linux-sg2042/drivers/media/video/ks0127.c

725 lines
20 KiB
C
Raw Normal View History

/*
* Video Capture Driver (Video for Linux 1/2)
* for the Matrox Marvel G200,G400 and Rainbow Runner-G series
*
* This module is an interface to the KS0127 video decoder chip.
*
* Copyright (C) 1999 Ryan Drake <stiletto@mediaone.net>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*****************************************************************************
*
* Modified and extended by
* Mike Bernson <mike@mlb.org>
* Gerard v.d. Horst
* Leon van Stuivenberg <l.vanstuivenberg@chello.nl>
* Gernot Ziegler <gz@lysator.liu.se>
*
* Version History:
* V1.0 Ryan Drake Initial version by Ryan Drake
* V1.1 Gerard v.d. Horst Added some debugoutput, reset the video-standard
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/i2c.h>
#include <linux/videodev2.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include "ks0127.h"
MODULE_DESCRIPTION("KS0127 video decoder driver");
MODULE_AUTHOR("Ryan Drake");
MODULE_LICENSE("GPL");
/* Addresses */
#define I2C_KS0127_ADDON 0xD8
#define I2C_KS0127_ONBOARD 0xDA
/* ks0127 control registers */
#define KS_STAT 0x00
#define KS_CMDA 0x01
#define KS_CMDB 0x02
#define KS_CMDC 0x03
#define KS_CMDD 0x04
#define KS_HAVB 0x05
#define KS_HAVE 0x06
#define KS_HS1B 0x07
#define KS_HS1E 0x08
#define KS_HS2B 0x09
#define KS_HS2E 0x0a
#define KS_AGC 0x0b
#define KS_HXTRA 0x0c
#define KS_CDEM 0x0d
#define KS_PORTAB 0x0e
#define KS_LUMA 0x0f
#define KS_CON 0x10
#define KS_BRT 0x11
#define KS_CHROMA 0x12
#define KS_CHROMB 0x13
#define KS_DEMOD 0x14
#define KS_SAT 0x15
#define KS_HUE 0x16
#define KS_VERTIA 0x17
#define KS_VERTIB 0x18
#define KS_VERTIC 0x19
#define KS_HSCLL 0x1a
#define KS_HSCLH 0x1b
#define KS_VSCLL 0x1c
#define KS_VSCLH 0x1d
#define KS_OFMTA 0x1e
#define KS_OFMTB 0x1f
#define KS_VBICTL 0x20
#define KS_CCDAT2 0x21
#define KS_CCDAT1 0x22
#define KS_VBIL30 0x23
#define KS_VBIL74 0x24
#define KS_VBIL118 0x25
#define KS_VBIL1512 0x26
#define KS_TTFRAM 0x27
#define KS_TESTA 0x28
#define KS_UVOFFH 0x29
#define KS_UVOFFL 0x2a
#define KS_UGAIN 0x2b
#define KS_VGAIN 0x2c
#define KS_VAVB 0x2d
#define KS_VAVE 0x2e
#define KS_CTRACK 0x2f
#define KS_POLCTL 0x30
#define KS_REFCOD 0x31
#define KS_INVALY 0x32
#define KS_INVALU 0x33
#define KS_INVALV 0x34
#define KS_UNUSEY 0x35
#define KS_UNUSEU 0x36
#define KS_UNUSEV 0x37
#define KS_USRSAV 0x38
#define KS_USREAV 0x39
#define KS_SHS1A 0x3a
#define KS_SHS1B 0x3b
#define KS_SHS1C 0x3c
#define KS_CMDE 0x3d
#define KS_VSDEL 0x3e
#define KS_CMDF 0x3f
#define KS_GAMMA0 0x40
#define KS_GAMMA1 0x41
#define KS_GAMMA2 0x42
#define KS_GAMMA3 0x43
#define KS_GAMMA4 0x44
#define KS_GAMMA5 0x45
#define KS_GAMMA6 0x46
#define KS_GAMMA7 0x47
#define KS_GAMMA8 0x48
#define KS_GAMMA9 0x49
#define KS_GAMMA10 0x4a
#define KS_GAMMA11 0x4b
#define KS_GAMMA12 0x4c
#define KS_GAMMA13 0x4d
#define KS_GAMMA14 0x4e
#define KS_GAMMA15 0x4f
#define KS_GAMMA16 0x50
#define KS_GAMMA17 0x51
#define KS_GAMMA18 0x52
#define KS_GAMMA19 0x53
#define KS_GAMMA20 0x54
#define KS_GAMMA21 0x55
#define KS_GAMMA22 0x56
#define KS_GAMMA23 0x57
#define KS_GAMMA24 0x58
#define KS_GAMMA25 0x59
#define KS_GAMMA26 0x5a
#define KS_GAMMA27 0x5b
#define KS_GAMMA28 0x5c
#define KS_GAMMA29 0x5d
#define KS_GAMMA30 0x5e
#define KS_GAMMA31 0x5f
#define KS_GAMMAD0 0x60
#define KS_GAMMAD1 0x61
#define KS_GAMMAD2 0x62
#define KS_GAMMAD3 0x63
#define KS_GAMMAD4 0x64
#define KS_GAMMAD5 0x65
#define KS_GAMMAD6 0x66
#define KS_GAMMAD7 0x67
#define KS_GAMMAD8 0x68
#define KS_GAMMAD9 0x69
#define KS_GAMMAD10 0x6a
#define KS_GAMMAD11 0x6b
#define KS_GAMMAD12 0x6c
#define KS_GAMMAD13 0x6d
#define KS_GAMMAD14 0x6e
#define KS_GAMMAD15 0x6f
#define KS_GAMMAD16 0x70
#define KS_GAMMAD17 0x71
#define KS_GAMMAD18 0x72
#define KS_GAMMAD19 0x73
#define KS_GAMMAD20 0x74
#define KS_GAMMAD21 0x75
#define KS_GAMMAD22 0x76
#define KS_GAMMAD23 0x77
#define KS_GAMMAD24 0x78
#define KS_GAMMAD25 0x79
#define KS_GAMMAD26 0x7a
#define KS_GAMMAD27 0x7b
#define KS_GAMMAD28 0x7c
#define KS_GAMMAD29 0x7d
#define KS_GAMMAD30 0x7e
#define KS_GAMMAD31 0x7f
/****************************************************************************
* mga_dev : represents one ks0127 chip.
****************************************************************************/
struct adjust {
int contrast;
int bright;
int hue;
int ugain;
int vgain;
};
struct ks0127 {
struct v4l2_subdev sd;
v4l2_std_id norm;
int ident;
u8 regs[256];
};
static inline struct ks0127 *to_ks0127(struct v4l2_subdev *sd)
{
return container_of(sd, struct ks0127, sd);
}
static int debug; /* insmod parameter */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug output");
static u8 reg_defaults[64];
static void init_reg_defaults(void)
{
static int initialized;
u8 *table = reg_defaults;
if (initialized)
return;
initialized = 1;
table[KS_CMDA] = 0x2c; /* VSE=0, CCIR 601, autodetect standard */
table[KS_CMDB] = 0x12; /* VALIGN=0, AGC control and input */
table[KS_CMDC] = 0x00; /* Test options */
/* clock & input select, write 1 to PORTA */
table[KS_CMDD] = 0x01;
table[KS_HAVB] = 0x00; /* HAV Start Control */
table[KS_HAVE] = 0x00; /* HAV End Control */
table[KS_HS1B] = 0x10; /* HS1 Start Control */
table[KS_HS1E] = 0x00; /* HS1 End Control */
table[KS_HS2B] = 0x00; /* HS2 Start Control */
table[KS_HS2E] = 0x00; /* HS2 End Control */
table[KS_AGC] = 0x53; /* Manual setting for AGC */
table[KS_HXTRA] = 0x00; /* Extra Bits for HAV and HS1/2 */
table[KS_CDEM] = 0x00; /* Chroma Demodulation Control */
table[KS_PORTAB] = 0x0f; /* port B is input, port A output GPPORT */
table[KS_LUMA] = 0x01; /* Luma control */
table[KS_CON] = 0x00; /* Contrast Control */
table[KS_BRT] = 0x00; /* Brightness Control */
table[KS_CHROMA] = 0x2a; /* Chroma control A */
table[KS_CHROMB] = 0x90; /* Chroma control B */
table[KS_DEMOD] = 0x00; /* Chroma Demodulation Control & Status */
table[KS_SAT] = 0x00; /* Color Saturation Control*/
table[KS_HUE] = 0x00; /* Hue Control */
table[KS_VERTIA] = 0x00; /* Vertical Processing Control A */
/* Vertical Processing Control B, luma 1 line delayed */
table[KS_VERTIB] = 0x12;
table[KS_VERTIC] = 0x0b; /* Vertical Processing Control C */
table[KS_HSCLL] = 0x00; /* Horizontal Scaling Ratio Low */
table[KS_HSCLH] = 0x00; /* Horizontal Scaling Ratio High */
table[KS_VSCLL] = 0x00; /* Vertical Scaling Ratio Low */
table[KS_VSCLH] = 0x00; /* Vertical Scaling Ratio High */
/* 16 bit YCbCr 4:2:2 output; I can't make the bt866 like 8 bit /Sam */
table[KS_OFMTA] = 0x30;
table[KS_OFMTB] = 0x00; /* Output Control B */
/* VBI Decoder Control; 4bit fmt: avoid Y overflow */
table[KS_VBICTL] = 0x5d;
table[KS_CCDAT2] = 0x00; /* Read Only register */
table[KS_CCDAT1] = 0x00; /* Read Only register */
table[KS_VBIL30] = 0xa8; /* VBI data decoding options */
table[KS_VBIL74] = 0xaa; /* VBI data decoding options */
table[KS_VBIL118] = 0x2a; /* VBI data decoding options */
table[KS_VBIL1512] = 0x00; /* VBI data decoding options */
table[KS_TTFRAM] = 0x00; /* Teletext frame alignment pattern */
table[KS_TESTA] = 0x00; /* test register, shouldn't be written */
table[KS_UVOFFH] = 0x00; /* UV Offset Adjustment High */
table[KS_UVOFFL] = 0x00; /* UV Offset Adjustment Low */
table[KS_UGAIN] = 0x00; /* U Component Gain Adjustment */
table[KS_VGAIN] = 0x00; /* V Component Gain Adjustment */
table[KS_VAVB] = 0x07; /* VAV Begin */
table[KS_VAVE] = 0x00; /* VAV End */
table[KS_CTRACK] = 0x00; /* Chroma Tracking Control */
table[KS_POLCTL] = 0x41; /* Timing Signal Polarity Control */
table[KS_REFCOD] = 0x80; /* Reference Code Insertion Control */
table[KS_INVALY] = 0x10; /* Invalid Y Code */
table[KS_INVALU] = 0x80; /* Invalid U Code */
table[KS_INVALV] = 0x80; /* Invalid V Code */
table[KS_UNUSEY] = 0x10; /* Unused Y Code */
table[KS_UNUSEU] = 0x80; /* Unused U Code */
table[KS_UNUSEV] = 0x80; /* Unused V Code */
table[KS_USRSAV] = 0x00; /* reserved */
table[KS_USREAV] = 0x00; /* reserved */
table[KS_SHS1A] = 0x00; /* User Defined SHS1 A */
/* User Defined SHS1 B, ALT656=1 on 0127B */
table[KS_SHS1B] = 0x80;
table[KS_SHS1C] = 0x00; /* User Defined SHS1 C */
table[KS_CMDE] = 0x00; /* Command Register E */
table[KS_VSDEL] = 0x00; /* VS Delay Control */
/* Command Register F, update -immediately- */
/* (there might come no vsync)*/
table[KS_CMDF] = 0x02;
}
/* We need to manually read because of a bug in the KS0127 chip.
*
* An explanation from kayork@mail.utexas.edu:
*
* During I2C reads, the KS0127 only samples for a stop condition
* during the place where the acknowledge bit should be. Any standard
* I2C implementation (correctly) throws in another clock transition
* at the 9th bit, and the KS0127 will not recognize the stop condition
* and will continue to clock out data.
*
* So we have to do the read ourself. Big deal.
* workaround in i2c-algo-bit
*/
static u8 ks0127_read(struct v4l2_subdev *sd, u8 reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
char val = 0;
struct i2c_msg msgs[] = {
{ client->addr, 0, sizeof(reg), &reg },
{ client->addr, I2C_M_RD | I2C_M_NO_RD_ACK, sizeof(val), &val }
};
int ret;
ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (ret != ARRAY_SIZE(msgs))
v4l2_dbg(1, debug, sd, "read error\n");
return val;
}
static void ks0127_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct ks0127 *ks = to_ks0127(sd);
char msg[] = { reg, val };
if (i2c_master_send(client, msg, sizeof(msg)) != sizeof(msg))
v4l2_dbg(1, debug, sd, "write error\n");
ks->regs[reg] = val;
}
/* generic bit-twiddling */
static void ks0127_and_or(struct v4l2_subdev *sd, u8 reg, u8 and_v, u8 or_v)
{
struct ks0127 *ks = to_ks0127(sd);
u8 val = ks->regs[reg];
val = (val & and_v) | or_v;
ks0127_write(sd, reg, val);
}
/****************************************************************************
* ks0127 private api
****************************************************************************/
static void ks0127_init(struct v4l2_subdev *sd)
{
struct ks0127 *ks = to_ks0127(sd);
u8 *table = reg_defaults;
int i;
ks->ident = V4L2_IDENT_KS0127;
v4l2_dbg(1, debug, sd, "reset\n");
msleep(1);
/* initialize all registers to known values */
/* (except STAT, 0x21, 0x22, TEST and 0x38,0x39) */
for (i = 1; i < 33; i++)
ks0127_write(sd, i, table[i]);
for (i = 35; i < 40; i++)
ks0127_write(sd, i, table[i]);
for (i = 41; i < 56; i++)
ks0127_write(sd, i, table[i]);
for (i = 58; i < 64; i++)
ks0127_write(sd, i, table[i]);
if ((ks0127_read(sd, KS_STAT) & 0x80) == 0) {
ks->ident = V4L2_IDENT_KS0122S;
v4l2_dbg(1, debug, sd, "ks0122s found\n");
return;
}
switch (ks0127_read(sd, KS_CMDE) & 0x0f) {
case 0:
v4l2_dbg(1, debug, sd, "ks0127 found\n");
break;
case 9:
ks->ident = V4L2_IDENT_KS0127B;
v4l2_dbg(1, debug, sd, "ks0127B Revision A found\n");
break;
default:
v4l2_dbg(1, debug, sd, "unknown revision\n");
break;
}
}
static int ks0127_s_routing(struct v4l2_subdev *sd,
u32 input, u32 output, u32 config)
{
struct ks0127 *ks = to_ks0127(sd);
switch (input) {
case KS_INPUT_COMPOSITE_1:
case KS_INPUT_COMPOSITE_2:
case KS_INPUT_COMPOSITE_3:
case KS_INPUT_COMPOSITE_4:
case KS_INPUT_COMPOSITE_5:
case KS_INPUT_COMPOSITE_6:
v4l2_dbg(1, debug, sd,
"s_routing %d: Composite\n", input);
/* autodetect 50/60 Hz */
ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00);
/* VSE=0 */
ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00);
/* set input line */
ks0127_and_or(sd, KS_CMDB, 0xb0, input);
/* non-freerunning mode */
ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a);
/* analog input */
ks0127_and_or(sd, KS_CMDD, 0x03, 0x00);
/* enable chroma demodulation */
ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
/* chroma trap, HYBWR=1 */
ks0127_and_or(sd, KS_LUMA, 0x00,
(reg_defaults[KS_LUMA])|0x0c);
/* scaler fullbw, luma comb off */
ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
/* manual chroma comb .25 .5 .25 */
ks0127_and_or(sd, KS_VERTIC, 0x0f, 0x90);
/* chroma path delay */
ks0127_and_or(sd, KS_CHROMB, 0x0f, 0x90);
ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
break;
case KS_INPUT_SVIDEO_1:
case KS_INPUT_SVIDEO_2:
case KS_INPUT_SVIDEO_3:
v4l2_dbg(1, debug, sd,
"s_routing %d: S-Video\n", input);
/* autodetect 50/60 Hz */
ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00);
/* VSE=0 */
ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00);
/* set input line */
ks0127_and_or(sd, KS_CMDB, 0xb0, input);
/* non-freerunning mode */
ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a);
/* analog input */
ks0127_and_or(sd, KS_CMDD, 0x03, 0x00);
/* enable chroma demodulation */
ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
ks0127_and_or(sd, KS_LUMA, 0x00,
reg_defaults[KS_LUMA]);
/* disable luma comb */
ks0127_and_or(sd, KS_VERTIA, 0x08,
(reg_defaults[KS_VERTIA]&0xf0)|0x01);
ks0127_and_or(sd, KS_VERTIC, 0x0f,
reg_defaults[KS_VERTIC]&0xf0);
ks0127_and_or(sd, KS_CHROMB, 0x0f,
reg_defaults[KS_CHROMB]&0xf0);
ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
break;
case KS_INPUT_YUV656:
v4l2_dbg(1, debug, sd, "s_routing 15: YUV656\n");
if (ks->norm & V4L2_STD_525_60)
/* force 60 Hz */
ks0127_and_or(sd, KS_CMDA, 0xfc, 0x03);
else
/* force 50 Hz */
ks0127_and_or(sd, KS_CMDA, 0xfc, 0x02);
ks0127_and_or(sd, KS_CMDA, 0xff, 0x40); /* VSE=1 */
/* set input line and VALIGN */
ks0127_and_or(sd, KS_CMDB, 0xb0, (input | 0x40));
/* freerunning mode, */
/* TSTGEN = 1 TSTGFR=11 TSTGPH=0 TSTGPK=0 VMEM=1*/
ks0127_and_or(sd, KS_CMDC, 0x70, 0x87);
/* digital input, SYNDIR = 0 INPSL=01 CLKDIR=0 EAV=0 */
ks0127_and_or(sd, KS_CMDD, 0x03, 0x08);
/* disable chroma demodulation */
ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x30);
/* HYPK =01 CTRAP = 0 HYBWR=0 PED=1 RGBH=1 UNIT=1 */
ks0127_and_or(sd, KS_LUMA, 0x00, 0x71);
ks0127_and_or(sd, KS_VERTIC, 0x0f,
reg_defaults[KS_VERTIC]&0xf0);
/* scaler fullbw, luma comb off */
ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
ks0127_and_or(sd, KS_CHROMB, 0x0f,
reg_defaults[KS_CHROMB]&0xf0);
ks0127_and_or(sd, KS_CON, 0x00, 0x00);
ks0127_and_or(sd, KS_BRT, 0x00, 32); /* spec: 34 */
/* spec: 229 (e5) */
ks0127_and_or(sd, KS_SAT, 0x00, 0xe8);
ks0127_and_or(sd, KS_HUE, 0x00, 0);
ks0127_and_or(sd, KS_UGAIN, 0x00, 238);
ks0127_and_or(sd, KS_VGAIN, 0x00, 0x00);
/*UOFF:0x30, VOFF:0x30, TSTCGN=1 */
ks0127_and_or(sd, KS_UVOFFH, 0x00, 0x4f);
ks0127_and_or(sd, KS_UVOFFL, 0x00, 0x00);
break;
default:
v4l2_dbg(1, debug, sd,
"s_routing: Unknown input %d\n", input);
break;
}
/* hack: CDMLPF sometimes spontaneously switches on; */
/* force back off */
ks0127_write(sd, KS_DEMOD, reg_defaults[KS_DEMOD]);
return 0;
}
static int ks0127_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
{
struct ks0127 *ks = to_ks0127(sd);
/* Set to automatic SECAM/Fsc mode */
ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
ks->norm = std;
if (std & V4L2_STD_NTSC) {
v4l2_dbg(1, debug, sd,
"s_std: NTSC_M\n");
ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
} else if (std & V4L2_STD_PAL_N) {
v4l2_dbg(1, debug, sd,
"s_std: NTSC_N (fixme)\n");
ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
} else if (std & V4L2_STD_PAL) {
v4l2_dbg(1, debug, sd,
"s_std: PAL_N\n");
ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
} else if (std & V4L2_STD_PAL_M) {
v4l2_dbg(1, debug, sd,
"s_std: PAL_M (fixme)\n");
ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
} else if (std & V4L2_STD_SECAM) {
v4l2_dbg(1, debug, sd,
"s_std: SECAM\n");
/* set to secam autodetection */
ks0127_and_or(sd, KS_CHROMA, 0xdf, 0x20);
ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
schedule_timeout_interruptible(HZ/10+1);
/* did it autodetect? */
if (!(ks0127_read(sd, KS_DEMOD) & 0x40))
/* force to secam mode */
ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x0f);
} else {
v4l2_dbg(1, debug, sd, "s_std: Unknown norm %llx\n",
(unsigned long long)std);
}
return 0;
}
static int ks0127_s_stream(struct v4l2_subdev *sd, int enable)
{
v4l2_dbg(1, debug, sd, "s_stream(%d)\n", enable);
if (enable) {
/* All output pins on */
ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x30);
/* Obey the OEN pin */
ks0127_and_or(sd, KS_CDEM, 0x7f, 0x00);
} else {
/* Video output pins off */
ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x00);
/* Ignore the OEN pin */
ks0127_and_or(sd, KS_CDEM, 0x7f, 0x80);
}
return 0;
}
static int ks0127_status(struct v4l2_subdev *sd, u32 *pstatus, v4l2_std_id *pstd)
{
int stat = V4L2_IN_ST_NO_SIGNAL;
u8 status;
v4l2_std_id std = V4L2_STD_ALL;
status = ks0127_read(sd, KS_STAT);
if (!(status & 0x20)) /* NOVID not set */
stat = 0;
if (!(status & 0x01)) /* CLOCK set */
stat |= V4L2_IN_ST_NO_COLOR;
if ((status & 0x08)) /* PALDET set */
std = V4L2_STD_PAL;
else
std = V4L2_STD_NTSC;
if (pstd)
*pstd = std;
if (pstatus)
*pstatus = stat;
return 0;
}
static int ks0127_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
{
v4l2_dbg(1, debug, sd, "querystd\n");
return ks0127_status(sd, NULL, std);
}
static int ks0127_g_input_status(struct v4l2_subdev *sd, u32 *status)
{
v4l2_dbg(1, debug, sd, "g_input_status\n");
return ks0127_status(sd, status, NULL);
}
static int ks0127_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct ks0127 *ks = to_ks0127(sd);
return v4l2_chip_ident_i2c_client(client, chip, ks->ident, 0);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops ks0127_core_ops = {
.g_chip_ident = ks0127_g_chip_ident,
.s_std = ks0127_s_std,
};
static const struct v4l2_subdev_video_ops ks0127_video_ops = {
.s_routing = ks0127_s_routing,
.s_stream = ks0127_s_stream,
.querystd = ks0127_querystd,
.g_input_status = ks0127_g_input_status,
};
static const struct v4l2_subdev_ops ks0127_ops = {
.core = &ks0127_core_ops,
.video = &ks0127_video_ops,
};
/* ----------------------------------------------------------------------- */
static int ks0127_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct ks0127 *ks;
struct v4l2_subdev *sd;
v4l_info(client, "%s chip found @ 0x%x (%s)\n",
client->addr == (I2C_KS0127_ADDON >> 1) ? "addon" : "on-board",
client->addr << 1, client->adapter->name);
ks = kzalloc(sizeof(*ks), GFP_KERNEL);
if (ks == NULL)
return -ENOMEM;
sd = &ks->sd;
v4l2_i2c_subdev_init(sd, client, &ks0127_ops);
/* power up */
init_reg_defaults();
ks0127_write(sd, KS_CMDA, 0x2c);
mdelay(10);
/* reset the device */
ks0127_init(sd);
return 0;
}
static int ks0127_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
v4l2_device_unregister_subdev(sd);
ks0127_write(sd, KS_OFMTA, 0x20); /* tristate */
ks0127_write(sd, KS_CMDA, 0x2c | 0x80); /* power down */
kfree(to_ks0127(sd));
return 0;
}
static const struct i2c_device_id ks0127_id[] = {
{ "ks0127", 0 },
{ "ks0127b", 0 },
{ "ks0122s", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, ks0127_id);
static struct i2c_driver ks0127_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "ks0127",
},
.probe = ks0127_probe,
.remove = ks0127_remove,
.id_table = ks0127_id,
};
module_i2c_driver(ks0127_driver);