linux-sg2042/include/linux/seq_file.h

225 lines
6.7 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_SEQ_FILE_H
#define _LINUX_SEQ_FILE_H
#include <linux/types.h>
#include <linux/string.h>
#include <linux/bug.h>
#include <linux/mutex.h>
#include <linux/cpumask.h>
#include <linux/nodemask.h>
#include <linux/fs.h>
#include <linux/cred.h>
struct seq_operations;
struct seq_file {
char *buf;
size_t size;
size_t from;
size_t count;
size_t pad_until;
loff_t index;
loff_t read_pos;
u64 version;
struct mutex lock;
const struct seq_operations *op;
int poll_event;
const struct file *file;
void *private;
};
struct seq_operations {
void * (*start) (struct seq_file *m, loff_t *pos);
void (*stop) (struct seq_file *m, void *v);
void * (*next) (struct seq_file *m, void *v, loff_t *pos);
int (*show) (struct seq_file *m, void *v);
};
#define SEQ_SKIP 1
/**
* seq_has_overflowed - check if the buffer has overflowed
* @m: the seq_file handle
*
* seq_files have a buffer which may overflow. When this happens a larger
* buffer is reallocated and all the data will be printed again.
* The overflow state is true when m->count == m->size.
*
* Returns true if the buffer received more than it can hold.
*/
static inline bool seq_has_overflowed(struct seq_file *m)
{
return m->count == m->size;
}
/**
* seq_get_buf - get buffer to write arbitrary data to
* @m: the seq_file handle
* @bufp: the beginning of the buffer is stored here
*
* Return the number of bytes available in the buffer, or zero if
* there's no space.
*/
static inline size_t seq_get_buf(struct seq_file *m, char **bufp)
{
BUG_ON(m->count > m->size);
if (m->count < m->size)
*bufp = m->buf + m->count;
else
*bufp = NULL;
return m->size - m->count;
}
/**
* seq_commit - commit data to the buffer
* @m: the seq_file handle
* @num: the number of bytes to commit
*
* Commit @num bytes of data written to a buffer previously acquired
* by seq_buf_get. To signal an error condition, or that the data
* didn't fit in the available space, pass a negative @num value.
*/
static inline void seq_commit(struct seq_file *m, int num)
{
if (num < 0) {
m->count = m->size;
} else {
BUG_ON(m->count + num > m->size);
m->count += num;
}
}
/**
* seq_setwidth - set padding width
* @m: the seq_file handle
* @size: the max number of bytes to pad.
*
* Call seq_setwidth() for setting max width, then call seq_printf() etc. and
* finally call seq_pad() to pad the remaining bytes.
*/
static inline void seq_setwidth(struct seq_file *m, size_t size)
{
m->pad_until = m->count + size;
}
void seq_pad(struct seq_file *m, char c);
char *mangle_path(char *s, const char *p, const char *esc);
int seq_open(struct file *, const struct seq_operations *);
ssize_t seq_read(struct file *, char __user *, size_t, loff_t *);
loff_t seq_lseek(struct file *, loff_t, int);
int seq_release(struct inode *, struct file *);
int seq_write(struct seq_file *seq, const void *data, size_t len);
__printf(2, 0)
void seq_vprintf(struct seq_file *m, const char *fmt, va_list args);
__printf(2, 3)
void seq_printf(struct seq_file *m, const char *fmt, ...);
void seq_putc(struct seq_file *m, char c);
void seq_puts(struct seq_file *m, const char *s);
void seq_put_decimal_ull(struct seq_file *m, const char *delimiter,
unsigned long long num);
void seq_put_decimal_ll(struct seq_file *m, const char *delimiter, long long num);
void seq_escape(struct seq_file *m, const char *s, const char *esc);
void seq_hex_dump(struct seq_file *m, const char *prefix_str, int prefix_type,
int rowsize, int groupsize, const void *buf, size_t len,
bool ascii);
int seq_path(struct seq_file *, const struct path *, const char *);
int seq_file_path(struct seq_file *, struct file *, const char *);
int seq_dentry(struct seq_file *, struct dentry *, const char *);
int seq_path_root(struct seq_file *m, const struct path *path,
const struct path *root, const char *esc);
int single_open(struct file *, int (*)(struct seq_file *, void *), void *);
int single_open_size(struct file *, int (*)(struct seq_file *, void *), void *, size_t);
int single_release(struct inode *, struct file *);
void *__seq_open_private(struct file *, const struct seq_operations *, int);
int seq_open_private(struct file *, const struct seq_operations *, int);
int seq_release_private(struct inode *, struct file *);
static inline struct user_namespace *seq_user_ns(struct seq_file *seq)
{
#ifdef CONFIG_USER_NS
return seq->file->f_cred->user_ns;
#else
extern struct user_namespace init_user_ns;
return &init_user_ns;
#endif
}
fs: create and use seq_show_option for escaping Many file systems that implement the show_options hook fail to correctly escape their output which could lead to unescaped characters (e.g. new lines) leaking into /proc/mounts and /proc/[pid]/mountinfo files. This could lead to confusion, spoofed entries (resulting in things like systemd issuing false d-bus "mount" notifications), and who knows what else. This looks like it would only be the root user stepping on themselves, but it's possible weird things could happen in containers or in other situations with delegated mount privileges. Here's an example using overlay with setuid fusermount trusting the contents of /proc/mounts (via the /etc/mtab symlink). Imagine the use of "sudo" is something more sneaky: $ BASE="ovl" $ MNT="$BASE/mnt" $ LOW="$BASE/lower" $ UP="$BASE/upper" $ WORK="$BASE/work/ 0 0 none /proc fuse.pwn user_id=1000" $ mkdir -p "$LOW" "$UP" "$WORK" $ sudo mount -t overlay -o "lowerdir=$LOW,upperdir=$UP,workdir=$WORK" none /mnt $ cat /proc/mounts none /root/ovl/mnt overlay rw,relatime,lowerdir=ovl/lower,upperdir=ovl/upper,workdir=ovl/work/ 0 0 none /proc fuse.pwn user_id=1000 0 0 $ fusermount -u /proc $ cat /proc/mounts cat: /proc/mounts: No such file or directory This fixes the problem by adding new seq_show_option and seq_show_option_n helpers, and updating the vulnerable show_option handlers to use them as needed. Some, like SELinux, need to be open coded due to unusual existing escape mechanisms. [akpm@linux-foundation.org: add lost chunk, per Kees] [keescook@chromium.org: seq_show_option should be using const parameters] Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Acked-by: Jan Kara <jack@suse.com> Acked-by: Paul Moore <paul@paul-moore.com> Cc: J. R. Okajima <hooanon05g@gmail.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 06:44:57 +08:00
/**
* seq_show_options - display mount options with appropriate escapes.
* @m: the seq_file handle
* @name: the mount option name
* @value: the mount option name's value, can be NULL
*/
static inline void seq_show_option(struct seq_file *m, const char *name,
const char *value)
{
seq_putc(m, ',');
seq_escape(m, name, ",= \t\n\\");
if (value) {
seq_putc(m, '=');
seq_escape(m, value, ", \t\n\\");
}
}
/**
* seq_show_option_n - display mount options with appropriate escapes
* where @value must be a specific length.
* @m: the seq_file handle
* @name: the mount option name
* @value: the mount option name's value, cannot be NULL
* @length: the length of @value to display
*
* This is a macro since this uses "length" to define the size of the
* stack buffer.
*/
#define seq_show_option_n(m, name, value, length) { \
char val_buf[length + 1]; \
strncpy(val_buf, value, length); \
val_buf[length] = '\0'; \
seq_show_option(m, name, val_buf); \
}
#define SEQ_START_TOKEN ((void *)1)
/*
* Helpers for iteration over list_head-s in seq_files
*/
extern struct list_head *seq_list_start(struct list_head *head,
loff_t pos);
extern struct list_head *seq_list_start_head(struct list_head *head,
loff_t pos);
extern struct list_head *seq_list_next(void *v, struct list_head *head,
loff_t *ppos);
/*
* Helpers for iteration over hlist_head-s in seq_files
*/
extern struct hlist_node *seq_hlist_start(struct hlist_head *head,
loff_t pos);
extern struct hlist_node *seq_hlist_start_head(struct hlist_head *head,
loff_t pos);
extern struct hlist_node *seq_hlist_next(void *v, struct hlist_head *head,
loff_t *ppos);
extern struct hlist_node *seq_hlist_start_rcu(struct hlist_head *head,
loff_t pos);
extern struct hlist_node *seq_hlist_start_head_rcu(struct hlist_head *head,
loff_t pos);
extern struct hlist_node *seq_hlist_next_rcu(void *v,
struct hlist_head *head,
loff_t *ppos);
/* Helpers for iterating over per-cpu hlist_head-s in seq_files */
extern struct hlist_node *seq_hlist_start_percpu(struct hlist_head __percpu *head, int *cpu, loff_t pos);
extern struct hlist_node *seq_hlist_next_percpu(void *v, struct hlist_head __percpu *head, int *cpu, loff_t *pos);
#endif