linux-sg2042/net/tipc/link.c

1931 lines
51 KiB
C
Raw Normal View History

/*
* net/tipc/link.c: TIPC link code
*
* Copyright (c) 1996-2007, 2012-2015, Ericsson AB
* Copyright (c) 2004-2007, 2010-2013, Wind River Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the names of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "core.h"
tipc: clean up handling of message priorities Messages transferred by TIPC are assigned an "importance priority", -an integer value indicating how to treat the message when there is link or destination socket congestion. There is no separate header field for this value. Instead, the message user values have been chosen in ascending order according to perceived importance, so that the message user field can be used for this. This is not a good solution. First, we have many more users than the needed priority levels, so we end up with treating more priority levels than necessary. Second, the user field cannot always accurately reflect the priority of the message. E.g., a message fragment packet should really have the priority of the enveloped user data message, and not the priority of the MSG_FRAGMENTER user. Until now, we have been working around this problem in different ways, but it is now time to implement a consistent way of handling such priorities, although still within the constraint that we cannot allocate any more bits in the regular data message header for this. In this commit, we define a new priority level, TIPC_SYSTEM_IMPORTANCE, that will be the only one used apart from the four (lower) user data levels. All non-data messages map down to this priority. Furthermore, we take some free bits from the MSG_FRAGMENTER header and allocate them to store the priority of the enveloped message. We then adjust the functions msg_importance()/msg_set_importance() so that they read/set the correct header fields depending on user type. This small protocol change is fully compatible, because the code at the receiving end of a link currently reads the importance level only from user data messages, where there is no change. Reviewed-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-14 04:08:11 +08:00
#include "subscr.h"
#include "link.h"
#include "bcast.h"
#include "socket.h"
#include "name_distr.h"
#include "discover.h"
#include "netlink.h"
#include <linux/pkt_sched.h>
/*
* Error message prefixes
*/
static const char *link_co_err = "Link tunneling error, ";
static const char *link_rst_msg = "Resetting link ";
static const char *link_unk_evt = "Unknown link event ";
static const struct nla_policy tipc_nl_link_policy[TIPC_NLA_LINK_MAX + 1] = {
[TIPC_NLA_LINK_UNSPEC] = { .type = NLA_UNSPEC },
[TIPC_NLA_LINK_NAME] = {
.type = NLA_STRING,
.len = TIPC_MAX_LINK_NAME
},
[TIPC_NLA_LINK_MTU] = { .type = NLA_U32 },
[TIPC_NLA_LINK_BROADCAST] = { .type = NLA_FLAG },
[TIPC_NLA_LINK_UP] = { .type = NLA_FLAG },
[TIPC_NLA_LINK_ACTIVE] = { .type = NLA_FLAG },
[TIPC_NLA_LINK_PROP] = { .type = NLA_NESTED },
[TIPC_NLA_LINK_STATS] = { .type = NLA_NESTED },
[TIPC_NLA_LINK_RX] = { .type = NLA_U32 },
[TIPC_NLA_LINK_TX] = { .type = NLA_U32 }
};
/* Properties valid for media, bearar and link */
static const struct nla_policy tipc_nl_prop_policy[TIPC_NLA_PROP_MAX + 1] = {
[TIPC_NLA_PROP_UNSPEC] = { .type = NLA_UNSPEC },
[TIPC_NLA_PROP_PRIO] = { .type = NLA_U32 },
[TIPC_NLA_PROP_TOL] = { .type = NLA_U32 },
[TIPC_NLA_PROP_WIN] = { .type = NLA_U32 }
};
/*
* Interval between NACKs when packets arrive out of order
*/
#define TIPC_NACK_INTV (TIPC_MIN_LINK_WIN * 2)
/*
* Out-of-range value for link session numbers
*/
#define WILDCARD_SESSION 0x10000
/* State value stored in 'failover_pkts'
*/
#define FIRST_FAILOVER 0xffffu
/* Link FSM states and events:
*/
enum {
TIPC_LINK_WORKING,
TIPC_LINK_PROBING,
TIPC_LINK_RESETTING,
TIPC_LINK_ESTABLISHING
};
enum {
PEER_RESET_EVT = RESET_MSG,
ACTIVATE_EVT = ACTIVATE_MSG,
TRAFFIC_EVT, /* Any other valid msg from peer */
SILENCE_EVT /* Peer was silent during last timer interval*/
};
/* Link FSM state checking routines
*/
static int link_working(struct tipc_link *l)
{
return l->state == TIPC_LINK_WORKING;
}
static int link_probing(struct tipc_link *l)
{
return l->state == TIPC_LINK_PROBING;
}
static int link_resetting(struct tipc_link *l)
{
return l->state == TIPC_LINK_RESETTING;
}
static int link_establishing(struct tipc_link *l)
{
return l->state == TIPC_LINK_ESTABLISHING;
}
static int tipc_link_proto_rcv(struct tipc_link *l, struct sk_buff *skb,
struct sk_buff_head *xmitq);
static void tipc_link_build_proto_msg(struct tipc_link *l, int mtyp, bool probe,
u16 rcvgap, int tolerance, int priority,
struct sk_buff_head *xmitq);
static void link_reset_statistics(struct tipc_link *l_ptr);
static void link_print(struct tipc_link *l_ptr, const char *str);
tipc: align tipc function names with common naming practice in the network Rename the following functions, which are shorter and more in line with common naming practice in the network subsystem. tipc_bclink_send_msg->tipc_bclink_xmit tipc_bclink_recv_pkt->tipc_bclink_rcv tipc_disc_recv_msg->tipc_disc_rcv tipc_link_send_proto_msg->tipc_link_proto_xmit link_recv_proto_msg->tipc_link_proto_rcv link_send_sections_long->tipc_link_iovec_long_xmit tipc_link_send_sections_fast->tipc_link_iovec_xmit_fast tipc_link_send_sync->tipc_link_sync_xmit tipc_link_recv_sync->tipc_link_sync_rcv tipc_link_send_buf->__tipc_link_xmit tipc_link_send->tipc_link_xmit tipc_link_send_names->tipc_link_names_xmit tipc_named_recv->tipc_named_rcv tipc_link_recv_bundle->tipc_link_bundle_rcv tipc_link_dup_send_queue->tipc_link_dup_queue_xmit link_send_long_buf->tipc_link_frag_xmit tipc_multicast->tipc_port_mcast_xmit tipc_port_recv_mcast->tipc_port_mcast_rcv tipc_port_reject_sections->tipc_port_iovec_reject tipc_port_recv_proto_msg->tipc_port_proto_rcv tipc_connect->tipc_port_connect __tipc_connect->__tipc_port_connect __tipc_disconnect->__tipc_port_disconnect tipc_disconnect->tipc_port_disconnect tipc_shutdown->tipc_port_shutdown tipc_port_recv_msg->tipc_port_rcv tipc_port_recv_sections->tipc_port_iovec_rcv release->tipc_release accept->tipc_accept bind->tipc_bind get_name->tipc_getname poll->tipc_poll send_msg->tipc_sendmsg send_packet->tipc_send_packet send_stream->tipc_send_stream recv_msg->tipc_recvmsg recv_stream->tipc_recv_stream connect->tipc_connect listen->tipc_listen shutdown->tipc_shutdown setsockopt->tipc_setsockopt getsockopt->tipc_getsockopt Above changes have no impact on current users of the functions. Signed-off-by: Ying Xue <ying.xue@windriver.com> Reviewed-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-18 16:06:46 +08:00
static void tipc_link_sync_rcv(struct tipc_node *n, struct sk_buff *buf);
static int tipc_link_input(struct tipc_link *l, struct sk_buff *skb);
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
static bool tipc_data_input(struct tipc_link *l, struct sk_buff *skb);
/*
* Simple non-static link routines (i.e. referenced outside this file)
*/
int tipc_link_is_up(struct tipc_link *l_ptr)
{
if (!l_ptr)
return 0;
return link_working(l_ptr) || link_probing(l_ptr);
}
int tipc_link_is_active(struct tipc_link *l)
{
struct tipc_node *n = l->owner;
return (node_active_link(n, 0) == l) || (node_active_link(n, 1) == l);
}
/**
* tipc_link_create - create a new link
* @n_ptr: pointer to associated node
* @b_ptr: pointer to associated bearer
* @media_addr: media address to use when sending messages over link
*
* Returns pointer to link.
*/
struct tipc_link *tipc_link_create(struct tipc_node *n_ptr,
tipc: remove 'links' list from tipc_bearer struct In our ongoing effort to simplify the TIPC locking structure, we see a need to remove the linked list for tipc_links in the bearer. This can be explained as follows. Currently, we have three different ways to access a link, via three different lists/tables: 1: Via a node hash table: Used by the time-critical outgoing/incoming data paths. (e.g. link_send_sections_fast() and tipc_recv_msg() ): grab net_lock(read) find node from node hash table grab node_lock select link grab bearer_lock send_msg() release bearer_lock release node lock release net_lock 2: Via a global linked list for nodes: Used by configuration commands (link_cmd_set_value()) grab net_lock(read) find node and link from global node list (using link name) grab node_lock update link release node lock release net_lock (Same locking order as above. No problem.) 3: Via the bearer's linked link list: Used by notifications from interface (e.g. tipc_disable_bearer() ) grab net_lock(write) grab bearer_lock get link ptr from bearer's link list get node from link grab node_lock delete link release node lock release bearer_lock release net_lock (Different order from above, but works because we grab the outer net_lock in write mode first, excluding all other access.) The first major goal in our simplification effort is to get rid of the "big" net_lock, replacing it with rcu-locks when accessing the node list and node hash array. This will come in a later patch series. But to get there we first need to rewrite access methods ##2 and 3, since removal of net_lock would introduce three major problems: a) In access method #2, we access the link before taking the protecting node_lock. This will not work once net_lock is gone, so we will have to change the access order. We will deal with this in a later commit in this series, "tipc: add node lock protection to link found by link_find_link()". b) When the outer protection from net_lock is gone, taking bearer_lock and node_lock in opposite order of method 1) and 2) will become an obvious deadlock hazard. This is fixed in the commit ("tipc: remove bearer_lock from tipc_bearer struct") later in this series. c) Similar to what is described in problem a), access method #3 starts with using a link pointer that is unprotected by node_lock, in order to via that pointer find the correct node struct and lock it. Before we remove net_lock, this access order must be altered. This is what we do with this commit. We can avoid introducing problem problem c) by even here using the global node list to find the node, before accessing its links. When we loop though the node list we use the own bearer identity as search criteria, thus easily finding the links that are associated to the resetting/disabling bearer. It should be noted that although this method is somewhat slower than the current list traversal, it is in no way time critical. This is only about resetting or deleting links, something that must be considered relatively infrequent events. As a bonus, we can get rid of the mutual pointers between links and bearers. After this commit, pointer dependency go in one direction only: from the link to the bearer. This commit pre-empts introduction of problem c) as described above. Signed-off-by: Ying Xue <ying.xue@windriver.com> Reviewed-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-14 06:29:09 +08:00
struct tipc_bearer *b_ptr,
const struct tipc_media_addr *media_addr,
struct sk_buff_head *inputq,
struct sk_buff_head *namedq)
{
struct tipc_net *tn = net_generic(n_ptr->net, tipc_net_id);
struct tipc_link *l_ptr;
struct tipc_msg *msg;
char *if_name;
char addr_string[16];
u32 peer = n_ptr->addr;
if (n_ptr->link_cnt >= MAX_BEARERS) {
tipc_addr_string_fill(addr_string, n_ptr->addr);
pr_err("Cannot establish %uth link to %s. Max %u allowed.\n",
n_ptr->link_cnt, addr_string, MAX_BEARERS);
return NULL;
}
if (n_ptr->links[b_ptr->identity].link) {
tipc_addr_string_fill(addr_string, n_ptr->addr);
pr_err("Attempt to establish second link on <%s> to %s\n",
b_ptr->name, addr_string);
return NULL;
}
l_ptr = kzalloc(sizeof(*l_ptr), GFP_ATOMIC);
if (!l_ptr) {
pr_warn("Link creation failed, no memory\n");
return NULL;
}
l_ptr->addr = peer;
if_name = strchr(b_ptr->name, ':') + 1;
sprintf(l_ptr->name, "%u.%u.%u:%s-%u.%u.%u:unknown",
tipc_zone(tn->own_addr), tipc_cluster(tn->own_addr),
tipc_node(tn->own_addr),
if_name,
tipc_zone(peer), tipc_cluster(peer), tipc_node(peer));
/* note: peer i/f name is updated by reset/activate message */
memcpy(&l_ptr->media_addr, media_addr, sizeof(*media_addr));
l_ptr->owner = n_ptr;
l_ptr->peer_session = WILDCARD_SESSION;
l_ptr->bearer_id = b_ptr->identity;
l_ptr->tolerance = b_ptr->tolerance;
l_ptr->snd_nxt = 1;
l_ptr->rcv_nxt = 1;
l_ptr->state = TIPC_LINK_RESETTING;
l_ptr->pmsg = (struct tipc_msg *)&l_ptr->proto_msg;
msg = l_ptr->pmsg;
2015-02-05 21:36:36 +08:00
tipc_msg_init(tn->own_addr, msg, LINK_PROTOCOL, RESET_MSG, INT_H_SIZE,
l_ptr->addr);
msg_set_size(msg, sizeof(l_ptr->proto_msg));
msg_set_session(msg, (tn->random & 0xffff));
msg_set_bearer_id(msg, b_ptr->identity);
strcpy((char *)msg_data(msg), if_name);
l_ptr->net_plane = b_ptr->net_plane;
l_ptr->advertised_mtu = b_ptr->mtu;
l_ptr->mtu = l_ptr->advertised_mtu;
tipc: clean up handling of message priorities Messages transferred by TIPC are assigned an "importance priority", -an integer value indicating how to treat the message when there is link or destination socket congestion. There is no separate header field for this value. Instead, the message user values have been chosen in ascending order according to perceived importance, so that the message user field can be used for this. This is not a good solution. First, we have many more users than the needed priority levels, so we end up with treating more priority levels than necessary. Second, the user field cannot always accurately reflect the priority of the message. E.g., a message fragment packet should really have the priority of the enveloped user data message, and not the priority of the MSG_FRAGMENTER user. Until now, we have been working around this problem in different ways, but it is now time to implement a consistent way of handling such priorities, although still within the constraint that we cannot allocate any more bits in the regular data message header for this. In this commit, we define a new priority level, TIPC_SYSTEM_IMPORTANCE, that will be the only one used apart from the four (lower) user data levels. All non-data messages map down to this priority. Furthermore, we take some free bits from the MSG_FRAGMENTER header and allocate them to store the priority of the enveloped message. We then adjust the functions msg_importance()/msg_set_importance() so that they read/set the correct header fields depending on user type. This small protocol change is fully compatible, because the code at the receiving end of a link currently reads the importance level only from user data messages, where there is no change. Reviewed-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-14 04:08:11 +08:00
l_ptr->priority = b_ptr->priority;
tipc_link_set_queue_limits(l_ptr, b_ptr->window);
l_ptr->snd_nxt = 1;
__skb_queue_head_init(&l_ptr->transmq);
__skb_queue_head_init(&l_ptr->backlogq);
__skb_queue_head_init(&l_ptr->deferdq);
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
skb_queue_head_init(&l_ptr->wakeupq);
l_ptr->inputq = inputq;
l_ptr->namedq = namedq;
skb_queue_head_init(l_ptr->inputq);
link_reset_statistics(l_ptr);
tipc_node_attach_link(n_ptr, l_ptr);
return l_ptr;
}
/* tipc_link_build_bcast_sync_msg() - synchronize broadcast link endpoints.
*
* Give a newly added peer node the sequence number where it should
* start receiving and acking broadcast packets.
*/
void tipc_link_build_bcast_sync_msg(struct tipc_link *l,
struct sk_buff_head *xmitq)
{
struct sk_buff *skb;
struct sk_buff_head list;
u16 last_sent;
skb = tipc_msg_create(BCAST_PROTOCOL, STATE_MSG, INT_H_SIZE,
0, l->addr, link_own_addr(l), 0, 0, 0);
if (!skb)
return;
last_sent = tipc_bclink_get_last_sent(l->owner->net);
msg_set_last_bcast(buf_msg(skb), last_sent);
__skb_queue_head_init(&list);
__skb_queue_tail(&list, skb);
tipc_link_xmit(l, &list, xmitq);
}
/**
* tipc_link_fsm_evt - link finite state machine
* @l: pointer to link
* @evt: state machine event to be processed
* @xmitq: queue to prepend created protocol message, if any
*/
static int tipc_link_fsm_evt(struct tipc_link *l, int evt,
struct sk_buff_head *xmitq)
{
int rc = 0;
struct tipc_link *pl;
enum {
LINK_RESET = 1,
LINK_ACTIVATE = (1 << 1),
SND_PROBE = (1 << 2),
SND_STATE = (1 << 3),
SND_RESET = (1 << 4),
SND_ACTIVATE = (1 << 5),
SND_BCAST_SYNC = (1 << 6)
} actions = 0;
if (l->exec_mode == TIPC_LINK_BLOCKED)
return rc;
switch (l->state) {
case TIPC_LINK_WORKING:
switch (evt) {
case TRAFFIC_EVT:
case ACTIVATE_EVT:
break;
case SILENCE_EVT:
l->state = TIPC_LINK_PROBING;
actions |= SND_PROBE;
break;
case PEER_RESET_EVT:
actions |= LINK_RESET | SND_ACTIVATE;
break;
default:
pr_debug("%s%u WORKING\n", link_unk_evt, evt);
}
break;
case TIPC_LINK_PROBING:
switch (evt) {
case TRAFFIC_EVT:
case ACTIVATE_EVT:
l->state = TIPC_LINK_WORKING;
break;
case PEER_RESET_EVT:
actions |= LINK_RESET | SND_ACTIVATE;
break;
case SILENCE_EVT:
if (l->silent_intv_cnt <= l->abort_limit) {
actions |= SND_PROBE;
break;
}
actions |= LINK_RESET | SND_RESET;
break;
default:
pr_err("%s%u PROBING\n", link_unk_evt, evt);
}
break;
case TIPC_LINK_RESETTING:
switch (evt) {
case TRAFFIC_EVT:
break;
case ACTIVATE_EVT:
pl = node_active_link(l->owner, 0);
if (pl && link_probing(pl))
break;
l->state = TIPC_LINK_WORKING;
actions |= LINK_ACTIVATE;
if (!l->owner->working_links)
actions |= SND_BCAST_SYNC;
break;
case PEER_RESET_EVT:
l->state = TIPC_LINK_ESTABLISHING;
actions |= SND_ACTIVATE;
break;
case SILENCE_EVT:
actions |= SND_RESET;
break;
default:
pr_err("%s%u in RESETTING\n", link_unk_evt, evt);
}
break;
case TIPC_LINK_ESTABLISHING:
switch (evt) {
case TRAFFIC_EVT:
case ACTIVATE_EVT:
pl = node_active_link(l->owner, 0);
if (pl && link_probing(pl))
break;
l->state = TIPC_LINK_WORKING;
actions |= LINK_ACTIVATE;
if (!l->owner->working_links)
actions |= SND_BCAST_SYNC;
break;
case PEER_RESET_EVT:
break;
case SILENCE_EVT:
actions |= SND_ACTIVATE;
break;
default:
pr_err("%s%u ESTABLISHING\n", link_unk_evt, evt);
}
break;
default:
pr_err("Unknown link state %u/%u\n", l->state, evt);
}
/* Perform actions as decided by FSM */
if (actions & LINK_RESET) {
l->exec_mode = TIPC_LINK_BLOCKED;
rc = TIPC_LINK_DOWN_EVT;
}
if (actions & LINK_ACTIVATE)
rc = TIPC_LINK_UP_EVT;
return rc;
}
/* link_profile_stats - update statistical profiling of traffic
*/
static void link_profile_stats(struct tipc_link *l)
{
struct sk_buff *skb;
struct tipc_msg *msg;
int length;
/* Update counters used in statistical profiling of send traffic */
l->stats.accu_queue_sz += skb_queue_len(&l->transmq);
l->stats.queue_sz_counts++;
skb = skb_peek(&l->transmq);
if (!skb)
return;
msg = buf_msg(skb);
length = msg_size(msg);
if (msg_user(msg) == MSG_FRAGMENTER) {
if (msg_type(msg) != FIRST_FRAGMENT)
return;
length = msg_size(msg_get_wrapped(msg));
}
l->stats.msg_lengths_total += length;
l->stats.msg_length_counts++;
if (length <= 64)
l->stats.msg_length_profile[0]++;
else if (length <= 256)
l->stats.msg_length_profile[1]++;
else if (length <= 1024)
l->stats.msg_length_profile[2]++;
else if (length <= 4096)
l->stats.msg_length_profile[3]++;
else if (length <= 16384)
l->stats.msg_length_profile[4]++;
else if (length <= 32768)
l->stats.msg_length_profile[5]++;
else
l->stats.msg_length_profile[6]++;
}
/* tipc_link_timeout - perform periodic task as instructed from node timeout
*/
int tipc_link_timeout(struct tipc_link *l, struct sk_buff_head *xmitq)
{
int rc = 0;
int mtyp = STATE_MSG;
bool xmit = false;
bool prb = false;
if (l->exec_mode == TIPC_LINK_BLOCKED)
return rc;
link_profile_stats(l);
if (l->state == TIPC_LINK_WORKING) {
if (!l->silent_intv_cnt) {
if (tipc_bclink_acks_missing(l->owner))
xmit = true;
} else if (l->silent_intv_cnt <= l->abort_limit) {
xmit = true;
prb = true;
} else {
l->exec_mode = TIPC_LINK_BLOCKED;
rc |= TIPC_LINK_DOWN_EVT;
}
l->silent_intv_cnt++;
} else if (l->state == TIPC_LINK_RESETTING) {
xmit = true;
mtyp = RESET_MSG;
} else if (l->state == TIPC_LINK_ESTABLISHING) {
xmit = true;
mtyp = ACTIVATE_MSG;
}
if (xmit)
tipc_link_build_proto_msg(l, mtyp, prb, 0, 0, 0, xmitq);
return rc;
}
/**
* link_schedule_user - schedule a message sender for wakeup after congestion
* @link: congested link
* @list: message that was attempted sent
* Create pseudo msg to send back to user when congestion abates
* Does not consume buffer list
*/
static int link_schedule_user(struct tipc_link *link, struct sk_buff_head *list)
{
struct tipc_msg *msg = buf_msg(skb_peek(list));
int imp = msg_importance(msg);
u32 oport = msg_origport(msg);
u32 addr = link_own_addr(link);
struct sk_buff *skb;
/* This really cannot happen... */
if (unlikely(imp > TIPC_CRITICAL_IMPORTANCE)) {
pr_warn("%s<%s>, send queue full", link_rst_msg, link->name);
return -ENOBUFS;
}
/* Non-blocking sender: */
if (TIPC_SKB_CB(skb_peek(list))->wakeup_pending)
return -ELINKCONG;
/* Create and schedule wakeup pseudo message */
skb = tipc_msg_create(SOCK_WAKEUP, 0, INT_H_SIZE, 0,
addr, addr, oport, 0, 0);
if (!skb)
return -ENOBUFS;
TIPC_SKB_CB(skb)->chain_sz = skb_queue_len(list);
TIPC_SKB_CB(skb)->chain_imp = imp;
skb_queue_tail(&link->wakeupq, skb);
link->stats.link_congs++;
return -ELINKCONG;
}
/**
* link_prepare_wakeup - prepare users for wakeup after congestion
* @link: congested link
* Move a number of waiting users, as permitted by available space in
* the send queue, from link wait queue to node wait queue for wakeup
*/
void link_prepare_wakeup(struct tipc_link *l)
{
int pnd[TIPC_SYSTEM_IMPORTANCE + 1] = {0,};
int imp, lim;
struct sk_buff *skb, *tmp;
skb_queue_walk_safe(&l->wakeupq, skb, tmp) {
imp = TIPC_SKB_CB(skb)->chain_imp;
lim = l->window + l->backlog[imp].limit;
pnd[imp] += TIPC_SKB_CB(skb)->chain_sz;
if ((pnd[imp] + l->backlog[imp].len) >= lim)
break;
skb_unlink(skb, &l->wakeupq);
skb_queue_tail(l->inputq, skb);
l->owner->inputq = l->inputq;
l->owner->action_flags |= TIPC_MSG_EVT;
}
}
/**
* tipc_link_reset_fragments - purge link's inbound message fragments queue
* @l_ptr: pointer to link
*/
void tipc_link_reset_fragments(struct tipc_link *l_ptr)
{
kfree_skb(l_ptr->reasm_buf);
l_ptr->reasm_buf = NULL;
}
void tipc_link_purge_backlog(struct tipc_link *l)
{
__skb_queue_purge(&l->backlogq);
l->backlog[TIPC_LOW_IMPORTANCE].len = 0;
l->backlog[TIPC_MEDIUM_IMPORTANCE].len = 0;
l->backlog[TIPC_HIGH_IMPORTANCE].len = 0;
l->backlog[TIPC_CRITICAL_IMPORTANCE].len = 0;
l->backlog[TIPC_SYSTEM_IMPORTANCE].len = 0;
}
/**
* tipc_link_purge_queues - purge all pkt queues associated with link
* @l_ptr: pointer to link
*/
void tipc_link_purge_queues(struct tipc_link *l_ptr)
{
__skb_queue_purge(&l_ptr->deferdq);
__skb_queue_purge(&l_ptr->transmq);
tipc_link_purge_backlog(l_ptr);
tipc_link_reset_fragments(l_ptr);
}
void tipc_link_reset(struct tipc_link *l)
{
struct tipc_node *owner = l->owner;
l->state = TIPC_LINK_RESETTING;
/* Link is down, accept any session */
l->peer_session = WILDCARD_SESSION;
/* If peer is up, it only accepts an incremented session number */
msg_set_session(l->pmsg, msg_session(l->pmsg) + 1);
/* Prepare for renewed mtu size negotiation */
l->mtu = l->advertised_mtu;
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
/* Clean up all queues, except inputq: */
__skb_queue_purge(&l->transmq);
__skb_queue_purge(&l->deferdq);
if (!owner->inputq)
owner->inputq = l->inputq;
skb_queue_splice_init(&l->wakeupq, owner->inputq);
if (!skb_queue_empty(owner->inputq))
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
owner->action_flags |= TIPC_MSG_EVT;
tipc_link_purge_backlog(l);
kfree_skb(l->reasm_buf);
kfree_skb(l->failover_reasm_skb);
l->reasm_buf = NULL;
l->failover_reasm_skb = NULL;
l->rcv_unacked = 0;
l->snd_nxt = 1;
l->rcv_nxt = 1;
l->silent_intv_cnt = 0;
l->stats.recv_info = 0;
l->stale_count = 0;
link_reset_statistics(l);
}
/**
* __tipc_link_xmit(): same as tipc_link_xmit, but destlink is known & locked
* @link: link to use
* @list: chain of buffers containing message
*
* Consumes the buffer chain, except when returning an error code,
* Returns 0 if success, or errno: -ELINKCONG, -EMSGSIZE or -ENOBUFS
* Messages at TIPC_SYSTEM_IMPORTANCE are always accepted
*/
int __tipc_link_xmit(struct net *net, struct tipc_link *link,
struct sk_buff_head *list)
{
struct tipc_msg *msg = buf_msg(skb_peek(list));
unsigned int maxwin = link->window;
tipc: improve link congestion algorithm The link congestion algorithm used until now implies two problems. - It is too generous towards lower-level messages in situations of high load by giving "absolute" bandwidth guarantees to the different priority levels. LOW traffic is guaranteed 10%, MEDIUM is guaranted 20%, HIGH is guaranteed 30%, and CRITICAL is guaranteed 40% of the available bandwidth. But, in the absence of higher level traffic, the ratio between two distinct levels becomes unreasonable. E.g. if there is only LOW and MEDIUM traffic on a system, the former is guaranteed 1/3 of the bandwidth, and the latter 2/3. This again means that if there is e.g. one LOW user and 10 MEDIUM users, the former will have 33.3% of the bandwidth, and the others will have to compete for the remainder, i.e. each will end up with 6.7% of the capacity. - Packets of type MSG_BUNDLER are created at SYSTEM importance level, but only after the packets bundled into it have passed the congestion test for their own respective levels. Since bundled packets don't result in incrementing the level counter for their own importance, only occasionally for the SYSTEM level counter, they do in practice obtain SYSTEM level importance. Hence, the current implementation provides a gap in the congestion algorithm that in the worst case may lead to a link reset. We now refine the congestion algorithm as follows: - A message is accepted to the link backlog only if its own level counter, and all superior level counters, permit it. - The importance of a created bundle packet is set according to its contents. A bundle packet created from messges at levels LOW to CRITICAL is given importance level CRITICAL, while a bundle created from a SYSTEM level message is given importance SYSTEM. In the latter case only subsequent SYSTEM level messages are allowed to be bundled into it. This solves the first problem described above, by making the bandwidth guarantee relative to the total number of users at all levels; only the upper limit for each level remains absolute. In the example described above, the single LOW user would use 1/11th of the bandwidth, the same as each of the ten MEDIUM users, but he still has the same guarantee against starvation as the latter ones. The fix also solves the second problem. If the CRITICAL level is filled up by bundle packets of that level, no lower level packets will be accepted any more. Suggested-by: Gergely Kiss <gergely.kiss@ericsson.com> Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-14 22:46:17 +08:00
unsigned int i, imp = msg_importance(msg);
uint mtu = link->mtu;
u16 ack = mod(link->rcv_nxt - 1);
u16 seqno = link->snd_nxt;
u16 bc_last_in = link->owner->bclink.last_in;
struct tipc_media_addr *addr = &link->media_addr;
struct sk_buff_head *transmq = &link->transmq;
struct sk_buff_head *backlogq = &link->backlogq;
struct sk_buff *skb, *bskb;
tipc: improve link congestion algorithm The link congestion algorithm used until now implies two problems. - It is too generous towards lower-level messages in situations of high load by giving "absolute" bandwidth guarantees to the different priority levels. LOW traffic is guaranteed 10%, MEDIUM is guaranted 20%, HIGH is guaranteed 30%, and CRITICAL is guaranteed 40% of the available bandwidth. But, in the absence of higher level traffic, the ratio between two distinct levels becomes unreasonable. E.g. if there is only LOW and MEDIUM traffic on a system, the former is guaranteed 1/3 of the bandwidth, and the latter 2/3. This again means that if there is e.g. one LOW user and 10 MEDIUM users, the former will have 33.3% of the bandwidth, and the others will have to compete for the remainder, i.e. each will end up with 6.7% of the capacity. - Packets of type MSG_BUNDLER are created at SYSTEM importance level, but only after the packets bundled into it have passed the congestion test for their own respective levels. Since bundled packets don't result in incrementing the level counter for their own importance, only occasionally for the SYSTEM level counter, they do in practice obtain SYSTEM level importance. Hence, the current implementation provides a gap in the congestion algorithm that in the worst case may lead to a link reset. We now refine the congestion algorithm as follows: - A message is accepted to the link backlog only if its own level counter, and all superior level counters, permit it. - The importance of a created bundle packet is set according to its contents. A bundle packet created from messges at levels LOW to CRITICAL is given importance level CRITICAL, while a bundle created from a SYSTEM level message is given importance SYSTEM. In the latter case only subsequent SYSTEM level messages are allowed to be bundled into it. This solves the first problem described above, by making the bandwidth guarantee relative to the total number of users at all levels; only the upper limit for each level remains absolute. In the example described above, the single LOW user would use 1/11th of the bandwidth, the same as each of the ten MEDIUM users, but he still has the same guarantee against starvation as the latter ones. The fix also solves the second problem. If the CRITICAL level is filled up by bundle packets of that level, no lower level packets will be accepted any more. Suggested-by: Gergely Kiss <gergely.kiss@ericsson.com> Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-14 22:46:17 +08:00
/* Match msg importance against this and all higher backlog limits: */
for (i = imp; i <= TIPC_SYSTEM_IMPORTANCE; i++) {
if (unlikely(link->backlog[i].len >= link->backlog[i].limit))
return link_schedule_user(link, list);
}
if (unlikely(msg_size(msg) > mtu))
return -EMSGSIZE;
/* Prepare each packet for sending, and add to relevant queue: */
while (skb_queue_len(list)) {
skb = skb_peek(list);
msg = buf_msg(skb);
msg_set_seqno(msg, seqno);
msg_set_ack(msg, ack);
msg_set_bcast_ack(msg, bc_last_in);
if (likely(skb_queue_len(transmq) < maxwin)) {
__skb_dequeue(list);
__skb_queue_tail(transmq, skb);
tipc_bearer_send(net, link->bearer_id, skb, addr);
link->rcv_unacked = 0;
seqno++;
continue;
}
if (tipc_msg_bundle(skb_peek_tail(backlogq), msg, mtu)) {
kfree_skb(__skb_dequeue(list));
link->stats.sent_bundled++;
continue;
}
if (tipc_msg_make_bundle(&bskb, msg, mtu, link->addr)) {
kfree_skb(__skb_dequeue(list));
__skb_queue_tail(backlogq, bskb);
link->backlog[msg_importance(buf_msg(bskb))].len++;
link->stats.sent_bundled++;
link->stats.sent_bundles++;
continue;
}
link->backlog[imp].len += skb_queue_len(list);
skb_queue_splice_tail_init(list, backlogq);
}
link->snd_nxt = seqno;
return 0;
}
/**
* tipc_link_xmit(): enqueue buffer list according to queue situation
* @link: link to use
* @list: chain of buffers containing message
* @xmitq: returned list of packets to be sent by caller
*
* Consumes the buffer chain, except when returning -ELINKCONG,
* since the caller then may want to make more send attempts.
* Returns 0 if success, or errno: -ELINKCONG, -EMSGSIZE or -ENOBUFS
* Messages at TIPC_SYSTEM_IMPORTANCE are always accepted
*/
int tipc_link_xmit(struct tipc_link *l, struct sk_buff_head *list,
struct sk_buff_head *xmitq)
{
struct tipc_msg *hdr = buf_msg(skb_peek(list));
unsigned int maxwin = l->window;
unsigned int i, imp = msg_importance(hdr);
unsigned int mtu = l->mtu;
u16 ack = l->rcv_nxt - 1;
u16 seqno = l->snd_nxt;
u16 bc_last_in = l->owner->bclink.last_in;
struct sk_buff_head *transmq = &l->transmq;
struct sk_buff_head *backlogq = &l->backlogq;
struct sk_buff *skb, *_skb, *bskb;
/* Match msg importance against this and all higher backlog limits: */
for (i = imp; i <= TIPC_SYSTEM_IMPORTANCE; i++) {
if (unlikely(l->backlog[i].len >= l->backlog[i].limit))
return link_schedule_user(l, list);
}
if (unlikely(msg_size(hdr) > mtu))
return -EMSGSIZE;
/* Prepare each packet for sending, and add to relevant queue: */
while (skb_queue_len(list)) {
skb = skb_peek(list);
hdr = buf_msg(skb);
msg_set_seqno(hdr, seqno);
msg_set_ack(hdr, ack);
msg_set_bcast_ack(hdr, bc_last_in);
if (likely(skb_queue_len(transmq) < maxwin)) {
_skb = skb_clone(skb, GFP_ATOMIC);
if (!_skb)
return -ENOBUFS;
__skb_dequeue(list);
__skb_queue_tail(transmq, skb);
__skb_queue_tail(xmitq, _skb);
l->rcv_unacked = 0;
seqno++;
continue;
}
if (tipc_msg_bundle(skb_peek_tail(backlogq), hdr, mtu)) {
kfree_skb(__skb_dequeue(list));
l->stats.sent_bundled++;
continue;
}
if (tipc_msg_make_bundle(&bskb, hdr, mtu, l->addr)) {
kfree_skb(__skb_dequeue(list));
__skb_queue_tail(backlogq, bskb);
l->backlog[msg_importance(buf_msg(bskb))].len++;
l->stats.sent_bundled++;
l->stats.sent_bundles++;
continue;
}
l->backlog[imp].len += skb_queue_len(list);
skb_queue_splice_tail_init(list, backlogq);
}
l->snd_nxt = seqno;
return 0;
}
tipc: introduce message to synchronize broadcast link Upon establishing a first link between two nodes, there is currently a risk that the two endpoints will disagree on exactly which sequence number reception and acknowleding of broadcast packets should start. The following scenarios may happen: 1: Node A sends an ACTIVATE message to B, telling it to start acking packets from sequence number N. 2: Node A sends out broadcast N, but does not expect an acknowledge from B, since B is not yet in its broadcast receiver's list. 3: Node A receives ACK for N from all nodes except B, and releases packet N. 4: Node B receives the ACTIVATE, activates its link endpoint, and stores the value N as sequence number of first expected packet. 5: Node B sends a NAME_DISTR message to A. 6: Node A receives the NAME_DISTR message, and activates its endpoint. At this moment B is added to A's broadcast receiver's set. Node A also sets sequence number 0 as the first broadcast packet to be received from B. 7: Node A sends broadcast N+1. 8: B receives N+1, determines there is a gap in the sequence, since it is expecting N, and sends a NACK for N back to A. 9: Node A has already released N, so no retransmission is possible. The broadcast link in direction A->B is stale. In addition to, or instead of, 7-9 above, the following may happen: 10: Node B sends broadcast M > 0 to A. 11: Node A receives M, falsely decides there must be a gap, since it is expecting packet 0, and asks for retransmission of packets [0,M-1]. 12: Node B has already released these packets, so the broadcast link is stale in direction B->A. We solve this problem by introducing a new unicast message type, BCAST_PROTOCOL/STATE, to convey the sequence number of the next sent broadcast packet to the other endpoint, at exactly the moment that endpoint is added to the own node's broadcast receivers list, and before any other unicast messages are permitted to be sent. Furthermore, we don't allow any node to start receiving and processing broadcast packets until this new synchronization message has been received. To maintain backwards compatibility, we still open up for broadcast reception if we receive a NAME_DISTR message without any preceding broadcast sync message. In this case, we must assume that the other end has an older code version, and will never send out the new synchronization message. Hence, for mixed old and new nodes, the issue arising in 7-12 of the above may happen with the same probability as before. Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-11-16 13:51:31 +08:00
/*
tipc: align tipc function names with common naming practice in the network Rename the following functions, which are shorter and more in line with common naming practice in the network subsystem. tipc_bclink_send_msg->tipc_bclink_xmit tipc_bclink_recv_pkt->tipc_bclink_rcv tipc_disc_recv_msg->tipc_disc_rcv tipc_link_send_proto_msg->tipc_link_proto_xmit link_recv_proto_msg->tipc_link_proto_rcv link_send_sections_long->tipc_link_iovec_long_xmit tipc_link_send_sections_fast->tipc_link_iovec_xmit_fast tipc_link_send_sync->tipc_link_sync_xmit tipc_link_recv_sync->tipc_link_sync_rcv tipc_link_send_buf->__tipc_link_xmit tipc_link_send->tipc_link_xmit tipc_link_send_names->tipc_link_names_xmit tipc_named_recv->tipc_named_rcv tipc_link_recv_bundle->tipc_link_bundle_rcv tipc_link_dup_send_queue->tipc_link_dup_queue_xmit link_send_long_buf->tipc_link_frag_xmit tipc_multicast->tipc_port_mcast_xmit tipc_port_recv_mcast->tipc_port_mcast_rcv tipc_port_reject_sections->tipc_port_iovec_reject tipc_port_recv_proto_msg->tipc_port_proto_rcv tipc_connect->tipc_port_connect __tipc_connect->__tipc_port_connect __tipc_disconnect->__tipc_port_disconnect tipc_disconnect->tipc_port_disconnect tipc_shutdown->tipc_port_shutdown tipc_port_recv_msg->tipc_port_rcv tipc_port_recv_sections->tipc_port_iovec_rcv release->tipc_release accept->tipc_accept bind->tipc_bind get_name->tipc_getname poll->tipc_poll send_msg->tipc_sendmsg send_packet->tipc_send_packet send_stream->tipc_send_stream recv_msg->tipc_recvmsg recv_stream->tipc_recv_stream connect->tipc_connect listen->tipc_listen shutdown->tipc_shutdown setsockopt->tipc_setsockopt getsockopt->tipc_getsockopt Above changes have no impact on current users of the functions. Signed-off-by: Ying Xue <ying.xue@windriver.com> Reviewed-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-18 16:06:46 +08:00
* tipc_link_sync_rcv - synchronize broadcast link endpoints.
tipc: introduce message to synchronize broadcast link Upon establishing a first link between two nodes, there is currently a risk that the two endpoints will disagree on exactly which sequence number reception and acknowleding of broadcast packets should start. The following scenarios may happen: 1: Node A sends an ACTIVATE message to B, telling it to start acking packets from sequence number N. 2: Node A sends out broadcast N, but does not expect an acknowledge from B, since B is not yet in its broadcast receiver's list. 3: Node A receives ACK for N from all nodes except B, and releases packet N. 4: Node B receives the ACTIVATE, activates its link endpoint, and stores the value N as sequence number of first expected packet. 5: Node B sends a NAME_DISTR message to A. 6: Node A receives the NAME_DISTR message, and activates its endpoint. At this moment B is added to A's broadcast receiver's set. Node A also sets sequence number 0 as the first broadcast packet to be received from B. 7: Node A sends broadcast N+1. 8: B receives N+1, determines there is a gap in the sequence, since it is expecting N, and sends a NACK for N back to A. 9: Node A has already released N, so no retransmission is possible. The broadcast link in direction A->B is stale. In addition to, or instead of, 7-9 above, the following may happen: 10: Node B sends broadcast M > 0 to A. 11: Node A receives M, falsely decides there must be a gap, since it is expecting packet 0, and asks for retransmission of packets [0,M-1]. 12: Node B has already released these packets, so the broadcast link is stale in direction B->A. We solve this problem by introducing a new unicast message type, BCAST_PROTOCOL/STATE, to convey the sequence number of the next sent broadcast packet to the other endpoint, at exactly the moment that endpoint is added to the own node's broadcast receivers list, and before any other unicast messages are permitted to be sent. Furthermore, we don't allow any node to start receiving and processing broadcast packets until this new synchronization message has been received. To maintain backwards compatibility, we still open up for broadcast reception if we receive a NAME_DISTR message without any preceding broadcast sync message. In this case, we must assume that the other end has an older code version, and will never send out the new synchronization message. Hence, for mixed old and new nodes, the issue arising in 7-12 of the above may happen with the same probability as before. Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-11-16 13:51:31 +08:00
* Receive the sequence number where we should start receiving and
* acking broadcast packets from a newly added peer node, and open
* up for reception of such packets.
*
* Called with node locked
*/
tipc: align tipc function names with common naming practice in the network Rename the following functions, which are shorter and more in line with common naming practice in the network subsystem. tipc_bclink_send_msg->tipc_bclink_xmit tipc_bclink_recv_pkt->tipc_bclink_rcv tipc_disc_recv_msg->tipc_disc_rcv tipc_link_send_proto_msg->tipc_link_proto_xmit link_recv_proto_msg->tipc_link_proto_rcv link_send_sections_long->tipc_link_iovec_long_xmit tipc_link_send_sections_fast->tipc_link_iovec_xmit_fast tipc_link_send_sync->tipc_link_sync_xmit tipc_link_recv_sync->tipc_link_sync_rcv tipc_link_send_buf->__tipc_link_xmit tipc_link_send->tipc_link_xmit tipc_link_send_names->tipc_link_names_xmit tipc_named_recv->tipc_named_rcv tipc_link_recv_bundle->tipc_link_bundle_rcv tipc_link_dup_send_queue->tipc_link_dup_queue_xmit link_send_long_buf->tipc_link_frag_xmit tipc_multicast->tipc_port_mcast_xmit tipc_port_recv_mcast->tipc_port_mcast_rcv tipc_port_reject_sections->tipc_port_iovec_reject tipc_port_recv_proto_msg->tipc_port_proto_rcv tipc_connect->tipc_port_connect __tipc_connect->__tipc_port_connect __tipc_disconnect->__tipc_port_disconnect tipc_disconnect->tipc_port_disconnect tipc_shutdown->tipc_port_shutdown tipc_port_recv_msg->tipc_port_rcv tipc_port_recv_sections->tipc_port_iovec_rcv release->tipc_release accept->tipc_accept bind->tipc_bind get_name->tipc_getname poll->tipc_poll send_msg->tipc_sendmsg send_packet->tipc_send_packet send_stream->tipc_send_stream recv_msg->tipc_recvmsg recv_stream->tipc_recv_stream connect->tipc_connect listen->tipc_listen shutdown->tipc_shutdown setsockopt->tipc_setsockopt getsockopt->tipc_getsockopt Above changes have no impact on current users of the functions. Signed-off-by: Ying Xue <ying.xue@windriver.com> Reviewed-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-18 16:06:46 +08:00
static void tipc_link_sync_rcv(struct tipc_node *n, struct sk_buff *buf)
tipc: introduce message to synchronize broadcast link Upon establishing a first link between two nodes, there is currently a risk that the two endpoints will disagree on exactly which sequence number reception and acknowleding of broadcast packets should start. The following scenarios may happen: 1: Node A sends an ACTIVATE message to B, telling it to start acking packets from sequence number N. 2: Node A sends out broadcast N, but does not expect an acknowledge from B, since B is not yet in its broadcast receiver's list. 3: Node A receives ACK for N from all nodes except B, and releases packet N. 4: Node B receives the ACTIVATE, activates its link endpoint, and stores the value N as sequence number of first expected packet. 5: Node B sends a NAME_DISTR message to A. 6: Node A receives the NAME_DISTR message, and activates its endpoint. At this moment B is added to A's broadcast receiver's set. Node A also sets sequence number 0 as the first broadcast packet to be received from B. 7: Node A sends broadcast N+1. 8: B receives N+1, determines there is a gap in the sequence, since it is expecting N, and sends a NACK for N back to A. 9: Node A has already released N, so no retransmission is possible. The broadcast link in direction A->B is stale. In addition to, or instead of, 7-9 above, the following may happen: 10: Node B sends broadcast M > 0 to A. 11: Node A receives M, falsely decides there must be a gap, since it is expecting packet 0, and asks for retransmission of packets [0,M-1]. 12: Node B has already released these packets, so the broadcast link is stale in direction B->A. We solve this problem by introducing a new unicast message type, BCAST_PROTOCOL/STATE, to convey the sequence number of the next sent broadcast packet to the other endpoint, at exactly the moment that endpoint is added to the own node's broadcast receivers list, and before any other unicast messages are permitted to be sent. Furthermore, we don't allow any node to start receiving and processing broadcast packets until this new synchronization message has been received. To maintain backwards compatibility, we still open up for broadcast reception if we receive a NAME_DISTR message without any preceding broadcast sync message. In this case, we must assume that the other end has an older code version, and will never send out the new synchronization message. Hence, for mixed old and new nodes, the issue arising in 7-12 of the above may happen with the same probability as before. Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-11-16 13:51:31 +08:00
{
struct tipc_msg *msg = buf_msg(buf);
n->bclink.last_sent = n->bclink.last_in = msg_last_bcast(msg);
n->bclink.recv_permitted = true;
kfree_skb(buf);
}
/*
* tipc_link_push_packets - push unsent packets to bearer
*
* Push out the unsent messages of a link where congestion
* has abated. Node is locked.
*
* Called with node locked
*/
void tipc_link_push_packets(struct tipc_link *link)
{
struct sk_buff *skb;
struct tipc_msg *msg;
u16 seqno = link->snd_nxt;
u16 ack = mod(link->rcv_nxt - 1);
while (skb_queue_len(&link->transmq) < link->window) {
skb = __skb_dequeue(&link->backlogq);
if (!skb)
break;
msg = buf_msg(skb);
link->backlog[msg_importance(msg)].len--;
msg_set_ack(msg, ack);
msg_set_seqno(msg, seqno);
seqno = mod(seqno + 1);
msg_set_bcast_ack(msg, link->owner->bclink.last_in);
link->rcv_unacked = 0;
__skb_queue_tail(&link->transmq, skb);
tipc_bearer_send(link->owner->net, link->bearer_id,
skb, &link->media_addr);
}
link->snd_nxt = seqno;
}
void tipc_link_advance_backlog(struct tipc_link *l, struct sk_buff_head *xmitq)
{
struct sk_buff *skb, *_skb;
struct tipc_msg *hdr;
u16 seqno = l->snd_nxt;
u16 ack = l->rcv_nxt - 1;
while (skb_queue_len(&l->transmq) < l->window) {
skb = skb_peek(&l->backlogq);
if (!skb)
break;
_skb = skb_clone(skb, GFP_ATOMIC);
if (!_skb)
break;
__skb_dequeue(&l->backlogq);
hdr = buf_msg(skb);
l->backlog[msg_importance(hdr)].len--;
__skb_queue_tail(&l->transmq, skb);
__skb_queue_tail(xmitq, _skb);
msg_set_ack(hdr, ack);
msg_set_seqno(hdr, seqno);
msg_set_bcast_ack(hdr, l->owner->bclink.last_in);
l->rcv_unacked = 0;
seqno++;
}
l->snd_nxt = seqno;
}
static void link_retransmit_failure(struct tipc_link *l_ptr,
struct sk_buff *buf)
{
struct tipc_msg *msg = buf_msg(buf);
struct net *net = l_ptr->owner->net;
pr_warn("Retransmission failure on link <%s>\n", l_ptr->name);
if (l_ptr->addr) {
/* Handle failure on standard link */
tipc: introduce node contact FSM The logics for determining when a node is permitted to establish and maintain contact with its peer node becomes non-trivial in the presence of multiple parallel links that may come and go independently. A known failure scenario is that one endpoint registers both its links to the peer lost, cleans up it binding table, and prepares for a table update once contact is re-establihed, while the other endpoint may see its links reset and re-established one by one, hence seeing no need to re-synchronize the binding table. To avoid this, a node must not allow re-establishing contact until it has confirmation that even the peer has lost both links. Currently, the mechanism for handling this consists of setting and resetting two state flags from different locations in the code. This solution is hard to understand and maintain. A closer analysis even reveals that it is not completely safe. In this commit we do instead introduce an FSM that keeps track of the conditions for when the node can establish and maintain links. It has six states and four events, and is strictly based on explicit knowledge about the own node's and the peer node's contact states. Only events leading to state change are shown as edges in the figure below. +--------------+ | SELF_UP/ | +---------------->| PEER_COMING |-----------------+ SELF_ | +--------------+ |PEER_ ESTBL_ | | |ESTBL_ CONTACT| SELF_LOST_CONTACT | |CONTACT | v | | +--------------+ | | PEER_ | SELF_DOWN/ | SELF_ | | LOST_ +--| PEER_LEAVING |<--+ LOST_ v +-------------+ CONTACT | +--------------+ | CONTACT +-----------+ | SELF_DOWN/ |<----------+ +----------| SELF_UP/ | | PEER_DOWN |<----------+ +----------| PEER_UP | +-------------+ SELF_ | +--------------+ | PEER_ +-----------+ | LOST_ +--| SELF_LEAVING/|<--+ LOST_ A | CONTACT | PEER_DOWN | CONTACT | | +--------------+ | | A | PEER_ | PEER_LOST_CONTACT | |SELF_ ESTBL_ | | |ESTBL_ CONTACT| +--------------+ |CONTACT +---------------->| PEER_UP/ |-----------------+ | SELF_COMING | +--------------+ Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-17 04:54:30 +08:00
link_print(l_ptr, "Resetting link ");
pr_info("Failed msg: usr %u, typ %u, len %u, err %u\n",
msg_user(msg), msg_type(msg), msg_size(msg),
msg_errcode(msg));
pr_info("sqno %u, prev: %x, src: %x\n",
msg_seqno(msg), msg_prevnode(msg), msg_orignode(msg));
} else {
/* Handle failure on broadcast link */
struct tipc_node *n_ptr;
char addr_string[16];
pr_info("Msg seq number: %u, ", msg_seqno(msg));
pr_cont("Outstanding acks: %lu\n",
(unsigned long) TIPC_SKB_CB(buf)->handle);
n_ptr = tipc_bclink_retransmit_to(net);
tipc_addr_string_fill(addr_string, n_ptr->addr);
pr_info("Broadcast link info for %s\n", addr_string);
pr_info("Reception permitted: %d, Acked: %u\n",
n_ptr->bclink.recv_permitted,
n_ptr->bclink.acked);
pr_info("Last in: %u, Oos state: %u, Last sent: %u\n",
n_ptr->bclink.last_in,
n_ptr->bclink.oos_state,
n_ptr->bclink.last_sent);
tipc: fix potential deadlock when all links are reset [ 60.988363] ====================================================== [ 60.988754] [ INFO: possible circular locking dependency detected ] [ 60.989152] 3.19.0+ #194 Not tainted [ 60.989377] ------------------------------------------------------- [ 60.989781] swapper/3/0 is trying to acquire lock: [ 60.990079] (&(&n_ptr->lock)->rlock){+.-...}, at: [<ffffffffa0006dca>] tipc_link_retransmit+0x1aa/0x240 [tipc] [ 60.990743] [ 60.990743] but task is already holding lock: [ 60.991106] (&(&bclink->lock)->rlock){+.-...}, at: [<ffffffffa00004be>] tipc_bclink_lock+0x8e/0xa0 [tipc] [ 60.991738] [ 60.991738] which lock already depends on the new lock. [ 60.991738] [ 60.992174] [ 60.992174] the existing dependency chain (in reverse order) is: [ 60.992174] -> #1 (&(&bclink->lock)->rlock){+.-...}: [ 60.992174] [<ffffffff810a9c0c>] lock_acquire+0x9c/0x140 [ 60.992174] [<ffffffff8179c41f>] _raw_spin_lock_bh+0x3f/0x50 [ 60.992174] [<ffffffffa00004be>] tipc_bclink_lock+0x8e/0xa0 [tipc] [ 60.992174] [<ffffffffa0000f57>] tipc_bclink_add_node+0x97/0xf0 [tipc] [ 60.992174] [<ffffffffa0011815>] tipc_node_link_up+0xf5/0x110 [tipc] [ 60.992174] [<ffffffffa0007783>] link_state_event+0x2b3/0x4f0 [tipc] [ 60.992174] [<ffffffffa00193c0>] tipc_link_proto_rcv+0x24c/0x418 [tipc] [ 60.992174] [<ffffffffa0008857>] tipc_rcv+0x827/0xac0 [tipc] [ 60.992174] [<ffffffffa0002ca3>] tipc_l2_rcv_msg+0x73/0xd0 [tipc] [ 60.992174] [<ffffffff81646e66>] __netif_receive_skb_core+0x746/0x980 [ 60.992174] [<ffffffff816470c1>] __netif_receive_skb+0x21/0x70 [ 60.992174] [<ffffffff81647295>] netif_receive_skb_internal+0x35/0x130 [ 60.992174] [<ffffffff81648218>] napi_gro_receive+0x158/0x1d0 [ 60.992174] [<ffffffff81559e05>] e1000_clean_rx_irq+0x155/0x490 [ 60.992174] [<ffffffff8155c1b7>] e1000_clean+0x267/0x990 [ 60.992174] [<ffffffff81647b60>] net_rx_action+0x150/0x360 [ 60.992174] [<ffffffff8105ec43>] __do_softirq+0x123/0x360 [ 60.992174] [<ffffffff8105f12e>] irq_exit+0x8e/0xb0 [ 60.992174] [<ffffffff8179f9f5>] do_IRQ+0x65/0x110 [ 60.992174] [<ffffffff8179da6f>] ret_from_intr+0x0/0x13 [ 60.992174] [<ffffffff8100de9f>] arch_cpu_idle+0xf/0x20 [ 60.992174] [<ffffffff8109dfa6>] cpu_startup_entry+0x2f6/0x3f0 [ 60.992174] [<ffffffff81033cda>] start_secondary+0x13a/0x150 [ 60.992174] -> #0 (&(&n_ptr->lock)->rlock){+.-...}: [ 60.992174] [<ffffffff810a8f7d>] __lock_acquire+0x163d/0x1ca0 [ 60.992174] [<ffffffff810a9c0c>] lock_acquire+0x9c/0x140 [ 60.992174] [<ffffffff8179c41f>] _raw_spin_lock_bh+0x3f/0x50 [ 60.992174] [<ffffffffa0006dca>] tipc_link_retransmit+0x1aa/0x240 [tipc] [ 60.992174] [<ffffffffa0001e11>] tipc_bclink_rcv+0x611/0x640 [tipc] [ 60.992174] [<ffffffffa0008646>] tipc_rcv+0x616/0xac0 [tipc] [ 60.992174] [<ffffffffa0002ca3>] tipc_l2_rcv_msg+0x73/0xd0 [tipc] [ 60.992174] [<ffffffff81646e66>] __netif_receive_skb_core+0x746/0x980 [ 60.992174] [<ffffffff816470c1>] __netif_receive_skb+0x21/0x70 [ 60.992174] [<ffffffff81647295>] netif_receive_skb_internal+0x35/0x130 [ 60.992174] [<ffffffff81648218>] napi_gro_receive+0x158/0x1d0 [ 60.992174] [<ffffffff81559e05>] e1000_clean_rx_irq+0x155/0x490 [ 60.992174] [<ffffffff8155c1b7>] e1000_clean+0x267/0x990 [ 60.992174] [<ffffffff81647b60>] net_rx_action+0x150/0x360 [ 60.992174] [<ffffffff8105ec43>] __do_softirq+0x123/0x360 [ 60.992174] [<ffffffff8105f12e>] irq_exit+0x8e/0xb0 [ 60.992174] [<ffffffff8179f9f5>] do_IRQ+0x65/0x110 [ 60.992174] [<ffffffff8179da6f>] ret_from_intr+0x0/0x13 [ 60.992174] [<ffffffff8100de9f>] arch_cpu_idle+0xf/0x20 [ 60.992174] [<ffffffff8109dfa6>] cpu_startup_entry+0x2f6/0x3f0 [ 60.992174] [<ffffffff81033cda>] start_secondary+0x13a/0x150 [ 60.992174] [ 60.992174] other info that might help us debug this: [ 60.992174] [ 60.992174] Possible unsafe locking scenario: [ 60.992174] [ 60.992174] CPU0 CPU1 [ 60.992174] ---- ---- [ 60.992174] lock(&(&bclink->lock)->rlock); [ 60.992174] lock(&(&n_ptr->lock)->rlock); [ 60.992174] lock(&(&bclink->lock)->rlock); [ 60.992174] lock(&(&n_ptr->lock)->rlock); [ 60.992174] [ 60.992174] *** DEADLOCK *** [ 60.992174] [ 60.992174] 3 locks held by swapper/3/0: [ 60.992174] #0: (rcu_read_lock){......}, at: [<ffffffff81646791>] __netif_receive_skb_core+0x71/0x980 [ 60.992174] #1: (rcu_read_lock){......}, at: [<ffffffffa0002c35>] tipc_l2_rcv_msg+0x5/0xd0 [tipc] [ 60.992174] #2: (&(&bclink->lock)->rlock){+.-...}, at: [<ffffffffa00004be>] tipc_bclink_lock+0x8e/0xa0 [tipc] [ 60.992174] The correct the sequence of grabbing n_ptr->lock and bclink->lock should be that the former is first held and the latter is then taken, which exactly happened on CPU1. But especially when the retransmission of broadcast link is failed, bclink->lock is first held in tipc_bclink_rcv(), and n_ptr->lock is taken in link_retransmit_failure() called by tipc_link_retransmit() subsequently, which is demonstrated on CPU0. As a result, deadlock occurs. If the order of holding the two locks happening on CPU0 is reversed, the deadlock risk will be relieved. Therefore, the node lock taken in link_retransmit_failure() originally is moved to tipc_bclink_rcv() so that it's obtained before bclink lock. But the precondition of the adjustment of node lock is that responding to bclink reset event must be moved from tipc_bclink_unlock() to tipc_node_unlock(). Reviewed-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-26 18:10:23 +08:00
n_ptr->action_flags |= TIPC_BCAST_RESET;
l_ptr->stale_count = 0;
}
}
void tipc_link_retransmit(struct tipc_link *l_ptr, struct sk_buff *skb,
u32 retransmits)
{
struct tipc_msg *msg;
if (!skb)
return;
msg = buf_msg(skb);
tipc: remove interface state mirroring in bearer struct 'tipc_bearer' is a generic representation of the underlying media type, and exists in a one-to-one relationship to each interface TIPC is using. The struct contains a 'blocked' flag that mirrors the operational and execution state of the represented interface, and is updated through notification calls from the latter. The users of tipc_bearer are checking this flag before each attempt to send a packet via the interface. This state mirroring serves no purpose in the current code base. TIPC links will not discover a media failure any faster through this mechanism, and in reality the flag only adds overhead at packet sending and reception. Furthermore, the fact that the flag needs to be protected by a spinlock aggregated into tipc_bearer has turned out to cause a serious and completely unnecessary deadlock problem. CPU0 CPU1 ---- ---- Time 0: bearer_disable() link_timeout() Time 1: spin_lock_bh(&b_ptr->lock) tipc_link_push_queue() Time 2: tipc_link_delete() tipc_bearer_blocked(b_ptr) Time 3: k_cancel_timer(&req->timer) spin_lock_bh(&b_ptr->lock) Time 4: del_timer_sync(&req->timer) I.e., del_timer_sync() on CPU0 never returns, because the timer handler on CPU1 is waiting for the bearer lock. We eliminate the 'blocked' flag from struct tipc_bearer, along with all tests on this flag. This not only resolves the deadlock, but also simplifies and speeds up the data path execution of TIPC. It also fits well into our ongoing effort to make the locking policy simpler and more manageable. An effect of this change is that we can get rid of functions such as tipc_bearer_blocked(), tipc_continue() and tipc_block_bearer(). We replace the latter with a new function, tipc_reset_bearer(), which resets all links associated to the bearer immediately after an interface goes down. A user might notice one slight change in link behaviour after this change. When an interface goes down, (e.g. through a NETDEV_DOWN event) all attached links will be reset immediately, instead of leaving it to each link to detect the failure through a timer-driven mechanism. We consider this an improvement, and see no obvious risks with the new behavior. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Reviewed-by: Ying Xue <ying.xue@windriver.com> Reviewed-by: Paul Gortmaker <Paul.Gortmaker@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-06 23:08:00 +08:00
/* Detect repeated retransmit failures */
if (l_ptr->last_retransm == msg_seqno(msg)) {
tipc: remove interface state mirroring in bearer struct 'tipc_bearer' is a generic representation of the underlying media type, and exists in a one-to-one relationship to each interface TIPC is using. The struct contains a 'blocked' flag that mirrors the operational and execution state of the represented interface, and is updated through notification calls from the latter. The users of tipc_bearer are checking this flag before each attempt to send a packet via the interface. This state mirroring serves no purpose in the current code base. TIPC links will not discover a media failure any faster through this mechanism, and in reality the flag only adds overhead at packet sending and reception. Furthermore, the fact that the flag needs to be protected by a spinlock aggregated into tipc_bearer has turned out to cause a serious and completely unnecessary deadlock problem. CPU0 CPU1 ---- ---- Time 0: bearer_disable() link_timeout() Time 1: spin_lock_bh(&b_ptr->lock) tipc_link_push_queue() Time 2: tipc_link_delete() tipc_bearer_blocked(b_ptr) Time 3: k_cancel_timer(&req->timer) spin_lock_bh(&b_ptr->lock) Time 4: del_timer_sync(&req->timer) I.e., del_timer_sync() on CPU0 never returns, because the timer handler on CPU1 is waiting for the bearer lock. We eliminate the 'blocked' flag from struct tipc_bearer, along with all tests on this flag. This not only resolves the deadlock, but also simplifies and speeds up the data path execution of TIPC. It also fits well into our ongoing effort to make the locking policy simpler and more manageable. An effect of this change is that we can get rid of functions such as tipc_bearer_blocked(), tipc_continue() and tipc_block_bearer(). We replace the latter with a new function, tipc_reset_bearer(), which resets all links associated to the bearer immediately after an interface goes down. A user might notice one slight change in link behaviour after this change. When an interface goes down, (e.g. through a NETDEV_DOWN event) all attached links will be reset immediately, instead of leaving it to each link to detect the failure through a timer-driven mechanism. We consider this an improvement, and see no obvious risks with the new behavior. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Reviewed-by: Ying Xue <ying.xue@windriver.com> Reviewed-by: Paul Gortmaker <Paul.Gortmaker@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-06 23:08:00 +08:00
if (++l_ptr->stale_count > 100) {
link_retransmit_failure(l_ptr, skb);
tipc: remove interface state mirroring in bearer struct 'tipc_bearer' is a generic representation of the underlying media type, and exists in a one-to-one relationship to each interface TIPC is using. The struct contains a 'blocked' flag that mirrors the operational and execution state of the represented interface, and is updated through notification calls from the latter. The users of tipc_bearer are checking this flag before each attempt to send a packet via the interface. This state mirroring serves no purpose in the current code base. TIPC links will not discover a media failure any faster through this mechanism, and in reality the flag only adds overhead at packet sending and reception. Furthermore, the fact that the flag needs to be protected by a spinlock aggregated into tipc_bearer has turned out to cause a serious and completely unnecessary deadlock problem. CPU0 CPU1 ---- ---- Time 0: bearer_disable() link_timeout() Time 1: spin_lock_bh(&b_ptr->lock) tipc_link_push_queue() Time 2: tipc_link_delete() tipc_bearer_blocked(b_ptr) Time 3: k_cancel_timer(&req->timer) spin_lock_bh(&b_ptr->lock) Time 4: del_timer_sync(&req->timer) I.e., del_timer_sync() on CPU0 never returns, because the timer handler on CPU1 is waiting for the bearer lock. We eliminate the 'blocked' flag from struct tipc_bearer, along with all tests on this flag. This not only resolves the deadlock, but also simplifies and speeds up the data path execution of TIPC. It also fits well into our ongoing effort to make the locking policy simpler and more manageable. An effect of this change is that we can get rid of functions such as tipc_bearer_blocked(), tipc_continue() and tipc_block_bearer(). We replace the latter with a new function, tipc_reset_bearer(), which resets all links associated to the bearer immediately after an interface goes down. A user might notice one slight change in link behaviour after this change. When an interface goes down, (e.g. through a NETDEV_DOWN event) all attached links will be reset immediately, instead of leaving it to each link to detect the failure through a timer-driven mechanism. We consider this an improvement, and see no obvious risks with the new behavior. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Reviewed-by: Ying Xue <ying.xue@windriver.com> Reviewed-by: Paul Gortmaker <Paul.Gortmaker@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-06 23:08:00 +08:00
return;
}
} else {
l_ptr->last_retransm = msg_seqno(msg);
tipc: remove interface state mirroring in bearer struct 'tipc_bearer' is a generic representation of the underlying media type, and exists in a one-to-one relationship to each interface TIPC is using. The struct contains a 'blocked' flag that mirrors the operational and execution state of the represented interface, and is updated through notification calls from the latter. The users of tipc_bearer are checking this flag before each attempt to send a packet via the interface. This state mirroring serves no purpose in the current code base. TIPC links will not discover a media failure any faster through this mechanism, and in reality the flag only adds overhead at packet sending and reception. Furthermore, the fact that the flag needs to be protected by a spinlock aggregated into tipc_bearer has turned out to cause a serious and completely unnecessary deadlock problem. CPU0 CPU1 ---- ---- Time 0: bearer_disable() link_timeout() Time 1: spin_lock_bh(&b_ptr->lock) tipc_link_push_queue() Time 2: tipc_link_delete() tipc_bearer_blocked(b_ptr) Time 3: k_cancel_timer(&req->timer) spin_lock_bh(&b_ptr->lock) Time 4: del_timer_sync(&req->timer) I.e., del_timer_sync() on CPU0 never returns, because the timer handler on CPU1 is waiting for the bearer lock. We eliminate the 'blocked' flag from struct tipc_bearer, along with all tests on this flag. This not only resolves the deadlock, but also simplifies and speeds up the data path execution of TIPC. It also fits well into our ongoing effort to make the locking policy simpler and more manageable. An effect of this change is that we can get rid of functions such as tipc_bearer_blocked(), tipc_continue() and tipc_block_bearer(). We replace the latter with a new function, tipc_reset_bearer(), which resets all links associated to the bearer immediately after an interface goes down. A user might notice one slight change in link behaviour after this change. When an interface goes down, (e.g. through a NETDEV_DOWN event) all attached links will be reset immediately, instead of leaving it to each link to detect the failure through a timer-driven mechanism. We consider this an improvement, and see no obvious risks with the new behavior. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Reviewed-by: Ying Xue <ying.xue@windriver.com> Reviewed-by: Paul Gortmaker <Paul.Gortmaker@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-06 23:08:00 +08:00
l_ptr->stale_count = 1;
}
skb_queue_walk_from(&l_ptr->transmq, skb) {
if (!retransmits)
break;
msg = buf_msg(skb);
msg_set_ack(msg, mod(l_ptr->rcv_nxt - 1));
msg_set_bcast_ack(msg, l_ptr->owner->bclink.last_in);
tipc_bearer_send(l_ptr->owner->net, l_ptr->bearer_id, skb,
&l_ptr->media_addr);
retransmits--;
l_ptr->stats.retransmitted++;
}
}
static int tipc_link_retransm(struct tipc_link *l, int retransm,
struct sk_buff_head *xmitq)
{
struct sk_buff *_skb, *skb = skb_peek(&l->transmq);
struct tipc_msg *hdr;
if (!skb)
return 0;
/* Detect repeated retransmit failures on same packet */
if (likely(l->last_retransm != buf_seqno(skb))) {
l->last_retransm = buf_seqno(skb);
l->stale_count = 1;
} else if (++l->stale_count > 100) {
link_retransmit_failure(l, skb);
l->exec_mode = TIPC_LINK_BLOCKED;
return TIPC_LINK_DOWN_EVT;
}
skb_queue_walk(&l->transmq, skb) {
if (!retransm)
return 0;
hdr = buf_msg(skb);
_skb = __pskb_copy(skb, MIN_H_SIZE, GFP_ATOMIC);
if (!_skb)
return 0;
hdr = buf_msg(_skb);
msg_set_ack(hdr, l->rcv_nxt - 1);
msg_set_bcast_ack(hdr, l->owner->bclink.last_in);
_skb->priority = TC_PRIO_CONTROL;
__skb_queue_tail(xmitq, _skb);
retransm--;
l->stats.retransmitted++;
}
return 0;
}
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
/* tipc_data_input - deliver data and name distr msgs to upper layer
*
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
* Consumes buffer if message is of right type
* Node lock must be held
*/
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
static bool tipc_data_input(struct tipc_link *link, struct sk_buff *skb)
{
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
struct tipc_node *node = link->owner;
struct tipc_msg *msg = buf_msg(skb);
u32 dport = msg_destport(msg);
switch (msg_user(msg)) {
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
case TIPC_LOW_IMPORTANCE:
case TIPC_MEDIUM_IMPORTANCE:
case TIPC_HIGH_IMPORTANCE:
case TIPC_CRITICAL_IMPORTANCE:
case CONN_MANAGER:
if (tipc_skb_queue_tail(link->inputq, skb, dport)) {
node->inputq = link->inputq;
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
node->action_flags |= TIPC_MSG_EVT;
}
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
return true;
case NAME_DISTRIBUTOR:
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
node->bclink.recv_permitted = true;
node->namedq = link->namedq;
skb_queue_tail(link->namedq, skb);
if (skb_queue_len(link->namedq) == 1)
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
node->action_flags |= TIPC_NAMED_MSG_EVT;
return true;
case MSG_BUNDLER:
case TUNNEL_PROTOCOL:
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
case MSG_FRAGMENTER:
case BCAST_PROTOCOL:
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
return false;
default:
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
pr_warn("Dropping received illegal msg type\n");
kfree_skb(skb);
return false;
};
}
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
/* tipc_link_input - process packet that has passed link protocol check
*
* Consumes buffer
*/
static int tipc_link_input(struct tipc_link *l, struct sk_buff *skb)
{
struct tipc_node *node = l->owner;
struct tipc_msg *hdr = buf_msg(skb);
struct sk_buff **reasm_skb = &l->reasm_buf;
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
struct sk_buff *iskb;
int usr = msg_user(hdr);
int rc = 0;
int pos = 0;
int ipos = 0;
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
if (unlikely(usr == TUNNEL_PROTOCOL)) {
if (msg_type(hdr) == SYNCH_MSG) {
__skb_queue_purge(&l->deferdq);
goto drop;
}
if (!tipc_msg_extract(skb, &iskb, &ipos))
return rc;
kfree_skb(skb);
skb = iskb;
hdr = buf_msg(skb);
if (less(msg_seqno(hdr), l->drop_point))
goto drop;
if (tipc_data_input(l, skb))
return rc;
usr = msg_user(hdr);
reasm_skb = &l->failover_reasm_skb;
}
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
if (usr == MSG_BUNDLER) {
l->stats.recv_bundles++;
l->stats.recv_bundled += msg_msgcnt(hdr);
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
while (tipc_msg_extract(skb, &iskb, &pos))
tipc_data_input(l, iskb);
return rc;
} else if (usr == MSG_FRAGMENTER) {
l->stats.recv_fragments++;
if (tipc_buf_append(reasm_skb, &skb)) {
l->stats.recv_fragmented++;
tipc_data_input(l, skb);
} else if (!*reasm_skb) {
l->exec_mode = TIPC_LINK_BLOCKED;
l->state = TIPC_LINK_RESETTING;
rc = TIPC_LINK_DOWN_EVT;
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
}
return rc;
} else if (usr == BCAST_PROTOCOL) {
tipc: resolve race problem at unicast message reception TIPC handles message cardinality and sequencing at the link layer, before passing messages upwards to the destination sockets. During the upcall from link to socket no locks are held. It is therefore possible, and we see it happen occasionally, that messages arriving in different threads and delivered in sequence still bypass each other before they reach the destination socket. This must not happen, since it violates the sequentiality guarantee. We solve this by adding a new input buffer queue to the link structure. Arriving messages are added safely to the tail of that queue by the link, while the head of the queue is consumed, also safely, by the receiving socket. Sequentiality is secured per socket by only allowing buffers to be dequeued inside the socket lock. Since there may be multiple simultaneous readers of the queue, we use a 'filter' parameter to reduce the risk that they peek the same buffer from the queue, hence also reducing the risk of contention on the receiving socket locks. This solves the sequentiality problem, and seems to cause no measurable performance degradation. A nice side effect of this change is that lock handling in the functions tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that will enable future simplifications of those functions. Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 21:36:41 +08:00
tipc_link_sync_rcv(node, skb);
return rc;
}
drop:
kfree_skb(skb);
return rc;
}
static bool tipc_link_release_pkts(struct tipc_link *l, u16 acked)
{
bool released = false;
struct sk_buff *skb, *tmp;
skb_queue_walk_safe(&l->transmq, skb, tmp) {
if (more(buf_seqno(skb), acked))
break;
__skb_unlink(skb, &l->transmq);
kfree_skb(skb);
released = true;
}
return released;
}
/* tipc_link_rcv - process TIPC packets/messages arriving from off-node
* @link: the link that should handle the message
* @skb: TIPC packet
* @xmitq: queue to place packets to be sent after this call
*/
int tipc_link_rcv(struct tipc_link *l, struct sk_buff *skb,
struct sk_buff_head *xmitq)
{
struct sk_buff_head *arrvq = &l->deferdq;
struct tipc_msg *hdr;
u16 seqno, rcv_nxt;
int rc = 0;
if (unlikely(!__tipc_skb_queue_sorted(arrvq, skb))) {
if (!(skb_queue_len(arrvq) % TIPC_NACK_INTV))
tipc_link_build_proto_msg(l, STATE_MSG, 0,
0, 0, 0, xmitq);
return rc;
}
while ((skb = skb_peek(arrvq))) {
hdr = buf_msg(skb);
/* Verify and update link state */
if (unlikely(msg_user(hdr) == LINK_PROTOCOL)) {
__skb_dequeue(arrvq);
rc = tipc_link_proto_rcv(l, skb, xmitq);
continue;
}
if (unlikely(!link_working(l))) {
rc = tipc_link_fsm_evt(l, TRAFFIC_EVT, xmitq);
if (!link_working(l)) {
kfree_skb(__skb_dequeue(arrvq));
return rc;
}
}
l->silent_intv_cnt = 0;
/* Forward queues and wake up waiting users */
if (likely(tipc_link_release_pkts(l, msg_ack(hdr)))) {
tipc_link_advance_backlog(l, xmitq);
if (unlikely(!skb_queue_empty(&l->wakeupq)))
link_prepare_wakeup(l);
}
/* Defer reception if there is a gap in the sequence */
seqno = msg_seqno(hdr);
rcv_nxt = l->rcv_nxt;
if (unlikely(less(rcv_nxt, seqno))) {
l->stats.deferred_recv++;
return rc;
}
__skb_dequeue(arrvq);
/* Drop if packet already received */
if (unlikely(more(rcv_nxt, seqno))) {
l->stats.duplicates++;
kfree_skb(skb);
return rc;
}
/* Packet can be delivered */
l->rcv_nxt++;
l->stats.recv_info++;
if (unlikely(!tipc_data_input(l, skb)))
rc = tipc_link_input(l, skb);
/* Ack at regular intervals */
if (unlikely(++l->rcv_unacked >= TIPC_MIN_LINK_WIN)) {
l->rcv_unacked = 0;
l->stats.sent_acks++;
tipc_link_build_proto_msg(l, STATE_MSG,
0, 0, 0, 0, xmitq);
}
}
return rc;
}
/**
* tipc_link_defer_pkt - Add out-of-sequence message to deferred reception queue
*
* Returns increase in queue length (i.e. 0 or 1)
*/
u32 tipc_link_defer_pkt(struct sk_buff_head *list, struct sk_buff *skb)
{
struct sk_buff *skb1;
u16 seq_no = buf_seqno(skb);
/* Empty queue ? */
if (skb_queue_empty(list)) {
__skb_queue_tail(list, skb);
return 1;
}
/* Last ? */
if (less(buf_seqno(skb_peek_tail(list)), seq_no)) {
__skb_queue_tail(list, skb);
return 1;
}
/* Locate insertion point in queue, then insert; discard if duplicate */
skb_queue_walk(list, skb1) {
u16 curr_seqno = buf_seqno(skb1);
if (seq_no == curr_seqno) {
kfree_skb(skb);
return 0;
}
if (less(seq_no, curr_seqno))
break;
}
__skb_queue_before(list, skb1, skb);
return 1;
}
/*
* Send protocol message to the other endpoint.
*/
void tipc_link_proto_xmit(struct tipc_link *l, u32 msg_typ, int probe_msg,
u32 gap, u32 tolerance, u32 priority)
{
struct sk_buff *skb = NULL;
struct sk_buff_head xmitq;
__skb_queue_head_init(&xmitq);
tipc_link_build_proto_msg(l, msg_typ, probe_msg, gap,
tolerance, priority, &xmitq);
skb = __skb_dequeue(&xmitq);
if (!skb)
return;
tipc_bearer_send(l->owner->net, l->bearer_id, skb, &l->media_addr);
l->rcv_unacked = 0;
kfree_skb(skb);
}
/* tipc_link_build_proto_msg: prepare link protocol message for transmission
*/
static void tipc_link_build_proto_msg(struct tipc_link *l, int mtyp, bool probe,
u16 rcvgap, int tolerance, int priority,
struct sk_buff_head *xmitq)
{
struct sk_buff *skb = NULL;
struct tipc_msg *hdr = l->pmsg;
u16 snd_nxt = l->snd_nxt;
u16 rcv_nxt = l->rcv_nxt;
u16 rcv_last = rcv_nxt - 1;
int node_up = l->owner->bclink.recv_permitted;
/* Don't send protocol message during reset or link failover */
if (l->exec_mode == TIPC_LINK_BLOCKED)
return;
msg_set_type(hdr, mtyp);
msg_set_net_plane(hdr, l->net_plane);
msg_set_bcast_ack(hdr, l->owner->bclink.last_in);
msg_set_last_bcast(hdr, tipc_bclink_get_last_sent(l->owner->net));
msg_set_link_tolerance(hdr, tolerance);
msg_set_linkprio(hdr, priority);
msg_set_redundant_link(hdr, node_up);
msg_set_seq_gap(hdr, 0);
/* Compatibility: created msg must not be in sequence with pkt flow */
msg_set_seqno(hdr, snd_nxt + U16_MAX / 2);
if (mtyp == STATE_MSG) {
if (!tipc_link_is_up(l))
return;
msg_set_next_sent(hdr, snd_nxt);
/* Override rcvgap if there are packets in deferred queue */
if (!skb_queue_empty(&l->deferdq))
rcvgap = buf_seqno(skb_peek(&l->deferdq)) - rcv_nxt;
if (rcvgap) {
msg_set_seq_gap(hdr, rcvgap);
l->stats.sent_nacks++;
}
msg_set_ack(hdr, rcv_last);
msg_set_probe(hdr, probe);
if (probe)
l->stats.sent_probes++;
l->stats.sent_states++;
} else {
/* RESET_MSG or ACTIVATE_MSG */
msg_set_max_pkt(hdr, l->advertised_mtu);
msg_set_ack(hdr, l->rcv_nxt - 1);
msg_set_next_sent(hdr, 1);
}
skb = tipc_buf_acquire(msg_size(hdr));
if (!skb)
return;
skb_copy_to_linear_data(skb, hdr, msg_size(hdr));
skb->priority = TC_PRIO_CONTROL;
__skb_queue_tail(xmitq, skb);
}
/* tipc_link_tnl_prepare(): prepare and return a list of tunnel packets
* with contents of the link's tranmsit and backlog queues.
*/
void tipc_link_tnl_prepare(struct tipc_link *l, struct tipc_link *tnl,
int mtyp, struct sk_buff_head *xmitq)
{
struct sk_buff *skb, *tnlskb;
struct tipc_msg *hdr, tnlhdr;
struct sk_buff_head *queue = &l->transmq;
struct sk_buff_head tmpxq, tnlq;
u16 pktlen, pktcnt, seqno = l->snd_nxt;
if (!tnl)
return;
skb_queue_head_init(&tnlq);
skb_queue_head_init(&tmpxq);
/* At least one packet required for safe algorithm => add dummy */
skb = tipc_msg_create(TIPC_LOW_IMPORTANCE, TIPC_DIRECT_MSG,
BASIC_H_SIZE, 0, l->addr, link_own_addr(l),
0, 0, TIPC_ERR_NO_PORT);
if (!skb) {
pr_warn("%sunable to create tunnel packet\n", link_co_err);
return;
}
skb_queue_tail(&tnlq, skb);
tipc_link_xmit(l, &tnlq, &tmpxq);
__skb_queue_purge(&tmpxq);
/* Initialize reusable tunnel packet header */
tipc_msg_init(link_own_addr(l), &tnlhdr, TUNNEL_PROTOCOL,
mtyp, INT_H_SIZE, l->addr);
pktcnt = skb_queue_len(&l->transmq) + skb_queue_len(&l->backlogq);
msg_set_msgcnt(&tnlhdr, pktcnt);
msg_set_bearer_id(&tnlhdr, l->peer_bearer_id);
tnl:
/* Wrap each packet into a tunnel packet */
skb_queue_walk(queue, skb) {
hdr = buf_msg(skb);
if (queue == &l->backlogq)
msg_set_seqno(hdr, seqno++);
pktlen = msg_size(hdr);
msg_set_size(&tnlhdr, pktlen + INT_H_SIZE);
tnlskb = tipc_buf_acquire(pktlen + INT_H_SIZE);
if (!tnlskb) {
pr_warn("%sunable to send packet\n", link_co_err);
return;
}
skb_copy_to_linear_data(tnlskb, &tnlhdr, INT_H_SIZE);
skb_copy_to_linear_data_offset(tnlskb, INT_H_SIZE, hdr, pktlen);
__skb_queue_tail(&tnlq, tnlskb);
}
if (queue != &l->backlogq) {
queue = &l->backlogq;
goto tnl;
2014-02-14 06:29:11 +08:00
}
tipc_link_xmit(tnl, &tnlq, xmitq);
if (mtyp == FAILOVER_MSG) {
tnl->drop_point = l->rcv_nxt;
tnl->failover_reasm_skb = l->reasm_buf;
l->reasm_buf = NULL;
l->exec_mode = TIPC_LINK_BLOCKED;
}
}
/* tipc_link_proto_rcv(): receive link level protocol message :
* Note that network plane id propagates through the network, and may
* change at any time. The node with lowest numerical id determines
* network plane
*/
static int tipc_link_proto_rcv(struct tipc_link *l, struct sk_buff *skb,
struct sk_buff_head *xmitq)
{
struct tipc_msg *hdr = buf_msg(skb);
u16 rcvgap = 0;
u16 nacked_gap = msg_seq_gap(hdr);
u16 peers_snd_nxt = msg_next_sent(hdr);
u16 peers_tol = msg_link_tolerance(hdr);
u16 peers_prio = msg_linkprio(hdr);
char *if_name;
int rc = 0;
if (l->exec_mode == TIPC_LINK_BLOCKED)
goto exit;
if (link_own_addr(l) > msg_prevnode(hdr))
l->net_plane = msg_net_plane(hdr);
switch (msg_type(hdr)) {
case RESET_MSG:
/* Ignore duplicate RESET with old session number */
if ((less_eq(msg_session(hdr), l->peer_session)) &&
(l->peer_session != WILDCARD_SESSION))
break;
/* fall thru' */
case ACTIVATE_MSG:
/* Complete own link name with peer's interface name */
if_name = strrchr(l->name, ':') + 1;
if (sizeof(l->name) - (if_name - l->name) <= TIPC_MAX_IF_NAME)
break;
if (msg_data_sz(hdr) < TIPC_MAX_IF_NAME)
break;
strncpy(if_name, msg_data(hdr), TIPC_MAX_IF_NAME);
/* Update own tolerance if peer indicates a non-zero value */
if (in_range(peers_tol, TIPC_MIN_LINK_TOL, TIPC_MAX_LINK_TOL))
l->tolerance = peers_tol;
/* Update own priority if peer's priority is higher */
if (in_range(peers_prio, l->priority + 1, TIPC_MAX_LINK_PRI))
l->priority = peers_prio;
l->peer_session = msg_session(hdr);
l->peer_bearer_id = msg_bearer_id(hdr);
rc = tipc_link_fsm_evt(l, msg_type(hdr), xmitq);
if (l->mtu > msg_max_pkt(hdr))
l->mtu = msg_max_pkt(hdr);
break;
case STATE_MSG:
/* Update own tolerance if peer indicates a non-zero value */
if (in_range(peers_tol, TIPC_MIN_LINK_TOL, TIPC_MAX_LINK_TOL))
l->tolerance = peers_tol;
l->silent_intv_cnt = 0;
l->stats.recv_states++;
if (msg_probe(hdr))
l->stats.recv_probes++;
rc = tipc_link_fsm_evt(l, TRAFFIC_EVT, xmitq);
if (!tipc_link_is_up(l))
break;
/* Has peer sent packets we haven't received yet ? */
if (more(peers_snd_nxt, l->rcv_nxt))
rcvgap = peers_snd_nxt - l->rcv_nxt;
if (rcvgap || (msg_probe(hdr)))
tipc_link_build_proto_msg(l, STATE_MSG, 0, rcvgap,
0, 0, xmitq);
tipc_link_release_pkts(l, msg_ack(hdr));
/* If NACK, retransmit will now start at right position */
if (nacked_gap) {
rc = tipc_link_retransm(l, nacked_gap, xmitq);
l->stats.recv_nacks++;
}
tipc_link_advance_backlog(l, xmitq);
if (unlikely(!skb_queue_empty(&l->wakeupq)))
link_prepare_wakeup(l);
}
exit:
kfree_skb(skb);
return rc;
}
tipc: clean up handling of message priorities Messages transferred by TIPC are assigned an "importance priority", -an integer value indicating how to treat the message when there is link or destination socket congestion. There is no separate header field for this value. Instead, the message user values have been chosen in ascending order according to perceived importance, so that the message user field can be used for this. This is not a good solution. First, we have many more users than the needed priority levels, so we end up with treating more priority levels than necessary. Second, the user field cannot always accurately reflect the priority of the message. E.g., a message fragment packet should really have the priority of the enveloped user data message, and not the priority of the MSG_FRAGMENTER user. Until now, we have been working around this problem in different ways, but it is now time to implement a consistent way of handling such priorities, although still within the constraint that we cannot allocate any more bits in the regular data message header for this. In this commit, we define a new priority level, TIPC_SYSTEM_IMPORTANCE, that will be the only one used apart from the four (lower) user data levels. All non-data messages map down to this priority. Furthermore, we take some free bits from the MSG_FRAGMENTER header and allocate them to store the priority of the enveloped message. We then adjust the functions msg_importance()/msg_set_importance() so that they read/set the correct header fields depending on user type. This small protocol change is fully compatible, because the code at the receiving end of a link currently reads the importance level only from user data messages, where there is no change. Reviewed-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-14 04:08:11 +08:00
void tipc_link_set_queue_limits(struct tipc_link *l, u32 win)
{
int max_bulk = TIPC_MAX_PUBLICATIONS / (l->mtu / ITEM_SIZE);
tipc: clean up handling of message priorities Messages transferred by TIPC are assigned an "importance priority", -an integer value indicating how to treat the message when there is link or destination socket congestion. There is no separate header field for this value. Instead, the message user values have been chosen in ascending order according to perceived importance, so that the message user field can be used for this. This is not a good solution. First, we have many more users than the needed priority levels, so we end up with treating more priority levels than necessary. Second, the user field cannot always accurately reflect the priority of the message. E.g., a message fragment packet should really have the priority of the enveloped user data message, and not the priority of the MSG_FRAGMENTER user. Until now, we have been working around this problem in different ways, but it is now time to implement a consistent way of handling such priorities, although still within the constraint that we cannot allocate any more bits in the regular data message header for this. In this commit, we define a new priority level, TIPC_SYSTEM_IMPORTANCE, that will be the only one used apart from the four (lower) user data levels. All non-data messages map down to this priority. Furthermore, we take some free bits from the MSG_FRAGMENTER header and allocate them to store the priority of the enveloped message. We then adjust the functions msg_importance()/msg_set_importance() so that they read/set the correct header fields depending on user type. This small protocol change is fully compatible, because the code at the receiving end of a link currently reads the importance level only from user data messages, where there is no change. Reviewed-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-14 04:08:11 +08:00
l->window = win;
l->backlog[TIPC_LOW_IMPORTANCE].limit = win / 2;
l->backlog[TIPC_MEDIUM_IMPORTANCE].limit = win;
l->backlog[TIPC_HIGH_IMPORTANCE].limit = win / 2 * 3;
l->backlog[TIPC_CRITICAL_IMPORTANCE].limit = win * 2;
l->backlog[TIPC_SYSTEM_IMPORTANCE].limit = max_bulk;
}
/* tipc_link_find_owner - locate owner node of link by link's name
* @net: the applicable net namespace
* @name: pointer to link name string
* @bearer_id: pointer to index in 'node->links' array where the link was found.
*
* Returns pointer to node owning the link, or 0 if no matching link is found.
*/
static struct tipc_node *tipc_link_find_owner(struct net *net,
const char *link_name,
unsigned int *bearer_id)
{
struct tipc_net *tn = net_generic(net, tipc_net_id);
struct tipc_link *l_ptr;
struct tipc_node *n_ptr;
struct tipc_node *found_node = NULL;
int i;
*bearer_id = 0;
rcu_read_lock();
list_for_each_entry_rcu(n_ptr, &tn->node_list, list) {
tipc_node_lock(n_ptr);
for (i = 0; i < MAX_BEARERS; i++) {
l_ptr = n_ptr->links[i].link;
if (l_ptr && !strcmp(l_ptr->name, link_name)) {
*bearer_id = i;
found_node = n_ptr;
break;
}
}
tipc_node_unlock(n_ptr);
if (found_node)
break;
}
rcu_read_unlock();
return found_node;
}
/**
* link_reset_statistics - reset link statistics
* @l_ptr: pointer to link
*/
static void link_reset_statistics(struct tipc_link *l_ptr)
{
memset(&l_ptr->stats, 0, sizeof(l_ptr->stats));
l_ptr->stats.sent_info = l_ptr->snd_nxt;
l_ptr->stats.recv_info = l_ptr->rcv_nxt;
}
tipc: introduce node contact FSM The logics for determining when a node is permitted to establish and maintain contact with its peer node becomes non-trivial in the presence of multiple parallel links that may come and go independently. A known failure scenario is that one endpoint registers both its links to the peer lost, cleans up it binding table, and prepares for a table update once contact is re-establihed, while the other endpoint may see its links reset and re-established one by one, hence seeing no need to re-synchronize the binding table. To avoid this, a node must not allow re-establishing contact until it has confirmation that even the peer has lost both links. Currently, the mechanism for handling this consists of setting and resetting two state flags from different locations in the code. This solution is hard to understand and maintain. A closer analysis even reveals that it is not completely safe. In this commit we do instead introduce an FSM that keeps track of the conditions for when the node can establish and maintain links. It has six states and four events, and is strictly based on explicit knowledge about the own node's and the peer node's contact states. Only events leading to state change are shown as edges in the figure below. +--------------+ | SELF_UP/ | +---------------->| PEER_COMING |-----------------+ SELF_ | +--------------+ |PEER_ ESTBL_ | | |ESTBL_ CONTACT| SELF_LOST_CONTACT | |CONTACT | v | | +--------------+ | | PEER_ | SELF_DOWN/ | SELF_ | | LOST_ +--| PEER_LEAVING |<--+ LOST_ v +-------------+ CONTACT | +--------------+ | CONTACT +-----------+ | SELF_DOWN/ |<----------+ +----------| SELF_UP/ | | PEER_DOWN |<----------+ +----------| PEER_UP | +-------------+ SELF_ | +--------------+ | PEER_ +-----------+ | LOST_ +--| SELF_LEAVING/|<--+ LOST_ A | CONTACT | PEER_DOWN | CONTACT | | +--------------+ | | A | PEER_ | PEER_LOST_CONTACT | |SELF_ ESTBL_ | | |ESTBL_ CONTACT| +--------------+ |CONTACT +---------------->| PEER_UP/ |-----------------+ | SELF_COMING | +--------------+ Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-17 04:54:30 +08:00
static void link_print(struct tipc_link *l, const char *str)
{
tipc: introduce node contact FSM The logics for determining when a node is permitted to establish and maintain contact with its peer node becomes non-trivial in the presence of multiple parallel links that may come and go independently. A known failure scenario is that one endpoint registers both its links to the peer lost, cleans up it binding table, and prepares for a table update once contact is re-establihed, while the other endpoint may see its links reset and re-established one by one, hence seeing no need to re-synchronize the binding table. To avoid this, a node must not allow re-establishing contact until it has confirmation that even the peer has lost both links. Currently, the mechanism for handling this consists of setting and resetting two state flags from different locations in the code. This solution is hard to understand and maintain. A closer analysis even reveals that it is not completely safe. In this commit we do instead introduce an FSM that keeps track of the conditions for when the node can establish and maintain links. It has six states and four events, and is strictly based on explicit knowledge about the own node's and the peer node's contact states. Only events leading to state change are shown as edges in the figure below. +--------------+ | SELF_UP/ | +---------------->| PEER_COMING |-----------------+ SELF_ | +--------------+ |PEER_ ESTBL_ | | |ESTBL_ CONTACT| SELF_LOST_CONTACT | |CONTACT | v | | +--------------+ | | PEER_ | SELF_DOWN/ | SELF_ | | LOST_ +--| PEER_LEAVING |<--+ LOST_ v +-------------+ CONTACT | +--------------+ | CONTACT +-----------+ | SELF_DOWN/ |<----------+ +----------| SELF_UP/ | | PEER_DOWN |<----------+ +----------| PEER_UP | +-------------+ SELF_ | +--------------+ | PEER_ +-----------+ | LOST_ +--| SELF_LEAVING/|<--+ LOST_ A | CONTACT | PEER_DOWN | CONTACT | | +--------------+ | | A | PEER_ | PEER_LOST_CONTACT | |SELF_ ESTBL_ | | |ESTBL_ CONTACT| +--------------+ |CONTACT +---------------->| PEER_UP/ |-----------------+ | SELF_COMING | +--------------+ Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-17 04:54:30 +08:00
struct sk_buff *hskb = skb_peek(&l->transmq);
u16 head = hskb ? msg_seqno(buf_msg(hskb)) : l->snd_nxt;
u16 tail = l->snd_nxt - 1;
tipc: introduce node contact FSM The logics for determining when a node is permitted to establish and maintain contact with its peer node becomes non-trivial in the presence of multiple parallel links that may come and go independently. A known failure scenario is that one endpoint registers both its links to the peer lost, cleans up it binding table, and prepares for a table update once contact is re-establihed, while the other endpoint may see its links reset and re-established one by one, hence seeing no need to re-synchronize the binding table. To avoid this, a node must not allow re-establishing contact until it has confirmation that even the peer has lost both links. Currently, the mechanism for handling this consists of setting and resetting two state flags from different locations in the code. This solution is hard to understand and maintain. A closer analysis even reveals that it is not completely safe. In this commit we do instead introduce an FSM that keeps track of the conditions for when the node can establish and maintain links. It has six states and four events, and is strictly based on explicit knowledge about the own node's and the peer node's contact states. Only events leading to state change are shown as edges in the figure below. +--------------+ | SELF_UP/ | +---------------->| PEER_COMING |-----------------+ SELF_ | +--------------+ |PEER_ ESTBL_ | | |ESTBL_ CONTACT| SELF_LOST_CONTACT | |CONTACT | v | | +--------------+ | | PEER_ | SELF_DOWN/ | SELF_ | | LOST_ +--| PEER_LEAVING |<--+ LOST_ v +-------------+ CONTACT | +--------------+ | CONTACT +-----------+ | SELF_DOWN/ |<----------+ +----------| SELF_UP/ | | PEER_DOWN |<----------+ +----------| PEER_UP | +-------------+ SELF_ | +--------------+ | PEER_ +-----------+ | LOST_ +--| SELF_LEAVING/|<--+ LOST_ A | CONTACT | PEER_DOWN | CONTACT | | +--------------+ | | A | PEER_ | PEER_LOST_CONTACT | |SELF_ ESTBL_ | | |ESTBL_ CONTACT| +--------------+ |CONTACT +---------------->| PEER_UP/ |-----------------+ | SELF_COMING | +--------------+ Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-17 04:54:30 +08:00
pr_info("%s Link <%s>:", str, l->name);
tipc: introduce node contact FSM The logics for determining when a node is permitted to establish and maintain contact with its peer node becomes non-trivial in the presence of multiple parallel links that may come and go independently. A known failure scenario is that one endpoint registers both its links to the peer lost, cleans up it binding table, and prepares for a table update once contact is re-establihed, while the other endpoint may see its links reset and re-established one by one, hence seeing no need to re-synchronize the binding table. To avoid this, a node must not allow re-establishing contact until it has confirmation that even the peer has lost both links. Currently, the mechanism for handling this consists of setting and resetting two state flags from different locations in the code. This solution is hard to understand and maintain. A closer analysis even reveals that it is not completely safe. In this commit we do instead introduce an FSM that keeps track of the conditions for when the node can establish and maintain links. It has six states and four events, and is strictly based on explicit knowledge about the own node's and the peer node's contact states. Only events leading to state change are shown as edges in the figure below. +--------------+ | SELF_UP/ | +---------------->| PEER_COMING |-----------------+ SELF_ | +--------------+ |PEER_ ESTBL_ | | |ESTBL_ CONTACT| SELF_LOST_CONTACT | |CONTACT | v | | +--------------+ | | PEER_ | SELF_DOWN/ | SELF_ | | LOST_ +--| PEER_LEAVING |<--+ LOST_ v +-------------+ CONTACT | +--------------+ | CONTACT +-----------+ | SELF_DOWN/ |<----------+ +----------| SELF_UP/ | | PEER_DOWN |<----------+ +----------| PEER_UP | +-------------+ SELF_ | +--------------+ | PEER_ +-----------+ | LOST_ +--| SELF_LEAVING/|<--+ LOST_ A | CONTACT | PEER_DOWN | CONTACT | | +--------------+ | | A | PEER_ | PEER_LOST_CONTACT | |SELF_ ESTBL_ | | |ESTBL_ CONTACT| +--------------+ |CONTACT +---------------->| PEER_UP/ |-----------------+ | SELF_COMING | +--------------+ Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-17 04:54:30 +08:00
if (link_probing(l))
pr_cont(":P\n");
tipc: introduce node contact FSM The logics for determining when a node is permitted to establish and maintain contact with its peer node becomes non-trivial in the presence of multiple parallel links that may come and go independently. A known failure scenario is that one endpoint registers both its links to the peer lost, cleans up it binding table, and prepares for a table update once contact is re-establihed, while the other endpoint may see its links reset and re-established one by one, hence seeing no need to re-synchronize the binding table. To avoid this, a node must not allow re-establishing contact until it has confirmation that even the peer has lost both links. Currently, the mechanism for handling this consists of setting and resetting two state flags from different locations in the code. This solution is hard to understand and maintain. A closer analysis even reveals that it is not completely safe. In this commit we do instead introduce an FSM that keeps track of the conditions for when the node can establish and maintain links. It has six states and four events, and is strictly based on explicit knowledge about the own node's and the peer node's contact states. Only events leading to state change are shown as edges in the figure below. +--------------+ | SELF_UP/ | +---------------->| PEER_COMING |-----------------+ SELF_ | +--------------+ |PEER_ ESTBL_ | | |ESTBL_ CONTACT| SELF_LOST_CONTACT | |CONTACT | v | | +--------------+ | | PEER_ | SELF_DOWN/ | SELF_ | | LOST_ +--| PEER_LEAVING |<--+ LOST_ v +-------------+ CONTACT | +--------------+ | CONTACT +-----------+ | SELF_DOWN/ |<----------+ +----------| SELF_UP/ | | PEER_DOWN |<----------+ +----------| PEER_UP | +-------------+ SELF_ | +--------------+ | PEER_ +-----------+ | LOST_ +--| SELF_LEAVING/|<--+ LOST_ A | CONTACT | PEER_DOWN | CONTACT | | +--------------+ | | A | PEER_ | PEER_LOST_CONTACT | |SELF_ ESTBL_ | | |ESTBL_ CONTACT| +--------------+ |CONTACT +---------------->| PEER_UP/ |-----------------+ | SELF_COMING | +--------------+ Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-17 04:54:30 +08:00
else if (link_establishing(l))
pr_cont(":E\n");
tipc: introduce node contact FSM The logics for determining when a node is permitted to establish and maintain contact with its peer node becomes non-trivial in the presence of multiple parallel links that may come and go independently. A known failure scenario is that one endpoint registers both its links to the peer lost, cleans up it binding table, and prepares for a table update once contact is re-establihed, while the other endpoint may see its links reset and re-established one by one, hence seeing no need to re-synchronize the binding table. To avoid this, a node must not allow re-establishing contact until it has confirmation that even the peer has lost both links. Currently, the mechanism for handling this consists of setting and resetting two state flags from different locations in the code. This solution is hard to understand and maintain. A closer analysis even reveals that it is not completely safe. In this commit we do instead introduce an FSM that keeps track of the conditions for when the node can establish and maintain links. It has six states and four events, and is strictly based on explicit knowledge about the own node's and the peer node's contact states. Only events leading to state change are shown as edges in the figure below. +--------------+ | SELF_UP/ | +---------------->| PEER_COMING |-----------------+ SELF_ | +--------------+ |PEER_ ESTBL_ | | |ESTBL_ CONTACT| SELF_LOST_CONTACT | |CONTACT | v | | +--------------+ | | PEER_ | SELF_DOWN/ | SELF_ | | LOST_ +--| PEER_LEAVING |<--+ LOST_ v +-------------+ CONTACT | +--------------+ | CONTACT +-----------+ | SELF_DOWN/ |<----------+ +----------| SELF_UP/ | | PEER_DOWN |<----------+ +----------| PEER_UP | +-------------+ SELF_ | +--------------+ | PEER_ +-----------+ | LOST_ +--| SELF_LEAVING/|<--+ LOST_ A | CONTACT | PEER_DOWN | CONTACT | | +--------------+ | | A | PEER_ | PEER_LOST_CONTACT | |SELF_ ESTBL_ | | |ESTBL_ CONTACT| +--------------+ |CONTACT +---------------->| PEER_UP/ |-----------------+ | SELF_COMING | +--------------+ Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-17 04:54:30 +08:00
else if (link_resetting(l))
pr_cont(":R\n");
tipc: introduce node contact FSM The logics for determining when a node is permitted to establish and maintain contact with its peer node becomes non-trivial in the presence of multiple parallel links that may come and go independently. A known failure scenario is that one endpoint registers both its links to the peer lost, cleans up it binding table, and prepares for a table update once contact is re-establihed, while the other endpoint may see its links reset and re-established one by one, hence seeing no need to re-synchronize the binding table. To avoid this, a node must not allow re-establishing contact until it has confirmation that even the peer has lost both links. Currently, the mechanism for handling this consists of setting and resetting two state flags from different locations in the code. This solution is hard to understand and maintain. A closer analysis even reveals that it is not completely safe. In this commit we do instead introduce an FSM that keeps track of the conditions for when the node can establish and maintain links. It has six states and four events, and is strictly based on explicit knowledge about the own node's and the peer node's contact states. Only events leading to state change are shown as edges in the figure below. +--------------+ | SELF_UP/ | +---------------->| PEER_COMING |-----------------+ SELF_ | +--------------+ |PEER_ ESTBL_ | | |ESTBL_ CONTACT| SELF_LOST_CONTACT | |CONTACT | v | | +--------------+ | | PEER_ | SELF_DOWN/ | SELF_ | | LOST_ +--| PEER_LEAVING |<--+ LOST_ v +-------------+ CONTACT | +--------------+ | CONTACT +-----------+ | SELF_DOWN/ |<----------+ +----------| SELF_UP/ | | PEER_DOWN |<----------+ +----------| PEER_UP | +-------------+ SELF_ | +--------------+ | PEER_ +-----------+ | LOST_ +--| SELF_LEAVING/|<--+ LOST_ A | CONTACT | PEER_DOWN | CONTACT | | +--------------+ | | A | PEER_ | PEER_LOST_CONTACT | |SELF_ ESTBL_ | | |ESTBL_ CONTACT| +--------------+ |CONTACT +---------------->| PEER_UP/ |-----------------+ | SELF_COMING | +--------------+ Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-17 04:54:30 +08:00
else if (link_working(l))
pr_cont(":W\n");
else
pr_cont("\n");
tipc: introduce node contact FSM The logics for determining when a node is permitted to establish and maintain contact with its peer node becomes non-trivial in the presence of multiple parallel links that may come and go independently. A known failure scenario is that one endpoint registers both its links to the peer lost, cleans up it binding table, and prepares for a table update once contact is re-establihed, while the other endpoint may see its links reset and re-established one by one, hence seeing no need to re-synchronize the binding table. To avoid this, a node must not allow re-establishing contact until it has confirmation that even the peer has lost both links. Currently, the mechanism for handling this consists of setting and resetting two state flags from different locations in the code. This solution is hard to understand and maintain. A closer analysis even reveals that it is not completely safe. In this commit we do instead introduce an FSM that keeps track of the conditions for when the node can establish and maintain links. It has six states and four events, and is strictly based on explicit knowledge about the own node's and the peer node's contact states. Only events leading to state change are shown as edges in the figure below. +--------------+ | SELF_UP/ | +---------------->| PEER_COMING |-----------------+ SELF_ | +--------------+ |PEER_ ESTBL_ | | |ESTBL_ CONTACT| SELF_LOST_CONTACT | |CONTACT | v | | +--------------+ | | PEER_ | SELF_DOWN/ | SELF_ | | LOST_ +--| PEER_LEAVING |<--+ LOST_ v +-------------+ CONTACT | +--------------+ | CONTACT +-----------+ | SELF_DOWN/ |<----------+ +----------| SELF_UP/ | | PEER_DOWN |<----------+ +----------| PEER_UP | +-------------+ SELF_ | +--------------+ | PEER_ +-----------+ | LOST_ +--| SELF_LEAVING/|<--+ LOST_ A | CONTACT | PEER_DOWN | CONTACT | | +--------------+ | | A | PEER_ | PEER_LOST_CONTACT | |SELF_ ESTBL_ | | |ESTBL_ CONTACT| +--------------+ |CONTACT +---------------->| PEER_UP/ |-----------------+ | SELF_COMING | +--------------+ Reviewed-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-17 04:54:30 +08:00
pr_info("XMTQ: %u [%u-%u], BKLGQ: %u, SNDNX: %u, RCVNX: %u\n",
skb_queue_len(&l->transmq), head, tail,
skb_queue_len(&l->backlogq), l->snd_nxt, l->rcv_nxt);
}
/* Parse and validate nested (link) properties valid for media, bearer and link
*/
int tipc_nl_parse_link_prop(struct nlattr *prop, struct nlattr *props[])
{
int err;
err = nla_parse_nested(props, TIPC_NLA_PROP_MAX, prop,
tipc_nl_prop_policy);
if (err)
return err;
if (props[TIPC_NLA_PROP_PRIO]) {
u32 prio;
prio = nla_get_u32(props[TIPC_NLA_PROP_PRIO]);
if (prio > TIPC_MAX_LINK_PRI)
return -EINVAL;
}
if (props[TIPC_NLA_PROP_TOL]) {
u32 tol;
tol = nla_get_u32(props[TIPC_NLA_PROP_TOL]);
if ((tol < TIPC_MIN_LINK_TOL) || (tol > TIPC_MAX_LINK_TOL))
return -EINVAL;
}
if (props[TIPC_NLA_PROP_WIN]) {
u32 win;
win = nla_get_u32(props[TIPC_NLA_PROP_WIN]);
if ((win < TIPC_MIN_LINK_WIN) || (win > TIPC_MAX_LINK_WIN))
return -EINVAL;
}
return 0;
}
int tipc_nl_link_set(struct sk_buff *skb, struct genl_info *info)
{
int err;
int res = 0;
int bearer_id;
char *name;
struct tipc_link *link;
struct tipc_node *node;
struct nlattr *attrs[TIPC_NLA_LINK_MAX + 1];
struct net *net = sock_net(skb->sk);
if (!info->attrs[TIPC_NLA_LINK])
return -EINVAL;
err = nla_parse_nested(attrs, TIPC_NLA_LINK_MAX,
info->attrs[TIPC_NLA_LINK],
tipc_nl_link_policy);
if (err)
return err;
if (!attrs[TIPC_NLA_LINK_NAME])
return -EINVAL;
name = nla_data(attrs[TIPC_NLA_LINK_NAME]);
if (strcmp(name, tipc_bclink_name) == 0)
return tipc_nl_bc_link_set(net, attrs);
node = tipc_link_find_owner(net, name, &bearer_id);
if (!node)
return -EINVAL;
tipc_node_lock(node);
link = node->links[bearer_id].link;
if (!link) {
res = -EINVAL;
goto out;
}
if (attrs[TIPC_NLA_LINK_PROP]) {
struct nlattr *props[TIPC_NLA_PROP_MAX + 1];
err = tipc_nl_parse_link_prop(attrs[TIPC_NLA_LINK_PROP],
props);
if (err) {
res = err;
goto out;
}
if (props[TIPC_NLA_PROP_TOL]) {
u32 tol;
tol = nla_get_u32(props[TIPC_NLA_PROP_TOL]);
link->tolerance = tol;
tipc_link_proto_xmit(link, STATE_MSG, 0, 0, tol, 0);
}
if (props[TIPC_NLA_PROP_PRIO]) {
u32 prio;
prio = nla_get_u32(props[TIPC_NLA_PROP_PRIO]);
link->priority = prio;
tipc_link_proto_xmit(link, STATE_MSG, 0, 0, 0, prio);
}
if (props[TIPC_NLA_PROP_WIN]) {
u32 win;
win = nla_get_u32(props[TIPC_NLA_PROP_WIN]);
tipc_link_set_queue_limits(link, win);
}
}
out:
tipc_node_unlock(node);
return res;
}
static int __tipc_nl_add_stats(struct sk_buff *skb, struct tipc_stats *s)
{
int i;
struct nlattr *stats;
struct nla_map {
u32 key;
u32 val;
};
struct nla_map map[] = {
{TIPC_NLA_STATS_RX_INFO, s->recv_info},
{TIPC_NLA_STATS_RX_FRAGMENTS, s->recv_fragments},
{TIPC_NLA_STATS_RX_FRAGMENTED, s->recv_fragmented},
{TIPC_NLA_STATS_RX_BUNDLES, s->recv_bundles},
{TIPC_NLA_STATS_RX_BUNDLED, s->recv_bundled},
{TIPC_NLA_STATS_TX_INFO, s->sent_info},
{TIPC_NLA_STATS_TX_FRAGMENTS, s->sent_fragments},
{TIPC_NLA_STATS_TX_FRAGMENTED, s->sent_fragmented},
{TIPC_NLA_STATS_TX_BUNDLES, s->sent_bundles},
{TIPC_NLA_STATS_TX_BUNDLED, s->sent_bundled},
{TIPC_NLA_STATS_MSG_PROF_TOT, (s->msg_length_counts) ?
s->msg_length_counts : 1},
{TIPC_NLA_STATS_MSG_LEN_CNT, s->msg_length_counts},
{TIPC_NLA_STATS_MSG_LEN_TOT, s->msg_lengths_total},
{TIPC_NLA_STATS_MSG_LEN_P0, s->msg_length_profile[0]},
{TIPC_NLA_STATS_MSG_LEN_P1, s->msg_length_profile[1]},
{TIPC_NLA_STATS_MSG_LEN_P2, s->msg_length_profile[2]},
{TIPC_NLA_STATS_MSG_LEN_P3, s->msg_length_profile[3]},
{TIPC_NLA_STATS_MSG_LEN_P4, s->msg_length_profile[4]},
{TIPC_NLA_STATS_MSG_LEN_P5, s->msg_length_profile[5]},
{TIPC_NLA_STATS_MSG_LEN_P6, s->msg_length_profile[6]},
{TIPC_NLA_STATS_RX_STATES, s->recv_states},
{TIPC_NLA_STATS_RX_PROBES, s->recv_probes},
{TIPC_NLA_STATS_RX_NACKS, s->recv_nacks},
{TIPC_NLA_STATS_RX_DEFERRED, s->deferred_recv},
{TIPC_NLA_STATS_TX_STATES, s->sent_states},
{TIPC_NLA_STATS_TX_PROBES, s->sent_probes},
{TIPC_NLA_STATS_TX_NACKS, s->sent_nacks},
{TIPC_NLA_STATS_TX_ACKS, s->sent_acks},
{TIPC_NLA_STATS_RETRANSMITTED, s->retransmitted},
{TIPC_NLA_STATS_DUPLICATES, s->duplicates},
{TIPC_NLA_STATS_LINK_CONGS, s->link_congs},
{TIPC_NLA_STATS_MAX_QUEUE, s->max_queue_sz},
{TIPC_NLA_STATS_AVG_QUEUE, s->queue_sz_counts ?
(s->accu_queue_sz / s->queue_sz_counts) : 0}
};
stats = nla_nest_start(skb, TIPC_NLA_LINK_STATS);
if (!stats)
return -EMSGSIZE;
for (i = 0; i < ARRAY_SIZE(map); i++)
if (nla_put_u32(skb, map[i].key, map[i].val))
goto msg_full;
nla_nest_end(skb, stats);
return 0;
msg_full:
nla_nest_cancel(skb, stats);
return -EMSGSIZE;
}
/* Caller should hold appropriate locks to protect the link */
static int __tipc_nl_add_link(struct net *net, struct tipc_nl_msg *msg,
struct tipc_link *link, int nlflags)
{
int err;
void *hdr;
struct nlattr *attrs;
struct nlattr *prop;
struct tipc_net *tn = net_generic(net, tipc_net_id);
hdr = genlmsg_put(msg->skb, msg->portid, msg->seq, &tipc_genl_family,
nlflags, TIPC_NL_LINK_GET);
if (!hdr)
return -EMSGSIZE;
attrs = nla_nest_start(msg->skb, TIPC_NLA_LINK);
if (!attrs)
goto msg_full;
if (nla_put_string(msg->skb, TIPC_NLA_LINK_NAME, link->name))
goto attr_msg_full;
if (nla_put_u32(msg->skb, TIPC_NLA_LINK_DEST,
tipc_cluster_mask(tn->own_addr)))
goto attr_msg_full;
if (nla_put_u32(msg->skb, TIPC_NLA_LINK_MTU, link->mtu))
goto attr_msg_full;
if (nla_put_u32(msg->skb, TIPC_NLA_LINK_RX, link->rcv_nxt))
goto attr_msg_full;
if (nla_put_u32(msg->skb, TIPC_NLA_LINK_TX, link->snd_nxt))
goto attr_msg_full;
if (tipc_link_is_up(link))
if (nla_put_flag(msg->skb, TIPC_NLA_LINK_UP))
goto attr_msg_full;
if (tipc_link_is_active(link))
if (nla_put_flag(msg->skb, TIPC_NLA_LINK_ACTIVE))
goto attr_msg_full;
prop = nla_nest_start(msg->skb, TIPC_NLA_LINK_PROP);
if (!prop)
goto attr_msg_full;
if (nla_put_u32(msg->skb, TIPC_NLA_PROP_PRIO, link->priority))
goto prop_msg_full;
if (nla_put_u32(msg->skb, TIPC_NLA_PROP_TOL, link->tolerance))
goto prop_msg_full;
if (nla_put_u32(msg->skb, TIPC_NLA_PROP_WIN,
link->window))
goto prop_msg_full;
if (nla_put_u32(msg->skb, TIPC_NLA_PROP_PRIO, link->priority))
goto prop_msg_full;
nla_nest_end(msg->skb, prop);
err = __tipc_nl_add_stats(msg->skb, &link->stats);
if (err)
goto attr_msg_full;
nla_nest_end(msg->skb, attrs);
genlmsg_end(msg->skb, hdr);
return 0;
prop_msg_full:
nla_nest_cancel(msg->skb, prop);
attr_msg_full:
nla_nest_cancel(msg->skb, attrs);
msg_full:
genlmsg_cancel(msg->skb, hdr);
return -EMSGSIZE;
}
/* Caller should hold node lock */
static int __tipc_nl_add_node_links(struct net *net, struct tipc_nl_msg *msg,
struct tipc_node *node, u32 *prev_link)
{
u32 i;
int err;
for (i = *prev_link; i < MAX_BEARERS; i++) {
*prev_link = i;
if (!node->links[i].link)
continue;
err = __tipc_nl_add_link(net, msg,
node->links[i].link, NLM_F_MULTI);
if (err)
return err;
}
*prev_link = 0;
return 0;
}
int tipc_nl_link_dump(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
struct tipc_net *tn = net_generic(net, tipc_net_id);
struct tipc_node *node;
struct tipc_nl_msg msg;
u32 prev_node = cb->args[0];
u32 prev_link = cb->args[1];
int done = cb->args[2];
int err;
if (done)
return 0;
msg.skb = skb;
msg.portid = NETLINK_CB(cb->skb).portid;
msg.seq = cb->nlh->nlmsg_seq;
rcu_read_lock();
if (prev_node) {
node = tipc_node_find(net, prev_node);
if (!node) {
/* We never set seq or call nl_dump_check_consistent()
* this means that setting prev_seq here will cause the
* consistence check to fail in the netlink callback
* handler. Resulting in the last NLMSG_DONE message
* having the NLM_F_DUMP_INTR flag set.
*/
cb->prev_seq = 1;
goto out;
}
tipc_node_put(node);
list_for_each_entry_continue_rcu(node, &tn->node_list,
list) {
tipc_node_lock(node);
err = __tipc_nl_add_node_links(net, &msg, node,
&prev_link);
tipc_node_unlock(node);
if (err)
goto out;
prev_node = node->addr;
}
} else {
err = tipc_nl_add_bc_link(net, &msg);
if (err)
goto out;
list_for_each_entry_rcu(node, &tn->node_list, list) {
tipc_node_lock(node);
err = __tipc_nl_add_node_links(net, &msg, node,
&prev_link);
tipc_node_unlock(node);
if (err)
goto out;
prev_node = node->addr;
}
}
done = 1;
out:
rcu_read_unlock();
cb->args[0] = prev_node;
cb->args[1] = prev_link;
cb->args[2] = done;
return skb->len;
}
int tipc_nl_link_get(struct sk_buff *skb, struct genl_info *info)
{
struct net *net = genl_info_net(info);
struct tipc_nl_msg msg;
char *name;
int err;
msg.portid = info->snd_portid;
msg.seq = info->snd_seq;
if (!info->attrs[TIPC_NLA_LINK_NAME])
return -EINVAL;
name = nla_data(info->attrs[TIPC_NLA_LINK_NAME]);
msg.skb = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL);
if (!msg.skb)
return -ENOMEM;
if (strcmp(name, tipc_bclink_name) == 0) {
err = tipc_nl_add_bc_link(net, &msg);
if (err) {
nlmsg_free(msg.skb);
return err;
}
} else {
int bearer_id;
struct tipc_node *node;
struct tipc_link *link;
node = tipc_link_find_owner(net, name, &bearer_id);
if (!node)
return -EINVAL;
tipc_node_lock(node);
link = node->links[bearer_id].link;
if (!link) {
tipc_node_unlock(node);
nlmsg_free(msg.skb);
return -EINVAL;
}
err = __tipc_nl_add_link(net, &msg, link, 0);
tipc_node_unlock(node);
if (err) {
nlmsg_free(msg.skb);
return err;
}
}
return genlmsg_reply(msg.skb, info);
}
int tipc_nl_link_reset_stats(struct sk_buff *skb, struct genl_info *info)
{
int err;
char *link_name;
unsigned int bearer_id;
struct tipc_link *link;
struct tipc_node *node;
struct nlattr *attrs[TIPC_NLA_LINK_MAX + 1];
struct net *net = sock_net(skb->sk);
if (!info->attrs[TIPC_NLA_LINK])
return -EINVAL;
err = nla_parse_nested(attrs, TIPC_NLA_LINK_MAX,
info->attrs[TIPC_NLA_LINK],
tipc_nl_link_policy);
if (err)
return err;
if (!attrs[TIPC_NLA_LINK_NAME])
return -EINVAL;
link_name = nla_data(attrs[TIPC_NLA_LINK_NAME]);
if (strcmp(link_name, tipc_bclink_name) == 0) {
err = tipc_bclink_reset_stats(net);
if (err)
return err;
return 0;
}
node = tipc_link_find_owner(net, link_name, &bearer_id);
if (!node)
return -EINVAL;
tipc_node_lock(node);
link = node->links[bearer_id].link;
if (!link) {
tipc_node_unlock(node);
return -EINVAL;
}
link_reset_statistics(link);
tipc_node_unlock(node);
return 0;
}