linux-sg2042/drivers/crypto/chelsio/chtls/chtls_cm.c

2127 lines
51 KiB
C
Raw Normal View History

/*
* Copyright (c) 2018 Chelsio Communications, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Written by: Atul Gupta (atul.gupta@chelsio.com)
*/
#include <linux/module.h>
#include <linux/list.h>
#include <linux/workqueue.h>
#include <linux/skbuff.h>
#include <linux/timer.h>
#include <linux/notifier.h>
#include <linux/inetdevice.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sched/signal.h>
#include <linux/kallsyms.h>
#include <linux/kprobes.h>
#include <linux/if_vlan.h>
#include <net/tcp.h>
#include <net/dst.h>
#include "chtls.h"
#include "chtls_cm.h"
/*
* State transitions and actions for close. Note that if we are in SYN_SENT
* we remain in that state as we cannot control a connection while it's in
* SYN_SENT; such connections are allowed to establish and are then aborted.
*/
static unsigned char new_state[16] = {
/* current state: new state: action: */
/* (Invalid) */ TCP_CLOSE,
/* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
/* TCP_SYN_SENT */ TCP_SYN_SENT,
/* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
/* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
/* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
/* TCP_TIME_WAIT */ TCP_CLOSE,
/* TCP_CLOSE */ TCP_CLOSE,
/* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
/* TCP_LAST_ACK */ TCP_LAST_ACK,
/* TCP_LISTEN */ TCP_CLOSE,
/* TCP_CLOSING */ TCP_CLOSING,
};
static struct chtls_sock *chtls_sock_create(struct chtls_dev *cdev)
{
struct chtls_sock *csk = kzalloc(sizeof(*csk), GFP_ATOMIC);
if (!csk)
return NULL;
csk->txdata_skb_cache = alloc_skb(TXDATA_SKB_LEN, GFP_ATOMIC);
if (!csk->txdata_skb_cache) {
kfree(csk);
return NULL;
}
kref_init(&csk->kref);
csk->cdev = cdev;
skb_queue_head_init(&csk->txq);
csk->wr_skb_head = NULL;
csk->wr_skb_tail = NULL;
csk->mss = MAX_MSS;
csk->tlshws.ofld = 1;
csk->tlshws.txkey = -1;
csk->tlshws.rxkey = -1;
csk->tlshws.mfs = TLS_MFS;
skb_queue_head_init(&csk->tlshws.sk_recv_queue);
return csk;
}
static void chtls_sock_release(struct kref *ref)
{
struct chtls_sock *csk =
container_of(ref, struct chtls_sock, kref);
kfree(csk);
}
static struct net_device *chtls_ipv4_netdev(struct chtls_dev *cdev,
struct sock *sk)
{
struct net_device *ndev = cdev->ports[0];
if (likely(!inet_sk(sk)->inet_rcv_saddr))
return ndev;
ndev = ip_dev_find(&init_net, inet_sk(sk)->inet_rcv_saddr);
if (!ndev)
return NULL;
if (is_vlan_dev(ndev))
return vlan_dev_real_dev(ndev);
return ndev;
}
static void assign_rxopt(struct sock *sk, unsigned int opt)
{
const struct chtls_dev *cdev;
struct chtls_sock *csk;
struct tcp_sock *tp;
csk = rcu_dereference_sk_user_data(sk);
tp = tcp_sk(sk);
cdev = csk->cdev;
tp->tcp_header_len = sizeof(struct tcphdr);
tp->rx_opt.mss_clamp = cdev->mtus[TCPOPT_MSS_G(opt)] - 40;
tp->mss_cache = tp->rx_opt.mss_clamp;
tp->rx_opt.tstamp_ok = TCPOPT_TSTAMP_G(opt);
tp->rx_opt.snd_wscale = TCPOPT_SACK_G(opt);
tp->rx_opt.wscale_ok = TCPOPT_WSCALE_OK_G(opt);
SND_WSCALE(tp) = TCPOPT_SND_WSCALE_G(opt);
if (!tp->rx_opt.wscale_ok)
tp->rx_opt.rcv_wscale = 0;
if (tp->rx_opt.tstamp_ok) {
tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
tp->rx_opt.mss_clamp -= TCPOLEN_TSTAMP_ALIGNED;
} else if (csk->opt2 & TSTAMPS_EN_F) {
csk->opt2 &= ~TSTAMPS_EN_F;
csk->mtu_idx = TCPOPT_MSS_G(opt);
}
}
static void chtls_purge_receive_queue(struct sock *sk)
{
struct sk_buff *skb;
while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
skb_dst_set(skb, (void *)NULL);
kfree_skb(skb);
}
}
static void chtls_purge_write_queue(struct sock *sk)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct sk_buff *skb;
while ((skb = __skb_dequeue(&csk->txq))) {
sk->sk_wmem_queued -= skb->truesize;
__kfree_skb(skb);
}
}
static void chtls_purge_recv_queue(struct sock *sk)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct chtls_hws *tlsk = &csk->tlshws;
struct sk_buff *skb;
while ((skb = __skb_dequeue(&tlsk->sk_recv_queue)) != NULL) {
skb_dst_set(skb, NULL);
kfree_skb(skb);
}
}
static void abort_arp_failure(void *handle, struct sk_buff *skb)
{
struct cpl_abort_req *req = cplhdr(skb);
struct chtls_dev *cdev;
cdev = (struct chtls_dev *)handle;
req->cmd = CPL_ABORT_NO_RST;
cxgb4_ofld_send(cdev->lldi->ports[0], skb);
}
static struct sk_buff *alloc_ctrl_skb(struct sk_buff *skb, int len)
{
if (likely(skb && !skb_shared(skb) && !skb_cloned(skb))) {
__skb_trim(skb, 0);
refcount_add(2, &skb->users);
} else {
skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
}
return skb;
}
static void chtls_send_abort(struct sock *sk, int mode, struct sk_buff *skb)
{
struct cpl_abort_req *req;
struct chtls_sock *csk;
struct tcp_sock *tp;
csk = rcu_dereference_sk_user_data(sk);
tp = tcp_sk(sk);
if (!skb)
skb = alloc_ctrl_skb(csk->txdata_skb_cache, sizeof(*req));
req = (struct cpl_abort_req *)skb_put(skb, sizeof(*req));
INIT_TP_WR_CPL(req, CPL_ABORT_REQ, csk->tid);
skb_set_queue_mapping(skb, (csk->txq_idx << 1) | CPL_PRIORITY_DATA);
req->rsvd0 = htonl(tp->snd_nxt);
req->rsvd1 = !csk_flag_nochk(csk, CSK_TX_DATA_SENT);
req->cmd = mode;
t4_set_arp_err_handler(skb, csk->cdev, abort_arp_failure);
send_or_defer(sk, tp, skb, mode == CPL_ABORT_SEND_RST);
}
static void chtls_send_reset(struct sock *sk, int mode, struct sk_buff *skb)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
if (unlikely(csk_flag_nochk(csk, CSK_ABORT_SHUTDOWN) ||
!csk->cdev)) {
if (sk->sk_state == TCP_SYN_RECV)
csk_set_flag(csk, CSK_RST_ABORTED);
goto out;
}
if (!csk_flag_nochk(csk, CSK_TX_DATA_SENT)) {
struct tcp_sock *tp = tcp_sk(sk);
if (send_tx_flowc_wr(sk, 0, tp->snd_nxt, tp->rcv_nxt) < 0)
WARN_ONCE(1, "send tx flowc error");
csk_set_flag(csk, CSK_TX_DATA_SENT);
}
csk_set_flag(csk, CSK_ABORT_RPL_PENDING);
chtls_purge_write_queue(sk);
csk_set_flag(csk, CSK_ABORT_SHUTDOWN);
if (sk->sk_state != TCP_SYN_RECV)
chtls_send_abort(sk, mode, skb);
else
goto out;
return;
out:
if (skb)
kfree_skb(skb);
}
static void release_tcp_port(struct sock *sk)
{
if (inet_csk(sk)->icsk_bind_hash)
inet_put_port(sk);
}
static void tcp_uncork(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
if (tp->nonagle & TCP_NAGLE_CORK) {
tp->nonagle &= ~TCP_NAGLE_CORK;
chtls_tcp_push(sk, 0);
}
}
static void chtls_close_conn(struct sock *sk)
{
struct cpl_close_con_req *req;
struct chtls_sock *csk;
struct sk_buff *skb;
unsigned int tid;
unsigned int len;
len = roundup(sizeof(struct cpl_close_con_req), 16);
csk = rcu_dereference_sk_user_data(sk);
tid = csk->tid;
skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
req = (struct cpl_close_con_req *)__skb_put(skb, len);
memset(req, 0, len);
req->wr.wr_hi = htonl(FW_WR_OP_V(FW_TP_WR) |
FW_WR_IMMDLEN_V(sizeof(*req) -
sizeof(req->wr)));
req->wr.wr_mid = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)) |
FW_WR_FLOWID_V(tid));
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, tid));
tcp_uncork(sk);
skb_entail(sk, skb, ULPCB_FLAG_NO_HDR | ULPCB_FLAG_NO_APPEND);
if (sk->sk_state != TCP_SYN_SENT)
chtls_push_frames(csk, 1);
}
/*
* Perform a state transition during close and return the actions indicated
* for the transition. Do not make this function inline, the main reason
* it exists at all is to avoid multiple inlining of tcp_set_state.
*/
static int make_close_transition(struct sock *sk)
{
int next = (int)new_state[sk->sk_state];
tcp_set_state(sk, next & TCP_STATE_MASK);
return next & TCP_ACTION_FIN;
}
void chtls_close(struct sock *sk, long timeout)
{
int data_lost, prev_state;
struct chtls_sock *csk;
csk = rcu_dereference_sk_user_data(sk);
lock_sock(sk);
sk->sk_shutdown |= SHUTDOWN_MASK;
data_lost = skb_queue_len(&sk->sk_receive_queue);
data_lost |= skb_queue_len(&csk->tlshws.sk_recv_queue);
chtls_purge_recv_queue(sk);
chtls_purge_receive_queue(sk);
if (sk->sk_state == TCP_CLOSE) {
goto wait;
} else if (data_lost || sk->sk_state == TCP_SYN_SENT) {
chtls_send_reset(sk, CPL_ABORT_SEND_RST, NULL);
release_tcp_port(sk);
goto unlock;
} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
sk->sk_prot->disconnect(sk, 0);
} else if (make_close_transition(sk)) {
chtls_close_conn(sk);
}
wait:
if (timeout)
sk_stream_wait_close(sk, timeout);
unlock:
prev_state = sk->sk_state;
sock_hold(sk);
sock_orphan(sk);
release_sock(sk);
local_bh_disable();
bh_lock_sock(sk);
if (prev_state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
goto out;
if (sk->sk_state == TCP_FIN_WAIT2 && tcp_sk(sk)->linger2 < 0 &&
!csk_flag(sk, CSK_ABORT_SHUTDOWN)) {
struct sk_buff *skb;
skb = alloc_skb(sizeof(struct cpl_abort_req), GFP_ATOMIC);
if (skb)
chtls_send_reset(sk, CPL_ABORT_SEND_RST, skb);
}
if (sk->sk_state == TCP_CLOSE)
inet_csk_destroy_sock(sk);
out:
bh_unlock_sock(sk);
local_bh_enable();
sock_put(sk);
}
/*
* Wait until a socket enters on of the given states.
*/
static int wait_for_states(struct sock *sk, unsigned int states)
{
DECLARE_WAITQUEUE(wait, current);
struct socket_wq _sk_wq;
long current_timeo;
int err = 0;
current_timeo = 200;
/*
* We want this to work even when there's no associated struct socket.
* In that case we provide a temporary wait_queue_head_t.
*/
if (!sk->sk_wq) {
init_waitqueue_head(&_sk_wq.wait);
_sk_wq.fasync_list = NULL;
init_rcu_head_on_stack(&_sk_wq.rcu);
RCU_INIT_POINTER(sk->sk_wq, &_sk_wq);
}
add_wait_queue(sk_sleep(sk), &wait);
while (!sk_in_state(sk, states)) {
if (!current_timeo) {
err = -EBUSY;
break;
}
if (signal_pending(current)) {
err = sock_intr_errno(current_timeo);
break;
}
set_current_state(TASK_UNINTERRUPTIBLE);
release_sock(sk);
if (!sk_in_state(sk, states))
current_timeo = schedule_timeout(current_timeo);
__set_current_state(TASK_RUNNING);
lock_sock(sk);
}
remove_wait_queue(sk_sleep(sk), &wait);
if (rcu_dereference(sk->sk_wq) == &_sk_wq)
sk->sk_wq = NULL;
return err;
}
int chtls_disconnect(struct sock *sk, int flags)
{
struct chtls_sock *csk;
struct tcp_sock *tp;
int err;
tp = tcp_sk(sk);
csk = rcu_dereference_sk_user_data(sk);
chtls_purge_recv_queue(sk);
chtls_purge_receive_queue(sk);
chtls_purge_write_queue(sk);
if (sk->sk_state != TCP_CLOSE) {
sk->sk_err = ECONNRESET;
chtls_send_reset(sk, CPL_ABORT_SEND_RST, NULL);
err = wait_for_states(sk, TCPF_CLOSE);
if (err)
return err;
}
chtls_purge_recv_queue(sk);
chtls_purge_receive_queue(sk);
tp->max_window = 0xFFFF << (tp->rx_opt.snd_wscale);
return tcp_disconnect(sk, flags);
}
#define SHUTDOWN_ELIGIBLE_STATE (TCPF_ESTABLISHED | \
TCPF_SYN_RECV | TCPF_CLOSE_WAIT)
void chtls_shutdown(struct sock *sk, int how)
{
if ((how & SEND_SHUTDOWN) &&
sk_in_state(sk, SHUTDOWN_ELIGIBLE_STATE) &&
make_close_transition(sk))
chtls_close_conn(sk);
}
void chtls_destroy_sock(struct sock *sk)
{
struct chtls_sock *csk;
csk = rcu_dereference_sk_user_data(sk);
chtls_purge_recv_queue(sk);
csk->ulp_mode = ULP_MODE_NONE;
chtls_purge_write_queue(sk);
free_tls_keyid(sk);
kref_put(&csk->kref, chtls_sock_release);
sk->sk_prot = &tcp_prot;
sk->sk_prot->destroy(sk);
}
static void reset_listen_child(struct sock *child)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(child);
struct sk_buff *skb;
skb = alloc_ctrl_skb(csk->txdata_skb_cache,
sizeof(struct cpl_abort_req));
chtls_send_reset(child, CPL_ABORT_SEND_RST, skb);
sock_orphan(child);
INC_ORPHAN_COUNT(child);
if (child->sk_state == TCP_CLOSE)
inet_csk_destroy_sock(child);
}
static void chtls_disconnect_acceptq(struct sock *listen_sk)
{
struct request_sock **pprev;
pprev = ACCEPT_QUEUE(listen_sk);
while (*pprev) {
struct request_sock *req = *pprev;
if (req->rsk_ops == &chtls_rsk_ops) {
struct sock *child = req->sk;
*pprev = req->dl_next;
sk_acceptq_removed(listen_sk);
reqsk_put(req);
sock_hold(child);
local_bh_disable();
bh_lock_sock(child);
release_tcp_port(child);
reset_listen_child(child);
bh_unlock_sock(child);
local_bh_enable();
sock_put(child);
} else {
pprev = &req->dl_next;
}
}
}
static int listen_hashfn(const struct sock *sk)
{
return ((unsigned long)sk >> 10) & (LISTEN_INFO_HASH_SIZE - 1);
}
static struct listen_info *listen_hash_add(struct chtls_dev *cdev,
struct sock *sk,
unsigned int stid)
{
struct listen_info *p = kmalloc(sizeof(*p), GFP_KERNEL);
if (p) {
int key = listen_hashfn(sk);
p->sk = sk;
p->stid = stid;
spin_lock(&cdev->listen_lock);
p->next = cdev->listen_hash_tab[key];
cdev->listen_hash_tab[key] = p;
spin_unlock(&cdev->listen_lock);
}
return p;
}
static int listen_hash_find(struct chtls_dev *cdev,
struct sock *sk)
{
struct listen_info *p;
int stid = -1;
int key;
key = listen_hashfn(sk);
spin_lock(&cdev->listen_lock);
for (p = cdev->listen_hash_tab[key]; p; p = p->next)
if (p->sk == sk) {
stid = p->stid;
break;
}
spin_unlock(&cdev->listen_lock);
return stid;
}
static int listen_hash_del(struct chtls_dev *cdev,
struct sock *sk)
{
struct listen_info *p, **prev;
int stid = -1;
int key;
key = listen_hashfn(sk);
prev = &cdev->listen_hash_tab[key];
spin_lock(&cdev->listen_lock);
for (p = *prev; p; prev = &p->next, p = p->next)
if (p->sk == sk) {
stid = p->stid;
*prev = p->next;
kfree(p);
break;
}
spin_unlock(&cdev->listen_lock);
return stid;
}
static void cleanup_syn_rcv_conn(struct sock *child, struct sock *parent)
{
struct request_sock *req;
struct chtls_sock *csk;
csk = rcu_dereference_sk_user_data(child);
req = csk->passive_reap_next;
reqsk_queue_removed(&inet_csk(parent)->icsk_accept_queue, req);
__skb_unlink((struct sk_buff *)&csk->synq, &csk->listen_ctx->synq);
chtls_reqsk_free(req);
csk->passive_reap_next = NULL;
}
static void chtls_reset_synq(struct listen_ctx *listen_ctx)
{
struct sock *listen_sk = listen_ctx->lsk;
while (!skb_queue_empty(&listen_ctx->synq)) {
struct chtls_sock *csk =
container_of((struct synq *)__skb_dequeue
(&listen_ctx->synq), struct chtls_sock, synq);
struct sock *child = csk->sk;
cleanup_syn_rcv_conn(child, listen_sk);
sock_hold(child);
local_bh_disable();
bh_lock_sock(child);
release_tcp_port(child);
reset_listen_child(child);
bh_unlock_sock(child);
local_bh_enable();
sock_put(child);
}
}
int chtls_listen_start(struct chtls_dev *cdev, struct sock *sk)
{
struct net_device *ndev;
struct listen_ctx *ctx;
struct adapter *adap;
struct port_info *pi;
int stid;
int ret;
if (sk->sk_family != PF_INET)
return -EAGAIN;
rcu_read_lock();
ndev = chtls_ipv4_netdev(cdev, sk);
rcu_read_unlock();
if (!ndev)
return -EBADF;
pi = netdev_priv(ndev);
adap = pi->adapter;
if (!(adap->flags & FULL_INIT_DONE))
return -EBADF;
if (listen_hash_find(cdev, sk) >= 0) /* already have it */
return -EADDRINUSE;
ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
__module_get(THIS_MODULE);
ctx->lsk = sk;
ctx->cdev = cdev;
ctx->state = T4_LISTEN_START_PENDING;
skb_queue_head_init(&ctx->synq);
stid = cxgb4_alloc_stid(cdev->tids, sk->sk_family, ctx);
if (stid < 0)
goto free_ctx;
sock_hold(sk);
if (!listen_hash_add(cdev, sk, stid))
goto free_stid;
ret = cxgb4_create_server(ndev, stid,
inet_sk(sk)->inet_rcv_saddr,
inet_sk(sk)->inet_sport, 0,
cdev->lldi->rxq_ids[0]);
if (ret > 0)
ret = net_xmit_errno(ret);
if (ret)
goto del_hash;
return 0;
del_hash:
listen_hash_del(cdev, sk);
free_stid:
cxgb4_free_stid(cdev->tids, stid, sk->sk_family);
sock_put(sk);
free_ctx:
kfree(ctx);
module_put(THIS_MODULE);
return -EBADF;
}
void chtls_listen_stop(struct chtls_dev *cdev, struct sock *sk)
{
struct listen_ctx *listen_ctx;
int stid;
stid = listen_hash_del(cdev, sk);
if (stid < 0)
return;
listen_ctx = (struct listen_ctx *)lookup_stid(cdev->tids, stid);
chtls_reset_synq(listen_ctx);
cxgb4_remove_server(cdev->lldi->ports[0], stid,
cdev->lldi->rxq_ids[0], 0);
chtls_disconnect_acceptq(sk);
}
static int chtls_pass_open_rpl(struct chtls_dev *cdev, struct sk_buff *skb)
{
struct cpl_pass_open_rpl *rpl = cplhdr(skb) + RSS_HDR;
unsigned int stid = GET_TID(rpl);
struct listen_ctx *listen_ctx;
listen_ctx = (struct listen_ctx *)lookup_stid(cdev->tids, stid);
if (!listen_ctx)
return CPL_RET_BUF_DONE;
if (listen_ctx->state == T4_LISTEN_START_PENDING) {
listen_ctx->state = T4_LISTEN_STARTED;
return CPL_RET_BUF_DONE;
}
if (rpl->status != CPL_ERR_NONE) {
pr_info("Unexpected PASS_OPEN_RPL status %u for STID %u\n",
rpl->status, stid);
return CPL_RET_BUF_DONE;
}
cxgb4_free_stid(cdev->tids, stid, listen_ctx->lsk->sk_family);
sock_put(listen_ctx->lsk);
kfree(listen_ctx);
module_put(THIS_MODULE);
return 0;
}
static int chtls_close_listsrv_rpl(struct chtls_dev *cdev, struct sk_buff *skb)
{
struct cpl_close_listsvr_rpl *rpl = cplhdr(skb) + RSS_HDR;
struct listen_ctx *listen_ctx;
unsigned int stid;
void *data;
stid = GET_TID(rpl);
data = lookup_stid(cdev->tids, stid);
listen_ctx = (struct listen_ctx *)data;
if (rpl->status != CPL_ERR_NONE) {
pr_info("Unexpected CLOSE_LISTSRV_RPL status %u for STID %u\n",
rpl->status, stid);
return CPL_RET_BUF_DONE;
}
cxgb4_free_stid(cdev->tids, stid, listen_ctx->lsk->sk_family);
sock_put(listen_ctx->lsk);
kfree(listen_ctx);
module_put(THIS_MODULE);
return 0;
}
static void chtls_release_resources(struct sock *sk)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct chtls_dev *cdev = csk->cdev;
unsigned int tid = csk->tid;
struct tid_info *tids;
if (!cdev)
return;
tids = cdev->tids;
kfree_skb(csk->txdata_skb_cache);
csk->txdata_skb_cache = NULL;
if (csk->l2t_entry) {
cxgb4_l2t_release(csk->l2t_entry);
csk->l2t_entry = NULL;
}
cxgb4_remove_tid(tids, csk->port_id, tid, sk->sk_family);
sock_put(sk);
}
static void chtls_conn_done(struct sock *sk)
{
if (sock_flag(sk, SOCK_DEAD))
chtls_purge_receive_queue(sk);
sk_wakeup_sleepers(sk, 0);
tcp_done(sk);
}
static void do_abort_syn_rcv(struct sock *child, struct sock *parent)
{
/*
* If the server is still open we clean up the child connection,
* otherwise the server already did the clean up as it was purging
* its SYN queue and the skb was just sitting in its backlog.
*/
if (likely(parent->sk_state == TCP_LISTEN)) {
cleanup_syn_rcv_conn(child, parent);
/* Without the below call to sock_orphan,
* we leak the socket resource with syn_flood test
* as inet_csk_destroy_sock will not be called
* in tcp_done since SOCK_DEAD flag is not set.
* Kernel handles this differently where new socket is
* created only after 3 way handshake is done.
*/
sock_orphan(child);
percpu_counter_inc((child)->sk_prot->orphan_count);
chtls_release_resources(child);
chtls_conn_done(child);
} else {
if (csk_flag(child, CSK_RST_ABORTED)) {
chtls_release_resources(child);
chtls_conn_done(child);
}
}
}
static void pass_open_abort(struct sock *child, struct sock *parent,
struct sk_buff *skb)
{
do_abort_syn_rcv(child, parent);
kfree_skb(skb);
}
static void bl_pass_open_abort(struct sock *lsk, struct sk_buff *skb)
{
pass_open_abort(skb->sk, lsk, skb);
}
static void chtls_pass_open_arp_failure(struct sock *sk,
struct sk_buff *skb)
{
const struct request_sock *oreq;
struct chtls_sock *csk;
struct chtls_dev *cdev;
struct sock *parent;
void *data;
csk = rcu_dereference_sk_user_data(sk);
cdev = csk->cdev;
/*
* If the connection is being aborted due to the parent listening
* socket going away there's nothing to do, the ABORT_REQ will close
* the connection.
*/
if (csk_flag(sk, CSK_ABORT_RPL_PENDING)) {
kfree_skb(skb);
return;
}
oreq = csk->passive_reap_next;
data = lookup_stid(cdev->tids, oreq->ts_recent);
parent = ((struct listen_ctx *)data)->lsk;
bh_lock_sock(parent);
if (!sock_owned_by_user(parent)) {
pass_open_abort(sk, parent, skb);
} else {
BLOG_SKB_CB(skb)->backlog_rcv = bl_pass_open_abort;
__sk_add_backlog(parent, skb);
}
bh_unlock_sock(parent);
}
static void chtls_accept_rpl_arp_failure(void *handle,
struct sk_buff *skb)
{
struct sock *sk = (struct sock *)handle;
sock_hold(sk);
process_cpl_msg(chtls_pass_open_arp_failure, sk, skb);
sock_put(sk);
}
static unsigned int chtls_select_mss(const struct chtls_sock *csk,
unsigned int pmtu,
struct cpl_pass_accept_req *req)
{
struct chtls_dev *cdev;
struct dst_entry *dst;
unsigned int tcpoptsz;
unsigned int iphdrsz;
unsigned int mtu_idx;
struct tcp_sock *tp;
unsigned int mss;
struct sock *sk;
mss = ntohs(req->tcpopt.mss);
sk = csk->sk;
dst = __sk_dst_get(sk);
cdev = csk->cdev;
tp = tcp_sk(sk);
tcpoptsz = 0;
iphdrsz = sizeof(struct iphdr) + sizeof(struct tcphdr);
if (req->tcpopt.tstamp)
tcpoptsz += round_up(TCPOLEN_TIMESTAMP, 4);
tp->advmss = dst_metric_advmss(dst);
if (USER_MSS(tp) && tp->advmss > USER_MSS(tp))
tp->advmss = USER_MSS(tp);
if (tp->advmss > pmtu - iphdrsz)
tp->advmss = pmtu - iphdrsz;
if (mss && tp->advmss > mss)
tp->advmss = mss;
tp->advmss = cxgb4_best_aligned_mtu(cdev->lldi->mtus,
iphdrsz + tcpoptsz,
tp->advmss - tcpoptsz,
8, &mtu_idx);
tp->advmss -= iphdrsz;
inet_csk(sk)->icsk_pmtu_cookie = pmtu;
return mtu_idx;
}
static unsigned int select_rcv_wnd(struct chtls_sock *csk)
{
unsigned int rcvwnd;
unsigned int wnd;
struct sock *sk;
sk = csk->sk;
wnd = tcp_full_space(sk);
if (wnd < MIN_RCV_WND)
wnd = MIN_RCV_WND;
rcvwnd = MAX_RCV_WND;
csk_set_flag(csk, CSK_UPDATE_RCV_WND);
return min(wnd, rcvwnd);
}
static unsigned int select_rcv_wscale(int space, int wscale_ok, int win_clamp)
{
int wscale = 0;
if (space > MAX_RCV_WND)
space = MAX_RCV_WND;
if (win_clamp && win_clamp < space)
space = win_clamp;
if (wscale_ok) {
while (wscale < 14 && (65535 << wscale) < space)
wscale++;
}
return wscale;
}
static void chtls_pass_accept_rpl(struct sk_buff *skb,
struct cpl_pass_accept_req *req,
unsigned int tid)
{
struct cpl_t5_pass_accept_rpl *rpl5;
struct cxgb4_lld_info *lldi;
const struct tcphdr *tcph;
const struct tcp_sock *tp;
struct chtls_sock *csk;
unsigned int len;
struct sock *sk;
u32 opt2, hlen;
u64 opt0;
sk = skb->sk;
tp = tcp_sk(sk);
csk = sk->sk_user_data;
csk->tid = tid;
lldi = csk->cdev->lldi;
len = roundup(sizeof(*rpl5), 16);
rpl5 = __skb_put_zero(skb, len);
INIT_TP_WR(rpl5, tid);
OPCODE_TID(rpl5) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
csk->tid));
csk->mtu_idx = chtls_select_mss(csk, dst_mtu(__sk_dst_get(sk)),
req);
opt0 = TCAM_BYPASS_F |
WND_SCALE_V((tp)->rx_opt.rcv_wscale) |
MSS_IDX_V(csk->mtu_idx) |
L2T_IDX_V(csk->l2t_entry->idx) |
NAGLE_V(!(tp->nonagle & TCP_NAGLE_OFF)) |
TX_CHAN_V(csk->tx_chan) |
SMAC_SEL_V(csk->smac_idx) |
DSCP_V(csk->tos >> 2) |
ULP_MODE_V(ULP_MODE_TLS) |
RCV_BUFSIZ_V(min(tp->rcv_wnd >> 10, RCV_BUFSIZ_M));
opt2 = RX_CHANNEL_V(0) |
RSS_QUEUE_VALID_F | RSS_QUEUE_V(csk->rss_qid);
if (!is_t5(lldi->adapter_type))
opt2 |= RX_FC_DISABLE_F;
if (req->tcpopt.tstamp)
opt2 |= TSTAMPS_EN_F;
if (req->tcpopt.sack)
opt2 |= SACK_EN_F;
hlen = ntohl(req->hdr_len);
tcph = (struct tcphdr *)((u8 *)(req + 1) +
T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen));
if (tcph->ece && tcph->cwr)
opt2 |= CCTRL_ECN_V(1);
opt2 |= CONG_CNTRL_V(CONG_ALG_NEWRENO);
opt2 |= T5_ISS_F;
opt2 |= T5_OPT_2_VALID_F;
rpl5->opt0 = cpu_to_be64(opt0);
rpl5->opt2 = cpu_to_be32(opt2);
rpl5->iss = cpu_to_be32((prandom_u32() & ~7UL) - 1);
set_wr_txq(skb, CPL_PRIORITY_SETUP, csk->port_id);
t4_set_arp_err_handler(skb, sk, chtls_accept_rpl_arp_failure);
cxgb4_l2t_send(csk->egress_dev, skb, csk->l2t_entry);
}
static void inet_inherit_port(struct inet_hashinfo *hash_info,
struct sock *lsk, struct sock *newsk)
{
local_bh_disable();
__inet_inherit_port(lsk, newsk);
local_bh_enable();
}
static int chtls_backlog_rcv(struct sock *sk, struct sk_buff *skb)
{
if (skb->protocol) {
kfree_skb(skb);
return 0;
}
BLOG_SKB_CB(skb)->backlog_rcv(sk, skb);
return 0;
}
static struct sock *chtls_recv_sock(struct sock *lsk,
struct request_sock *oreq,
void *network_hdr,
const struct cpl_pass_accept_req *req,
struct chtls_dev *cdev)
{
const struct tcphdr *tcph;
struct inet_sock *newinet;
const struct iphdr *iph;
struct net_device *ndev;
struct chtls_sock *csk;
struct dst_entry *dst;
struct neighbour *n;
struct tcp_sock *tp;
struct sock *newsk;
u16 port_id;
int rxq_idx;
int step;
iph = (const struct iphdr *)network_hdr;
newsk = tcp_create_openreq_child(lsk, oreq, cdev->askb);
if (!newsk)
goto free_oreq;
dst = inet_csk_route_child_sock(lsk, newsk, oreq);
if (!dst)
goto free_sk;
tcph = (struct tcphdr *)(iph + 1);
n = dst_neigh_lookup(dst, &iph->saddr);
if (!n)
goto free_sk;
ndev = n->dev;
if (!ndev)
goto free_dst;
port_id = cxgb4_port_idx(ndev);
csk = chtls_sock_create(cdev);
if (!csk)
goto free_dst;
csk->l2t_entry = cxgb4_l2t_get(cdev->lldi->l2t, n, ndev, 0);
if (!csk->l2t_entry)
goto free_csk;
newsk->sk_user_data = csk;
newsk->sk_backlog_rcv = chtls_backlog_rcv;
tp = tcp_sk(newsk);
newinet = inet_sk(newsk);
newinet->inet_daddr = iph->saddr;
newinet->inet_rcv_saddr = iph->daddr;
newinet->inet_saddr = iph->daddr;
oreq->ts_recent = PASS_OPEN_TID_G(ntohl(req->tos_stid));
sk_setup_caps(newsk, dst);
csk->sk = newsk;
csk->passive_reap_next = oreq;
csk->tx_chan = cxgb4_port_chan(ndev);
csk->port_id = port_id;
csk->egress_dev = ndev;
csk->tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
csk->ulp_mode = ULP_MODE_TLS;
step = cdev->lldi->nrxq / cdev->lldi->nchan;
csk->rss_qid = cdev->lldi->rxq_ids[port_id * step];
rxq_idx = port_id * step;
csk->txq_idx = (rxq_idx < cdev->lldi->ntxq) ? rxq_idx :
port_id * step;
csk->sndbuf = newsk->sk_sndbuf;
csk->smac_idx = cxgb4_tp_smt_idx(cdev->lldi->adapter_type,
cxgb4_port_viid(ndev));
tp->rcv_wnd = select_rcv_wnd(csk);
RCV_WSCALE(tp) = select_rcv_wscale(tcp_full_space(newsk),
WSCALE_OK(tp),
tp->window_clamp);
neigh_release(n);
inet_inherit_port(&tcp_hashinfo, lsk, newsk);
csk_set_flag(csk, CSK_CONN_INLINE);
bh_unlock_sock(newsk); /* tcp_create_openreq_child ->sk_clone_lock */
return newsk;
free_csk:
chtls_sock_release(&csk->kref);
free_dst:
dst_release(dst);
free_sk:
inet_csk_prepare_forced_close(newsk);
tcp_done(newsk);
free_oreq:
chtls_reqsk_free(oreq);
return NULL;
}
/*
* Populate a TID_RELEASE WR. The skb must be already propely sized.
*/
static void mk_tid_release(struct sk_buff *skb,
unsigned int chan, unsigned int tid)
{
struct cpl_tid_release *req;
unsigned int len;
len = roundup(sizeof(struct cpl_tid_release), 16);
req = (struct cpl_tid_release *)__skb_put(skb, len);
memset(req, 0, len);
set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
INIT_TP_WR_CPL(req, CPL_TID_RELEASE, tid);
}
static int chtls_get_module(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
if (!try_module_get(icsk->icsk_ulp_ops->owner))
return -1;
return 0;
}
static void chtls_pass_accept_request(struct sock *sk,
struct sk_buff *skb)
{
struct cpl_t5_pass_accept_rpl *rpl;
struct cpl_pass_accept_req *req;
struct listen_ctx *listen_ctx;
struct request_sock *oreq;
struct sk_buff *reply_skb;
struct chtls_sock *csk;
struct chtls_dev *cdev;
struct tcphdr *tcph;
struct sock *newsk;
struct ethhdr *eh;
struct iphdr *iph;
void *network_hdr;
unsigned int stid;
unsigned int len;
unsigned int tid;
req = cplhdr(skb) + RSS_HDR;
tid = GET_TID(req);
cdev = BLOG_SKB_CB(skb)->cdev;
newsk = lookup_tid(cdev->tids, tid);
stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
if (newsk) {
pr_info("tid (%d) already in use\n", tid);
return;
}
len = roundup(sizeof(*rpl), 16);
reply_skb = alloc_skb(len, GFP_ATOMIC);
if (!reply_skb) {
cxgb4_remove_tid(cdev->tids, 0, tid, sk->sk_family);
kfree_skb(skb);
return;
}
if (sk->sk_state != TCP_LISTEN)
goto reject;
if (inet_csk_reqsk_queue_is_full(sk))
goto reject;
if (sk_acceptq_is_full(sk))
goto reject;
oreq = inet_reqsk_alloc(&chtls_rsk_ops, sk, true);
if (!oreq)
goto reject;
oreq->rsk_rcv_wnd = 0;
oreq->rsk_window_clamp = 0;
oreq->cookie_ts = 0;
oreq->mss = 0;
oreq->ts_recent = 0;
eh = (struct ethhdr *)(req + 1);
iph = (struct iphdr *)(eh + 1);
if (iph->version != 0x4)
goto free_oreq;
network_hdr = (void *)(eh + 1);
tcph = (struct tcphdr *)(iph + 1);
tcp_rsk(oreq)->tfo_listener = false;
tcp_rsk(oreq)->rcv_isn = ntohl(tcph->seq);
chtls_set_req_port(oreq, tcph->source, tcph->dest);
inet_rsk(oreq)->ecn_ok = 0;
chtls_set_req_addr(oreq, iph->daddr, iph->saddr);
if (req->tcpopt.wsf <= 14) {
inet_rsk(oreq)->wscale_ok = 1;
inet_rsk(oreq)->snd_wscale = req->tcpopt.wsf;
}
inet_rsk(oreq)->ir_iif = sk->sk_bound_dev_if;
newsk = chtls_recv_sock(sk, oreq, network_hdr, req, cdev);
if (!newsk)
goto reject;
if (chtls_get_module(newsk))
goto reject;
inet_csk_reqsk_queue_added(sk);
reply_skb->sk = newsk;
chtls_install_cpl_ops(newsk);
cxgb4_insert_tid(cdev->tids, newsk, tid, newsk->sk_family);
csk = rcu_dereference_sk_user_data(newsk);
listen_ctx = (struct listen_ctx *)lookup_stid(cdev->tids, stid);
csk->listen_ctx = listen_ctx;
__skb_queue_tail(&listen_ctx->synq, (struct sk_buff *)&csk->synq);
chtls_pass_accept_rpl(reply_skb, req, tid);
kfree_skb(skb);
return;
free_oreq:
chtls_reqsk_free(oreq);
reject:
mk_tid_release(reply_skb, 0, tid);
cxgb4_ofld_send(cdev->lldi->ports[0], reply_skb);
kfree_skb(skb);
}
/*
* Handle a CPL_PASS_ACCEPT_REQ message.
*/
static int chtls_pass_accept_req(struct chtls_dev *cdev, struct sk_buff *skb)
{
struct cpl_pass_accept_req *req = cplhdr(skb) + RSS_HDR;
struct listen_ctx *ctx;
unsigned int stid;
unsigned int tid;
struct sock *lsk;
void *data;
stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
tid = GET_TID(req);
data = lookup_stid(cdev->tids, stid);
if (!data)
return 1;
ctx = (struct listen_ctx *)data;
lsk = ctx->lsk;
if (unlikely(tid >= cdev->tids->ntids)) {
pr_info("passive open TID %u too large\n", tid);
return 1;
}
BLOG_SKB_CB(skb)->cdev = cdev;
process_cpl_msg(chtls_pass_accept_request, lsk, skb);
return 0;
}
/*
* Completes some final bits of initialization for just established connections
* and changes their state to TCP_ESTABLISHED.
*
* snd_isn here is the ISN after the SYN, i.e., the true ISN + 1.
*/
static void make_established(struct sock *sk, u32 snd_isn, unsigned int opt)
{
struct tcp_sock *tp = tcp_sk(sk);
tp->pushed_seq = snd_isn;
tp->write_seq = snd_isn;
tp->snd_nxt = snd_isn;
tp->snd_una = snd_isn;
inet_sk(sk)->inet_id = tp->write_seq ^ jiffies;
assign_rxopt(sk, opt);
if (tp->rcv_wnd > (RCV_BUFSIZ_M << 10))
tp->rcv_wup -= tp->rcv_wnd - (RCV_BUFSIZ_M << 10);
smp_mb();
tcp_set_state(sk, TCP_ESTABLISHED);
}
static void chtls_abort_conn(struct sock *sk, struct sk_buff *skb)
{
struct sk_buff *abort_skb;
abort_skb = alloc_skb(sizeof(struct cpl_abort_req), GFP_ATOMIC);
if (abort_skb)
chtls_send_reset(sk, CPL_ABORT_SEND_RST, abort_skb);
}
static struct sock *reap_list;
static DEFINE_SPINLOCK(reap_list_lock);
/*
* Process the reap list.
*/
DECLARE_TASK_FUNC(process_reap_list, task_param)
{
spin_lock_bh(&reap_list_lock);
while (reap_list) {
struct sock *sk = reap_list;
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
reap_list = csk->passive_reap_next;
csk->passive_reap_next = NULL;
spin_unlock(&reap_list_lock);
sock_hold(sk);
bh_lock_sock(sk);
chtls_abort_conn(sk, NULL);
sock_orphan(sk);
if (sk->sk_state == TCP_CLOSE)
inet_csk_destroy_sock(sk);
bh_unlock_sock(sk);
sock_put(sk);
spin_lock(&reap_list_lock);
}
spin_unlock_bh(&reap_list_lock);
}
static DECLARE_WORK(reap_task, process_reap_list);
static void add_to_reap_list(struct sock *sk)
{
struct chtls_sock *csk = sk->sk_user_data;
local_bh_disable();
bh_lock_sock(sk);
release_tcp_port(sk); /* release the port immediately */
spin_lock(&reap_list_lock);
csk->passive_reap_next = reap_list;
reap_list = sk;
if (!csk->passive_reap_next)
schedule_work(&reap_task);
spin_unlock(&reap_list_lock);
bh_unlock_sock(sk);
local_bh_enable();
}
static void add_pass_open_to_parent(struct sock *child, struct sock *lsk,
struct chtls_dev *cdev)
{
struct request_sock *oreq;
struct chtls_sock *csk;
if (lsk->sk_state != TCP_LISTEN)
return;
csk = child->sk_user_data;
oreq = csk->passive_reap_next;
csk->passive_reap_next = NULL;
reqsk_queue_removed(&inet_csk(lsk)->icsk_accept_queue, oreq);
__skb_unlink((struct sk_buff *)&csk->synq, &csk->listen_ctx->synq);
if (sk_acceptq_is_full(lsk)) {
chtls_reqsk_free(oreq);
add_to_reap_list(child);
} else {
refcount_set(&oreq->rsk_refcnt, 1);
inet_csk_reqsk_queue_add(lsk, oreq, child);
lsk->sk_data_ready(lsk);
}
}
static void bl_add_pass_open_to_parent(struct sock *lsk, struct sk_buff *skb)
{
struct sock *child = skb->sk;
skb->sk = NULL;
add_pass_open_to_parent(child, lsk, BLOG_SKB_CB(skb)->cdev);
kfree_skb(skb);
}
static int chtls_pass_establish(struct chtls_dev *cdev, struct sk_buff *skb)
{
struct cpl_pass_establish *req = cplhdr(skb) + RSS_HDR;
struct chtls_sock *csk;
struct sock *lsk, *sk;
unsigned int hwtid;
hwtid = GET_TID(req);
sk = lookup_tid(cdev->tids, hwtid);
if (!sk)
return (CPL_RET_UNKNOWN_TID | CPL_RET_BUF_DONE);
bh_lock_sock(sk);
if (unlikely(sock_owned_by_user(sk))) {
kfree_skb(skb);
} else {
unsigned int stid;
void *data;
csk = sk->sk_user_data;
csk->wr_max_credits = 64;
csk->wr_credits = 64;
csk->wr_unacked = 0;
make_established(sk, ntohl(req->snd_isn), ntohs(req->tcp_opt));
stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
sk->sk_state_change(sk);
if (unlikely(sk->sk_socket))
sk_wake_async(sk, 0, POLL_OUT);
data = lookup_stid(cdev->tids, stid);
lsk = ((struct listen_ctx *)data)->lsk;
bh_lock_sock(lsk);
if (unlikely(skb_queue_empty(&csk->listen_ctx->synq))) {
/* removed from synq */
bh_unlock_sock(lsk);
kfree_skb(skb);
goto unlock;
}
if (likely(!sock_owned_by_user(lsk))) {
kfree_skb(skb);
add_pass_open_to_parent(sk, lsk, cdev);
} else {
skb->sk = sk;
BLOG_SKB_CB(skb)->cdev = cdev;
BLOG_SKB_CB(skb)->backlog_rcv =
bl_add_pass_open_to_parent;
__sk_add_backlog(lsk, skb);
}
bh_unlock_sock(lsk);
}
unlock:
bh_unlock_sock(sk);
return 0;
}
/*
* Handle receipt of an urgent pointer.
*/
static void handle_urg_ptr(struct sock *sk, u32 urg_seq)
{
struct tcp_sock *tp = tcp_sk(sk);
urg_seq--;
if (tp->urg_data && !after(urg_seq, tp->urg_seq))
return; /* duplicate pointer */
sk_send_sigurg(sk);
if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
!sock_flag(sk, SOCK_URGINLINE) &&
tp->copied_seq != tp->rcv_nxt) {
struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
tp->copied_seq++;
if (skb && tp->copied_seq - ULP_SKB_CB(skb)->seq >= skb->len)
chtls_free_skb(sk, skb);
}
tp->urg_data = TCP_URG_NOTYET;
tp->urg_seq = urg_seq;
}
static void check_sk_callbacks(struct chtls_sock *csk)
{
struct sock *sk = csk->sk;
if (unlikely(sk->sk_user_data &&
!csk_flag_nochk(csk, CSK_CALLBACKS_CHKD)))
csk_set_flag(csk, CSK_CALLBACKS_CHKD);
}
/*
* Handles Rx data that arrives in a state where the socket isn't accepting
* new data.
*/
static void handle_excess_rx(struct sock *sk, struct sk_buff *skb)
{
if (!csk_flag(sk, CSK_ABORT_SHUTDOWN))
chtls_abort_conn(sk, skb);
kfree_skb(skb);
}
static void chtls_recv_data(struct sock *sk, struct sk_buff *skb)
{
struct cpl_rx_data *hdr = cplhdr(skb) + RSS_HDR;
struct chtls_sock *csk;
struct tcp_sock *tp;
csk = rcu_dereference_sk_user_data(sk);
tp = tcp_sk(sk);
if (unlikely(sk->sk_shutdown & RCV_SHUTDOWN)) {
handle_excess_rx(sk, skb);
return;
}
ULP_SKB_CB(skb)->seq = ntohl(hdr->seq);
ULP_SKB_CB(skb)->psh = hdr->psh;
skb_ulp_mode(skb) = ULP_MODE_NONE;
skb_reset_transport_header(skb);
__skb_pull(skb, sizeof(*hdr) + RSS_HDR);
if (!skb->data_len)
__skb_trim(skb, ntohs(hdr->len));
if (unlikely(hdr->urg))
handle_urg_ptr(sk, tp->rcv_nxt + ntohs(hdr->urg));
if (unlikely(tp->urg_data == TCP_URG_NOTYET &&
tp->urg_seq - tp->rcv_nxt < skb->len))
tp->urg_data = TCP_URG_VALID |
skb->data[tp->urg_seq - tp->rcv_nxt];
if (unlikely(hdr->dack_mode != csk->delack_mode)) {
csk->delack_mode = hdr->dack_mode;
csk->delack_seq = tp->rcv_nxt;
}
tcp_hdr(skb)->fin = 0;
tp->rcv_nxt += skb->len;
__skb_queue_tail(&sk->sk_receive_queue, skb);
if (!sock_flag(sk, SOCK_DEAD)) {
check_sk_callbacks(csk);
sk->sk_data_ready(sk);
}
}
static int chtls_rx_data(struct chtls_dev *cdev, struct sk_buff *skb)
{
struct cpl_rx_data *req = cplhdr(skb) + RSS_HDR;
unsigned int hwtid = GET_TID(req);
struct sock *sk;
sk = lookup_tid(cdev->tids, hwtid);
skb_dst_set(skb, NULL);
process_cpl_msg(chtls_recv_data, sk, skb);
return 0;
}
static void chtls_recv_pdu(struct sock *sk, struct sk_buff *skb)
{
struct cpl_tls_data *hdr = cplhdr(skb);
struct chtls_sock *csk;
struct chtls_hws *tlsk;
struct tcp_sock *tp;
csk = rcu_dereference_sk_user_data(sk);
tlsk = &csk->tlshws;
tp = tcp_sk(sk);
if (unlikely(sk->sk_shutdown & RCV_SHUTDOWN)) {
handle_excess_rx(sk, skb);
return;
}
ULP_SKB_CB(skb)->seq = ntohl(hdr->seq);
ULP_SKB_CB(skb)->flags = 0;
skb_ulp_mode(skb) = ULP_MODE_TLS;
skb_reset_transport_header(skb);
__skb_pull(skb, sizeof(*hdr));
if (!skb->data_len)
__skb_trim(skb,
CPL_TLS_DATA_LENGTH_G(ntohl(hdr->length_pkd)));
if (unlikely(tp->urg_data == TCP_URG_NOTYET && tp->urg_seq -
tp->rcv_nxt < skb->len))
tp->urg_data = TCP_URG_VALID |
skb->data[tp->urg_seq - tp->rcv_nxt];
tcp_hdr(skb)->fin = 0;
tlsk->pldlen = CPL_TLS_DATA_LENGTH_G(ntohl(hdr->length_pkd));
__skb_queue_tail(&tlsk->sk_recv_queue, skb);
}
static int chtls_rx_pdu(struct chtls_dev *cdev, struct sk_buff *skb)
{
struct cpl_tls_data *req = cplhdr(skb);
unsigned int hwtid = GET_TID(req);
struct sock *sk;
sk = lookup_tid(cdev->tids, hwtid);
skb_dst_set(skb, NULL);
process_cpl_msg(chtls_recv_pdu, sk, skb);
return 0;
}
static void chtls_set_hdrlen(struct sk_buff *skb, unsigned int nlen)
{
struct tlsrx_cmp_hdr *tls_cmp_hdr = cplhdr(skb);
skb->hdr_len = ntohs((__force __be16)tls_cmp_hdr->length);
tls_cmp_hdr->length = ntohs((__force __be16)nlen);
}
static void chtls_rx_hdr(struct sock *sk, struct sk_buff *skb)
{
struct cpl_rx_tls_cmp *cmp_cpl = cplhdr(skb);
struct sk_buff *skb_rec;
struct chtls_sock *csk;
struct chtls_hws *tlsk;
struct tcp_sock *tp;
csk = rcu_dereference_sk_user_data(sk);
tlsk = &csk->tlshws;
tp = tcp_sk(sk);
ULP_SKB_CB(skb)->seq = ntohl(cmp_cpl->seq);
ULP_SKB_CB(skb)->flags = 0;
skb_reset_transport_header(skb);
__skb_pull(skb, sizeof(*cmp_cpl));
if (!skb->data_len)
__skb_trim(skb, CPL_RX_TLS_CMP_LENGTH_G
(ntohl(cmp_cpl->pdulength_length)));
tp->rcv_nxt +=
CPL_RX_TLS_CMP_PDULENGTH_G(ntohl(cmp_cpl->pdulength_length));
skb_rec = __skb_dequeue(&tlsk->sk_recv_queue);
if (!skb_rec) {
ULP_SKB_CB(skb)->flags |= ULPCB_FLAG_TLS_ND;
__skb_queue_tail(&sk->sk_receive_queue, skb);
} else {
chtls_set_hdrlen(skb, tlsk->pldlen);
tlsk->pldlen = 0;
__skb_queue_tail(&sk->sk_receive_queue, skb);
__skb_queue_tail(&sk->sk_receive_queue, skb_rec);
}
if (!sock_flag(sk, SOCK_DEAD)) {
check_sk_callbacks(csk);
sk->sk_data_ready(sk);
}
}
static int chtls_rx_cmp(struct chtls_dev *cdev, struct sk_buff *skb)
{
struct cpl_rx_tls_cmp *req = cplhdr(skb);
unsigned int hwtid = GET_TID(req);
struct sock *sk;
sk = lookup_tid(cdev->tids, hwtid);
skb_dst_set(skb, NULL);
process_cpl_msg(chtls_rx_hdr, sk, skb);
return 0;
}
static void chtls_timewait(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
tp->rcv_nxt++;
tp->rx_opt.ts_recent_stamp = get_seconds();
tp->srtt_us = 0;
tcp_time_wait(sk, TCP_TIME_WAIT, 0);
}
static void chtls_peer_close(struct sock *sk, struct sk_buff *skb)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
sk->sk_shutdown |= RCV_SHUTDOWN;
sock_set_flag(sk, SOCK_DONE);
switch (sk->sk_state) {
case TCP_SYN_RECV:
case TCP_ESTABLISHED:
tcp_set_state(sk, TCP_CLOSE_WAIT);
break;
case TCP_FIN_WAIT1:
tcp_set_state(sk, TCP_CLOSING);
break;
case TCP_FIN_WAIT2:
chtls_release_resources(sk);
if (csk_flag_nochk(csk, CSK_ABORT_RPL_PENDING))
chtls_conn_done(sk);
else
chtls_timewait(sk);
break;
default:
pr_info("cpl_peer_close in bad state %d\n", sk->sk_state);
}
if (!sock_flag(sk, SOCK_DEAD)) {
sk->sk_state_change(sk);
/* Do not send POLL_HUP for half duplex close. */
if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
sk->sk_state == TCP_CLOSE)
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
else
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
}
}
static void chtls_close_con_rpl(struct sock *sk, struct sk_buff *skb)
{
struct cpl_close_con_rpl *rpl = cplhdr(skb) + RSS_HDR;
struct chtls_sock *csk;
struct tcp_sock *tp;
csk = rcu_dereference_sk_user_data(sk);
tp = tcp_sk(sk);
tp->snd_una = ntohl(rpl->snd_nxt) - 1; /* exclude FIN */
switch (sk->sk_state) {
case TCP_CLOSING:
chtls_release_resources(sk);
if (csk_flag_nochk(csk, CSK_ABORT_RPL_PENDING))
chtls_conn_done(sk);
else
chtls_timewait(sk);
break;
case TCP_LAST_ACK:
chtls_release_resources(sk);
chtls_conn_done(sk);
break;
case TCP_FIN_WAIT1:
tcp_set_state(sk, TCP_FIN_WAIT2);
sk->sk_shutdown |= SEND_SHUTDOWN;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_state_change(sk);
else if (tcp_sk(sk)->linger2 < 0 &&
!csk_flag_nochk(csk, CSK_ABORT_SHUTDOWN))
chtls_abort_conn(sk, skb);
break;
default:
pr_info("close_con_rpl in bad state %d\n", sk->sk_state);
}
kfree_skb(skb);
}
static struct sk_buff *get_cpl_skb(struct sk_buff *skb,
size_t len, gfp_t gfp)
{
if (likely(!skb_is_nonlinear(skb) && !skb_cloned(skb))) {
WARN_ONCE(skb->len < len, "skb alloc error");
__skb_trim(skb, len);
skb_get(skb);
} else {
skb = alloc_skb(len, gfp);
if (skb)
__skb_put(skb, len);
}
return skb;
}
static void set_abort_rpl_wr(struct sk_buff *skb, unsigned int tid,
int cmd)
{
struct cpl_abort_rpl *rpl = cplhdr(skb);
INIT_TP_WR_CPL(rpl, CPL_ABORT_RPL, tid);
rpl->cmd = cmd;
}
static void send_defer_abort_rpl(struct chtls_dev *cdev, struct sk_buff *skb)
{
struct cpl_abort_req_rss *req = cplhdr(skb);
struct sk_buff *reply_skb;
reply_skb = alloc_skb(sizeof(struct cpl_abort_rpl),
GFP_KERNEL | __GFP_NOFAIL);
__skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
set_abort_rpl_wr(reply_skb, GET_TID(req),
(req->status & CPL_ABORT_NO_RST));
set_wr_txq(reply_skb, CPL_PRIORITY_DATA, req->status >> 1);
cxgb4_ofld_send(cdev->lldi->ports[0], reply_skb);
kfree_skb(skb);
}
static void send_abort_rpl(struct sock *sk, struct sk_buff *skb,
struct chtls_dev *cdev, int status, int queue)
{
struct cpl_abort_req_rss *req = cplhdr(skb);
struct sk_buff *reply_skb;
struct chtls_sock *csk;
csk = rcu_dereference_sk_user_data(sk);
reply_skb = alloc_skb(sizeof(struct cpl_abort_rpl),
GFP_KERNEL);
if (!reply_skb) {
req->status = (queue << 1);
send_defer_abort_rpl(cdev, skb);
return;
}
set_abort_rpl_wr(reply_skb, GET_TID(req), status);
kfree_skb(skb);
set_wr_txq(reply_skb, CPL_PRIORITY_DATA, queue);
if (csk_conn_inline(csk)) {
struct l2t_entry *e = csk->l2t_entry;
if (e && sk->sk_state != TCP_SYN_RECV) {
cxgb4_l2t_send(csk->egress_dev, reply_skb, e);
return;
}
}
cxgb4_ofld_send(cdev->lldi->ports[0], reply_skb);
}
/*
* Add an skb to the deferred skb queue for processing from process context.
*/
static void t4_defer_reply(struct sk_buff *skb, struct chtls_dev *cdev,
defer_handler_t handler)
{
DEFERRED_SKB_CB(skb)->handler = handler;
spin_lock_bh(&cdev->deferq.lock);
__skb_queue_tail(&cdev->deferq, skb);
if (skb_queue_len(&cdev->deferq) == 1)
schedule_work(&cdev->deferq_task);
spin_unlock_bh(&cdev->deferq.lock);
}
static void chtls_send_abort_rpl(struct sock *sk, struct sk_buff *skb,
struct chtls_dev *cdev,
int status, int queue)
{
struct cpl_abort_req_rss *req = cplhdr(skb) + RSS_HDR;
struct sk_buff *reply_skb;
struct chtls_sock *csk;
unsigned int tid;
csk = rcu_dereference_sk_user_data(sk);
tid = GET_TID(req);
reply_skb = get_cpl_skb(skb, sizeof(struct cpl_abort_rpl), gfp_any());
if (!reply_skb) {
req->status = (queue << 1) | status;
t4_defer_reply(skb, cdev, send_defer_abort_rpl);
return;
}
set_abort_rpl_wr(reply_skb, tid, status);
set_wr_txq(reply_skb, CPL_PRIORITY_DATA, queue);
if (csk_conn_inline(csk)) {
struct l2t_entry *e = csk->l2t_entry;
if (e && sk->sk_state != TCP_SYN_RECV) {
cxgb4_l2t_send(csk->egress_dev, reply_skb, e);
return;
}
}
cxgb4_ofld_send(cdev->lldi->ports[0], reply_skb);
kfree_skb(skb);
}
/*
* This is run from a listener's backlog to abort a child connection in
* SYN_RCV state (i.e., one on the listener's SYN queue).
*/
static void bl_abort_syn_rcv(struct sock *lsk, struct sk_buff *skb)
{
struct chtls_sock *csk;
struct sock *child;
int queue;
child = skb->sk;
csk = rcu_dereference_sk_user_data(child);
queue = csk->txq_idx;
skb->sk = NULL;
do_abort_syn_rcv(child, lsk);
send_abort_rpl(child, skb, BLOG_SKB_CB(skb)->cdev,
CPL_ABORT_NO_RST, queue);
}
static int abort_syn_rcv(struct sock *sk, struct sk_buff *skb)
{
const struct request_sock *oreq;
struct listen_ctx *listen_ctx;
struct chtls_sock *csk;
struct chtls_dev *cdev;
struct sock *psk;
void *ctx;
csk = sk->sk_user_data;
oreq = csk->passive_reap_next;
cdev = csk->cdev;
if (!oreq)
return -1;
ctx = lookup_stid(cdev->tids, oreq->ts_recent);
if (!ctx)
return -1;
listen_ctx = (struct listen_ctx *)ctx;
psk = listen_ctx->lsk;
bh_lock_sock(psk);
if (!sock_owned_by_user(psk)) {
int queue = csk->txq_idx;
do_abort_syn_rcv(sk, psk);
send_abort_rpl(sk, skb, cdev, CPL_ABORT_NO_RST, queue);
} else {
skb->sk = sk;
BLOG_SKB_CB(skb)->backlog_rcv = bl_abort_syn_rcv;
__sk_add_backlog(psk, skb);
}
bh_unlock_sock(psk);
return 0;
}
static void chtls_abort_req_rss(struct sock *sk, struct sk_buff *skb)
{
const struct cpl_abort_req_rss *req = cplhdr(skb) + RSS_HDR;
struct chtls_sock *csk = sk->sk_user_data;
int rst_status = CPL_ABORT_NO_RST;
int queue = csk->txq_idx;
if (is_neg_adv(req->status)) {
if (sk->sk_state == TCP_SYN_RECV)
chtls_set_tcb_tflag(sk, 0, 0);
kfree_skb(skb);
return;
}
csk_reset_flag(csk, CSK_ABORT_REQ_RCVD);
if (!csk_flag_nochk(csk, CSK_ABORT_SHUTDOWN) &&
!csk_flag_nochk(csk, CSK_TX_DATA_SENT)) {
struct tcp_sock *tp = tcp_sk(sk);
if (send_tx_flowc_wr(sk, 0, tp->snd_nxt, tp->rcv_nxt) < 0)
WARN_ONCE(1, "send_tx_flowc error");
csk_set_flag(csk, CSK_TX_DATA_SENT);
}
csk_set_flag(csk, CSK_ABORT_SHUTDOWN);
if (!csk_flag_nochk(csk, CSK_ABORT_RPL_PENDING)) {
sk->sk_err = ETIMEDOUT;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_error_report(sk);
if (sk->sk_state == TCP_SYN_RECV && !abort_syn_rcv(sk, skb))
return;
chtls_release_resources(sk);
chtls_conn_done(sk);
}
chtls_send_abort_rpl(sk, skb, csk->cdev, rst_status, queue);
}
static void chtls_abort_rpl_rss(struct sock *sk, struct sk_buff *skb)
{
struct cpl_abort_rpl_rss *rpl = cplhdr(skb) + RSS_HDR;
struct chtls_sock *csk;
struct chtls_dev *cdev;
csk = rcu_dereference_sk_user_data(sk);
cdev = csk->cdev;
if (csk_flag_nochk(csk, CSK_ABORT_RPL_PENDING)) {
csk_reset_flag(csk, CSK_ABORT_RPL_PENDING);
if (!csk_flag_nochk(csk, CSK_ABORT_REQ_RCVD)) {
if (sk->sk_state == TCP_SYN_SENT) {
cxgb4_remove_tid(cdev->tids,
csk->port_id,
GET_TID(rpl),
sk->sk_family);
sock_put(sk);
}
chtls_release_resources(sk);
chtls_conn_done(sk);
}
}
kfree_skb(skb);
}
static int chtls_conn_cpl(struct chtls_dev *cdev, struct sk_buff *skb)
{
struct cpl_peer_close *req = cplhdr(skb) + RSS_HDR;
void (*fn)(struct sock *sk, struct sk_buff *skb);
unsigned int hwtid = GET_TID(req);
struct sock *sk;
u8 opcode;
opcode = ((const struct rss_header *)cplhdr(skb))->opcode;
sk = lookup_tid(cdev->tids, hwtid);
if (!sk)
goto rel_skb;
switch (opcode) {
case CPL_PEER_CLOSE:
fn = chtls_peer_close;
break;
case CPL_CLOSE_CON_RPL:
fn = chtls_close_con_rpl;
break;
case CPL_ABORT_REQ_RSS:
fn = chtls_abort_req_rss;
break;
case CPL_ABORT_RPL_RSS:
fn = chtls_abort_rpl_rss;
break;
default:
goto rel_skb;
}
process_cpl_msg(fn, sk, skb);
return 0;
rel_skb:
kfree_skb(skb);
return 0;
}
static struct sk_buff *dequeue_wr(struct sock *sk)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct sk_buff *skb = csk->wr_skb_head;
if (likely(skb)) {
/* Don't bother clearing the tail */
csk->wr_skb_head = WR_SKB_CB(skb)->next_wr;
WR_SKB_CB(skb)->next_wr = NULL;
}
return skb;
}
static void chtls_rx_ack(struct sock *sk, struct sk_buff *skb)
{
struct cpl_fw4_ack *hdr = cplhdr(skb) + RSS_HDR;
struct chtls_sock *csk = sk->sk_user_data;
struct tcp_sock *tp = tcp_sk(sk);
u32 credits = hdr->credits;
u32 snd_una;
snd_una = ntohl(hdr->snd_una);
csk->wr_credits += credits;
if (csk->wr_unacked > csk->wr_max_credits - csk->wr_credits)
csk->wr_unacked = csk->wr_max_credits - csk->wr_credits;
while (credits) {
struct sk_buff *pskb = csk->wr_skb_head;
u32 csum;
if (unlikely(!pskb)) {
if (csk->wr_nondata)
csk->wr_nondata -= credits;
break;
}
csum = (__force u32)pskb->csum;
if (unlikely(credits < csum)) {
pskb->csum = (__force __wsum)(csum - credits);
break;
}
dequeue_wr(sk);
credits -= csum;
kfree_skb(pskb);
}
if (hdr->seq_vld & CPL_FW4_ACK_FLAGS_SEQVAL) {
if (unlikely(before(snd_una, tp->snd_una))) {
kfree_skb(skb);
return;
}
if (tp->snd_una != snd_una) {
tp->snd_una = snd_una;
tp->rcv_tstamp = tcp_time_stamp(tp);
if (tp->snd_una == tp->snd_nxt &&
!csk_flag_nochk(csk, CSK_TX_FAILOVER))
csk_reset_flag(csk, CSK_TX_WAIT_IDLE);
}
}
if (hdr->seq_vld & CPL_FW4_ACK_FLAGS_CH) {
unsigned int fclen16 = roundup(failover_flowc_wr_len, 16);
csk->wr_credits -= fclen16;
csk_reset_flag(csk, CSK_TX_WAIT_IDLE);
csk_reset_flag(csk, CSK_TX_FAILOVER);
}
if (skb_queue_len(&csk->txq) && chtls_push_frames(csk, 0))
sk->sk_write_space(sk);
kfree_skb(skb);
}
static int chtls_wr_ack(struct chtls_dev *cdev, struct sk_buff *skb)
{
struct cpl_fw4_ack *rpl = cplhdr(skb) + RSS_HDR;
unsigned int hwtid = GET_TID(rpl);
struct sock *sk;
sk = lookup_tid(cdev->tids, hwtid);
process_cpl_msg(chtls_rx_ack, sk, skb);
return 0;
}
chtls_handler_func chtls_handlers[NUM_CPL_CMDS] = {
[CPL_PASS_OPEN_RPL] = chtls_pass_open_rpl,
[CPL_CLOSE_LISTSRV_RPL] = chtls_close_listsrv_rpl,
[CPL_PASS_ACCEPT_REQ] = chtls_pass_accept_req,
[CPL_PASS_ESTABLISH] = chtls_pass_establish,
[CPL_RX_DATA] = chtls_rx_data,
[CPL_TLS_DATA] = chtls_rx_pdu,
[CPL_RX_TLS_CMP] = chtls_rx_cmp,
[CPL_PEER_CLOSE] = chtls_conn_cpl,
[CPL_CLOSE_CON_RPL] = chtls_conn_cpl,
[CPL_ABORT_REQ_RSS] = chtls_conn_cpl,
[CPL_ABORT_RPL_RSS] = chtls_conn_cpl,
[CPL_FW4_ACK] = chtls_wr_ack,
};