linux-sg2042/fs/read_write.c

2072 lines
48 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/read_write.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/sched/xacct.h>
#include <linux/fcntl.h>
#include <linux/file.h>
#include <linux/uio.h>
#include <linux/fsnotify.h>
#include <linux/security.h>
#include <linux/export.h>
#include <linux/syscalls.h>
#include <linux/pagemap.h>
#include <linux/splice.h>
#include <linux/compat.h>
#include <linux/mount.h>
#include <linux/fs.h>
#include "internal.h"
#include <linux/uaccess.h>
#include <asm/unistd.h>
const struct file_operations generic_ro_fops = {
.llseek = generic_file_llseek,
.read_iter = generic_file_read_iter,
.mmap = generic_file_readonly_mmap,
.splice_read = generic_file_splice_read,
};
EXPORT_SYMBOL(generic_ro_fops);
static inline bool unsigned_offsets(struct file *file)
{
return file->f_mode & FMODE_UNSIGNED_OFFSET;
}
/**
* vfs_setpos - update the file offset for lseek
* @file: file structure in question
* @offset: file offset to seek to
* @maxsize: maximum file size
*
* This is a low-level filesystem helper for updating the file offset to
* the value specified by @offset if the given offset is valid and it is
* not equal to the current file offset.
*
* Return the specified offset on success and -EINVAL on invalid offset.
*/
loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize)
vfs: do (nearly) lockless generic_file_llseek The i_mutex lock use of generic _file_llseek hurts. Independent processes accessing the same file synchronize over a single lock, even though they have no need for synchronization at all. Under high utilization this can cause llseek to scale very poorly on larger systems. This patch does some rethinking of the llseek locking model: First the 64bit f_pos is not necessarily atomic without locks on 32bit systems. This can already cause races with read() today. This was discussed on linux-kernel in the past and deemed acceptable. The patch does not change that. Let's look at the different seek variants: SEEK_SET: Doesn't really need any locking. If there's a race one writer wins, the other loses. For 32bit the non atomic update races against read() stay the same. Without a lock they can also happen against write() now. The read() race was deemed acceptable in past discussions, and I think if it's ok for read it's ok for write too. => Don't need a lock. SEEK_END: This behaves like SEEK_SET plus it reads the maximum size too. Reading the maximum size would have the 32bit atomic problem. But luckily we already have a way to read the maximum size without locking (i_size_read), so we can just use that instead. Without i_mutex there is no synchronization with write() anymore, however since the write() update is atomic on 64bit it just behaves like another racy SEEK_SET. On non atomic 32bit it's the same as SEEK_SET. => Don't need a lock, but need to use i_size_read() SEEK_CUR: This has a read-modify-write race window on the same file. One could argue that any application doing unsynchronized seeks on the same file is already broken. But for the sake of not adding a regression here I'm using the file->f_lock to synchronize this. Using this lock is much better than the inode mutex because it doesn't synchronize between processes. => So still need a lock, but can use a f_lock. This patch implements this new scheme in generic_file_llseek. I dropped generic_file_llseek_unlocked and changed all callers. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2011-09-16 07:06:48 +08:00
{
if (offset < 0 && !unsigned_offsets(file))
return -EINVAL;
if (offset > maxsize)
return -EINVAL;
if (offset != file->f_pos) {
file->f_pos = offset;
file->f_version = 0;
}
return offset;
}
EXPORT_SYMBOL(vfs_setpos);
vfs: do (nearly) lockless generic_file_llseek The i_mutex lock use of generic _file_llseek hurts. Independent processes accessing the same file synchronize over a single lock, even though they have no need for synchronization at all. Under high utilization this can cause llseek to scale very poorly on larger systems. This patch does some rethinking of the llseek locking model: First the 64bit f_pos is not necessarily atomic without locks on 32bit systems. This can already cause races with read() today. This was discussed on linux-kernel in the past and deemed acceptable. The patch does not change that. Let's look at the different seek variants: SEEK_SET: Doesn't really need any locking. If there's a race one writer wins, the other loses. For 32bit the non atomic update races against read() stay the same. Without a lock they can also happen against write() now. The read() race was deemed acceptable in past discussions, and I think if it's ok for read it's ok for write too. => Don't need a lock. SEEK_END: This behaves like SEEK_SET plus it reads the maximum size too. Reading the maximum size would have the 32bit atomic problem. But luckily we already have a way to read the maximum size without locking (i_size_read), so we can just use that instead. Without i_mutex there is no synchronization with write() anymore, however since the write() update is atomic on 64bit it just behaves like another racy SEEK_SET. On non atomic 32bit it's the same as SEEK_SET. => Don't need a lock, but need to use i_size_read() SEEK_CUR: This has a read-modify-write race window on the same file. One could argue that any application doing unsynchronized seeks on the same file is already broken. But for the sake of not adding a regression here I'm using the file->f_lock to synchronize this. Using this lock is much better than the inode mutex because it doesn't synchronize between processes. => So still need a lock, but can use a f_lock. This patch implements this new scheme in generic_file_llseek. I dropped generic_file_llseek_unlocked and changed all callers. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2011-09-16 07:06:48 +08:00
/**
* generic_file_llseek_size - generic llseek implementation for regular files
* @file: file structure to seek on
* @offset: file offset to seek to
* @whence: type of seek
* @size: max size of this file in file system
* @eof: offset used for SEEK_END position
*
* This is a variant of generic_file_llseek that allows passing in a custom
* maximum file size and a custom EOF position, for e.g. hashed directories
vfs: do (nearly) lockless generic_file_llseek The i_mutex lock use of generic _file_llseek hurts. Independent processes accessing the same file synchronize over a single lock, even though they have no need for synchronization at all. Under high utilization this can cause llseek to scale very poorly on larger systems. This patch does some rethinking of the llseek locking model: First the 64bit f_pos is not necessarily atomic without locks on 32bit systems. This can already cause races with read() today. This was discussed on linux-kernel in the past and deemed acceptable. The patch does not change that. Let's look at the different seek variants: SEEK_SET: Doesn't really need any locking. If there's a race one writer wins, the other loses. For 32bit the non atomic update races against read() stay the same. Without a lock they can also happen against write() now. The read() race was deemed acceptable in past discussions, and I think if it's ok for read it's ok for write too. => Don't need a lock. SEEK_END: This behaves like SEEK_SET plus it reads the maximum size too. Reading the maximum size would have the 32bit atomic problem. But luckily we already have a way to read the maximum size without locking (i_size_read), so we can just use that instead. Without i_mutex there is no synchronization with write() anymore, however since the write() update is atomic on 64bit it just behaves like another racy SEEK_SET. On non atomic 32bit it's the same as SEEK_SET. => Don't need a lock, but need to use i_size_read() SEEK_CUR: This has a read-modify-write race window on the same file. One could argue that any application doing unsynchronized seeks on the same file is already broken. But for the sake of not adding a regression here I'm using the file->f_lock to synchronize this. Using this lock is much better than the inode mutex because it doesn't synchronize between processes. => So still need a lock, but can use a f_lock. This patch implements this new scheme in generic_file_llseek. I dropped generic_file_llseek_unlocked and changed all callers. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2011-09-16 07:06:48 +08:00
*
* Synchronization:
* SEEK_SET and SEEK_END are unsynchronized (but atomic on 64bit platforms)
vfs: do (nearly) lockless generic_file_llseek The i_mutex lock use of generic _file_llseek hurts. Independent processes accessing the same file synchronize over a single lock, even though they have no need for synchronization at all. Under high utilization this can cause llseek to scale very poorly on larger systems. This patch does some rethinking of the llseek locking model: First the 64bit f_pos is not necessarily atomic without locks on 32bit systems. This can already cause races with read() today. This was discussed on linux-kernel in the past and deemed acceptable. The patch does not change that. Let's look at the different seek variants: SEEK_SET: Doesn't really need any locking. If there's a race one writer wins, the other loses. For 32bit the non atomic update races against read() stay the same. Without a lock they can also happen against write() now. The read() race was deemed acceptable in past discussions, and I think if it's ok for read it's ok for write too. => Don't need a lock. SEEK_END: This behaves like SEEK_SET plus it reads the maximum size too. Reading the maximum size would have the 32bit atomic problem. But luckily we already have a way to read the maximum size without locking (i_size_read), so we can just use that instead. Without i_mutex there is no synchronization with write() anymore, however since the write() update is atomic on 64bit it just behaves like another racy SEEK_SET. On non atomic 32bit it's the same as SEEK_SET. => Don't need a lock, but need to use i_size_read() SEEK_CUR: This has a read-modify-write race window on the same file. One could argue that any application doing unsynchronized seeks on the same file is already broken. But for the sake of not adding a regression here I'm using the file->f_lock to synchronize this. Using this lock is much better than the inode mutex because it doesn't synchronize between processes. => So still need a lock, but can use a f_lock. This patch implements this new scheme in generic_file_llseek. I dropped generic_file_llseek_unlocked and changed all callers. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2011-09-16 07:06:48 +08:00
* SEEK_CUR is synchronized against other SEEK_CURs, but not read/writes.
* read/writes behave like SEEK_SET against seeks.
*/
loff_t
generic_file_llseek_size(struct file *file, loff_t offset, int whence,
loff_t maxsize, loff_t eof)
{
switch (whence) {
case SEEK_END:
offset += eof;
break;
case SEEK_CUR:
/*
* Here we special-case the lseek(fd, 0, SEEK_CUR)
* position-querying operation. Avoid rewriting the "same"
* f_pos value back to the file because a concurrent read(),
* write() or lseek() might have altered it
*/
if (offset == 0)
return file->f_pos;
vfs: do (nearly) lockless generic_file_llseek The i_mutex lock use of generic _file_llseek hurts. Independent processes accessing the same file synchronize over a single lock, even though they have no need for synchronization at all. Under high utilization this can cause llseek to scale very poorly on larger systems. This patch does some rethinking of the llseek locking model: First the 64bit f_pos is not necessarily atomic without locks on 32bit systems. This can already cause races with read() today. This was discussed on linux-kernel in the past and deemed acceptable. The patch does not change that. Let's look at the different seek variants: SEEK_SET: Doesn't really need any locking. If there's a race one writer wins, the other loses. For 32bit the non atomic update races against read() stay the same. Without a lock they can also happen against write() now. The read() race was deemed acceptable in past discussions, and I think if it's ok for read it's ok for write too. => Don't need a lock. SEEK_END: This behaves like SEEK_SET plus it reads the maximum size too. Reading the maximum size would have the 32bit atomic problem. But luckily we already have a way to read the maximum size without locking (i_size_read), so we can just use that instead. Without i_mutex there is no synchronization with write() anymore, however since the write() update is atomic on 64bit it just behaves like another racy SEEK_SET. On non atomic 32bit it's the same as SEEK_SET. => Don't need a lock, but need to use i_size_read() SEEK_CUR: This has a read-modify-write race window on the same file. One could argue that any application doing unsynchronized seeks on the same file is already broken. But for the sake of not adding a regression here I'm using the file->f_lock to synchronize this. Using this lock is much better than the inode mutex because it doesn't synchronize between processes. => So still need a lock, but can use a f_lock. This patch implements this new scheme in generic_file_llseek. I dropped generic_file_llseek_unlocked and changed all callers. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2011-09-16 07:06:48 +08:00
/*
* f_lock protects against read/modify/write race with other
* SEEK_CURs. Note that parallel writes and reads behave
* like SEEK_SET.
*/
spin_lock(&file->f_lock);
offset = vfs_setpos(file, file->f_pos + offset, maxsize);
vfs: do (nearly) lockless generic_file_llseek The i_mutex lock use of generic _file_llseek hurts. Independent processes accessing the same file synchronize over a single lock, even though they have no need for synchronization at all. Under high utilization this can cause llseek to scale very poorly on larger systems. This patch does some rethinking of the llseek locking model: First the 64bit f_pos is not necessarily atomic without locks on 32bit systems. This can already cause races with read() today. This was discussed on linux-kernel in the past and deemed acceptable. The patch does not change that. Let's look at the different seek variants: SEEK_SET: Doesn't really need any locking. If there's a race one writer wins, the other loses. For 32bit the non atomic update races against read() stay the same. Without a lock they can also happen against write() now. The read() race was deemed acceptable in past discussions, and I think if it's ok for read it's ok for write too. => Don't need a lock. SEEK_END: This behaves like SEEK_SET plus it reads the maximum size too. Reading the maximum size would have the 32bit atomic problem. But luckily we already have a way to read the maximum size without locking (i_size_read), so we can just use that instead. Without i_mutex there is no synchronization with write() anymore, however since the write() update is atomic on 64bit it just behaves like another racy SEEK_SET. On non atomic 32bit it's the same as SEEK_SET. => Don't need a lock, but need to use i_size_read() SEEK_CUR: This has a read-modify-write race window on the same file. One could argue that any application doing unsynchronized seeks on the same file is already broken. But for the sake of not adding a regression here I'm using the file->f_lock to synchronize this. Using this lock is much better than the inode mutex because it doesn't synchronize between processes. => So still need a lock, but can use a f_lock. This patch implements this new scheme in generic_file_llseek. I dropped generic_file_llseek_unlocked and changed all callers. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2011-09-16 07:06:48 +08:00
spin_unlock(&file->f_lock);
return offset;
case SEEK_DATA:
/*
* In the generic case the entire file is data, so as long as
* offset isn't at the end of the file then the offset is data.
*/
if ((unsigned long long)offset >= eof)
return -ENXIO;
break;
case SEEK_HOLE:
/*
* There is a virtual hole at the end of the file, so as long as
* offset isn't i_size or larger, return i_size.
*/
if ((unsigned long long)offset >= eof)
return -ENXIO;
offset = eof;
break;
}
return vfs_setpos(file, offset, maxsize);
}
EXPORT_SYMBOL(generic_file_llseek_size);
/**
* generic_file_llseek - generic llseek implementation for regular files
* @file: file structure to seek on
* @offset: file offset to seek to
* @whence: type of seek
*
* This is a generic implemenation of ->llseek useable for all normal local
* filesystems. It just updates the file offset to the value specified by
* @offset and @whence.
*/
loff_t generic_file_llseek(struct file *file, loff_t offset, int whence)
{
struct inode *inode = file->f_mapping->host;
return generic_file_llseek_size(file, offset, whence,
inode->i_sb->s_maxbytes,
i_size_read(inode));
}
EXPORT_SYMBOL(generic_file_llseek);
/**
* fixed_size_llseek - llseek implementation for fixed-sized devices
* @file: file structure to seek on
* @offset: file offset to seek to
* @whence: type of seek
* @size: size of the file
*
*/
loff_t fixed_size_llseek(struct file *file, loff_t offset, int whence, loff_t size)
{
switch (whence) {
case SEEK_SET: case SEEK_CUR: case SEEK_END:
return generic_file_llseek_size(file, offset, whence,
size, size);
default:
return -EINVAL;
}
}
EXPORT_SYMBOL(fixed_size_llseek);
/**
* no_seek_end_llseek - llseek implementation for fixed-sized devices
* @file: file structure to seek on
* @offset: file offset to seek to
* @whence: type of seek
*
*/
loff_t no_seek_end_llseek(struct file *file, loff_t offset, int whence)
{
switch (whence) {
case SEEK_SET: case SEEK_CUR:
return generic_file_llseek_size(file, offset, whence,
OFFSET_MAX, 0);
default:
return -EINVAL;
}
}
EXPORT_SYMBOL(no_seek_end_llseek);
/**
* no_seek_end_llseek_size - llseek implementation for fixed-sized devices
* @file: file structure to seek on
* @offset: file offset to seek to
* @whence: type of seek
* @size: maximal offset allowed
*
*/
loff_t no_seek_end_llseek_size(struct file *file, loff_t offset, int whence, loff_t size)
{
switch (whence) {
case SEEK_SET: case SEEK_CUR:
return generic_file_llseek_size(file, offset, whence,
size, 0);
default:
return -EINVAL;
}
}
EXPORT_SYMBOL(no_seek_end_llseek_size);
/**
* noop_llseek - No Operation Performed llseek implementation
* @file: file structure to seek on
* @offset: file offset to seek to
* @whence: type of seek
*
* This is an implementation of ->llseek useable for the rare special case when
* userspace expects the seek to succeed but the (device) file is actually not
* able to perform the seek. In this case you use noop_llseek() instead of
* falling back to the default implementation of ->llseek.
*/
loff_t noop_llseek(struct file *file, loff_t offset, int whence)
{
return file->f_pos;
}
EXPORT_SYMBOL(noop_llseek);
loff_t no_llseek(struct file *file, loff_t offset, int whence)
{
return -ESPIPE;
}
EXPORT_SYMBOL(no_llseek);
loff_t default_llseek(struct file *file, loff_t offset, int whence)
{
struct inode *inode = file_inode(file);
loff_t retval;
inode_lock(inode);
switch (whence) {
case SEEK_END:
offset += i_size_read(inode);
break;
case SEEK_CUR:
if (offset == 0) {
retval = file->f_pos;
goto out;
}
offset += file->f_pos;
break;
case SEEK_DATA:
/*
* In the generic case the entire file is data, so as
* long as offset isn't at the end of the file then the
* offset is data.
*/
if (offset >= inode->i_size) {
retval = -ENXIO;
goto out;
}
break;
case SEEK_HOLE:
/*
* There is a virtual hole at the end of the file, so
* as long as offset isn't i_size or larger, return
* i_size.
*/
if (offset >= inode->i_size) {
retval = -ENXIO;
goto out;
}
offset = inode->i_size;
break;
}
retval = -EINVAL;
if (offset >= 0 || unsigned_offsets(file)) {
if (offset != file->f_pos) {
file->f_pos = offset;
file->f_version = 0;
}
retval = offset;
}
out:
inode_unlock(inode);
return retval;
}
EXPORT_SYMBOL(default_llseek);
loff_t vfs_llseek(struct file *file, loff_t offset, int whence)
{
loff_t (*fn)(struct file *, loff_t, int);
fn = no_llseek;
if (file->f_mode & FMODE_LSEEK) {
if (file->f_op->llseek)
fn = file->f_op->llseek;
}
return fn(file, offset, whence);
}
EXPORT_SYMBOL(vfs_llseek);
off_t ksys_lseek(unsigned int fd, off_t offset, unsigned int whence)
{
off_t retval;
struct fd f = fdget_pos(fd);
if (!f.file)
return -EBADF;
retval = -EINVAL;
if (whence <= SEEK_MAX) {
loff_t res = vfs_llseek(f.file, offset, whence);
retval = res;
if (res != (loff_t)retval)
retval = -EOVERFLOW; /* LFS: should only happen on 32 bit platforms */
}
fdput_pos(f);
return retval;
}
SYSCALL_DEFINE3(lseek, unsigned int, fd, off_t, offset, unsigned int, whence)
{
return ksys_lseek(fd, offset, whence);
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(lseek, unsigned int, fd, compat_off_t, offset, unsigned int, whence)
{
return ksys_lseek(fd, offset, whence);
}
#endif
#ifdef __ARCH_WANT_SYS_LLSEEK
SYSCALL_DEFINE5(llseek, unsigned int, fd, unsigned long, offset_high,
unsigned long, offset_low, loff_t __user *, result,
unsigned int, whence)
{
int retval;
struct fd f = fdget_pos(fd);
loff_t offset;
if (!f.file)
return -EBADF;
retval = -EINVAL;
if (whence > SEEK_MAX)
goto out_putf;
offset = vfs_llseek(f.file, ((loff_t) offset_high << 32) | offset_low,
whence);
retval = (int)offset;
if (offset >= 0) {
retval = -EFAULT;
if (!copy_to_user(result, &offset, sizeof(offset)))
retval = 0;
}
out_putf:
fdput_pos(f);
return retval;
}
#endif
int rw_verify_area(int read_write, struct file *file, const loff_t *ppos, size_t count)
{
struct inode *inode;
loff_t pos;
int retval = -EINVAL;
inode = file_inode(file);
if (unlikely((ssize_t) count < 0))
return retval;
pos = *ppos;
if (unlikely(pos < 0)) {
if (!unsigned_offsets(file))
return retval;
if (count >= -pos) /* both values are in 0..LLONG_MAX */
return -EOVERFLOW;
} else if (unlikely((loff_t) (pos + count) < 0)) {
if (!unsigned_offsets(file))
return retval;
}
if (unlikely(inode->i_flctx && mandatory_lock(inode))) {
retval = locks_mandatory_area(inode, file, pos, pos + count - 1,
read_write == READ ? F_RDLCK : F_WRLCK);
if (retval < 0)
return retval;
}
return security_file_permission(file,
read_write == READ ? MAY_READ : MAY_WRITE);
}
static ssize_t new_sync_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos)
{
struct iovec iov = { .iov_base = buf, .iov_len = len };
struct kiocb kiocb;
struct iov_iter iter;
ssize_t ret;
init_sync_kiocb(&kiocb, filp);
kiocb.ki_pos = *ppos;
iov_iter_init(&iter, READ, &iov, 1, len);
ret = call_read_iter(filp, &kiocb, &iter);
BUG_ON(ret == -EIOCBQUEUED);
*ppos = kiocb.ki_pos;
return ret;
}
ssize_t __vfs_read(struct file *file, char __user *buf, size_t count,
loff_t *pos)
{
if (file->f_op->read)
return file->f_op->read(file, buf, count, pos);
else if (file->f_op->read_iter)
return new_sync_read(file, buf, count, pos);
else
return -EINVAL;
}
ssize_t kernel_read(struct file *file, void *buf, size_t count, loff_t *pos)
{
mm_segment_t old_fs;
ssize_t result;
old_fs = get_fs();
set_fs(get_ds());
/* The cast to a user pointer is valid due to the set_fs() */
result = vfs_read(file, (void __user *)buf, count, pos);
set_fs(old_fs);
return result;
}
EXPORT_SYMBOL(kernel_read);
ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
ssize_t ret;
if (!(file->f_mode & FMODE_READ))
return -EBADF;
if (!(file->f_mode & FMODE_CAN_READ))
return -EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count)))
return -EFAULT;
ret = rw_verify_area(READ, file, pos, count);
if (!ret) {
if (count > MAX_RW_COUNT)
count = MAX_RW_COUNT;
ret = __vfs_read(file, buf, count, pos);
if (ret > 0) {
fsnotify_access(file);
add_rchar(current, ret);
}
inc_syscr(current);
}
return ret;
}
static ssize_t new_sync_write(struct file *filp, const char __user *buf, size_t len, loff_t *ppos)
{
struct iovec iov = { .iov_base = (void __user *)buf, .iov_len = len };
struct kiocb kiocb;
struct iov_iter iter;
ssize_t ret;
init_sync_kiocb(&kiocb, filp);
kiocb.ki_pos = *ppos;
iov_iter_init(&iter, WRITE, &iov, 1, len);
ret = call_write_iter(filp, &kiocb, &iter);
BUG_ON(ret == -EIOCBQUEUED);
if (ret > 0)
*ppos = kiocb.ki_pos;
return ret;
}
ssize_t __vfs_write(struct file *file, const char __user *p, size_t count,
loff_t *pos)
{
if (file->f_op->write)
return file->f_op->write(file, p, count, pos);
else if (file->f_op->write_iter)
return new_sync_write(file, p, count, pos);
else
return -EINVAL;
}
ssize_t __kernel_write(struct file *file, const void *buf, size_t count, loff_t *pos)
{
mm_segment_t old_fs;
const char __user *p;
ssize_t ret;
if (!(file->f_mode & FMODE_CAN_WRITE))
return -EINVAL;
old_fs = get_fs();
set_fs(get_ds());
p = (__force const char __user *)buf;
if (count > MAX_RW_COUNT)
count = MAX_RW_COUNT;
ret = __vfs_write(file, p, count, pos);
set_fs(old_fs);
if (ret > 0) {
fsnotify_modify(file);
add_wchar(current, ret);
}
inc_syscw(current);
return ret;
}
EXPORT_SYMBOL(__kernel_write);
ssize_t kernel_write(struct file *file, const void *buf, size_t count,
loff_t *pos)
{
mm_segment_t old_fs;
ssize_t res;
old_fs = get_fs();
set_fs(get_ds());
/* The cast to a user pointer is valid due to the set_fs() */
res = vfs_write(file, (__force const char __user *)buf, count, pos);
set_fs(old_fs);
return res;
}
EXPORT_SYMBOL(kernel_write);
ssize_t vfs_write(struct file *file, const char __user *buf, size_t count, loff_t *pos)
{
ssize_t ret;
if (!(file->f_mode & FMODE_WRITE))
return -EBADF;
if (!(file->f_mode & FMODE_CAN_WRITE))
return -EINVAL;
if (unlikely(!access_ok(VERIFY_READ, buf, count)))
return -EFAULT;
ret = rw_verify_area(WRITE, file, pos, count);
if (!ret) {
if (count > MAX_RW_COUNT)
count = MAX_RW_COUNT;
file_start_write(file);
ret = __vfs_write(file, buf, count, pos);
if (ret > 0) {
fsnotify_modify(file);
add_wchar(current, ret);
}
inc_syscw(current);
file_end_write(file);
}
return ret;
}
static inline loff_t file_pos_read(struct file *file)
{
return file->f_pos;
}
static inline void file_pos_write(struct file *file, loff_t pos)
{
file->f_pos = pos;
}
ssize_t ksys_read(unsigned int fd, char __user *buf, size_t count)
{
struct fd f = fdget_pos(fd);
ssize_t ret = -EBADF;
if (f.file) {
loff_t pos = file_pos_read(f.file);
ret = vfs_read(f.file, buf, count, &pos);
if (ret >= 0)
file_pos_write(f.file, pos);
fdput_pos(f);
}
return ret;
}
SYSCALL_DEFINE3(read, unsigned int, fd, char __user *, buf, size_t, count)
{
return ksys_read(fd, buf, count);
}
ssize_t ksys_write(unsigned int fd, const char __user *buf, size_t count)
{
struct fd f = fdget_pos(fd);
ssize_t ret = -EBADF;
if (f.file) {
loff_t pos = file_pos_read(f.file);
ret = vfs_write(f.file, buf, count, &pos);
if (ret >= 0)
file_pos_write(f.file, pos);
fdput_pos(f);
}
return ret;
}
SYSCALL_DEFINE3(write, unsigned int, fd, const char __user *, buf,
size_t, count)
{
return ksys_write(fd, buf, count);
}
ssize_t ksys_pread64(unsigned int fd, char __user *buf, size_t count,
loff_t pos)
{
struct fd f;
ssize_t ret = -EBADF;
if (pos < 0)
return -EINVAL;
f = fdget(fd);
if (f.file) {
ret = -ESPIPE;
if (f.file->f_mode & FMODE_PREAD)
ret = vfs_read(f.file, buf, count, &pos);
fdput(f);
}
return ret;
}
SYSCALL_DEFINE4(pread64, unsigned int, fd, char __user *, buf,
size_t, count, loff_t, pos)
{
return ksys_pread64(fd, buf, count, pos);
}
ssize_t ksys_pwrite64(unsigned int fd, const char __user *buf,
size_t count, loff_t pos)
{
struct fd f;
ssize_t ret = -EBADF;
if (pos < 0)
return -EINVAL;
f = fdget(fd);
if (f.file) {
ret = -ESPIPE;
if (f.file->f_mode & FMODE_PWRITE)
ret = vfs_write(f.file, buf, count, &pos);
fdput(f);
}
return ret;
}
SYSCALL_DEFINE4(pwrite64, unsigned int, fd, const char __user *, buf,
size_t, count, loff_t, pos)
{
return ksys_pwrite64(fd, buf, count, pos);
}
static ssize_t do_iter_readv_writev(struct file *filp, struct iov_iter *iter,
loff_t *ppos, int type, rwf_t flags)
{
struct kiocb kiocb;
ssize_t ret;
init_sync_kiocb(&kiocb, filp);
ret = kiocb_set_rw_flags(&kiocb, flags);
if (ret)
return ret;
kiocb.ki_pos = *ppos;
if (type == READ)
ret = call_read_iter(filp, &kiocb, iter);
else
ret = call_write_iter(filp, &kiocb, iter);
BUG_ON(ret == -EIOCBQUEUED);
*ppos = kiocb.ki_pos;
return ret;
}
/* Do it by hand, with file-ops */
static ssize_t do_loop_readv_writev(struct file *filp, struct iov_iter *iter,
loff_t *ppos, int type, rwf_t flags)
{
ssize_t ret = 0;
if (flags & ~RWF_HIPRI)
return -EOPNOTSUPP;
while (iov_iter_count(iter)) {
struct iovec iovec = iov_iter_iovec(iter);
ssize_t nr;
if (type == READ) {
nr = filp->f_op->read(filp, iovec.iov_base,
iovec.iov_len, ppos);
} else {
nr = filp->f_op->write(filp, iovec.iov_base,
iovec.iov_len, ppos);
}
if (nr < 0) {
if (!ret)
ret = nr;
break;
}
ret += nr;
if (nr != iovec.iov_len)
break;
iov_iter_advance(iter, nr);
}
return ret;
}
/* A write operation does a read from user space and vice versa */
#define vrfy_dir(type) ((type) == READ ? VERIFY_WRITE : VERIFY_READ)
/**
* rw_copy_check_uvector() - Copy an array of &struct iovec from userspace
* into the kernel and check that it is valid.
*
* @type: One of %CHECK_IOVEC_ONLY, %READ, or %WRITE.
* @uvector: Pointer to the userspace array.
* @nr_segs: Number of elements in userspace array.
* @fast_segs: Number of elements in @fast_pointer.
* @fast_pointer: Pointer to (usually small on-stack) kernel array.
* @ret_pointer: (output parameter) Pointer to a variable that will point to
* either @fast_pointer, a newly allocated kernel array, or NULL,
* depending on which array was used.
*
* This function copies an array of &struct iovec of @nr_segs from
* userspace into the kernel and checks that each element is valid (e.g.
* it does not point to a kernel address or cause overflow by being too
* large, etc.).
*
* As an optimization, the caller may provide a pointer to a small
* on-stack array in @fast_pointer, typically %UIO_FASTIOV elements long
* (the size of this array, or 0 if unused, should be given in @fast_segs).
*
* @ret_pointer will always point to the array that was used, so the
* caller must take care not to call kfree() on it e.g. in case the
* @fast_pointer array was used and it was allocated on the stack.
*
* Return: The total number of bytes covered by the iovec array on success
* or a negative error code on error.
*/
ssize_t rw_copy_check_uvector(int type, const struct iovec __user * uvector,
unsigned long nr_segs, unsigned long fast_segs,
struct iovec *fast_pointer,
struct iovec **ret_pointer)
{
unsigned long seg;
ssize_t ret;
struct iovec *iov = fast_pointer;
/*
* SuS says "The readv() function *may* fail if the iovcnt argument
* was less than or equal to 0, or greater than {IOV_MAX}. Linux has
* traditionally returned zero for zero segments, so...
*/
if (nr_segs == 0) {
ret = 0;
goto out;
}
/*
* First get the "struct iovec" from user memory and
* verify all the pointers
*/
if (nr_segs > UIO_MAXIOV) {
ret = -EINVAL;
goto out;
}
if (nr_segs > fast_segs) {
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:55:00 +08:00
iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
if (iov == NULL) {
ret = -ENOMEM;
goto out;
}
}
if (copy_from_user(iov, uvector, nr_segs*sizeof(*uvector))) {
ret = -EFAULT;
goto out;
}
/*
* According to the Single Unix Specification we should return EINVAL
* if an element length is < 0 when cast to ssize_t or if the
* total length would overflow the ssize_t return value of the
* system call.
*
* Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
* overflow case.
*/
ret = 0;
for (seg = 0; seg < nr_segs; seg++) {
void __user *buf = iov[seg].iov_base;
ssize_t len = (ssize_t)iov[seg].iov_len;
/* see if we we're about to use an invalid len or if
* it's about to overflow ssize_t */
if (len < 0) {
ret = -EINVAL;
goto out;
}
if (type >= 0
Cross Memory Attach The basic idea behind cross memory attach is to allow MPI programs doing intra-node communication to do a single copy of the message rather than a double copy of the message via shared memory. The following patch attempts to achieve this by allowing a destination process, given an address and size from a source process, to copy memory directly from the source process into its own address space via a system call. There is also a symmetrical ability to copy from the current process's address space into a destination process's address space. - Use of /proc/pid/mem has been considered, but there are issues with using it: - Does not allow for specifying iovecs for both src and dest, assuming preadv or pwritev was implemented either the area read from or written to would need to be contiguous. - Currently mem_read allows only processes who are currently ptrace'ing the target and are still able to ptrace the target to read from the target. This check could possibly be moved to the open call, but its not clear exactly what race this restriction is stopping (reason appears to have been lost) - Having to send the fd of /proc/self/mem via SCM_RIGHTS on unix domain socket is a bit ugly from a userspace point of view, especially when you may have hundreds if not (eventually) thousands of processes that all need to do this with each other - Doesn't allow for some future use of the interface we would like to consider adding in the future (see below) - Interestingly reading from /proc/pid/mem currently actually involves two copies! (But this could be fixed pretty easily) As mentioned previously use of vmsplice instead was considered, but has problems. Since you need the reader and writer working co-operatively if the pipe is not drained then you block. Which requires some wrapping to do non blocking on the send side or polling on the receive. In all to all communication it requires ordering otherwise you can deadlock. And in the example of many MPI tasks writing to one MPI task vmsplice serialises the copying. There are some cases of MPI collectives where even a single copy interface does not get us the performance gain we could. For example in an MPI_Reduce rather than copy the data from the source we would like to instead use it directly in a mathops (say the reduce is doing a sum) as this would save us doing a copy. We don't need to keep a copy of the data from the source. I haven't implemented this, but I think this interface could in the future do all this through the use of the flags - eg could specify the math operation and type and the kernel rather than just copying the data would apply the specified operation between the source and destination and store it in the destination. Although we don't have a "second user" of the interface (though I've had some nibbles from people who may be interested in using it for intra process messaging which is not MPI). This interface is something which hardware vendors are already doing for their custom drivers to implement fast local communication. And so in addition to this being useful for OpenMPI it would mean the driver maintainers don't have to fix things up when the mm changes. There was some discussion about how much faster a true zero copy would go. Here's a link back to the email with some testing I did on that: http://marc.info/?l=linux-mm&m=130105930902915&w=2 There is a basic man page for the proposed interface here: http://ozlabs.org/~cyeoh/cma/process_vm_readv.txt This has been implemented for x86 and powerpc, other architecture should mainly (I think) just need to add syscall numbers for the process_vm_readv and process_vm_writev. There are 32 bit compatibility versions for 64-bit kernels. For arch maintainers there are some simple tests to be able to quickly verify that the syscalls are working correctly here: http://ozlabs.org/~cyeoh/cma/cma-test-20110718.tgz Signed-off-by: Chris Yeoh <yeohc@au1.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: <linux-man@vger.kernel.org> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:06:39 +08:00
&& unlikely(!access_ok(vrfy_dir(type), buf, len))) {
ret = -EFAULT;
goto out;
}
if (len > MAX_RW_COUNT - ret) {
len = MAX_RW_COUNT - ret;
iov[seg].iov_len = len;
}
ret += len;
}
out:
*ret_pointer = iov;
return ret;
}
#ifdef CONFIG_COMPAT
ssize_t compat_rw_copy_check_uvector(int type,
const struct compat_iovec __user *uvector, unsigned long nr_segs,
unsigned long fast_segs, struct iovec *fast_pointer,
struct iovec **ret_pointer)
{
compat_ssize_t tot_len;
struct iovec *iov = *ret_pointer = fast_pointer;
ssize_t ret = 0;
int seg;
/*
* SuS says "The readv() function *may* fail if the iovcnt argument
* was less than or equal to 0, or greater than {IOV_MAX}. Linux has
* traditionally returned zero for zero segments, so...
*/
if (nr_segs == 0)
goto out;
ret = -EINVAL;
if (nr_segs > UIO_MAXIOV)
goto out;
if (nr_segs > fast_segs) {
ret = -ENOMEM;
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:55:00 +08:00
iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
if (iov == NULL)
goto out;
}
*ret_pointer = iov;
ret = -EFAULT;
if (!access_ok(VERIFY_READ, uvector, nr_segs*sizeof(*uvector)))
goto out;
/*
* Single unix specification:
* We should -EINVAL if an element length is not >= 0 and fitting an
* ssize_t.
*
* In Linux, the total length is limited to MAX_RW_COUNT, there is
* no overflow possibility.
*/
tot_len = 0;
ret = -EINVAL;
for (seg = 0; seg < nr_segs; seg++) {
compat_uptr_t buf;
compat_ssize_t len;
if (__get_user(len, &uvector->iov_len) ||
__get_user(buf, &uvector->iov_base)) {
ret = -EFAULT;
goto out;
}
if (len < 0) /* size_t not fitting in compat_ssize_t .. */
goto out;
if (type >= 0 &&
!access_ok(vrfy_dir(type), compat_ptr(buf), len)) {
ret = -EFAULT;
goto out;
}
if (len > MAX_RW_COUNT - tot_len)
len = MAX_RW_COUNT - tot_len;
tot_len += len;
iov->iov_base = compat_ptr(buf);
iov->iov_len = (compat_size_t) len;
uvector++;
iov++;
}
ret = tot_len;
out:
return ret;
}
#endif
static ssize_t do_iter_read(struct file *file, struct iov_iter *iter,
loff_t *pos, rwf_t flags)
{
size_t tot_len;
ssize_t ret = 0;
if (!(file->f_mode & FMODE_READ))
return -EBADF;
if (!(file->f_mode & FMODE_CAN_READ))
return -EINVAL;
tot_len = iov_iter_count(iter);
if (!tot_len)
goto out;
ret = rw_verify_area(READ, file, pos, tot_len);
if (ret < 0)
return ret;
if (file->f_op->read_iter)
ret = do_iter_readv_writev(file, iter, pos, READ, flags);
else
ret = do_loop_readv_writev(file, iter, pos, READ, flags);
out:
if (ret >= 0)
fsnotify_access(file);
return ret;
}
ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos,
rwf_t flags)
{
if (!file->f_op->read_iter)
return -EINVAL;
return do_iter_read(file, iter, ppos, flags);
}
EXPORT_SYMBOL(vfs_iter_read);
static ssize_t do_iter_write(struct file *file, struct iov_iter *iter,
loff_t *pos, rwf_t flags)
{
size_t tot_len;
ssize_t ret = 0;
if (!(file->f_mode & FMODE_WRITE))
return -EBADF;
if (!(file->f_mode & FMODE_CAN_WRITE))
return -EINVAL;
tot_len = iov_iter_count(iter);
if (!tot_len)
return 0;
ret = rw_verify_area(WRITE, file, pos, tot_len);
if (ret < 0)
return ret;
if (file->f_op->write_iter)
ret = do_iter_readv_writev(file, iter, pos, WRITE, flags);
else
ret = do_loop_readv_writev(file, iter, pos, WRITE, flags);
if (ret > 0)
fsnotify_modify(file);
return ret;
}
ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos,
rwf_t flags)
{
if (!file->f_op->write_iter)
return -EINVAL;
return do_iter_write(file, iter, ppos, flags);
}
EXPORT_SYMBOL(vfs_iter_write);
ssize_t vfs_readv(struct file *file, const struct iovec __user *vec,
unsigned long vlen, loff_t *pos, rwf_t flags)
{
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov = iovstack;
struct iov_iter iter;
ssize_t ret;
ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
if (ret >= 0) {
ret = do_iter_read(file, &iter, pos, flags);
kfree(iov);
}
return ret;
}
static ssize_t vfs_writev(struct file *file, const struct iovec __user *vec,
unsigned long vlen, loff_t *pos, rwf_t flags)
{
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov = iovstack;
struct iov_iter iter;
ssize_t ret;
ret = import_iovec(WRITE, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
if (ret >= 0) {
file_start_write(file);
ret = do_iter_write(file, &iter, pos, flags);
file_end_write(file);
kfree(iov);
}
return ret;
}
static ssize_t do_readv(unsigned long fd, const struct iovec __user *vec,
unsigned long vlen, rwf_t flags)
{
struct fd f = fdget_pos(fd);
ssize_t ret = -EBADF;
if (f.file) {
loff_t pos = file_pos_read(f.file);
ret = vfs_readv(f.file, vec, vlen, &pos, flags);
if (ret >= 0)
file_pos_write(f.file, pos);
fdput_pos(f);
}
if (ret > 0)
add_rchar(current, ret);
inc_syscr(current);
return ret;
}
static ssize_t do_writev(unsigned long fd, const struct iovec __user *vec,
unsigned long vlen, rwf_t flags)
{
struct fd f = fdget_pos(fd);
ssize_t ret = -EBADF;
if (f.file) {
loff_t pos = file_pos_read(f.file);
ret = vfs_writev(f.file, vec, vlen, &pos, flags);
if (ret >= 0)
file_pos_write(f.file, pos);
fdput_pos(f);
}
if (ret > 0)
add_wchar(current, ret);
inc_syscw(current);
return ret;
}
Make non-compat preadv/pwritev use native register size Instead of always splitting the file offset into 32-bit 'high' and 'low' parts, just split them into the largest natural word-size - which in C terms is 'unsigned long'. This allows 64-bit architectures to avoid the unnecessary 32-bit shifting and masking for native format (while the compat interfaces will obviously always have to do it). This also changes the order of 'high' and 'low' to be "low first". Why? Because when we have it like this, the 64-bit system calls now don't use the "pos_high" argument at all, and it makes more sense for the native system call to simply match the user-mode prototype. This results in a much more natural calling convention, and allows the compiler to generate much more straightforward code. On x86-64, we now generate testq %rcx, %rcx # pos_l js .L122 #, movq %rcx, -48(%rbp) # pos_l, pos from the C source loff_t pos = pos_from_hilo(pos_h, pos_l); ... if (pos < 0) return -EINVAL; and the 'pos_h' register isn't even touched. It used to generate code like mov %r8d, %r8d # pos_low, pos_low salq $32, %rcx #, tmp71 movq %r8, %rax # pos_low, pos.386 orq %rcx, %rax # tmp71, pos.386 js .L122 #, movq %rax, -48(%rbp) # pos.386, pos which isn't _that_ horrible, but it does show how the natural word size is just a more sensible interface (same arguments will hold in the user level glibc wrapper function, of course, so the kernel side is just half of the equation!) Note: in all cases the user code wrapper can again be the same. You can just do #define HALF_BITS (sizeof(unsigned long)*4) __syscall(PWRITEV, fd, iov, count, offset, (offset >> HALF_BITS) >> HALF_BITS); or something like that. That way the user mode wrapper will also be nicely passing in a zero (it won't actually have to do the shifts, the compiler will understand what is going on) for the last argument. And that is a good idea, even if nobody will necessarily ever care: if we ever do move to a 128-bit lloff_t, this particular system call might be left alone. Of course, that will be the least of our worries if we really ever need to care, so this may not be worth really caring about. [ Fixed for lost 'loff_t' cast noticed by Andrew Morton ] Acked-by: Gerd Hoffmann <kraxel@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: Ingo Molnar <mingo@elte.hu> Cc: Ralf Baechle <ralf@linux-mips.org>> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 23:03:22 +08:00
static inline loff_t pos_from_hilo(unsigned long high, unsigned long low)
{
#define HALF_LONG_BITS (BITS_PER_LONG / 2)
return (((loff_t)high << HALF_LONG_BITS) << HALF_LONG_BITS) | low;
}
static ssize_t do_preadv(unsigned long fd, const struct iovec __user *vec,
unsigned long vlen, loff_t pos, rwf_t flags)
preadv/pwritev: Add preadv and pwritev system calls. This patch adds preadv and pwritev system calls. These syscalls are a pretty straightforward combination of pread and readv (same for write). They are quite useful for doing vectored I/O in threaded applications. Using lseek+readv instead opens race windows you'll have to plug with locking. Other systems have such system calls too, for example NetBSD, check here: http://www.daemon-systems.org/man/preadv.2.html The application-visible interface provided by glibc should look like this to be compatible to the existing implementations in the *BSD family: ssize_t preadv(int d, const struct iovec *iov, int iovcnt, off_t offset); ssize_t pwritev(int d, const struct iovec *iov, int iovcnt, off_t offset); This prototype has one problem though: On 32bit archs is the (64bit) offset argument unaligned, which the syscall ABI of several archs doesn't allow to do. At least s390 needs a wrapper in glibc to handle this. As we'll need a wrappers in glibc anyway I've decided to push problem to glibc entriely and use a syscall prototype which works without arch-specific wrappers inside the kernel: The offset argument is explicitly splitted into two 32bit values. The patch sports the actual system call implementation and the windup in the x86 system call tables. Other archs follow as separate patches. Signed-off-by: Gerd Hoffmann <kraxel@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <linux-api@vger.kernel.org> Cc: <linux-arch@vger.kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:59:23 +08:00
{
struct fd f;
preadv/pwritev: Add preadv and pwritev system calls. This patch adds preadv and pwritev system calls. These syscalls are a pretty straightforward combination of pread and readv (same for write). They are quite useful for doing vectored I/O in threaded applications. Using lseek+readv instead opens race windows you'll have to plug with locking. Other systems have such system calls too, for example NetBSD, check here: http://www.daemon-systems.org/man/preadv.2.html The application-visible interface provided by glibc should look like this to be compatible to the existing implementations in the *BSD family: ssize_t preadv(int d, const struct iovec *iov, int iovcnt, off_t offset); ssize_t pwritev(int d, const struct iovec *iov, int iovcnt, off_t offset); This prototype has one problem though: On 32bit archs is the (64bit) offset argument unaligned, which the syscall ABI of several archs doesn't allow to do. At least s390 needs a wrapper in glibc to handle this. As we'll need a wrappers in glibc anyway I've decided to push problem to glibc entriely and use a syscall prototype which works without arch-specific wrappers inside the kernel: The offset argument is explicitly splitted into two 32bit values. The patch sports the actual system call implementation and the windup in the x86 system call tables. Other archs follow as separate patches. Signed-off-by: Gerd Hoffmann <kraxel@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <linux-api@vger.kernel.org> Cc: <linux-arch@vger.kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:59:23 +08:00
ssize_t ret = -EBADF;
if (pos < 0)
return -EINVAL;
f = fdget(fd);
if (f.file) {
preadv/pwritev: Add preadv and pwritev system calls. This patch adds preadv and pwritev system calls. These syscalls are a pretty straightforward combination of pread and readv (same for write). They are quite useful for doing vectored I/O in threaded applications. Using lseek+readv instead opens race windows you'll have to plug with locking. Other systems have such system calls too, for example NetBSD, check here: http://www.daemon-systems.org/man/preadv.2.html The application-visible interface provided by glibc should look like this to be compatible to the existing implementations in the *BSD family: ssize_t preadv(int d, const struct iovec *iov, int iovcnt, off_t offset); ssize_t pwritev(int d, const struct iovec *iov, int iovcnt, off_t offset); This prototype has one problem though: On 32bit archs is the (64bit) offset argument unaligned, which the syscall ABI of several archs doesn't allow to do. At least s390 needs a wrapper in glibc to handle this. As we'll need a wrappers in glibc anyway I've decided to push problem to glibc entriely and use a syscall prototype which works without arch-specific wrappers inside the kernel: The offset argument is explicitly splitted into two 32bit values. The patch sports the actual system call implementation and the windup in the x86 system call tables. Other archs follow as separate patches. Signed-off-by: Gerd Hoffmann <kraxel@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <linux-api@vger.kernel.org> Cc: <linux-arch@vger.kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:59:23 +08:00
ret = -ESPIPE;
if (f.file->f_mode & FMODE_PREAD)
ret = vfs_readv(f.file, vec, vlen, &pos, flags);
fdput(f);
preadv/pwritev: Add preadv and pwritev system calls. This patch adds preadv and pwritev system calls. These syscalls are a pretty straightforward combination of pread and readv (same for write). They are quite useful for doing vectored I/O in threaded applications. Using lseek+readv instead opens race windows you'll have to plug with locking. Other systems have such system calls too, for example NetBSD, check here: http://www.daemon-systems.org/man/preadv.2.html The application-visible interface provided by glibc should look like this to be compatible to the existing implementations in the *BSD family: ssize_t preadv(int d, const struct iovec *iov, int iovcnt, off_t offset); ssize_t pwritev(int d, const struct iovec *iov, int iovcnt, off_t offset); This prototype has one problem though: On 32bit archs is the (64bit) offset argument unaligned, which the syscall ABI of several archs doesn't allow to do. At least s390 needs a wrapper in glibc to handle this. As we'll need a wrappers in glibc anyway I've decided to push problem to glibc entriely and use a syscall prototype which works without arch-specific wrappers inside the kernel: The offset argument is explicitly splitted into two 32bit values. The patch sports the actual system call implementation and the windup in the x86 system call tables. Other archs follow as separate patches. Signed-off-by: Gerd Hoffmann <kraxel@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <linux-api@vger.kernel.org> Cc: <linux-arch@vger.kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:59:23 +08:00
}
if (ret > 0)
add_rchar(current, ret);
inc_syscr(current);
return ret;
}
static ssize_t do_pwritev(unsigned long fd, const struct iovec __user *vec,
unsigned long vlen, loff_t pos, rwf_t flags)
preadv/pwritev: Add preadv and pwritev system calls. This patch adds preadv and pwritev system calls. These syscalls are a pretty straightforward combination of pread and readv (same for write). They are quite useful for doing vectored I/O in threaded applications. Using lseek+readv instead opens race windows you'll have to plug with locking. Other systems have such system calls too, for example NetBSD, check here: http://www.daemon-systems.org/man/preadv.2.html The application-visible interface provided by glibc should look like this to be compatible to the existing implementations in the *BSD family: ssize_t preadv(int d, const struct iovec *iov, int iovcnt, off_t offset); ssize_t pwritev(int d, const struct iovec *iov, int iovcnt, off_t offset); This prototype has one problem though: On 32bit archs is the (64bit) offset argument unaligned, which the syscall ABI of several archs doesn't allow to do. At least s390 needs a wrapper in glibc to handle this. As we'll need a wrappers in glibc anyway I've decided to push problem to glibc entriely and use a syscall prototype which works without arch-specific wrappers inside the kernel: The offset argument is explicitly splitted into two 32bit values. The patch sports the actual system call implementation and the windup in the x86 system call tables. Other archs follow as separate patches. Signed-off-by: Gerd Hoffmann <kraxel@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <linux-api@vger.kernel.org> Cc: <linux-arch@vger.kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:59:23 +08:00
{
struct fd f;
preadv/pwritev: Add preadv and pwritev system calls. This patch adds preadv and pwritev system calls. These syscalls are a pretty straightforward combination of pread and readv (same for write). They are quite useful for doing vectored I/O in threaded applications. Using lseek+readv instead opens race windows you'll have to plug with locking. Other systems have such system calls too, for example NetBSD, check here: http://www.daemon-systems.org/man/preadv.2.html The application-visible interface provided by glibc should look like this to be compatible to the existing implementations in the *BSD family: ssize_t preadv(int d, const struct iovec *iov, int iovcnt, off_t offset); ssize_t pwritev(int d, const struct iovec *iov, int iovcnt, off_t offset); This prototype has one problem though: On 32bit archs is the (64bit) offset argument unaligned, which the syscall ABI of several archs doesn't allow to do. At least s390 needs a wrapper in glibc to handle this. As we'll need a wrappers in glibc anyway I've decided to push problem to glibc entriely and use a syscall prototype which works without arch-specific wrappers inside the kernel: The offset argument is explicitly splitted into two 32bit values. The patch sports the actual system call implementation and the windup in the x86 system call tables. Other archs follow as separate patches. Signed-off-by: Gerd Hoffmann <kraxel@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <linux-api@vger.kernel.org> Cc: <linux-arch@vger.kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:59:23 +08:00
ssize_t ret = -EBADF;
if (pos < 0)
return -EINVAL;
f = fdget(fd);
if (f.file) {
preadv/pwritev: Add preadv and pwritev system calls. This patch adds preadv and pwritev system calls. These syscalls are a pretty straightforward combination of pread and readv (same for write). They are quite useful for doing vectored I/O in threaded applications. Using lseek+readv instead opens race windows you'll have to plug with locking. Other systems have such system calls too, for example NetBSD, check here: http://www.daemon-systems.org/man/preadv.2.html The application-visible interface provided by glibc should look like this to be compatible to the existing implementations in the *BSD family: ssize_t preadv(int d, const struct iovec *iov, int iovcnt, off_t offset); ssize_t pwritev(int d, const struct iovec *iov, int iovcnt, off_t offset); This prototype has one problem though: On 32bit archs is the (64bit) offset argument unaligned, which the syscall ABI of several archs doesn't allow to do. At least s390 needs a wrapper in glibc to handle this. As we'll need a wrappers in glibc anyway I've decided to push problem to glibc entriely and use a syscall prototype which works without arch-specific wrappers inside the kernel: The offset argument is explicitly splitted into two 32bit values. The patch sports the actual system call implementation and the windup in the x86 system call tables. Other archs follow as separate patches. Signed-off-by: Gerd Hoffmann <kraxel@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <linux-api@vger.kernel.org> Cc: <linux-arch@vger.kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:59:23 +08:00
ret = -ESPIPE;
if (f.file->f_mode & FMODE_PWRITE)
ret = vfs_writev(f.file, vec, vlen, &pos, flags);
fdput(f);
preadv/pwritev: Add preadv and pwritev system calls. This patch adds preadv and pwritev system calls. These syscalls are a pretty straightforward combination of pread and readv (same for write). They are quite useful for doing vectored I/O in threaded applications. Using lseek+readv instead opens race windows you'll have to plug with locking. Other systems have such system calls too, for example NetBSD, check here: http://www.daemon-systems.org/man/preadv.2.html The application-visible interface provided by glibc should look like this to be compatible to the existing implementations in the *BSD family: ssize_t preadv(int d, const struct iovec *iov, int iovcnt, off_t offset); ssize_t pwritev(int d, const struct iovec *iov, int iovcnt, off_t offset); This prototype has one problem though: On 32bit archs is the (64bit) offset argument unaligned, which the syscall ABI of several archs doesn't allow to do. At least s390 needs a wrapper in glibc to handle this. As we'll need a wrappers in glibc anyway I've decided to push problem to glibc entriely and use a syscall prototype which works without arch-specific wrappers inside the kernel: The offset argument is explicitly splitted into two 32bit values. The patch sports the actual system call implementation and the windup in the x86 system call tables. Other archs follow as separate patches. Signed-off-by: Gerd Hoffmann <kraxel@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <linux-api@vger.kernel.org> Cc: <linux-arch@vger.kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:59:23 +08:00
}
if (ret > 0)
add_wchar(current, ret);
inc_syscw(current);
return ret;
}
SYSCALL_DEFINE3(readv, unsigned long, fd, const struct iovec __user *, vec,
unsigned long, vlen)
{
return do_readv(fd, vec, vlen, 0);
}
SYSCALL_DEFINE3(writev, unsigned long, fd, const struct iovec __user *, vec,
unsigned long, vlen)
{
return do_writev(fd, vec, vlen, 0);
}
SYSCALL_DEFINE5(preadv, unsigned long, fd, const struct iovec __user *, vec,
unsigned long, vlen, unsigned long, pos_l, unsigned long, pos_h)
{
loff_t pos = pos_from_hilo(pos_h, pos_l);
return do_preadv(fd, vec, vlen, pos, 0);
}
SYSCALL_DEFINE6(preadv2, unsigned long, fd, const struct iovec __user *, vec,
unsigned long, vlen, unsigned long, pos_l, unsigned long, pos_h,
rwf_t, flags)
{
loff_t pos = pos_from_hilo(pos_h, pos_l);
if (pos == -1)
return do_readv(fd, vec, vlen, flags);
return do_preadv(fd, vec, vlen, pos, flags);
}
SYSCALL_DEFINE5(pwritev, unsigned long, fd, const struct iovec __user *, vec,
unsigned long, vlen, unsigned long, pos_l, unsigned long, pos_h)
{
loff_t pos = pos_from_hilo(pos_h, pos_l);
return do_pwritev(fd, vec, vlen, pos, 0);
}
SYSCALL_DEFINE6(pwritev2, unsigned long, fd, const struct iovec __user *, vec,
unsigned long, vlen, unsigned long, pos_l, unsigned long, pos_h,
rwf_t, flags)
{
loff_t pos = pos_from_hilo(pos_h, pos_l);
if (pos == -1)
return do_writev(fd, vec, vlen, flags);
return do_pwritev(fd, vec, vlen, pos, flags);
}
#ifdef CONFIG_COMPAT
static size_t compat_readv(struct file *file,
const struct compat_iovec __user *vec,
unsigned long vlen, loff_t *pos, rwf_t flags)
{
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov = iovstack;
struct iov_iter iter;
ssize_t ret;
ret = compat_import_iovec(READ, vec, vlen, UIO_FASTIOV, &iov, &iter);
if (ret >= 0) {
ret = do_iter_read(file, &iter, pos, flags);
kfree(iov);
}
if (ret > 0)
add_rchar(current, ret);
inc_syscr(current);
return ret;
}
static size_t do_compat_readv(compat_ulong_t fd,
const struct compat_iovec __user *vec,
compat_ulong_t vlen, rwf_t flags)
{
struct fd f = fdget_pos(fd);
ssize_t ret;
loff_t pos;
if (!f.file)
return -EBADF;
pos = f.file->f_pos;
ret = compat_readv(f.file, vec, vlen, &pos, flags);
if (ret >= 0)
f.file->f_pos = pos;
fdput_pos(f);
return ret;
}
COMPAT_SYSCALL_DEFINE3(readv, compat_ulong_t, fd,
const struct compat_iovec __user *,vec,
compat_ulong_t, vlen)
{
return do_compat_readv(fd, vec, vlen, 0);
}
static long do_compat_preadv64(unsigned long fd,
const struct compat_iovec __user *vec,
unsigned long vlen, loff_t pos, rwf_t flags)
{
struct fd f;
ssize_t ret;
if (pos < 0)
return -EINVAL;
f = fdget(fd);
if (!f.file)
return -EBADF;
ret = -ESPIPE;
if (f.file->f_mode & FMODE_PREAD)
ret = compat_readv(f.file, vec, vlen, &pos, flags);
fdput(f);
return ret;
}
#ifdef __ARCH_WANT_COMPAT_SYS_PREADV64
COMPAT_SYSCALL_DEFINE4(preadv64, unsigned long, fd,
const struct compat_iovec __user *,vec,
unsigned long, vlen, loff_t, pos)
{
return do_compat_preadv64(fd, vec, vlen, pos, 0);
}
#endif
COMPAT_SYSCALL_DEFINE5(preadv, compat_ulong_t, fd,
const struct compat_iovec __user *,vec,
compat_ulong_t, vlen, u32, pos_low, u32, pos_high)
{
loff_t pos = ((loff_t)pos_high << 32) | pos_low;
return do_compat_preadv64(fd, vec, vlen, pos, 0);
}
#ifdef __ARCH_WANT_COMPAT_SYS_PREADV64V2
COMPAT_SYSCALL_DEFINE5(preadv64v2, unsigned long, fd,
const struct compat_iovec __user *,vec,
unsigned long, vlen, loff_t, pos, rwf_t, flags)
{
return do_compat_preadv64(fd, vec, vlen, pos, flags);
}
#endif
COMPAT_SYSCALL_DEFINE6(preadv2, compat_ulong_t, fd,
const struct compat_iovec __user *,vec,
compat_ulong_t, vlen, u32, pos_low, u32, pos_high,
rwf_t, flags)
{
loff_t pos = ((loff_t)pos_high << 32) | pos_low;
if (pos == -1)
return do_compat_readv(fd, vec, vlen, flags);
return do_compat_preadv64(fd, vec, vlen, pos, flags);
}
static size_t compat_writev(struct file *file,
const struct compat_iovec __user *vec,
unsigned long vlen, loff_t *pos, rwf_t flags)
{
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov = iovstack;
struct iov_iter iter;
ssize_t ret;
ret = compat_import_iovec(WRITE, vec, vlen, UIO_FASTIOV, &iov, &iter);
if (ret >= 0) {
file_start_write(file);
ret = do_iter_write(file, &iter, pos, flags);
file_end_write(file);
kfree(iov);
}
if (ret > 0)
add_wchar(current, ret);
inc_syscw(current);
return ret;
}
static size_t do_compat_writev(compat_ulong_t fd,
const struct compat_iovec __user* vec,
compat_ulong_t vlen, rwf_t flags)
{
struct fd f = fdget_pos(fd);
ssize_t ret;
loff_t pos;
if (!f.file)
return -EBADF;
pos = f.file->f_pos;
ret = compat_writev(f.file, vec, vlen, &pos, flags);
if (ret >= 0)
f.file->f_pos = pos;
fdput_pos(f);
return ret;
}
COMPAT_SYSCALL_DEFINE3(writev, compat_ulong_t, fd,
const struct compat_iovec __user *, vec,
compat_ulong_t, vlen)
{
return do_compat_writev(fd, vec, vlen, 0);
}
static long do_compat_pwritev64(unsigned long fd,
const struct compat_iovec __user *vec,
unsigned long vlen, loff_t pos, rwf_t flags)
{
struct fd f;
ssize_t ret;
if (pos < 0)
return -EINVAL;
f = fdget(fd);
if (!f.file)
return -EBADF;
ret = -ESPIPE;
if (f.file->f_mode & FMODE_PWRITE)
ret = compat_writev(f.file, vec, vlen, &pos, flags);
fdput(f);
return ret;
}
#ifdef __ARCH_WANT_COMPAT_SYS_PWRITEV64
COMPAT_SYSCALL_DEFINE4(pwritev64, unsigned long, fd,
const struct compat_iovec __user *,vec,
unsigned long, vlen, loff_t, pos)
{
return do_compat_pwritev64(fd, vec, vlen, pos, 0);
}
#endif
COMPAT_SYSCALL_DEFINE5(pwritev, compat_ulong_t, fd,
const struct compat_iovec __user *,vec,
compat_ulong_t, vlen, u32, pos_low, u32, pos_high)
{
loff_t pos = ((loff_t)pos_high << 32) | pos_low;
return do_compat_pwritev64(fd, vec, vlen, pos, 0);
}
#ifdef __ARCH_WANT_COMPAT_SYS_PWRITEV64V2
COMPAT_SYSCALL_DEFINE5(pwritev64v2, unsigned long, fd,
const struct compat_iovec __user *,vec,
unsigned long, vlen, loff_t, pos, rwf_t, flags)
{
return do_compat_pwritev64(fd, vec, vlen, pos, flags);
}
#endif
COMPAT_SYSCALL_DEFINE6(pwritev2, compat_ulong_t, fd,
const struct compat_iovec __user *,vec,
compat_ulong_t, vlen, u32, pos_low, u32, pos_high, rwf_t, flags)
{
loff_t pos = ((loff_t)pos_high << 32) | pos_low;
if (pos == -1)
return do_compat_writev(fd, vec, vlen, flags);
return do_compat_pwritev64(fd, vec, vlen, pos, flags);
}
#endif
static ssize_t do_sendfile(int out_fd, int in_fd, loff_t *ppos,
size_t count, loff_t max)
{
struct fd in, out;
struct inode *in_inode, *out_inode;
loff_t pos;
loff_t out_pos;
ssize_t retval;
int fl;
/*
* Get input file, and verify that it is ok..
*/
retval = -EBADF;
in = fdget(in_fd);
if (!in.file)
goto out;
if (!(in.file->f_mode & FMODE_READ))
goto fput_in;
retval = -ESPIPE;
if (!ppos) {
pos = in.file->f_pos;
} else {
pos = *ppos;
if (!(in.file->f_mode & FMODE_PREAD))
goto fput_in;
}
retval = rw_verify_area(READ, in.file, &pos, count);
if (retval < 0)
goto fput_in;
if (count > MAX_RW_COUNT)
count = MAX_RW_COUNT;
/*
* Get output file, and verify that it is ok..
*/
retval = -EBADF;
out = fdget(out_fd);
if (!out.file)
goto fput_in;
if (!(out.file->f_mode & FMODE_WRITE))
goto fput_out;
retval = -EINVAL;
in_inode = file_inode(in.file);
out_inode = file_inode(out.file);
out_pos = out.file->f_pos;
retval = rw_verify_area(WRITE, out.file, &out_pos, count);
if (retval < 0)
goto fput_out;
if (!max)
max = min(in_inode->i_sb->s_maxbytes, out_inode->i_sb->s_maxbytes);
if (unlikely(pos + count > max)) {
retval = -EOVERFLOW;
if (pos >= max)
goto fput_out;
count = max - pos;
}
fl = 0;
#if 0
/*
* We need to debate whether we can enable this or not. The
* man page documents EAGAIN return for the output at least,
* and the application is arguably buggy if it doesn't expect
* EAGAIN on a non-blocking file descriptor.
*/
if (in.file->f_flags & O_NONBLOCK)
fl = SPLICE_F_NONBLOCK;
#endif
file_start_write(out.file);
retval = do_splice_direct(in.file, &pos, out.file, &out_pos, count, fl);
file_end_write(out.file);
if (retval > 0) {
add_rchar(current, retval);
add_wchar(current, retval);
fsnotify_access(in.file);
fsnotify_modify(out.file);
out.file->f_pos = out_pos;
if (ppos)
*ppos = pos;
else
in.file->f_pos = pos;
}
inc_syscr(current);
inc_syscw(current);
if (pos > max)
retval = -EOVERFLOW;
fput_out:
fdput(out);
fput_in:
fdput(in);
out:
return retval;
}
SYSCALL_DEFINE4(sendfile, int, out_fd, int, in_fd, off_t __user *, offset, size_t, count)
{
loff_t pos;
off_t off;
ssize_t ret;
if (offset) {
if (unlikely(get_user(off, offset)))
return -EFAULT;
pos = off;
ret = do_sendfile(out_fd, in_fd, &pos, count, MAX_NON_LFS);
if (unlikely(put_user(pos, offset)))
return -EFAULT;
return ret;
}
return do_sendfile(out_fd, in_fd, NULL, count, 0);
}
SYSCALL_DEFINE4(sendfile64, int, out_fd, int, in_fd, loff_t __user *, offset, size_t, count)
{
loff_t pos;
ssize_t ret;
if (offset) {
if (unlikely(copy_from_user(&pos, offset, sizeof(loff_t))))
return -EFAULT;
ret = do_sendfile(out_fd, in_fd, &pos, count, 0);
if (unlikely(put_user(pos, offset)))
return -EFAULT;
return ret;
}
return do_sendfile(out_fd, in_fd, NULL, count, 0);
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(sendfile, int, out_fd, int, in_fd,
compat_off_t __user *, offset, compat_size_t, count)
{
loff_t pos;
off_t off;
ssize_t ret;
if (offset) {
if (unlikely(get_user(off, offset)))
return -EFAULT;
pos = off;
ret = do_sendfile(out_fd, in_fd, &pos, count, MAX_NON_LFS);
if (unlikely(put_user(pos, offset)))
return -EFAULT;
return ret;
}
return do_sendfile(out_fd, in_fd, NULL, count, 0);
}
COMPAT_SYSCALL_DEFINE4(sendfile64, int, out_fd, int, in_fd,
compat_loff_t __user *, offset, compat_size_t, count)
{
loff_t pos;
ssize_t ret;
if (offset) {
if (unlikely(copy_from_user(&pos, offset, sizeof(loff_t))))
return -EFAULT;
ret = do_sendfile(out_fd, in_fd, &pos, count, 0);
if (unlikely(put_user(pos, offset)))
return -EFAULT;
return ret;
}
return do_sendfile(out_fd, in_fd, NULL, count, 0);
}
#endif
/*
* copy_file_range() differs from regular file read and write in that it
* specifically allows return partial success. When it does so is up to
* the copy_file_range method.
*/
ssize_t vfs_copy_file_range(struct file *file_in, loff_t pos_in,
struct file *file_out, loff_t pos_out,
size_t len, unsigned int flags)
{
struct inode *inode_in = file_inode(file_in);
struct inode *inode_out = file_inode(file_out);
ssize_t ret;
if (flags != 0)
return -EINVAL;
if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
return -EISDIR;
if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
return -EINVAL;
ret = rw_verify_area(READ, file_in, &pos_in, len);
if (unlikely(ret))
return ret;
ret = rw_verify_area(WRITE, file_out, &pos_out, len);
if (unlikely(ret))
return ret;
if (!(file_in->f_mode & FMODE_READ) ||
!(file_out->f_mode & FMODE_WRITE) ||
(file_out->f_flags & O_APPEND))
return -EBADF;
/* this could be relaxed once a method supports cross-fs copies */
if (inode_in->i_sb != inode_out->i_sb)
return -EXDEV;
if (len == 0)
return 0;
file_start_write(file_out);
/*
* Try cloning first, this is supported by more file systems, and
* more efficient if both clone and copy are supported (e.g. NFS).
*/
if (file_in->f_op->clone_file_range) {
ret = file_in->f_op->clone_file_range(file_in, pos_in,
file_out, pos_out, len);
if (ret == 0) {
ret = len;
goto done;
}
}
if (file_out->f_op->copy_file_range) {
ret = file_out->f_op->copy_file_range(file_in, pos_in, file_out,
pos_out, len, flags);
if (ret != -EOPNOTSUPP)
goto done;
}
ret = do_splice_direct(file_in, &pos_in, file_out, &pos_out,
len > MAX_RW_COUNT ? MAX_RW_COUNT : len, 0);
done:
if (ret > 0) {
fsnotify_access(file_in);
add_rchar(current, ret);
fsnotify_modify(file_out);
add_wchar(current, ret);
}
inc_syscr(current);
inc_syscw(current);
file_end_write(file_out);
return ret;
}
EXPORT_SYMBOL(vfs_copy_file_range);
SYSCALL_DEFINE6(copy_file_range, int, fd_in, loff_t __user *, off_in,
int, fd_out, loff_t __user *, off_out,
size_t, len, unsigned int, flags)
{
loff_t pos_in;
loff_t pos_out;
struct fd f_in;
struct fd f_out;
ssize_t ret = -EBADF;
f_in = fdget(fd_in);
if (!f_in.file)
goto out2;
f_out = fdget(fd_out);
if (!f_out.file)
goto out1;
ret = -EFAULT;
if (off_in) {
if (copy_from_user(&pos_in, off_in, sizeof(loff_t)))
goto out;
} else {
pos_in = f_in.file->f_pos;
}
if (off_out) {
if (copy_from_user(&pos_out, off_out, sizeof(loff_t)))
goto out;
} else {
pos_out = f_out.file->f_pos;
}
ret = vfs_copy_file_range(f_in.file, pos_in, f_out.file, pos_out, len,
flags);
if (ret > 0) {
pos_in += ret;
pos_out += ret;
if (off_in) {
if (copy_to_user(off_in, &pos_in, sizeof(loff_t)))
ret = -EFAULT;
} else {
f_in.file->f_pos = pos_in;
}
if (off_out) {
if (copy_to_user(off_out, &pos_out, sizeof(loff_t)))
ret = -EFAULT;
} else {
f_out.file->f_pos = pos_out;
}
}
out:
fdput(f_out);
out1:
fdput(f_in);
out2:
return ret;
}
static int clone_verify_area(struct file *file, loff_t pos, u64 len, bool write)
{
struct inode *inode = file_inode(file);
if (unlikely(pos < 0))
return -EINVAL;
if (unlikely((loff_t) (pos + len) < 0))
return -EINVAL;
if (unlikely(inode->i_flctx && mandatory_lock(inode))) {
loff_t end = len ? pos + len - 1 : OFFSET_MAX;
int retval;
retval = locks_mandatory_area(inode, file, pos, end,
write ? F_WRLCK : F_RDLCK);
if (retval < 0)
return retval;
}
return security_file_permission(file, write ? MAY_WRITE : MAY_READ);
}
/*
* Check that the two inodes are eligible for cloning, the ranges make
* sense, and then flush all dirty data. Caller must ensure that the
* inodes have been locked against any other modifications.
*
* Returns: 0 for "nothing to clone", 1 for "something to clone", or
* the usual negative error code.
*/
int vfs_clone_file_prep_inodes(struct inode *inode_in, loff_t pos_in,
struct inode *inode_out, loff_t pos_out,
u64 *len, bool is_dedupe)
{
loff_t bs = inode_out->i_sb->s_blocksize;
loff_t blen;
loff_t isize;
bool same_inode = (inode_in == inode_out);
int ret;
/* Don't touch certain kinds of inodes */
if (IS_IMMUTABLE(inode_out))
return -EPERM;
if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
return -ETXTBSY;
/* Don't reflink dirs, pipes, sockets... */
if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
return -EISDIR;
if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
return -EINVAL;
/* Are we going all the way to the end? */
isize = i_size_read(inode_in);
if (isize == 0)
return 0;
/* Zero length dedupe exits immediately; reflink goes to EOF. */
if (*len == 0) {
if (is_dedupe || pos_in == isize)
return 0;
if (pos_in > isize)
return -EINVAL;
*len = isize - pos_in;
}
/* Ensure offsets don't wrap and the input is inside i_size */
if (pos_in + *len < pos_in || pos_out + *len < pos_out ||
pos_in + *len > isize)
return -EINVAL;
/* Don't allow dedupe past EOF in the dest file */
if (is_dedupe) {
loff_t disize;
disize = i_size_read(inode_out);
if (pos_out >= disize || pos_out + *len > disize)
return -EINVAL;
}
/* If we're linking to EOF, continue to the block boundary. */
if (pos_in + *len == isize)
blen = ALIGN(isize, bs) - pos_in;
else
blen = *len;
/* Only reflink if we're aligned to block boundaries */
if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_in + blen, bs) ||
!IS_ALIGNED(pos_out, bs) || !IS_ALIGNED(pos_out + blen, bs))
return -EINVAL;
/* Don't allow overlapped reflink within the same file */
if (same_inode) {
if (pos_out + blen > pos_in && pos_out < pos_in + blen)
return -EINVAL;
}
/* Wait for the completion of any pending IOs on both files */
inode_dio_wait(inode_in);
if (!same_inode)
inode_dio_wait(inode_out);
ret = filemap_write_and_wait_range(inode_in->i_mapping,
pos_in, pos_in + *len - 1);
if (ret)
return ret;
ret = filemap_write_and_wait_range(inode_out->i_mapping,
pos_out, pos_out + *len - 1);
if (ret)
return ret;
/*
* Check that the extents are the same.
*/
if (is_dedupe) {
bool is_same = false;
ret = vfs_dedupe_file_range_compare(inode_in, pos_in,
inode_out, pos_out, *len, &is_same);
if (ret)
return ret;
if (!is_same)
return -EBADE;
}
return 1;
}
EXPORT_SYMBOL(vfs_clone_file_prep_inodes);
int vfs_clone_file_range(struct file *file_in, loff_t pos_in,
struct file *file_out, loff_t pos_out, u64 len)
{
struct inode *inode_in = file_inode(file_in);
struct inode *inode_out = file_inode(file_out);
int ret;
if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
return -EISDIR;
if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
return -EINVAL;
/*
* FICLONE/FICLONERANGE ioctls enforce that src and dest files are on
* the same mount. Practically, they only need to be on the same file
* system.
*/
if (inode_in->i_sb != inode_out->i_sb)
return -EXDEV;
if (!(file_in->f_mode & FMODE_READ) ||
!(file_out->f_mode & FMODE_WRITE) ||
(file_out->f_flags & O_APPEND))
return -EBADF;
if (!file_in->f_op->clone_file_range)
return -EOPNOTSUPP;
ret = clone_verify_area(file_in, pos_in, len, false);
if (ret)
return ret;
ret = clone_verify_area(file_out, pos_out, len, true);
if (ret)
return ret;
if (pos_in + len > i_size_read(inode_in))
return -EINVAL;
ret = file_in->f_op->clone_file_range(file_in, pos_in,
file_out, pos_out, len);
if (!ret) {
fsnotify_access(file_in);
fsnotify_modify(file_out);
}
return ret;
}
EXPORT_SYMBOL(vfs_clone_file_range);
/*
* Read a page's worth of file data into the page cache. Return the page
* locked.
*/
static struct page *vfs_dedupe_get_page(struct inode *inode, loff_t offset)
{
struct address_space *mapping;
struct page *page;
pgoff_t n;
n = offset >> PAGE_SHIFT;
mapping = inode->i_mapping;
page = read_mapping_page(mapping, n, NULL);
if (IS_ERR(page))
return page;
if (!PageUptodate(page)) {
put_page(page);
return ERR_PTR(-EIO);
}
lock_page(page);
return page;
}
/*
* Compare extents of two files to see if they are the same.
* Caller must have locked both inodes to prevent write races.
*/
int vfs_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
struct inode *dest, loff_t destoff,
loff_t len, bool *is_same)
{
loff_t src_poff;
loff_t dest_poff;
void *src_addr;
void *dest_addr;
struct page *src_page;
struct page *dest_page;
loff_t cmp_len;
bool same;
int error;
error = -EINVAL;
same = true;
while (len) {
src_poff = srcoff & (PAGE_SIZE - 1);
dest_poff = destoff & (PAGE_SIZE - 1);
cmp_len = min(PAGE_SIZE - src_poff,
PAGE_SIZE - dest_poff);
cmp_len = min(cmp_len, len);
if (cmp_len <= 0)
goto out_error;
src_page = vfs_dedupe_get_page(src, srcoff);
if (IS_ERR(src_page)) {
error = PTR_ERR(src_page);
goto out_error;
}
dest_page = vfs_dedupe_get_page(dest, destoff);
if (IS_ERR(dest_page)) {
error = PTR_ERR(dest_page);
unlock_page(src_page);
put_page(src_page);
goto out_error;
}
src_addr = kmap_atomic(src_page);
dest_addr = kmap_atomic(dest_page);
flush_dcache_page(src_page);
flush_dcache_page(dest_page);
if (memcmp(src_addr + src_poff, dest_addr + dest_poff, cmp_len))
same = false;
kunmap_atomic(dest_addr);
kunmap_atomic(src_addr);
unlock_page(dest_page);
unlock_page(src_page);
put_page(dest_page);
put_page(src_page);
if (!same)
break;
srcoff += cmp_len;
destoff += cmp_len;
len -= cmp_len;
}
*is_same = same;
return 0;
out_error:
return error;
}
EXPORT_SYMBOL(vfs_dedupe_file_range_compare);
int vfs_dedupe_file_range(struct file *file, struct file_dedupe_range *same)
{
struct file_dedupe_range_info *info;
struct inode *src = file_inode(file);
u64 off;
u64 len;
int i;
int ret;
bool is_admin = capable(CAP_SYS_ADMIN);
u16 count = same->dest_count;
struct file *dst_file;
loff_t dst_off;
ssize_t deduped;
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
if (same->reserved1 || same->reserved2)
return -EINVAL;
off = same->src_offset;
len = same->src_length;
ret = -EISDIR;
if (S_ISDIR(src->i_mode))
goto out;
ret = -EINVAL;
if (!S_ISREG(src->i_mode))
goto out;
ret = clone_verify_area(file, off, len, false);
if (ret < 0)
goto out;
ret = 0;
if (off + len > i_size_read(src))
return -EINVAL;
/* pre-format output fields to sane values */
for (i = 0; i < count; i++) {
same->info[i].bytes_deduped = 0ULL;
same->info[i].status = FILE_DEDUPE_RANGE_SAME;
}
for (i = 0, info = same->info; i < count; i++, info++) {
struct inode *dst;
struct fd dst_fd = fdget(info->dest_fd);
dst_file = dst_fd.file;
if (!dst_file) {
info->status = -EBADF;
goto next_loop;
}
dst = file_inode(dst_file);
ret = mnt_want_write_file(dst_file);
if (ret) {
info->status = ret;
goto next_fdput;
}
dst_off = info->dest_offset;
ret = clone_verify_area(dst_file, dst_off, len, true);
if (ret < 0) {
info->status = ret;
goto next_file;
}
ret = 0;
if (info->reserved) {
info->status = -EINVAL;
} else if (!(is_admin || (dst_file->f_mode & FMODE_WRITE))) {
info->status = -EINVAL;
} else if (file->f_path.mnt != dst_file->f_path.mnt) {
info->status = -EXDEV;
} else if (S_ISDIR(dst->i_mode)) {
info->status = -EISDIR;
} else if (dst_file->f_op->dedupe_file_range == NULL) {
info->status = -EINVAL;
} else {
deduped = dst_file->f_op->dedupe_file_range(file, off,
len, dst_file,
info->dest_offset);
if (deduped == -EBADE)
info->status = FILE_DEDUPE_RANGE_DIFFERS;
else if (deduped < 0)
info->status = deduped;
else
info->bytes_deduped += deduped;
}
next_file:
mnt_drop_write_file(dst_file);
next_fdput:
fdput(dst_fd);
next_loop:
if (fatal_signal_pending(current))
goto out;
}
out:
return ret;
}
EXPORT_SYMBOL(vfs_dedupe_file_range);