linux-sg2042/drivers/media/usb/pwc/pwc-dec23.c

692 lines
19 KiB
C
Raw Normal View History

/* Linux driver for Philips webcam
Decompression for chipset version 2 et 3
(C) 2004-2006 Luc Saillard (luc@saillard.org)
NOTE: this version of pwc is an unofficial (modified) release of pwc & pcwx
driver and thus may have bugs that are not present in the original version.
Please send bug reports and support requests to <luc@saillard.org>.
The decompression routines have been implemented by reverse-engineering the
Nemosoft binary pwcx module. Caveat emptor.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "pwc-timon.h"
#include "pwc-kiara.h"
#include "pwc-dec23.h"
#include <linux/string.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
/*
* USE_LOOKUP_TABLE_TO_CLAMP
* 0: use a C version of this tests: { a<0?0:(a>255?255:a) }
* 1: use a faster lookup table for cpu with a big cache (intel)
*/
#define USE_LOOKUP_TABLE_TO_CLAMP 1
/*
* UNROLL_LOOP_FOR_COPYING_BLOCK
* 0: use a loop for a smaller code (but little slower)
* 1: when unrolling the loop, gcc produces some faster code (perhaps only
* valid for intel processor class). Activating this option, automaticaly
* activate USE_LOOKUP_TABLE_TO_CLAMP
*/
#define UNROLL_LOOP_FOR_COPY 1
#if UNROLL_LOOP_FOR_COPY
# undef USE_LOOKUP_TABLE_TO_CLAMP
# define USE_LOOKUP_TABLE_TO_CLAMP 1
#endif
static void build_subblock_pattern(struct pwc_dec23_private *pdec)
{
static const unsigned int initial_values[12] = {
-0x526500, -0x221200, 0x221200, 0x526500,
-0x3de200, 0x3de200,
-0x6db480, -0x2d5d00, 0x2d5d00, 0x6db480,
-0x12c200, 0x12c200
};
static const unsigned int values_derivated[12] = {
0xa4ca, 0x4424, -0x4424, -0xa4ca,
0x7bc4, -0x7bc4,
0xdb69, 0x5aba, -0x5aba, -0xdb69,
0x2584, -0x2584
};
unsigned int temp_values[12];
int i, j;
memcpy(temp_values, initial_values, sizeof(initial_values));
for (i = 0; i < 256; i++) {
for (j = 0; j < 12; j++) {
pdec->table_subblock[i][j] = temp_values[j];
temp_values[j] += values_derivated[j];
}
}
}
static void build_bit_powermask_table(struct pwc_dec23_private *pdec)
{
unsigned char *p;
unsigned int bit, byte, mask, val;
unsigned int bitpower = 1;
for (bit = 0; bit < 8; bit++) {
mask = bitpower - 1;
p = pdec->table_bitpowermask[bit];
for (byte = 0; byte < 256; byte++) {
val = (byte & mask);
if (byte & bitpower)
val = -val;
*p++ = val;
}
bitpower<<=1;
}
}
static void build_table_color(const unsigned int romtable[16][8],
unsigned char p0004[16][1024],
unsigned char p8004[16][256])
{
int compression_mode, j, k, bit, pw;
unsigned char *p0, *p8;
const unsigned int *r;
/* We have 16 compressions tables */
for (compression_mode = 0; compression_mode < 16; compression_mode++) {
p0 = p0004[compression_mode];
p8 = p8004[compression_mode];
r = romtable[compression_mode];
for (j = 0; j < 8; j++, r++, p0 += 128) {
for (k = 0; k < 16; k++) {
if (k == 0)
bit = 1;
else if (k >= 1 && k < 3)
bit = (r[0] >> 15) & 7;
else if (k >= 3 && k < 6)
bit = (r[0] >> 12) & 7;
else if (k >= 6 && k < 10)
bit = (r[0] >> 9) & 7;
else if (k >= 10 && k < 13)
bit = (r[0] >> 6) & 7;
else if (k >= 13 && k < 15)
bit = (r[0] >> 3) & 7;
else
bit = (r[0]) & 7;
if (k == 0)
*p8++ = 8;
else
*p8++ = j - bit;
*p8++ = bit;
pw = 1 << bit;
p0[k + 0x00] = (1 * pw) + 0x80;
p0[k + 0x10] = (2 * pw) + 0x80;
p0[k + 0x20] = (3 * pw) + 0x80;
p0[k + 0x30] = (4 * pw) + 0x80;
p0[k + 0x40] = (-1 * pw) + 0x80;
p0[k + 0x50] = (-2 * pw) + 0x80;
p0[k + 0x60] = (-3 * pw) + 0x80;
p0[k + 0x70] = (-4 * pw) + 0x80;
} /* end of for (k=0; k<16; k++, p8++) */
} /* end of for (j=0; j<8; j++ , table++) */
} /* end of foreach compression_mode */
}
/*
*
*/
static void fill_table_dc00_d800(struct pwc_dec23_private *pdec)
{
#define SCALEBITS 15
#define ONE_HALF (1UL << (SCALEBITS - 1))
int i;
unsigned int offset1 = ONE_HALF;
unsigned int offset2 = 0x0000;
for (i=0; i<256; i++) {
pdec->table_dc00[i] = offset1 & ~(ONE_HALF);
pdec->table_d800[i] = offset2;
offset1 += 0x7bc4;
offset2 += 0x7bc4;
}
}
/*
* To decode the stream:
* if look_bits(2) == 0: # op == 2 in the lookup table
* skip_bits(2)
* end of the stream
* elif look_bits(3) == 7: # op == 1 in the lookup table
* skip_bits(3)
* yyyy = get_bits(4)
* xxxx = get_bits(8)
* else: # op == 0 in the lookup table
* skip_bits(x)
*
* For speedup processing, we build a lookup table and we takes the first 6 bits.
*
* struct {
* unsigned char op; // operation to execute
* unsigned char bits; // bits use to perform operation
* unsigned char offset1; // offset to add to access in the table_0004 % 16
* unsigned char offset2; // offset to add to access in the table_0004
* }
*
* How to build this table ?
* op == 2 when (i%4)==0
* op == 1 when (i%8)==7
* op == 0 otherwise
*
*/
static const unsigned char hash_table_ops[64*4] = {
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x00,
0x00, 0x04, 0x01, 0x10,
0x00, 0x06, 0x01, 0x30,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x40,
0x00, 0x05, 0x01, 0x20,
0x01, 0x00, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x00,
0x00, 0x04, 0x01, 0x50,
0x00, 0x05, 0x02, 0x00,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x40,
0x00, 0x05, 0x03, 0x00,
0x01, 0x00, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x00,
0x00, 0x04, 0x01, 0x10,
0x00, 0x06, 0x02, 0x10,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x40,
0x00, 0x05, 0x01, 0x60,
0x01, 0x00, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x00,
0x00, 0x04, 0x01, 0x50,
0x00, 0x05, 0x02, 0x40,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x40,
0x00, 0x05, 0x03, 0x40,
0x01, 0x00, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x00,
0x00, 0x04, 0x01, 0x10,
0x00, 0x06, 0x01, 0x70,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x40,
0x00, 0x05, 0x01, 0x20,
0x01, 0x00, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x00,
0x00, 0x04, 0x01, 0x50,
0x00, 0x05, 0x02, 0x00,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x40,
0x00, 0x05, 0x03, 0x00,
0x01, 0x00, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x00,
0x00, 0x04, 0x01, 0x10,
0x00, 0x06, 0x02, 0x50,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x40,
0x00, 0x05, 0x01, 0x60,
0x01, 0x00, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x00,
0x00, 0x04, 0x01, 0x50,
0x00, 0x05, 0x02, 0x40,
0x02, 0x00, 0x00, 0x00,
0x00, 0x03, 0x01, 0x40,
0x00, 0x05, 0x03, 0x40,
0x01, 0x00, 0x00, 0x00
};
/*
*
*/
static const unsigned int MulIdx[16][16] = {
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,},
{0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,},
{0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,},
{4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4,},
{6, 7, 8, 9, 7, 10, 11, 8, 8, 11, 10, 7, 9, 8, 7, 6,},
{4, 5, 5, 4, 4, 5, 5, 4, 4, 5, 5, 4, 4, 5, 5, 4,},
{1, 3, 0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 1, 3, 0, 2,},
{0, 3, 3, 0, 1, 2, 2, 1, 2, 1, 1, 2, 3, 0, 0, 3,},
{0, 1, 2, 3, 3, 2, 1, 0, 3, 2, 1, 0, 0, 1, 2, 3,},
{1, 1, 1, 1, 3, 3, 3, 3, 0, 0, 0, 0, 2, 2, 2, 2,},
{7, 10, 11, 8, 9, 8, 7, 6, 6, 7, 8, 9, 8, 11, 10, 7,},
{4, 5, 5, 4, 5, 4, 4, 5, 5, 4, 4, 5, 4, 5, 5, 4,},
{7, 9, 6, 8, 10, 8, 7, 11, 11, 7, 8, 10, 8, 6, 9, 7,},
{1, 3, 0, 2, 2, 0, 3, 1, 2, 0, 3, 1, 1, 3, 0, 2,},
{1, 2, 2, 1, 3, 0, 0, 3, 0, 3, 3, 0, 2, 1, 1, 2,},
{10, 8, 7, 11, 8, 6, 9, 7, 7, 9, 6, 8, 11, 7, 8, 10}
};
#if USE_LOOKUP_TABLE_TO_CLAMP
#define MAX_OUTER_CROP_VALUE (512)
static unsigned char pwc_crop_table[256 + 2*MAX_OUTER_CROP_VALUE];
#define CLAMP(x) (pwc_crop_table[MAX_OUTER_CROP_VALUE+(x)])
#else
#define CLAMP(x) ((x)>255?255:((x)<0?0:x))
#endif
/* If the type or the command change, we rebuild the lookup table */
void pwc_dec23_init(struct pwc_device *pdev, const unsigned char *cmd)
{
int flags, version, shift, i;
struct pwc_dec23_private *pdec = &pdev->dec23;
mutex_init(&pdec->lock);
if (pdec->last_cmd_valid && pdec->last_cmd == cmd[2])
return;
if (DEVICE_USE_CODEC3(pdev->type)) {
flags = cmd[2] & 0x18;
if (flags == 8)
pdec->nbits = 7; /* More bits, mean more bits to encode the stream, but better quality */
else if (flags == 0x10)
pdec->nbits = 8;
else
pdec->nbits = 6;
version = cmd[2] >> 5;
build_table_color(KiaraRomTable[version][0], pdec->table_0004_pass1, pdec->table_8004_pass1);
build_table_color(KiaraRomTable[version][1], pdec->table_0004_pass2, pdec->table_8004_pass2);
} else {
flags = cmd[2] & 6;
if (flags == 2)
pdec->nbits = 7;
else if (flags == 4)
pdec->nbits = 8;
else
pdec->nbits = 6;
version = cmd[2] >> 3;
build_table_color(TimonRomTable[version][0], pdec->table_0004_pass1, pdec->table_8004_pass1);
build_table_color(TimonRomTable[version][1], pdec->table_0004_pass2, pdec->table_8004_pass2);
}
/* Informations can be coded on a variable number of bits but never less than 8 */
shift = 8 - pdec->nbits;
pdec->scalebits = SCALEBITS - shift;
pdec->nbitsmask = 0xFF >> shift;
fill_table_dc00_d800(pdec);
build_subblock_pattern(pdec);
build_bit_powermask_table(pdec);
#if USE_LOOKUP_TABLE_TO_CLAMP
/* Build the static table to clamp value [0-255] */
for (i=0;i<MAX_OUTER_CROP_VALUE;i++)
pwc_crop_table[i] = 0;
for (i=0; i<256; i++)
pwc_crop_table[MAX_OUTER_CROP_VALUE+i] = i;
for (i=0; i<MAX_OUTER_CROP_VALUE; i++)
pwc_crop_table[MAX_OUTER_CROP_VALUE+256+i] = 255;
#endif
pdec->last_cmd = cmd[2];
pdec->last_cmd_valid = 1;
}
/*
* Copy the 4x4 image block to Y plane buffer
*/
static void copy_image_block_Y(const int *src, unsigned char *dst, unsigned int bytes_per_line, unsigned int scalebits)
{
#if UNROLL_LOOP_FOR_COPY
const unsigned char *cm = pwc_crop_table+MAX_OUTER_CROP_VALUE;
const int *c = src;
unsigned char *d = dst;
*d++ = cm[c[0] >> scalebits];
*d++ = cm[c[1] >> scalebits];
*d++ = cm[c[2] >> scalebits];
*d++ = cm[c[3] >> scalebits];
d = dst + bytes_per_line;
*d++ = cm[c[4] >> scalebits];
*d++ = cm[c[5] >> scalebits];
*d++ = cm[c[6] >> scalebits];
*d++ = cm[c[7] >> scalebits];
d = dst + bytes_per_line*2;
*d++ = cm[c[8] >> scalebits];
*d++ = cm[c[9] >> scalebits];
*d++ = cm[c[10] >> scalebits];
*d++ = cm[c[11] >> scalebits];
d = dst + bytes_per_line*3;
*d++ = cm[c[12] >> scalebits];
*d++ = cm[c[13] >> scalebits];
*d++ = cm[c[14] >> scalebits];
*d++ = cm[c[15] >> scalebits];
#else
int i;
const int *c = src;
unsigned char *d = dst;
for (i = 0; i < 4; i++, c++)
*d++ = CLAMP((*c) >> scalebits);
d = dst + bytes_per_line;
for (i = 0; i < 4; i++, c++)
*d++ = CLAMP((*c) >> scalebits);
d = dst + bytes_per_line*2;
for (i = 0; i < 4; i++, c++)
*d++ = CLAMP((*c) >> scalebits);
d = dst + bytes_per_line*3;
for (i = 0; i < 4; i++, c++)
*d++ = CLAMP((*c) >> scalebits);
#endif
}
/*
* Copy the 4x4 image block to a CrCb plane buffer
*
*/
static void copy_image_block_CrCb(const int *src, unsigned char *dst, unsigned int bytes_per_line, unsigned int scalebits)
{
#if UNROLL_LOOP_FOR_COPY
/* Unroll all loops */
const unsigned char *cm = pwc_crop_table+MAX_OUTER_CROP_VALUE;
const int *c = src;
unsigned char *d = dst;
*d++ = cm[c[0] >> scalebits];
*d++ = cm[c[4] >> scalebits];
*d++ = cm[c[1] >> scalebits];
*d++ = cm[c[5] >> scalebits];
*d++ = cm[c[2] >> scalebits];
*d++ = cm[c[6] >> scalebits];
*d++ = cm[c[3] >> scalebits];
*d++ = cm[c[7] >> scalebits];
d = dst + bytes_per_line;
*d++ = cm[c[12] >> scalebits];
*d++ = cm[c[8] >> scalebits];
*d++ = cm[c[13] >> scalebits];
*d++ = cm[c[9] >> scalebits];
*d++ = cm[c[14] >> scalebits];
*d++ = cm[c[10] >> scalebits];
*d++ = cm[c[15] >> scalebits];
*d++ = cm[c[11] >> scalebits];
#else
int i;
const int *c1 = src;
const int *c2 = src + 4;
unsigned char *d = dst;
for (i = 0; i < 4; i++, c1++, c2++) {
*d++ = CLAMP((*c1) >> scalebits);
*d++ = CLAMP((*c2) >> scalebits);
}
c1 = src + 12;
d = dst + bytes_per_line;
for (i = 0; i < 4; i++, c1++, c2++) {
*d++ = CLAMP((*c1) >> scalebits);
*d++ = CLAMP((*c2) >> scalebits);
}
#endif
}
/*
* To manage the stream, we keep bits in a 32 bits register.
* fill_nbits(n): fill the reservoir with at least n bits
* skip_bits(n): discard n bits from the reservoir
* get_bits(n): fill the reservoir, returns the first n bits and discard the
* bits from the reservoir.
* __get_nbits(n): faster version of get_bits(n), but asumes that the reservoir
* contains at least n bits. bits returned is discarded.
*/
#define fill_nbits(pdec, nbits_wanted) do { \
while (pdec->nbits_in_reservoir<(nbits_wanted)) \
{ \
pdec->reservoir |= (*(pdec->stream)++) << (pdec->nbits_in_reservoir); \
pdec->nbits_in_reservoir += 8; \
} \
} while(0);
#define skip_nbits(pdec, nbits_to_skip) do { \
pdec->reservoir >>= (nbits_to_skip); \
pdec->nbits_in_reservoir -= (nbits_to_skip); \
} while(0);
#define get_nbits(pdec, nbits_wanted, result) do { \
fill_nbits(pdec, nbits_wanted); \
result = (pdec->reservoir) & ((1U<<(nbits_wanted))-1); \
skip_nbits(pdec, nbits_wanted); \
} while(0);
#define __get_nbits(pdec, nbits_wanted, result) do { \
result = (pdec->reservoir) & ((1U<<(nbits_wanted))-1); \
skip_nbits(pdec, nbits_wanted); \
} while(0);
#define look_nbits(pdec, nbits_wanted) \
((pdec->reservoir) & ((1U<<(nbits_wanted))-1))
/*
* Decode a 4x4 pixel block
*/
static void decode_block(struct pwc_dec23_private *pdec,
const unsigned char *ptable0004,
const unsigned char *ptable8004)
{
unsigned int primary_color;
unsigned int channel_v, offset1, op;
int i;
fill_nbits(pdec, 16);
__get_nbits(pdec, pdec->nbits, primary_color);
if (look_nbits(pdec,2) == 0) {
skip_nbits(pdec, 2);
/* Very simple, the color is the same for all pixels of the square */
for (i = 0; i < 16; i++)
pdec->temp_colors[i] = pdec->table_dc00[primary_color];
return;
}
/* This block is encoded with small pattern */
for (i = 0; i < 16; i++)
pdec->temp_colors[i] = pdec->table_d800[primary_color];
__get_nbits(pdec, 3, channel_v);
channel_v = ((channel_v & 1) << 2) | (channel_v & 2) | ((channel_v & 4) >> 2);
ptable0004 += (channel_v * 128);
ptable8004 += (channel_v * 32);
offset1 = 0;
do
{
unsigned int htable_idx, rows = 0;
const unsigned int *block;
/* [ zzzz y x x ]
* xx == 00 :=> end of the block def, remove the two bits from the stream
* yxx == 111
* yxx == any other value
*
*/
fill_nbits(pdec, 16);
htable_idx = look_nbits(pdec, 6);
op = hash_table_ops[htable_idx * 4];
if (op == 2) {
skip_nbits(pdec, 2);
} else if (op == 1) {
/* 15bits [ xxxx xxxx yyyy 111 ]
* yyy => offset in the table8004
* xxx => offset in the tabled004 (tree)
*/
unsigned int mask, shift;
unsigned int nbits, col1;
unsigned int yyyy;
skip_nbits(pdec, 3);
/* offset1 += yyyy */
__get_nbits(pdec, 4, yyyy);
offset1 += 1 + yyyy;
offset1 &= 0x0F;
nbits = ptable8004[offset1 * 2];
/* col1 = xxxx xxxx */
__get_nbits(pdec, nbits+1, col1);
/* Bit mask table */
mask = pdec->table_bitpowermask[nbits][col1];
shift = ptable8004[offset1 * 2 + 1];
rows = ((mask << shift) + 0x80) & 0xFF;
block = pdec->table_subblock[rows];
for (i = 0; i < 16; i++)
pdec->temp_colors[i] += block[MulIdx[offset1][i]];
} else {
/* op == 0
* offset1 is coded on 3 bits
*/
unsigned int shift;
offset1 += hash_table_ops [htable_idx * 4 + 2];
offset1 &= 0x0F;
rows = ptable0004[offset1 + hash_table_ops [htable_idx * 4 + 3]];
block = pdec->table_subblock[rows];
for (i = 0; i < 16; i++)
pdec->temp_colors[i] += block[MulIdx[offset1][i]];
shift = hash_table_ops[htable_idx * 4 + 1];
skip_nbits(pdec, shift);
}
} while (op != 2);
}
static void DecompressBand23(struct pwc_dec23_private *pdec,
const unsigned char *rawyuv,
unsigned char *planar_y,
unsigned char *planar_u,
unsigned char *planar_v,
unsigned int compressed_image_width,
unsigned int real_image_width)
{
int compression_index, nblocks;
const unsigned char *ptable0004;
const unsigned char *ptable8004;
pdec->reservoir = 0;
pdec->nbits_in_reservoir = 0;
pdec->stream = rawyuv + 1; /* The first byte of the stream is skipped */
get_nbits(pdec, 4, compression_index);
/* pass 1: uncompress Y component */
nblocks = compressed_image_width / 4;
ptable0004 = pdec->table_0004_pass1[compression_index];
ptable8004 = pdec->table_8004_pass1[compression_index];
/* Each block decode a square of 4x4 */
while (nblocks) {
decode_block(pdec, ptable0004, ptable8004);
copy_image_block_Y(pdec->temp_colors, planar_y, real_image_width, pdec->scalebits);
planar_y += 4;
nblocks--;
}
/* pass 2: uncompress UV component */
nblocks = compressed_image_width / 8;
ptable0004 = pdec->table_0004_pass2[compression_index];
ptable8004 = pdec->table_8004_pass2[compression_index];
/* Each block decode a square of 4x4 */
while (nblocks) {
decode_block(pdec, ptable0004, ptable8004);
copy_image_block_CrCb(pdec->temp_colors, planar_u, real_image_width/2, pdec->scalebits);
decode_block(pdec, ptable0004, ptable8004);
copy_image_block_CrCb(pdec->temp_colors, planar_v, real_image_width/2, pdec->scalebits);
planar_v += 8;
planar_u += 8;
nblocks -= 2;
}
}
/**
*
* Uncompress a pwc23 buffer.
*
* src: raw data
* dst: image output
*/
void pwc_dec23_decompress(struct pwc_device *pdev,
const void *src,
void *dst)
{
int bandlines_left, bytes_per_block;
struct pwc_dec23_private *pdec = &pdev->dec23;
/* YUV420P image format */
unsigned char *pout_planar_y;
unsigned char *pout_planar_u;
unsigned char *pout_planar_v;
unsigned int plane_size;
mutex_lock(&pdec->lock);
bandlines_left = pdev->height / 4;
bytes_per_block = pdev->width * 4;
plane_size = pdev->height * pdev->width;
pout_planar_y = dst;
pout_planar_u = dst + plane_size;
pout_planar_v = dst + plane_size + plane_size / 4;
while (bandlines_left--) {
DecompressBand23(pdec, src,
pout_planar_y, pout_planar_u, pout_planar_v,
pdev->width, pdev->width);
src += pdev->vbandlength;
pout_planar_y += bytes_per_block;
pout_planar_u += pdev->width;
pout_planar_v += pdev->width;
}
mutex_unlock(&pdec->lock);
}