev_desc_UDC_store+0x88/0xe0 [libcomposite] [<ffffffffc0af8aa0>] configfs_write_file+0xa0/0x100 [configfs] [<ffffffff94e10d27>] __vfs_write+0x37/0x160 [<ffffffff94e31430>] ? __fd_install+0x30/0xd0 [<ffffffff95229dae>] ? _raw_spin_unlock+0xe/0x10 [<ffffffff94e11458>] vfs_write+0xb8/0x1b0 [<ffffffff94e128f8>] SyS_write+0x58/0xc0 [<ffffffff94e31594>] ? __close_fd+0x94/0xc0 [<ffffffff9522a0fb>] entry_SYSCALL_64_fastpath+0x1e/0xad Code: 66 90 55 48 8b 07 48 b9 00 01 00 00 00 00 ad de 48 8b 57 08 48 89 e5 48 39 c8 74 29 48 b9 00 02 00 00 00 00 ad de 48 39 ca 74 3a <4c> 8b 02 4c 39 c7 75 52 4c 8b 40 08 4c 39 c7 75 66 48 89 50 08 RIP [<ffffffff94f5e5e9>] __list_del_entry+0x29/0xc0 RSP <ffffc90002ed7d68> CR2: 0000000000000000 ---[ end trace 99fc090ab3ff6cbc ]--- Fixes: f1bddbb ("usb: gadget: Fix binding to UDC via configfs interface") Signed-off-by: Felix Hädicke <felixhaedicke@web.de> Tested-by: Krzysztof Opasiak <k.opasiak@samsung.com> Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com>
2016-12-30 06:02:11 +08:00
if (ret)
ret = -ENODEV;
else if (udc->driver)
ret = -EBUSY;
else
goto found;
} else {
list_for_each_entry(udc, &udc_list, list) {
/* For now we take the first one */
if (!udc->driver)
goto found;
}
}
if (!driver->match_existing_only) {
list_add_tail(&driver->pending, &gadget_driver_pending_list);
pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
driver->function);
ret = 0;
}
mutex_unlock(&udc_lock);
return ret;
found:
ret = udc_bind_to_driver(udc, driver);
mutex_unlock(&udc_lock);
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
struct usb_udc *udc = NULL;
int ret = -ENODEV;
if (!driver || !driver->unbind)
return -EINVAL;
mutex_lock(&udc_lock);
list_for_each_entry(udc, &udc_list, list) {
if (udc->driver == driver) {
usb_gadget_remove_driver(udc);
usb_gadget_set_state(udc->gadget,
USB_STATE_NOTATTACHED);
/* Maybe there is someone waiting for this UDC? */
check_pending_gadget_drivers(udc);
/*
* For now we ignore bind errors as probably it's
* not a valid reason to fail other's gadget unbind
*/
ret = 0;
break;
}
}
if (ret) {
list_del(&driver->pending);
ret = 0;
}
mutex_unlock(&udc_lock);
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
/* ------------------------------------------------------------------------- */
static ssize_t srp_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t n)
{
struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
if (sysfs_streq(buf, "1"))
usb_gadget_wakeup(udc->gadget);
return n;
}
static DEVICE_ATTR_WO(srp);
static ssize_t soft_connect_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t n)
{
struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
usb: gadget: udc: core: fix kernel oops with soft-connect Currently, there's no guarantee that udc->driver will be valid when using soft_connect sysfs interface. In fact, we can very easily trigger a NULL pointer dereference by trying to disconnect when a gadget driver isn't loaded. Fix this bug: ~# echo disconnect > soft_connect [ 33.685743] Unable to handle kernel NULL pointer dereference at virtual address 00000014 [ 33.694221] pgd = ed0cc000 [ 33.697174] [00000014] *pgd=ae351831, *pte=00000000, *ppte=00000000 [ 33.703766] Internal error: Oops: 17 [#1] SMP ARM [ 33.708697] Modules linked in: xhci_plat_hcd xhci_hcd snd_soc_davinci_mcasp snd_soc_tlv320aic3x snd_soc_edma snd_soc_omap snd_soc_evm snd_soc_core dwc3 snd_compress snd_pcm_dmaengine snd_pcm snd_timer snd lis3lv02d_i2c matrix_keypad lis3lv02d dwc3_omap input_polldev soundcore [ 33.734372] CPU: 0 PID: 1457 Comm: bash Not tainted 3.17.0-09740-ga93416e-dirty #345 [ 33.742457] task: ee71ce00 ti: ee68a000 task.ti: ee68a000 [ 33.748116] PC is at usb_udc_softconn_store+0xa4/0xec [ 33.753416] LR is at mark_held_locks+0x78/0x90 [ 33.758057] pc : [<c04df128>] lr : [<c00896a4>] psr: 20000013 [ 33.758057] sp : ee68bec8 ip : c0c00008 fp : ee68bee4 [ 33.770050] r10: ee6b394c r9 : ee68bf80 r8 : ee6062c0 [ 33.775508] r7 : 00000000 r6 : ee6062c0 r5 : 0000000b r4 : ee739408 [ 33.782346] r3 : 00000000 r2 : 00000000 r1 : ee71d390 r0 : ee664170 [ 33.789168] Flags: nzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment user [ 33.796636] Control: 10c5387d Table: ad0cc059 DAC: 00000015 [ 33.802638] Process bash (pid: 1457, stack limit = 0xee68a248) [ 33.808740] Stack: (0xee68bec8 to 0xee68c000) [ 33.813299] bec0: 0000000b c0411284 ee6062c0 00000000 ee68bef4 ee68bee8 [ 33.821862] bee0: c04112ac c04df090 ee68bf14 ee68bef8 c01c2868 c0411290 0000000b ee6b3940 [ 33.830419] bf00: 00000000 00000000 ee68bf4c ee68bf18 c01c1a24 c01c2818 00000000 00000000 [ 33.838990] bf20: ee61b940 ee2f47c0 0000000b 000ce408 ee68bf80 c000f304 ee68a000 00000000 [ 33.847544] bf40: ee68bf7c ee68bf50 c0152dd8 c01c1960 ee68bf7c c0170af8 ee68bf7c ee2f47c0 [ 33.856099] bf60: ee2f47c0 000ce408 0000000b c000f304 ee68bfa4 ee68bf80 c0153330 c0152d34 [ 33.864653] bf80: 00000000 00000000 0000000b 000ce408 b6e7fb50 00000004 00000000 ee68bfa8 [ 33.873204] bfa0: c000f080 c01532e8 0000000b 000ce408 00000001 000ce408 0000000b 00000000 [ 33.881763] bfc0: 0000000b 000ce408 b6e7fb50 00000004 0000000b 00000000 000c5758 00000000 [ 33.890319] bfe0: 00000000 bec2c924 b6de422d b6e1d226 40000030 00000001 75716d2f 00657565 [ 33.898890] [<c04df128>] (usb_udc_softconn_store) from [<c04112ac>] (dev_attr_store+0x28/0x34) [ 33.907920] [<c04112ac>] (dev_attr_store) from [<c01c2868>] (sysfs_kf_write+0x5c/0x60) [ 33.916200] [<c01c2868>] (sysfs_kf_write) from [<c01c1a24>] (kernfs_fop_write+0xd0/0x194) [ 33.924773] [<c01c1a24>] (kernfs_fop_write) from [<c0152dd8>] (vfs_write+0xb0/0x1bc) [ 33.932874] [<c0152dd8>] (vfs_write) from [<c0153330>] (SyS_write+0x54/0xb0) [ 33.940247] [<c0153330>] (SyS_write) from [<c000f080>] (ret_fast_syscall+0x0/0x48) [ 33.948160] Code: e1a01007 e12fff33 e5140004 e5143008 (e5933014) [ 33.954625] ---[ end trace f849bead94eab7ea ]--- Fixes: 2ccea03 (usb: gadget: introduce UDC Class) Cc: <stable@vger.kernel.org> # v3.1+ Signed-off-by: Felipe Balbi <balbi@ti.com>
2014-10-18 00:10:25 +08:00
if (!udc->driver) {
dev_err(dev, "soft-connect without a gadget driver\n");
return -EOPNOTSUPP;
}
if (sysfs_streq(buf, "connect")) {
usb_gadget_udc_start(udc);
usb_gadget_connect(udc->gadget);
} else if (sysfs_streq(buf, "disconnect")) {
usb_gadget_disconnect(udc->gadget);
usb_gadget_udc_stop(udc);
} else {
dev_err(dev, "unsupported command '%s'\n", buf);
return -EINVAL;
}
return n;
}
static DEVICE_ATTR_WO(soft_connect);
static ssize_t state_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
struct usb_gadget *gadget = udc->gadget;
return sprintf(buf, "%s\n", usb_state_string(gadget->state));
}
static DEVICE_ATTR_RO(state);
static ssize_t function_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
struct usb_gadget_driver *drv = udc->driver;
if (!drv || !drv->function)
return 0;
return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
}
static DEVICE_ATTR_RO(function);
#define USB_UDC_SPEED_ATTR(name, param) \
ssize_t name##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
return scnprintf(buf, PAGE_SIZE, "%s\n", \
usb_speed_string(udc->gadget->param)); \
} \
static DEVICE_ATTR_RO(name)
static USB_UDC_SPEED_ATTR(current_speed, speed);
static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
#define USB_UDC_ATTR(name) \
ssize_t name##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
struct usb_gadget *gadget = udc->gadget; \
\
return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \
} \
static DEVICE_ATTR_RO(name)
static USB_UDC_ATTR(is_otg);
static USB_UDC_ATTR(is_a_peripheral);
static USB_UDC_ATTR(b_hnp_enable);
static USB_UDC_ATTR(a_hnp_support);
static USB_UDC_ATTR(a_alt_hnp_support);
static USB_UDC_ATTR(is_selfpowered);
static struct attribute *usb_udc_attrs[] = {
&dev_attr_srp.attr,
&dev_attr_soft_connect.attr,
&dev_attr_state.attr,
&dev_attr_function.attr,
&dev_attr_current_speed.attr,
&dev_attr_maximum_speed.attr,
&dev_attr_is_otg.attr,
&dev_attr_is_a_peripheral.attr,
&dev_attr_b_hnp_enable.attr,
&dev_attr_a_hnp_support.attr,
&dev_attr_a_alt_hnp_support.attr,
&dev_attr_is_selfpowered.attr,
NULL,
};
static const struct attribute_group usb_udc_attr_group = {
.attrs = usb_udc_attrs,
};
static const struct attribute_group *usb_udc_attr_groups[] = {
&usb_udc_attr_group,
NULL,
};
static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
int ret;
ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
if (ret) {
dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
return ret;
}
if (udc->driver) {
ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
udc->driver->function);
if (ret) {
dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
return ret;
}
}
return 0;
}
static int __init usb_udc_init(void)
{
udc_class = class_create(THIS_MODULE, "udc");
if (IS_ERR(udc_class)) {
pr_err("failed to create udc class --> %ld\n",
PTR_ERR(udc_class));
return PTR_ERR(udc_class);
}
udc_class->dev_uevent = usb_udc_uevent;
return 0;
}
subsys_initcall(usb_udc_init);
static void __exit usb_udc_exit(void)
{
class_destroy(udc_class);
}
module_exit(usb_udc_exit);
MODULE_DESCRIPTION("UDC Framework");
MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
MODULE_LICENSE("GPL v2");