linux-sg2042/arch/powerpc/mm/hugetlbpage.c

733 lines
17 KiB
C
Raw Normal View History

/*
* PPC Huge TLB Page Support for Kernel.
*
* Copyright (C) 2003 David Gibson, IBM Corporation.
* Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
*
* Based on the IA-32 version:
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
*/
#include <linux/mm.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/hugetlb.h>
#include <linux/export.h>
#include <linux/of_fdt.h>
#include <linux/memblock.h>
#include <linux/moduleparam.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/kmemleak.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/setup.h>
#include <asm/hugetlb.h>
#include <asm/pte-walk.h>
bool hugetlb_disabled = false;
#define hugepd_none(hpd) (hpd_val(hpd) == 0)
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
#define PTE_T_ORDER (__builtin_ffs(sizeof(pte_t)) - __builtin_ffs(sizeof(void *)))
mm/hugetlb: add size parameter to huge_pte_offset() A poisoned or migrated hugepage is stored as a swap entry in the page tables. On architectures that support hugepages consisting of contiguous page table entries (such as on arm64) this leads to ambiguity in determining the page table entry to return in huge_pte_offset() when a poisoned entry is encountered. Let's remove the ambiguity by adding a size parameter to convey additional information about the requested address. Also fixup the definition/usage of huge_pte_offset() throughout the tree. Link: http://lkml.kernel.org/r/20170522133604.11392-4-punit.agrawal@arm.com Signed-off-by: Punit Agrawal <punit.agrawal@arm.com> Acked-by: Steve Capper <steve.capper@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: James Hogan <james.hogan@imgtec.com> (odd fixer:METAG ARCHITECTURE) Cc: Ralf Baechle <ralf@linux-mips.org> (supporter:MIPS) Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:39:42 +08:00
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
{
/*
* Only called for hugetlbfs pages, hence can ignore THP and the
* irq disabled walk.
*/
return __find_linux_pte(mm->pgd, addr, NULL, NULL);
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
}
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
unsigned long address, unsigned int pdshift,
unsigned int pshift, spinlock_t *ptl)
{
struct kmem_cache *cachep;
pte_t *new;
int i;
int num_hugepd;
if (pshift >= pdshift) {
cachep = PGT_CACHE(PTE_T_ORDER);
num_hugepd = 1 << (pshift - pdshift);
} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
cachep = PGT_CACHE(PTE_INDEX_SIZE);
num_hugepd = 1;
} else {
cachep = PGT_CACHE(pdshift - pshift);
num_hugepd = 1;
}
powerpc/mm: fix a warning when a cache is common to PGD and hugepages While implementing TLB miss HW assistance on the 8xx, the following warning was encountered: [ 423.732965] WARNING: CPU: 0 PID: 345 at mm/slub.c:2412 ___slab_alloc.constprop.30+0x26c/0x46c [ 423.733033] CPU: 0 PID: 345 Comm: mmap Not tainted 4.18.0-rc8-00664-g2dfff9121c55 #671 [ 423.733075] NIP: c0108f90 LR: c0109ad0 CTR: 00000004 [ 423.733121] REGS: c455bba0 TRAP: 0700 Not tainted (4.18.0-rc8-00664-g2dfff9121c55) [ 423.733147] MSR: 00021032 <ME,IR,DR,RI> CR: 24224848 XER: 20000000 [ 423.733319] [ 423.733319] GPR00: c0109ad0 c455bc50 c4521910 c60053c0 007080c0 c0011b34 c7fa41e0 c455be30 [ 423.733319] GPR08: 00000001 c00103a0 c7fa41e0 c49afcc4 24282842 10018840 c079b37c 00000040 [ 423.733319] GPR16: 73f00000 00210d00 00000000 00000001 c455a000 00000100 00000200 c455a000 [ 423.733319] GPR24: c60053c0 c0011b34 007080c0 c455a000 c455a000 c7fa41e0 00000000 00009032 [ 423.734190] NIP [c0108f90] ___slab_alloc.constprop.30+0x26c/0x46c [ 423.734257] LR [c0109ad0] kmem_cache_alloc+0x210/0x23c [ 423.734283] Call Trace: [ 423.734326] [c455bc50] [00000100] 0x100 (unreliable) [ 423.734430] [c455bcc0] [c0109ad0] kmem_cache_alloc+0x210/0x23c [ 423.734543] [c455bcf0] [c0011b34] huge_pte_alloc+0xc0/0x1dc [ 423.734633] [c455bd20] [c01044dc] hugetlb_fault+0x408/0x48c [ 423.734720] [c455bdb0] [c0104b20] follow_hugetlb_page+0x14c/0x44c [ 423.734826] [c455be10] [c00e8e54] __get_user_pages+0x1c4/0x3dc [ 423.734919] [c455be80] [c00e9924] __mm_populate+0xac/0x140 [ 423.735020] [c455bec0] [c00db14c] vm_mmap_pgoff+0xb4/0xb8 [ 423.735127] [c455bf00] [c00f27c0] ksys_mmap_pgoff+0xcc/0x1fc [ 423.735222] [c455bf40] [c000e0f8] ret_from_syscall+0x0/0x38 [ 423.735271] Instruction dump: [ 423.735321] 7cbf482e 38fd0008 7fa6eb78 7fc4f378 4bfff5dd 7fe3fb78 4bfffe24 81370010 [ 423.735536] 71280004 41a2ff88 4840c571 4bffff80 <0fe00000> 4bfffeb8 81340010 712a0004 [ 423.735757] ---[ end trace e9b222919a470790 ]--- This warning occurs when calling kmem_cache_zalloc() on a cache having a constructor. In this case it happens because PGD cache and 512k hugepte cache are the same size (4k). While a cache with constructor is created for the PGD, hugepages create cache without constructor and uses kmem_cache_zalloc(). As both expect a cache with the same size, the hugepages reuse the cache created for PGD, hence the conflict. In order to avoid this conflict, this patch: - modifies pgtable_cache_add() so that a zeroising constructor is added for any cache size. - replaces calls to kmem_cache_zalloc() by kmem_cache_alloc() Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-11-29 22:07:07 +08:00
new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
BUG_ON(pshift > HUGEPD_SHIFT_MASK);
BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
if (! new)
return -ENOMEM;
/*
* Make sure other cpus find the hugepd set only after a
* properly initialized page table is visible to them.
* For more details look for comment in __pte_alloc().
*/
smp_wmb();
spin_lock(ptl);
/*
* We have multiple higher-level entries that point to the same
* actual pte location. Fill in each as we go and backtrack on error.
* We need all of these so the DTLB pgtable walk code can find the
* right higher-level entry without knowing if it's a hugepage or not.
*/
for (i = 0; i < num_hugepd; i++, hpdp++) {
if (unlikely(!hugepd_none(*hpdp)))
break;
hugepd_populate(hpdp, new, pshift);
}
/* If we bailed from the for loop early, an error occurred, clean up */
if (i < num_hugepd) {
for (i = i - 1 ; i >= 0; i--, hpdp--)
*hpdp = __hugepd(0);
kmem_cache_free(cachep, new);
} else {
kmemleak_ignore(new);
}
spin_unlock(ptl);
return 0;
}
/*
* At this point we do the placement change only for BOOK3S 64. This would
* possibly work on other subarchs.
*/
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
pgd_t *pg;
pud_t *pu;
pmd_t *pm;
hugepd_t *hpdp = NULL;
unsigned pshift = __ffs(sz);
unsigned pdshift = PGDIR_SHIFT;
spinlock_t *ptl;
addr &= ~(sz-1);
pg = pgd_offset(mm, addr);
#ifdef CONFIG_PPC_BOOK3S_64
if (pshift == PGDIR_SHIFT)
/* 16GB huge page */
return (pte_t *) pg;
else if (pshift > PUD_SHIFT) {
/*
* We need to use hugepd table
*/
ptl = &mm->page_table_lock;
hpdp = (hugepd_t *)pg;
} else {
pdshift = PUD_SHIFT;
pu = pud_alloc(mm, pg, addr);
if (pshift == PUD_SHIFT)
return (pte_t *)pu;
else if (pshift > PMD_SHIFT) {
ptl = pud_lockptr(mm, pu);
hpdp = (hugepd_t *)pu;
} else {
pdshift = PMD_SHIFT;
pm = pmd_alloc(mm, pu, addr);
if (pshift == PMD_SHIFT)
/* 16MB hugepage */
return (pte_t *)pm;
else {
ptl = pmd_lockptr(mm, pm);
hpdp = (hugepd_t *)pm;
}
}
}
#else
if (pshift >= PGDIR_SHIFT) {
ptl = &mm->page_table_lock;
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
hpdp = (hugepd_t *)pg;
} else {
pdshift = PUD_SHIFT;
pu = pud_alloc(mm, pg, addr);
if (pshift >= PUD_SHIFT) {
ptl = pud_lockptr(mm, pu);
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
hpdp = (hugepd_t *)pu;
} else {
pdshift = PMD_SHIFT;
pm = pmd_alloc(mm, pu, addr);
ptl = pmd_lockptr(mm, pm);
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
hpdp = (hugepd_t *)pm;
}
}
#endif
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
if (!hpdp)
return NULL;
BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
pdshift, pshift, ptl))
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
return NULL;
return hugepte_offset(*hpdp, addr, pdshift);
}
#ifdef CONFIG_PPC_BOOK3S_64
/*
* Tracks gpages after the device tree is scanned and before the
* huge_boot_pages list is ready on pseries.
*/
#define MAX_NUMBER_GPAGES 1024
__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
__initdata static unsigned nr_gpages;
/*
* Build list of addresses of gigantic pages. This function is used in early
* boot before the buddy allocator is setup.
*/
void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
{
if (!addr)
return;
while (number_of_pages > 0) {
gpage_freearray[nr_gpages] = addr;
nr_gpages++;
number_of_pages--;
addr += page_size;
}
}
int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
{
struct huge_bootmem_page *m;
if (nr_gpages == 0)
return 0;
m = phys_to_virt(gpage_freearray[--nr_gpages]);
gpage_freearray[nr_gpages] = 0;
list_add(&m->list, &huge_boot_pages);
m->hstate = hstate;
return 1;
}
#endif
int __init alloc_bootmem_huge_page(struct hstate *h)
{
#ifdef CONFIG_PPC_BOOK3S_64
if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
return pseries_alloc_bootmem_huge_page(h);
#endif
return __alloc_bootmem_huge_page(h);
}
#ifndef CONFIG_PPC_BOOK3S_64
#define HUGEPD_FREELIST_SIZE \
((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
struct hugepd_freelist {
struct rcu_head rcu;
unsigned int index;
void *ptes[0];
};
static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
static void hugepd_free_rcu_callback(struct rcu_head *head)
{
struct hugepd_freelist *batch =
container_of(head, struct hugepd_freelist, rcu);
unsigned int i;
for (i = 0; i < batch->index; i++)
kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
free_page((unsigned long)batch);
}
static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
{
struct hugepd_freelist **batchp;
batchp = &get_cpu_var(hugepd_freelist_cur);
if (atomic_read(&tlb->mm->mm_users) < 2 ||
mm_is_thread_local(tlb->mm)) {
kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
put_cpu_var(hugepd_freelist_cur);
return;
}
if (*batchp == NULL) {
*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
(*batchp)->index = 0;
}
(*batchp)->ptes[(*batchp)->index++] = hugepte;
if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
*batchp = NULL;
}
put_cpu_var(hugepd_freelist_cur);
}
#else
static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
#endif
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
unsigned long start, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pte_t *hugepte = hugepd_page(*hpdp);
int i;
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
unsigned long pdmask = ~((1UL << pdshift) - 1);
unsigned int num_hugepd = 1;
unsigned int shift = hugepd_shift(*hpdp);
/* Note: On fsl the hpdp may be the first of several */
if (shift > pdshift)
num_hugepd = 1 << (shift - pdshift);
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
start &= pdmask;
if (start < floor)
return;
if (ceiling) {
ceiling &= pdmask;
if (! ceiling)
return;
}
if (end - 1 > ceiling - 1)
return;
for (i = 0; i < num_hugepd; i++, hpdp++)
*hpdp = __hugepd(0);
if (shift >= pdshift)
hugepd_free(tlb, hugepte);
else if (IS_ENABLED(CONFIG_PPC_8xx))
pgtable_free_tlb(tlb, hugepte,
get_hugepd_cache_index(PTE_INDEX_SIZE));
else
pgtable_free_tlb(tlb, hugepte,
get_hugepd_cache_index(pdshift - shift));
}
static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
unsigned long addr, unsigned long end,
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
unsigned long floor, unsigned long ceiling)
{
pmd_t *pmd;
unsigned long next;
unsigned long start;
start = addr;
do {
unsigned long more;
pmd = pmd_offset(pud, addr);
next = pmd_addr_end(addr, end);
if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
/*
* if it is not hugepd pointer, we should already find
* it cleared.
*/
WARN_ON(!pmd_none_or_clear_bad(pmd));
continue;
}
/*
* Increment next by the size of the huge mapping since
* there may be more than one entry at this level for a
* single hugepage, but all of them point to
* the same kmem cache that holds the hugepte.
*/
more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
if (more > next)
next = more;
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
addr, next, floor, ceiling);
} while (addr = next, addr != end);
start &= PUD_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= PUD_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
return;
pmd = pmd_offset(pud, start);
pud_clear(pud);
pmd_free_tlb(tlb, pmd, start);
mm_dec_nr_pmds(tlb->mm);
}
static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pud_t *pud;
unsigned long next;
unsigned long start;
start = addr;
do {
pud = pud_offset(pgd, addr);
next = pud_addr_end(addr, end);
if (!is_hugepd(__hugepd(pud_val(*pud)))) {
if (pud_none_or_clear_bad(pud))
continue;
hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
ceiling);
} else {
unsigned long more;
/*
* Increment next by the size of the huge mapping since
* there may be more than one entry at this level for a
* single hugepage, but all of them point to
* the same kmem cache that holds the hugepte.
*/
more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
if (more > next)
next = more;
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
addr, next, floor, ceiling);
}
} while (addr = next, addr != end);
start &= PGDIR_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= PGDIR_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
return;
pud = pud_offset(pgd, start);
pgd_clear(pgd);
pud_free_tlb(tlb, pud, start);
mm_dec_nr_puds(tlb->mm);
}
/*
* This function frees user-level page tables of a process.
*/
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pgd_t *pgd;
unsigned long next;
/*
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
* Because there are a number of different possible pagetable
* layouts for hugepage ranges, we limit knowledge of how
* things should be laid out to the allocation path
* (huge_pte_alloc(), above). Everything else works out the
* structure as it goes from information in the hugepd
* pointers. That means that we can't here use the
* optimization used in the normal page free_pgd_range(), of
* checking whether we're actually covering a large enough
* range to have to do anything at the top level of the walk
* instead of at the bottom.
*
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
* To make sense of this, you should probably go read the big
* block comment at the top of the normal free_pgd_range(),
* too.
*/
do {
next = pgd_addr_end(addr, end);
pgd = pgd_offset(tlb->mm, addr);
if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
if (pgd_none_or_clear_bad(pgd))
continue;
hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
} else {
unsigned long more;
/*
* Increment next by the size of the huge mapping since
* there may be more than one entry at the pgd level
* for a single hugepage, but all of them point to the
* same kmem cache that holds the hugepte.
*/
more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
if (more > next)
next = more;
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
addr, next, floor, ceiling);
}
} while (addr = next, addr != end);
}
struct page *follow_huge_pd(struct vm_area_struct *vma,
unsigned long address, hugepd_t hpd,
int flags, int pdshift)
{
pte_t *ptep;
spinlock_t *ptl;
struct page *page = NULL;
unsigned long mask;
int shift = hugepd_shift(hpd);
struct mm_struct *mm = vma->vm_mm;
retry:
/*
* hugepage directory entries are protected by mm->page_table_lock
* Use this instead of huge_pte_lockptr
*/
ptl = &mm->page_table_lock;
spin_lock(ptl);
ptep = hugepte_offset(hpd, address, pdshift);
if (pte_present(*ptep)) {
mask = (1UL << shift) - 1;
page = pte_page(*ptep);
page += ((address & mask) >> PAGE_SHIFT);
if (flags & FOLL_GET)
get_page(page);
} else {
if (is_hugetlb_entry_migration(*ptep)) {
spin_unlock(ptl);
__migration_entry_wait(mm, ptep, ptl);
goto retry;
}
}
spin_unlock(ptl);
return page;
}
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
unsigned long sz)
{
unsigned long __boundary = (addr + sz) & ~(sz-1);
return (__boundary - 1 < end - 1) ? __boundary : end;
}
#ifdef CONFIG_PPC_MM_SLICES
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
struct hstate *hstate = hstate_file(file);
int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
powerpc: Check for valid hugepage size in hugetlb_get_unmapped_area It looks like most of the hugetlb code is doing the correct thing if hugepages are not supported, but the mmap code is not. If we get into the mmap code when hugepages are not supported, such as in an LPAR which is running Active Memory Sharing, we can oops the kernel. This fixes the oops being seen in this path. oops: Kernel access of bad area, sig: 11 [#1] SMP NR_CPUS=1024 NUMA pSeries Modules linked in: nfs(N) lockd(N) nfs_acl(N) sunrpc(N) ipv6(N) fuse(N) loop(N) dm_mod(N) sg(N) ibmveth(N) sd_mod(N) crc_t10dif(N) ibmvscsic(N) scsi_transport_srp(N) scsi_tgt(N) scsi_mod(N) Supported: No NIP: c000000000038d60 LR: c00000000003945c CTR: c0000000000393f0 REGS: c000000077e7b830 TRAP: 0300 Tainted: G (2.6.27.5-bz50170-2-ppc64) MSR: 8000000000009032 <EE,ME,IR,DR> CR: 44000448 XER: 20000001 DAR: c000002000af90a8, DSISR: 0000000040000000 TASK = c00000007c1b8600[4019] 'hugemmap01' THREAD: c000000077e78000 CPU: 6 GPR00: 0000001fffffffe0 c000000077e7bab0 c0000000009a4e78 0000000000000000 GPR04: 0000000000010000 0000000000000001 00000000ffffffff 0000000000000001 GPR08: 0000000000000000 c000000000af90c8 0000000000000001 0000000000000000 GPR12: 000000000000003f c000000000a73880 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000010000 GPR20: 0000000000000000 0000000000000003 0000000000010000 0000000000000001 GPR24: 0000000000000003 0000000000000000 0000000000000001 ffffffffffffffb5 GPR28: c000000077ca2e80 0000000000000000 c00000000092af78 0000000000010000 NIP [c000000000038d60] .slice_get_unmapped_area+0x6c/0x4e0 LR [c00000000003945c] .hugetlb_get_unmapped_area+0x6c/0x80 Call Trace: [c000000077e7bbc0] [c00000000003945c] .hugetlb_get_unmapped_area+0x6c/0x80 [c000000077e7bc30] [c000000000107e30] .get_unmapped_area+0x64/0xd8 [c000000077e7bcb0] [c00000000010b140] .do_mmap_pgoff+0x140/0x420 [c000000077e7bd80] [c00000000000bf5c] .sys_mmap+0xc4/0x140 [c000000077e7be30] [c0000000000086b4] syscall_exit+0x0/0x40 Instruction dump: fac1ffb0 fae1ffb8 fb01ffc0 fb21ffc8 fb41ffd0 fb61ffd8 fb81ffe0 fbc1fff0 fbe1fff8 f821fef1 f8c10158 f8e10160 <7d49002e> f9010168 e92d01b0 eb4902b0 Signed-off-by: Brian King <brking@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-12-04 12:07:54 +08:00
powerpc/mm/slice: Fix hugepage allocation at hint address on 8xx On the 8xx, the page size is set in the PMD entry and applies to all pages of the page table pointed by the said PMD entry. When an app has some regular pages allocated (e.g. see below) and tries to mmap() a huge page at a hint address covered by the same PMD entry, the kernel accepts the hint allthough the 8xx cannot handle different page sizes in the same PMD entry. 10000000-10001000 r-xp 00000000 00:0f 2597 /root/malloc 10010000-10011000 rwxp 00000000 00:0f 2597 /root/malloc mmap(0x10080000, 524288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS|0x40000, -1, 0) = 0x10080000 This results the app remaining forever in do_page_fault()/hugetlb_fault() and when interrupting that app, we get the following warning: [162980.035629] WARNING: CPU: 0 PID: 2777 at arch/powerpc/mm/hugetlbpage.c:354 hugetlb_free_pgd_range+0xc8/0x1e4 [162980.035699] CPU: 0 PID: 2777 Comm: malloc Tainted: G W 4.14.6 #85 [162980.035744] task: c67e2c00 task.stack: c668e000 [162980.035783] NIP: c000fe18 LR: c00e1eec CTR: c00f90c0 [162980.035830] REGS: c668fc20 TRAP: 0700 Tainted: G W (4.14.6) [162980.035854] MSR: 00029032 <EE,ME,IR,DR,RI> CR: 24044224 XER: 20000000 [162980.036003] [162980.036003] GPR00: c00e1eec c668fcd0 c67e2c00 00000010 c6869410 10080000 00000000 77fb4000 [162980.036003] GPR08: ffff0001 0683c001 00000000 ffffff80 44028228 10018a34 00004008 418004fc [162980.036003] GPR16: c668e000 00040100 c668e000 c06c0000 c668fe78 c668e000 c6835ba0 c668fd48 [162980.036003] GPR24: 00000000 73ffffff 74000000 00000001 77fb4000 100fffff 10100000 10100000 [162980.036743] NIP [c000fe18] hugetlb_free_pgd_range+0xc8/0x1e4 [162980.036839] LR [c00e1eec] free_pgtables+0x12c/0x150 [162980.036861] Call Trace: [162980.036939] [c668fcd0] [c00f0774] unlink_anon_vmas+0x1c4/0x214 (unreliable) [162980.037040] [c668fd10] [c00e1eec] free_pgtables+0x12c/0x150 [162980.037118] [c668fd40] [c00eabac] exit_mmap+0xe8/0x1b4 [162980.037210] [c668fda0] [c0019710] mmput.part.9+0x20/0xd8 [162980.037301] [c668fdb0] [c001ecb0] do_exit+0x1f0/0x93c [162980.037386] [c668fe00] [c001f478] do_group_exit+0x40/0xcc [162980.037479] [c668fe10] [c002a76c] get_signal+0x47c/0x614 [162980.037570] [c668fe70] [c0007840] do_signal+0x54/0x244 [162980.037654] [c668ff30] [c0007ae8] do_notify_resume+0x34/0x88 [162980.037744] [c668ff40] [c000dae8] do_user_signal+0x74/0xc4 [162980.037781] Instruction dump: [162980.037821] 7fdff378 81370000 54a3463a 80890020 7d24182e 7c841a14 712a0004 4082ff94 [162980.038014] 2f890000 419e0010 712a0ff0 408200e0 <0fe00000> 54a9000a 7f984840 419d0094 [162980.038216] ---[ end trace c0ceeca8e7a5800a ]--- [162980.038754] BUG: non-zero nr_ptes on freeing mm: 1 [162985.363322] BUG: non-zero nr_ptes on freeing mm: -1 In order to fix this, this patch uses the address space "slices" implemented for BOOK3S/64 and enhanced to support PPC32 by the preceding patch. This patch modifies the context.id on the 8xx to be in the range [1:16] instead of [0:15] in order to identify context.id == 0 as not initialised contexts as done on BOOK3S This patch activates CONFIG_PPC_MM_SLICES when CONFIG_HUGETLB_PAGE is selected for the 8xx Alltough we could in theory have as many slices as PMD entries, the current slices implementation limits the number of low slices to 16. This limitation is not preventing us to fix the initial issue allthough it is suboptimal. It will be cured in a subsequent patch. Fixes: 4b91428699477 ("powerpc/8xx: Implement support of hugepages") Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-02-22 22:27:26 +08:00
#ifdef CONFIG_PPC_RADIX_MMU
if (radix_enabled())
return radix__hugetlb_get_unmapped_area(file, addr, len,
pgoff, flags);
powerpc/mm/slice: Fix hugepage allocation at hint address on 8xx On the 8xx, the page size is set in the PMD entry and applies to all pages of the page table pointed by the said PMD entry. When an app has some regular pages allocated (e.g. see below) and tries to mmap() a huge page at a hint address covered by the same PMD entry, the kernel accepts the hint allthough the 8xx cannot handle different page sizes in the same PMD entry. 10000000-10001000 r-xp 00000000 00:0f 2597 /root/malloc 10010000-10011000 rwxp 00000000 00:0f 2597 /root/malloc mmap(0x10080000, 524288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS|0x40000, -1, 0) = 0x10080000 This results the app remaining forever in do_page_fault()/hugetlb_fault() and when interrupting that app, we get the following warning: [162980.035629] WARNING: CPU: 0 PID: 2777 at arch/powerpc/mm/hugetlbpage.c:354 hugetlb_free_pgd_range+0xc8/0x1e4 [162980.035699] CPU: 0 PID: 2777 Comm: malloc Tainted: G W 4.14.6 #85 [162980.035744] task: c67e2c00 task.stack: c668e000 [162980.035783] NIP: c000fe18 LR: c00e1eec CTR: c00f90c0 [162980.035830] REGS: c668fc20 TRAP: 0700 Tainted: G W (4.14.6) [162980.035854] MSR: 00029032 <EE,ME,IR,DR,RI> CR: 24044224 XER: 20000000 [162980.036003] [162980.036003] GPR00: c00e1eec c668fcd0 c67e2c00 00000010 c6869410 10080000 00000000 77fb4000 [162980.036003] GPR08: ffff0001 0683c001 00000000 ffffff80 44028228 10018a34 00004008 418004fc [162980.036003] GPR16: c668e000 00040100 c668e000 c06c0000 c668fe78 c668e000 c6835ba0 c668fd48 [162980.036003] GPR24: 00000000 73ffffff 74000000 00000001 77fb4000 100fffff 10100000 10100000 [162980.036743] NIP [c000fe18] hugetlb_free_pgd_range+0xc8/0x1e4 [162980.036839] LR [c00e1eec] free_pgtables+0x12c/0x150 [162980.036861] Call Trace: [162980.036939] [c668fcd0] [c00f0774] unlink_anon_vmas+0x1c4/0x214 (unreliable) [162980.037040] [c668fd10] [c00e1eec] free_pgtables+0x12c/0x150 [162980.037118] [c668fd40] [c00eabac] exit_mmap+0xe8/0x1b4 [162980.037210] [c668fda0] [c0019710] mmput.part.9+0x20/0xd8 [162980.037301] [c668fdb0] [c001ecb0] do_exit+0x1f0/0x93c [162980.037386] [c668fe00] [c001f478] do_group_exit+0x40/0xcc [162980.037479] [c668fe10] [c002a76c] get_signal+0x47c/0x614 [162980.037570] [c668fe70] [c0007840] do_signal+0x54/0x244 [162980.037654] [c668ff30] [c0007ae8] do_notify_resume+0x34/0x88 [162980.037744] [c668ff40] [c000dae8] do_user_signal+0x74/0xc4 [162980.037781] Instruction dump: [162980.037821] 7fdff378 81370000 54a3463a 80890020 7d24182e 7c841a14 712a0004 4082ff94 [162980.038014] 2f890000 419e0010 712a0ff0 408200e0 <0fe00000> 54a9000a 7f984840 419d0094 [162980.038216] ---[ end trace c0ceeca8e7a5800a ]--- [162980.038754] BUG: non-zero nr_ptes on freeing mm: 1 [162985.363322] BUG: non-zero nr_ptes on freeing mm: -1 In order to fix this, this patch uses the address space "slices" implemented for BOOK3S/64 and enhanced to support PPC32 by the preceding patch. This patch modifies the context.id on the 8xx to be in the range [1:16] instead of [0:15] in order to identify context.id == 0 as not initialised contexts as done on BOOK3S This patch activates CONFIG_PPC_MM_SLICES when CONFIG_HUGETLB_PAGE is selected for the 8xx Alltough we could in theory have as many slices as PMD entries, the current slices implementation limits the number of low slices to 16. This limitation is not preventing us to fix the initial issue allthough it is suboptimal. It will be cured in a subsequent patch. Fixes: 4b91428699477 ("powerpc/8xx: Implement support of hugepages") Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-02-22 22:27:26 +08:00
#endif
return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
}
#endif
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
/* With radix we don't use slice, so derive it from vma*/
if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
return 1UL << mmu_psize_to_shift(psize);
}
mm, powerpc: use vma_kernel_pagesize() in vma_mmu_pagesize() Patch series "mm, smaps: MMUPageSize for device-dax", v3. Similar to commit 31383c6865a5 ("mm, hugetlbfs: introduce ->split() to vm_operations_struct") here is another occasion where we want special-case hugetlbfs/hstate enabling to also apply to device-dax. This prompts the question what other hstate conversions we might do beyond ->split() and ->pagesize(), but this appears to be the last of the usages of hstate_vma() in generic/non-hugetlbfs specific code paths. This patch (of 3): The current powerpc definition of vma_mmu_pagesize() open codes looking up the page size via hstate. It is identical to the generic vma_kernel_pagesize() implementation. Now, vma_kernel_pagesize() is growing support for determining the page size of Device-DAX vmas in addition to the existing Hugetlbfs page size determination. Ideally, if the powerpc vma_mmu_pagesize() used vma_kernel_pagesize() it would automatically benefit from any new vma-type support that is added to vma_kernel_pagesize(). However, the powerpc vma_mmu_pagesize() is prevented from calling vma_kernel_pagesize() due to a circular header dependency that requires vma_mmu_pagesize() to be defined before including <linux/hugetlb.h>. Break this circular dependency by defining the default vma_mmu_pagesize() as a __weak symbol to be overridden by the powerpc version. Link: http://lkml.kernel.org/r/151996254179.27922.2213728278535578744.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Jane Chu <jane.chu@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06 07:24:21 +08:00
return vma_kernel_pagesize(vma);
}
static int __init add_huge_page_size(unsigned long long size)
{
int shift = __ffs(size);
int mmu_psize;
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-27 03:24:31 +08:00
/* Check that it is a page size supported by the hardware and
* that it fits within pagetable and slice limits. */
if (size <= PAGE_SIZE || !is_power_of_2(size))
return -EINVAL;
powerpc/mm: Fix crashes with hugepages & 4K pages The recent commit to cleanup ifdefs in the hugepage initialisation led to crashes when using 4K pages as reported by Sachin: BUG: Kernel NULL pointer dereference at 0x0000001c Faulting instruction address: 0xc000000001d1e58c Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=4K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries ... CPU: 3 PID: 4635 Comm: futex_wake04 Tainted: G W O 5.1.0-next-20190507-autotest #1 NIP: c000000001d1e58c LR: c000000001d1e54c CTR: 0000000000000000 REGS: c000000004937890 TRAP: 0300 MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 22424822 XER: 00000000 CFAR: c00000000183e9e0 DAR: 000000000000001c DSISR: 40000000 IRQMASK: 0 ... NIP kmem_cache_alloc+0xbc/0x5a0 LR kmem_cache_alloc+0x7c/0x5a0 Call Trace: huge_pte_alloc+0x580/0x950 hugetlb_fault+0x9a0/0x1250 handle_mm_fault+0x490/0x4a0 __do_page_fault+0x77c/0x1f00 do_page_fault+0x28/0x50 handle_page_fault+0x18/0x38 This is caused by us trying to allocate from a NULL kmem cache in __hugepte_alloc(). The kmem cache is NULL because it was never allocated in hugetlbpage_init(), because add_huge_page_size() returned an error. The reason add_huge_page_size() returned an error is a simple typo, we are calling check_and_get_huge_psize(size) when we should be passing shift instead. The fact that we're able to trigger this path when the kmem caches are NULL is a separate bug, ie. we should not advertise any hugepage sizes if we haven't setup the required caches for them. This was only seen with 4K pages, with 64K pages we don't need to allocate any extra kmem caches because the 16M hugepage just occupies a single entry at the PMD level. Fixes: 723f268f19da ("powerpc/mm: cleanup ifdef mess in add_huge_page_size()") Reported-by: Sachin Sant <sachinp@linux.ibm.com> Tested-by: Sachin Sant <sachinp@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
2019-05-14 21:00:58 +08:00
mmu_psize = check_and_get_huge_psize(shift);
if (mmu_psize < 0)
return -EINVAL;
BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
/* Return if huge page size has already been setup */
if (size_to_hstate(size))
return 0;
hugetlb_add_hstate(shift - PAGE_SHIFT);
return 0;
}
static int __init hugepage_setup_sz(char *str)
{
unsigned long long size;
size = memparse(str, &str);
if (add_huge_page_size(size) != 0) {
hugetlb_bad_size();
pr_err("Invalid huge page size specified(%llu)\n", size);
}
return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);
static int __init hugetlbpage_init(void)
{
int psize;
if (hugetlb_disabled) {
pr_info("HugeTLB support is disabled!\n");
return 0;
}
if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
!mmu_has_feature(MMU_FTR_16M_PAGE))
return -ENODEV;
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
unsigned shift;
unsigned pdshift;
if (!mmu_psize_defs[psize].shift)
continue;
shift = mmu_psize_to_shift(psize);
#ifdef CONFIG_PPC_BOOK3S_64
if (shift > PGDIR_SHIFT)
continue;
else if (shift > PUD_SHIFT)
pdshift = PGDIR_SHIFT;
else if (shift > PMD_SHIFT)
pdshift = PUD_SHIFT;
else
pdshift = PMD_SHIFT;
#else
if (shift < PUD_SHIFT)
pdshift = PMD_SHIFT;
else if (shift < PGDIR_SHIFT)
pdshift = PUD_SHIFT;
else
pdshift = PGDIR_SHIFT;
#endif
if (add_huge_page_size(1ULL << shift) < 0)
continue;
/*
* if we have pdshift and shift value same, we don't
* use pgt cache for hugepd.
*/
if (pdshift > shift && IS_ENABLED(CONFIG_PPC_8xx))
pgtable_cache_add(PTE_INDEX_SIZE);
else if (pdshift > shift)
powerpc/mm: fix a warning when a cache is common to PGD and hugepages While implementing TLB miss HW assistance on the 8xx, the following warning was encountered: [ 423.732965] WARNING: CPU: 0 PID: 345 at mm/slub.c:2412 ___slab_alloc.constprop.30+0x26c/0x46c [ 423.733033] CPU: 0 PID: 345 Comm: mmap Not tainted 4.18.0-rc8-00664-g2dfff9121c55 #671 [ 423.733075] NIP: c0108f90 LR: c0109ad0 CTR: 00000004 [ 423.733121] REGS: c455bba0 TRAP: 0700 Not tainted (4.18.0-rc8-00664-g2dfff9121c55) [ 423.733147] MSR: 00021032 <ME,IR,DR,RI> CR: 24224848 XER: 20000000 [ 423.733319] [ 423.733319] GPR00: c0109ad0 c455bc50 c4521910 c60053c0 007080c0 c0011b34 c7fa41e0 c455be30 [ 423.733319] GPR08: 00000001 c00103a0 c7fa41e0 c49afcc4 24282842 10018840 c079b37c 00000040 [ 423.733319] GPR16: 73f00000 00210d00 00000000 00000001 c455a000 00000100 00000200 c455a000 [ 423.733319] GPR24: c60053c0 c0011b34 007080c0 c455a000 c455a000 c7fa41e0 00000000 00009032 [ 423.734190] NIP [c0108f90] ___slab_alloc.constprop.30+0x26c/0x46c [ 423.734257] LR [c0109ad0] kmem_cache_alloc+0x210/0x23c [ 423.734283] Call Trace: [ 423.734326] [c455bc50] [00000100] 0x100 (unreliable) [ 423.734430] [c455bcc0] [c0109ad0] kmem_cache_alloc+0x210/0x23c [ 423.734543] [c455bcf0] [c0011b34] huge_pte_alloc+0xc0/0x1dc [ 423.734633] [c455bd20] [c01044dc] hugetlb_fault+0x408/0x48c [ 423.734720] [c455bdb0] [c0104b20] follow_hugetlb_page+0x14c/0x44c [ 423.734826] [c455be10] [c00e8e54] __get_user_pages+0x1c4/0x3dc [ 423.734919] [c455be80] [c00e9924] __mm_populate+0xac/0x140 [ 423.735020] [c455bec0] [c00db14c] vm_mmap_pgoff+0xb4/0xb8 [ 423.735127] [c455bf00] [c00f27c0] ksys_mmap_pgoff+0xcc/0x1fc [ 423.735222] [c455bf40] [c000e0f8] ret_from_syscall+0x0/0x38 [ 423.735271] Instruction dump: [ 423.735321] 7cbf482e 38fd0008 7fa6eb78 7fc4f378 4bfff5dd 7fe3fb78 4bfffe24 81370010 [ 423.735536] 71280004 41a2ff88 4840c571 4bffff80 <0fe00000> 4bfffeb8 81340010 712a0004 [ 423.735757] ---[ end trace e9b222919a470790 ]--- This warning occurs when calling kmem_cache_zalloc() on a cache having a constructor. In this case it happens because PGD cache and 512k hugepte cache are the same size (4k). While a cache with constructor is created for the PGD, hugepages create cache without constructor and uses kmem_cache_zalloc(). As both expect a cache with the same size, the hugepages reuse the cache created for PGD, hence the conflict. In order to avoid this conflict, this patch: - modifies pgtable_cache_add() so that a zeroising constructor is added for any cache size. - replaces calls to kmem_cache_zalloc() by kmem_cache_alloc() Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-11-29 22:07:07 +08:00
pgtable_cache_add(pdshift - shift);
else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) || IS_ENABLED(CONFIG_PPC_8xx))
powerpc/mm: fix a warning when a cache is common to PGD and hugepages While implementing TLB miss HW assistance on the 8xx, the following warning was encountered: [ 423.732965] WARNING: CPU: 0 PID: 345 at mm/slub.c:2412 ___slab_alloc.constprop.30+0x26c/0x46c [ 423.733033] CPU: 0 PID: 345 Comm: mmap Not tainted 4.18.0-rc8-00664-g2dfff9121c55 #671 [ 423.733075] NIP: c0108f90 LR: c0109ad0 CTR: 00000004 [ 423.733121] REGS: c455bba0 TRAP: 0700 Not tainted (4.18.0-rc8-00664-g2dfff9121c55) [ 423.733147] MSR: 00021032 <ME,IR,DR,RI> CR: 24224848 XER: 20000000 [ 423.733319] [ 423.733319] GPR00: c0109ad0 c455bc50 c4521910 c60053c0 007080c0 c0011b34 c7fa41e0 c455be30 [ 423.733319] GPR08: 00000001 c00103a0 c7fa41e0 c49afcc4 24282842 10018840 c079b37c 00000040 [ 423.733319] GPR16: 73f00000 00210d00 00000000 00000001 c455a000 00000100 00000200 c455a000 [ 423.733319] GPR24: c60053c0 c0011b34 007080c0 c455a000 c455a000 c7fa41e0 00000000 00009032 [ 423.734190] NIP [c0108f90] ___slab_alloc.constprop.30+0x26c/0x46c [ 423.734257] LR [c0109ad0] kmem_cache_alloc+0x210/0x23c [ 423.734283] Call Trace: [ 423.734326] [c455bc50] [00000100] 0x100 (unreliable) [ 423.734430] [c455bcc0] [c0109ad0] kmem_cache_alloc+0x210/0x23c [ 423.734543] [c455bcf0] [c0011b34] huge_pte_alloc+0xc0/0x1dc [ 423.734633] [c455bd20] [c01044dc] hugetlb_fault+0x408/0x48c [ 423.734720] [c455bdb0] [c0104b20] follow_hugetlb_page+0x14c/0x44c [ 423.734826] [c455be10] [c00e8e54] __get_user_pages+0x1c4/0x3dc [ 423.734919] [c455be80] [c00e9924] __mm_populate+0xac/0x140 [ 423.735020] [c455bec0] [c00db14c] vm_mmap_pgoff+0xb4/0xb8 [ 423.735127] [c455bf00] [c00f27c0] ksys_mmap_pgoff+0xcc/0x1fc [ 423.735222] [c455bf40] [c000e0f8] ret_from_syscall+0x0/0x38 [ 423.735271] Instruction dump: [ 423.735321] 7cbf482e 38fd0008 7fa6eb78 7fc4f378 4bfff5dd 7fe3fb78 4bfffe24 81370010 [ 423.735536] 71280004 41a2ff88 4840c571 4bffff80 <0fe00000> 4bfffeb8 81340010 712a0004 [ 423.735757] ---[ end trace e9b222919a470790 ]--- This warning occurs when calling kmem_cache_zalloc() on a cache having a constructor. In this case it happens because PGD cache and 512k hugepte cache are the same size (4k). While a cache with constructor is created for the PGD, hugepages create cache without constructor and uses kmem_cache_zalloc(). As both expect a cache with the same size, the hugepages reuse the cache created for PGD, hence the conflict. In order to avoid this conflict, this patch: - modifies pgtable_cache_add() so that a zeroising constructor is added for any cache size. - replaces calls to kmem_cache_zalloc() by kmem_cache_alloc() Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-11-29 22:07:07 +08:00
pgtable_cache_add(PTE_T_ORDER);
}
if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
hugetlbpage_init_default();
return 0;
}
arch_initcall(hugetlbpage_init);
void flush_dcache_icache_hugepage(struct page *page)
{
int i;
void *start;
BUG_ON(!PageCompound(page));
for (i = 0; i < (1UL << compound_order(page)); i++) {
if (!PageHighMem(page)) {
__flush_dcache_icache(page_address(page+i));
} else {
start = kmap_atomic(page+i);
__flush_dcache_icache(start);
kunmap_atomic(start);
}
}
}
static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
unsigned long end, int write, struct page **pages, int *nr)
{
unsigned long pte_end;
mm: drop tail page refcounting Tail page refcounting is utterly complicated and painful to support. It uses ->_mapcount on tail pages to store how many times this page is pinned. get_page() bumps ->_mapcount on tail page in addition to ->_count on head. This information is required by split_huge_page() to be able to distribute pins from head of compound page to tails during the split. We will need ->_mapcount to account PTE mappings of subpages of the compound page. We eliminate need in current meaning of ->_mapcount in tail pages by forbidding split entirely if the page is pinned. The only user of tail page refcounting is THP which is marked BROKEN for now. Let's drop all this mess. It makes get_page() and put_page() much simpler. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:52:56 +08:00
struct page *head, *page;
pte_t pte;
int refs;
pte_end = (addr + sz) & ~(sz-1);
if (pte_end < end)
end = pte_end;
pte = READ_ONCE(*ptep);
if (!pte_access_permitted(pte, write))
return 0;
/* hugepages are never "special" */
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
refs = 0;
head = pte_page(pte);
page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
do {
VM_BUG_ON(compound_head(page) != head);
pages[*nr] = page;
(*nr)++;
page++;
refs++;
} while (addr += PAGE_SIZE, addr != end);
if (!page_cache_add_speculative(head, refs)) {
*nr -= refs;
return 0;
}
if (unlikely(pte_val(pte) != pte_val(*ptep))) {
/* Could be optimized better */
*nr -= refs;
while (refs--)
put_page(head);
return 0;
}
return 1;
}
int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned int pdshift,
unsigned long end, int write, struct page **pages, int *nr)
{
pte_t *ptep;
unsigned long sz = 1UL << hugepd_shift(hugepd);
unsigned long next;
ptep = hugepte_offset(hugepd, addr, pdshift);
do {
next = hugepte_addr_end(addr, end, sz);
if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
return 0;
} while (ptep++, addr = next, addr != end);
return 1;
}