linux-sg2042/Documentation/cpu-freq/governors.txt

289 lines
11 KiB
Plaintext
Raw Normal View History

CPU frequency and voltage scaling code in the Linux(TM) kernel
L i n u x C P U F r e q
C P U F r e q G o v e r n o r s
- information for users and developers -
Dominik Brodowski <linux@brodo.de>
some additions and corrections by Nico Golde <nico@ngolde.de>
Clock scaling allows you to change the clock speed of the CPUs on the
fly. This is a nice method to save battery power, because the lower
the clock speed, the less power the CPU consumes.
Contents:
---------
1. What is a CPUFreq Governor?
2. Governors In the Linux Kernel
2.1 Performance
2.2 Powersave
2.3 Userspace
2.4 Ondemand
2.5 Conservative
3. The Governor Interface in the CPUfreq Core
1. What Is A CPUFreq Governor?
==============================
Most cpufreq drivers (except the intel_pstate and longrun) or even most
cpu frequency scaling algorithms only offer the CPU to be set to one
frequency. In order to offer dynamic frequency scaling, the cpufreq
core must be able to tell these drivers of a "target frequency". So
cpufreq: Implement light weight ->target_index() routine Currently, the prototype of cpufreq_drivers target routines is: int target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation); And most of the drivers call cpufreq_frequency_table_target() to get a valid index of their frequency table which is closest to the target_freq. And they don't use target_freq and relation after that. So, it makes sense to just do this work in cpufreq core before calling cpufreq_frequency_table_target() and simply pass index instead. But this can be done only with drivers which expose their frequency table with cpufreq core. For others we need to stick with the old prototype of target() until those drivers are converted to expose frequency tables. This patch implements the new light weight prototype for target_index() routine. It looks like this: int target_index(struct cpufreq_policy *policy, unsigned int index); CPUFreq core will call cpufreq_frequency_table_target() before calling this routine and pass index to it. Because CPUFreq core now requires to call routines present in freq_table.c CONFIG_CPU_FREQ_TABLE must be enabled all the time. This also marks target() interface as deprecated. So, that new drivers avoid using it. And Documentation is updated accordingly. It also converts existing .target() to newly defined light weight .target_index() routine for many driver. Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Russell King <linux@arm.linux.org.uk> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rjw@rjwysocki.net>
2013-10-25 22:15:48 +08:00
these specific drivers will be transformed to offer a "->target/target_index"
call instead of the existing "->setpolicy" call. For "longrun", all
stays the same, though.
How to decide what frequency within the CPUfreq policy should be used?
That's done using "cpufreq governors". Two are already in this patch
-- they're the already existing "powersave" and "performance" which
set the frequency statically to the lowest or highest frequency,
respectively. At least two more such governors will be ready for
addition in the near future, but likely many more as there are various
different theories and models about dynamic frequency scaling
around. Using such a generic interface as cpufreq offers to scaling
governors, these can be tested extensively, and the best one can be
selected for each specific use.
Basically, it's the following flow graph:
CPU can be set to switch independently | CPU can only be set
within specific "limits" | to specific frequencies
"CPUfreq policy"
consists of frequency limits (policy->{min,max})
and CPUfreq governor to be used
/ \
/ \
/ the cpufreq governor decides
/ (dynamically or statically)
/ what target_freq to set within
/ the limits of policy->{min,max}
/ \
/ \
cpufreq: Implement light weight ->target_index() routine Currently, the prototype of cpufreq_drivers target routines is: int target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation); And most of the drivers call cpufreq_frequency_table_target() to get a valid index of their frequency table which is closest to the target_freq. And they don't use target_freq and relation after that. So, it makes sense to just do this work in cpufreq core before calling cpufreq_frequency_table_target() and simply pass index instead. But this can be done only with drivers which expose their frequency table with cpufreq core. For others we need to stick with the old prototype of target() until those drivers are converted to expose frequency tables. This patch implements the new light weight prototype for target_index() routine. It looks like this: int target_index(struct cpufreq_policy *policy, unsigned int index); CPUFreq core will call cpufreq_frequency_table_target() before calling this routine and pass index to it. Because CPUFreq core now requires to call routines present in freq_table.c CONFIG_CPU_FREQ_TABLE must be enabled all the time. This also marks target() interface as deprecated. So, that new drivers avoid using it. And Documentation is updated accordingly. It also converts existing .target() to newly defined light weight .target_index() routine for many driver. Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Russell King <linux@arm.linux.org.uk> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rjw@rjwysocki.net>
2013-10-25 22:15:48 +08:00
Using the ->setpolicy call, Using the ->target/target_index call,
the limits and the the frequency closest
"policy" is set. to target_freq is set.
It is assured that it
is within policy->{min,max}
2. Governors In the Linux Kernel
================================
2.1 Performance
---------------
The CPUfreq governor "performance" sets the CPU statically to the
highest frequency within the borders of scaling_min_freq and
scaling_max_freq.
2.2 Powersave
-------------
The CPUfreq governor "powersave" sets the CPU statically to the
lowest frequency within the borders of scaling_min_freq and
scaling_max_freq.
2.3 Userspace
-------------
The CPUfreq governor "userspace" allows the user, or any userspace
program running with UID "root", to set the CPU to a specific frequency
by making a sysfs file "scaling_setspeed" available in the CPU-device
directory.
2.4 Ondemand
------------
The CPUfreq governor "ondemand" sets the CPU depending on the
current usage. To do this the CPU must have the capability to
switch the frequency very quickly.
Sysfs files:
* sampling_rate:
Measured in uS (10^-6 seconds), this is how often you want the kernel
to look at the CPU usage and to make decisions on what to do about the
frequency. Typically this is set to values of around '10000' or more.
It's default value is (cmp. with users-guide.txt): transition_latency
* 1000. Be aware that transition latency is in ns and sampling_rate
is in us, so you get the same sysfs value by default. Sampling rate
should always get adjusted considering the transition latency to set
the sampling rate 750 times as high as the transition latency in the
bash (as said, 1000 is default), do:
$ echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) > ondemand/sampling_rate
* sampling_rate_min:
The sampling rate is limited by the HW transition latency:
transition_latency * 100
Or by kernel restrictions:
- If CONFIG_NO_HZ_COMMON is set, the limit is 10ms fixed.
- If CONFIG_NO_HZ_COMMON is not set or nohz=off boot parameter is
used, the limits depend on the CONFIG_HZ option:
HZ=1000: min=20000us (20ms)
HZ=250: min=80000us (80ms)
HZ=100: min=200000us (200ms)
The highest value of kernel and HW latency restrictions is shown and
used as the minimum sampling rate.
* up_threshold:
This defines what the average CPU usage between the samplings of
'sampling_rate' needs to be for the kernel to make a decision on
whether it should increase the frequency. For example when it is set
to its default value of '95' it means that between the checking
intervals the CPU needs to be on average more than 95% in use to then
decide that the CPU frequency needs to be increased.
* ignore_nice_load:
This parameter takes a value of '0' or '1'. When set to '0' (its
default), all processes are counted towards the 'cpu utilisation'
value. When set to '1', the processes that are run with a 'nice'
value will not count (and thus be ignored) in the overall usage
calculation. This is useful if you are running a CPU intensive
calculation on your laptop that you do not care how long it takes to
complete as you can 'nice' it and prevent it from taking part in the
deciding process of whether to increase your CPU frequency.
* sampling_down_factor:
This parameter controls the rate at which the kernel makes a decision
on when to decrease the frequency while running at top speed. When set
to 1 (the default) decisions to reevaluate load are made at the same
interval regardless of current clock speed. But when set to greater
than 1 (e.g. 100) it acts as a multiplier for the scheduling interval
for reevaluating load when the CPU is at its top speed due to high
load. This improves performance by reducing the overhead of load
evaluation and helping the CPU stay at its top speed when truly busy,
rather than shifting back and forth in speed. This tunable has no
effect on behavior at lower speeds/lower CPU loads.
* powersave_bias:
This parameter takes a value between 0 to 1000. It defines the
percentage (times 10) value of the target frequency that will be
shaved off of the target. For example, when set to 100 -- 10%, when
ondemand governor would have targeted 1000 MHz, it will target
1000 MHz - (10% of 1000 MHz) = 900 MHz instead. This is set to 0
(disabled) by default.
When AMD frequency sensitivity powersave bias driver --
drivers/cpufreq/amd_freq_sensitivity.c is loaded, this parameter
defines the workload frequency sensitivity threshold in which a lower
frequency is chosen instead of ondemand governor's original target.
The frequency sensitivity is a hardware reported (on AMD Family 16h
Processors and above) value between 0 to 100% that tells software how
the performance of the workload running on a CPU will change when
frequency changes. A workload with sensitivity of 0% (memory/IO-bound)
will not perform any better on higher core frequency, whereas a
workload with sensitivity of 100% (CPU-bound) will perform better
higher the frequency. When the driver is loaded, this is set to 400 by
default -- for CPUs running workloads with sensitivity value below
40%, a lower frequency is chosen. Unloading the driver or writing 0
will disable this feature.
2.5 Conservative
----------------
The CPUfreq governor "conservative", much like the "ondemand"
governor, sets the CPU depending on the current usage. It differs in
behaviour in that it gracefully increases and decreases the CPU speed
rather than jumping to max speed the moment there is any load on the
CPU. This behaviour more suitable in a battery powered environment.
The governor is tweaked in the same manner as the "ondemand" governor
through sysfs with the addition of:
* freq_step:
This describes what percentage steps the cpu freq should be increased
and decreased smoothly by. By default the cpu frequency will increase
in 5% chunks of your maximum cpu frequency. You can change this value
to anywhere between 0 and 100 where '0' will effectively lock your CPU
at a speed regardless of its load whilst '100' will, in theory, make
it behave identically to the "ondemand" governor.
* down_threshold:
Same as the 'up_threshold' found for the "ondemand" governor but for
the opposite direction. For example when set to its default value of
'20' it means that if the CPU usage needs to be below 20% between
samples to have the frequency decreased.
* sampling_down_factor:
Similar functionality as in "ondemand" governor. But in
"conservative", it controls the rate at which the kernel makes a
decision on when to decrease the frequency while running in any speed.
Load for frequency increase is still evaluated every sampling rate.
3. The Governor Interface in the CPUfreq Core
=============================================
A new governor must register itself with the CPUfreq core using
"cpufreq_register_governor". The struct cpufreq_governor, which has to
be passed to that function, must contain the following values:
governor->name - A unique name for this governor
governor->governor - The governor callback function
governor->owner - .THIS_MODULE for the governor module (if
appropriate)
The governor->governor callback is called with the current (or to-be-set)
cpufreq_policy struct for that CPU, and an unsigned int event. The
following events are currently defined:
CPUFREQ_GOV_START: This governor shall start its duty for the CPU
policy->cpu
CPUFREQ_GOV_STOP: This governor shall end its duty for the CPU
policy->cpu
CPUFREQ_GOV_LIMITS: The limits for CPU policy->cpu have changed to
policy->min and policy->max.
If you need other "events" externally of your driver, _only_ use the
cpufreq_governor_l(unsigned int cpu, unsigned int event) call to the
CPUfreq core to ensure proper locking.
The CPUfreq governor may call the CPU processor driver using one of
these two functions:
int cpufreq_driver_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation);
int __cpufreq_driver_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation);
target_freq must be within policy->min and policy->max, of course.
What's the difference between these two functions? When your governor
still is in a direct code path of a call to governor->governor, the
per-CPU cpufreq lock is still held in the cpufreq core, and there's
no need to lock it again (in fact, this would cause a deadlock). So
use __cpufreq_driver_target only in these cases. In all other cases
(for example, when there's a "daemonized" function that wakes up
every second), use cpufreq_driver_target to lock the cpufreq per-CPU
lock before the command is passed to the cpufreq processor driver.