2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* PCI Express PCI Hot Plug Driver
|
|
|
|
*
|
|
|
|
* Copyright (C) 1995,2001 Compaq Computer Corporation
|
|
|
|
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
|
|
|
|
* Copyright (C) 2001 IBM Corp.
|
|
|
|
* Copyright (C) 2003-2004 Intel Corporation
|
|
|
|
*
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or (at
|
|
|
|
* your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful, but
|
|
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
|
|
* NON INFRINGEMENT. See the GNU General Public License for more
|
|
|
|
* details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
*
|
2005-08-17 06:16:10 +08:00
|
|
|
* Send feedback to <greg@kroah.com>,<kristen.c.accardi@intel.com>
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/types.h>
|
2006-01-08 17:02:05 +08:00
|
|
|
#include <linux/signal.h>
|
|
|
|
#include <linux/jiffies.h>
|
|
|
|
#include <linux/timer.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <linux/pci.h>
|
2005-11-14 08:06:39 +08:00
|
|
|
#include <linux/interrupt.h>
|
2007-01-10 05:02:36 +08:00
|
|
|
#include <linux/time.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
|
|
|
#include <linux/slab.h>
|
2005-11-14 08:06:39 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
#include "../pci.h"
|
|
|
|
#include "pciehp.h"
|
|
|
|
|
2013-05-10 01:26:16 +08:00
|
|
|
static inline struct pci_dev *ctrl_dev(struct controller *ctrl)
|
2006-12-22 09:01:06 +08:00
|
|
|
{
|
2013-05-10 01:26:16 +08:00
|
|
|
return ctrl->pcie->port;
|
2006-12-22 09:01:06 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2006-12-22 09:01:04 +08:00
|
|
|
static irqreturn_t pcie_isr(int irq, void *dev_id);
|
|
|
|
static void start_int_poll_timer(struct controller *ctrl, int sec);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/* This is the interrupt polling timeout function. */
|
2006-12-22 09:01:04 +08:00
|
|
|
static void int_poll_timeout(unsigned long data)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2006-12-22 09:01:04 +08:00
|
|
|
struct controller *ctrl = (struct controller *)data;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/* Poll for interrupt events. regs == NULL => polling */
|
2006-12-22 09:01:04 +08:00
|
|
|
pcie_isr(0, ctrl);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2006-12-22 09:01:04 +08:00
|
|
|
init_timer(&ctrl->poll_timer);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (!pciehp_poll_time)
|
2007-08-10 07:09:38 +08:00
|
|
|
pciehp_poll_time = 2; /* default polling interval is 2 sec */
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2006-12-22 09:01:04 +08:00
|
|
|
start_int_poll_timer(ctrl, pciehp_poll_time);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* This function starts the interrupt polling timer. */
|
2006-12-22 09:01:04 +08:00
|
|
|
static void start_int_poll_timer(struct controller *ctrl, int sec)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2006-12-22 09:01:04 +08:00
|
|
|
/* Clamp to sane value */
|
|
|
|
if ((sec <= 0) || (sec > 60))
|
2013-11-15 02:28:18 +08:00
|
|
|
sec = 2;
|
2006-12-22 09:01:04 +08:00
|
|
|
|
|
|
|
ctrl->poll_timer.function = &int_poll_timeout;
|
|
|
|
ctrl->poll_timer.data = (unsigned long)ctrl;
|
|
|
|
ctrl->poll_timer.expires = jiffies + sec * HZ;
|
|
|
|
add_timer(&ctrl->poll_timer);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2008-04-26 05:39:08 +08:00
|
|
|
static inline int pciehp_request_irq(struct controller *ctrl)
|
|
|
|
{
|
2008-08-22 16:16:48 +08:00
|
|
|
int retval, irq = ctrl->pcie->irq;
|
2008-04-26 05:39:08 +08:00
|
|
|
|
|
|
|
/* Install interrupt polling timer. Start with 10 sec delay */
|
|
|
|
if (pciehp_poll_mode) {
|
|
|
|
init_timer(&ctrl->poll_timer);
|
|
|
|
start_int_poll_timer(ctrl, 10);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Installs the interrupt handler */
|
|
|
|
retval = request_irq(irq, pcie_isr, IRQF_SHARED, MY_NAME, ctrl);
|
|
|
|
if (retval)
|
2008-09-05 11:11:26 +08:00
|
|
|
ctrl_err(ctrl, "Cannot get irq %d for the hotplug controller\n",
|
|
|
|
irq);
|
2008-04-26 05:39:08 +08:00
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void pciehp_free_irq(struct controller *ctrl)
|
|
|
|
{
|
|
|
|
if (pciehp_poll_mode)
|
|
|
|
del_timer_sync(&ctrl->poll_timer);
|
|
|
|
else
|
2008-08-22 16:16:48 +08:00
|
|
|
free_irq(ctrl->pcie->irq, ctrl);
|
2008-04-26 05:39:08 +08:00
|
|
|
}
|
|
|
|
|
PCI: pciehp: Compute timeout from hotplug command start time
If we issue a hotplug command, go do something else, then come back and
wait for the command to complete, we don't have to wait the whole timeout
period, because some of it elapsed while we were doing something else.
Keep track of the time we issued the command, and wait only until the
timeout period from that point has elapsed.
For controllers with errata like Intel CF118, we previously timed out
before issuing the second hotplug command:
At time T1 (during boot):
- Write DLLSCE, ABPE, PDCE, etc. to Slot Control
At time T2 (hotplug event):
- Wait for command completion (CC) in Slot Status
- Timeout at T2 + 1 second because CC is never set in Slot Status
- Write PCC, PIC, etc. to Slot Control
With this change, we wait until T1 + 1 second instead of T2 + 1 second.
If the hotplug event is more than 1 second after the boot-time
initialization, we won't wait for the timeout at all.
We still emit a "Timeout on hotplug command" message if it timed out; we
should see this on the first hotplug event on every controller with this
erratum, as well as on real errors on controllers without the erratum.
Link: http://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-v2-spec-update.html
Tested-by: Rajat Jain <rajatxjain@gmail.com> (IDT 807a controller)
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
2014-06-14 23:55:49 +08:00
|
|
|
static int pcie_poll_cmd(struct controller *ctrl, int timeout)
|
2008-05-27 18:05:26 +08:00
|
|
|
{
|
2013-05-10 01:26:16 +08:00
|
|
|
struct pci_dev *pdev = ctrl_dev(ctrl);
|
2008-05-27 18:05:26 +08:00
|
|
|
u16 slot_status;
|
|
|
|
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_SLTSTA, &slot_status);
|
|
|
|
if (slot_status & PCI_EXP_SLTSTA_CC) {
|
2013-05-10 01:26:16 +08:00
|
|
|
pcie_capability_write_word(pdev, PCI_EXP_SLTSTA,
|
|
|
|
PCI_EXP_SLTSTA_CC);
|
2008-12-19 14:19:02 +08:00
|
|
|
return 1;
|
2008-06-20 11:04:33 +08:00
|
|
|
}
|
2008-08-28 06:05:26 +08:00
|
|
|
while (timeout > 0) {
|
2008-06-20 11:05:12 +08:00
|
|
|
msleep(10);
|
|
|
|
timeout -= 10;
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_SLTSTA, &slot_status);
|
|
|
|
if (slot_status & PCI_EXP_SLTSTA_CC) {
|
2013-05-10 01:26:16 +08:00
|
|
|
pcie_capability_write_word(pdev, PCI_EXP_SLTSTA,
|
|
|
|
PCI_EXP_SLTSTA_CC);
|
2008-12-19 14:19:02 +08:00
|
|
|
return 1;
|
2008-06-20 11:04:33 +08:00
|
|
|
}
|
2008-05-27 18:05:26 +08:00
|
|
|
}
|
|
|
|
return 0; /* timeout */
|
|
|
|
}
|
|
|
|
|
2014-06-14 03:58:35 +08:00
|
|
|
static void pcie_wait_cmd(struct controller *ctrl)
|
2006-12-22 09:01:09 +08:00
|
|
|
{
|
2006-12-22 09:01:10 +08:00
|
|
|
unsigned int msecs = pciehp_poll_mode ? 2500 : 1000;
|
PCI: pciehp: Compute timeout from hotplug command start time
If we issue a hotplug command, go do something else, then come back and
wait for the command to complete, we don't have to wait the whole timeout
period, because some of it elapsed while we were doing something else.
Keep track of the time we issued the command, and wait only until the
timeout period from that point has elapsed.
For controllers with errata like Intel CF118, we previously timed out
before issuing the second hotplug command:
At time T1 (during boot):
- Write DLLSCE, ABPE, PDCE, etc. to Slot Control
At time T2 (hotplug event):
- Wait for command completion (CC) in Slot Status
- Timeout at T2 + 1 second because CC is never set in Slot Status
- Write PCC, PIC, etc. to Slot Control
With this change, we wait until T1 + 1 second instead of T2 + 1 second.
If the hotplug event is more than 1 second after the boot-time
initialization, we won't wait for the timeout at all.
We still emit a "Timeout on hotplug command" message if it timed out; we
should see this on the first hotplug event on every controller with this
erratum, as well as on real errors on controllers without the erratum.
Link: http://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-v2-spec-update.html
Tested-by: Rajat Jain <rajatxjain@gmail.com> (IDT 807a controller)
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
2014-06-14 23:55:49 +08:00
|
|
|
unsigned long duration = msecs_to_jiffies(msecs);
|
|
|
|
unsigned long cmd_timeout = ctrl->cmd_started + duration;
|
|
|
|
unsigned long now, timeout;
|
2006-12-22 09:01:10 +08:00
|
|
|
int rc;
|
|
|
|
|
2014-06-14 03:58:35 +08:00
|
|
|
/*
|
|
|
|
* If the controller does not generate notifications for command
|
|
|
|
* completions, we never need to wait between writes.
|
|
|
|
*/
|
|
|
|
if (ctrl->no_cmd_complete)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (!ctrl->cmd_busy)
|
|
|
|
return;
|
|
|
|
|
PCI: pciehp: Compute timeout from hotplug command start time
If we issue a hotplug command, go do something else, then come back and
wait for the command to complete, we don't have to wait the whole timeout
period, because some of it elapsed while we were doing something else.
Keep track of the time we issued the command, and wait only until the
timeout period from that point has elapsed.
For controllers with errata like Intel CF118, we previously timed out
before issuing the second hotplug command:
At time T1 (during boot):
- Write DLLSCE, ABPE, PDCE, etc. to Slot Control
At time T2 (hotplug event):
- Wait for command completion (CC) in Slot Status
- Timeout at T2 + 1 second because CC is never set in Slot Status
- Write PCC, PIC, etc. to Slot Control
With this change, we wait until T1 + 1 second instead of T2 + 1 second.
If the hotplug event is more than 1 second after the boot-time
initialization, we won't wait for the timeout at all.
We still emit a "Timeout on hotplug command" message if it timed out; we
should see this on the first hotplug event on every controller with this
erratum, as well as on real errors on controllers without the erratum.
Link: http://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-v2-spec-update.html
Tested-by: Rajat Jain <rajatxjain@gmail.com> (IDT 807a controller)
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
2014-06-14 23:55:49 +08:00
|
|
|
/*
|
|
|
|
* Even if the command has already timed out, we want to call
|
|
|
|
* pcie_poll_cmd() so it can clear PCI_EXP_SLTSTA_CC.
|
|
|
|
*/
|
|
|
|
now = jiffies;
|
|
|
|
if (time_before_eq(cmd_timeout, now))
|
|
|
|
timeout = 1;
|
|
|
|
else
|
|
|
|
timeout = cmd_timeout - now;
|
|
|
|
|
2014-06-14 03:58:35 +08:00
|
|
|
if (ctrl->slot_ctrl & PCI_EXP_SLTCTL_HPIE &&
|
|
|
|
ctrl->slot_ctrl & PCI_EXP_SLTCTL_CCIE)
|
2008-05-28 13:59:44 +08:00
|
|
|
rc = wait_event_timeout(ctrl->queue, !ctrl->cmd_busy, timeout);
|
2014-06-14 03:58:35 +08:00
|
|
|
else
|
PCI: pciehp: Compute timeout from hotplug command start time
If we issue a hotplug command, go do something else, then come back and
wait for the command to complete, we don't have to wait the whole timeout
period, because some of it elapsed while we were doing something else.
Keep track of the time we issued the command, and wait only until the
timeout period from that point has elapsed.
For controllers with errata like Intel CF118, we previously timed out
before issuing the second hotplug command:
At time T1 (during boot):
- Write DLLSCE, ABPE, PDCE, etc. to Slot Control
At time T2 (hotplug event):
- Wait for command completion (CC) in Slot Status
- Timeout at T2 + 1 second because CC is never set in Slot Status
- Write PCC, PIC, etc. to Slot Control
With this change, we wait until T1 + 1 second instead of T2 + 1 second.
If the hotplug event is more than 1 second after the boot-time
initialization, we won't wait for the timeout at all.
We still emit a "Timeout on hotplug command" message if it timed out; we
should see this on the first hotplug event on every controller with this
erratum, as well as on real errors on controllers without the erratum.
Link: http://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-v2-spec-update.html
Tested-by: Rajat Jain <rajatxjain@gmail.com> (IDT 807a controller)
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
2014-06-14 23:55:49 +08:00
|
|
|
rc = pcie_poll_cmd(ctrl, timeout);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Controllers with errata like Intel CF118 don't generate
|
|
|
|
* completion notifications unless the power/indicator/interlock
|
|
|
|
* control bits are changed. On such controllers, we'll emit this
|
|
|
|
* timeout message when we wait for completion of commands that
|
|
|
|
* don't change those bits, e.g., commands that merely enable
|
|
|
|
* interrupts.
|
|
|
|
*/
|
2006-12-22 09:01:10 +08:00
|
|
|
if (!rc)
|
PCI: pciehp: Compute timeout from hotplug command start time
If we issue a hotplug command, go do something else, then come back and
wait for the command to complete, we don't have to wait the whole timeout
period, because some of it elapsed while we were doing something else.
Keep track of the time we issued the command, and wait only until the
timeout period from that point has elapsed.
For controllers with errata like Intel CF118, we previously timed out
before issuing the second hotplug command:
At time T1 (during boot):
- Write DLLSCE, ABPE, PDCE, etc. to Slot Control
At time T2 (hotplug event):
- Wait for command completion (CC) in Slot Status
- Timeout at T2 + 1 second because CC is never set in Slot Status
- Write PCC, PIC, etc. to Slot Control
With this change, we wait until T1 + 1 second instead of T2 + 1 second.
If the hotplug event is more than 1 second after the boot-time
initialization, we won't wait for the timeout at all.
We still emit a "Timeout on hotplug command" message if it timed out; we
should see this on the first hotplug event on every controller with this
erratum, as well as on real errors on controllers without the erratum.
Link: http://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-v2-spec-update.html
Tested-by: Rajat Jain <rajatxjain@gmail.com> (IDT 807a controller)
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
2014-06-14 23:55:49 +08:00
|
|
|
ctrl_info(ctrl, "Timeout on hotplug command %#010x (issued %u msec ago)\n",
|
|
|
|
ctrl->slot_ctrl,
|
|
|
|
jiffies_to_msecs(now - ctrl->cmd_started));
|
2006-12-22 09:01:09 +08:00
|
|
|
}
|
|
|
|
|
2007-06-01 00:43:34 +08:00
|
|
|
/**
|
|
|
|
* pcie_write_cmd - Issue controller command
|
2008-04-26 05:39:05 +08:00
|
|
|
* @ctrl: controller to which the command is issued
|
2007-06-01 00:43:34 +08:00
|
|
|
* @cmd: command value written to slot control register
|
|
|
|
* @mask: bitmask of slot control register to be modified
|
|
|
|
*/
|
2013-12-15 04:06:16 +08:00
|
|
|
static void pcie_write_cmd(struct controller *ctrl, u16 cmd, u16 mask)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2013-05-10 01:26:16 +08:00
|
|
|
struct pci_dev *pdev = ctrl_dev(ctrl);
|
2005-04-17 06:20:36 +08:00
|
|
|
u16 slot_status;
|
2007-06-01 00:43:34 +08:00
|
|
|
u16 slot_ctrl;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2006-12-22 09:01:09 +08:00
|
|
|
mutex_lock(&ctrl->ctrl_lock);
|
|
|
|
|
PCI: pciehp: Wait for hotplug command completion lazily
Previously we issued a hotplug command and waited for it to complete. But
there's no need to wait until we're ready to issue the *next* command. The
next command will probably be much later, so the first one may have already
completed and we may not have to actually wait at all.
Because of hardware errata, some controllers generate command completion
events for some commands but not others. In the case of Intel CF118 (see
spec update reference), the controller indicates command completion only
for Slot Control writes that change the value of the following bits:
Power Controller Control
Power Indicator Control
Attention Indicator Control
Electromechanical Interlock Control
Changes to other bits, e.g., the interrupt enable bits, do not cause the
Command Completed bit to be set. Controllers from AMD and Nvidia are
reported to have similar errata.
These errata cause timeouts when pcie_enable_notification() enables
interrupts. Previously that timeout occurred at boot-time. With this
change, the timeout occurs later, when we change the state of the slot
power, indicators, or interlock. This speeds up boot but causes a timeout
at the first hotplug event on the slot. Subsequent events don't timeout
because only the first (boot-time) hotplug command updates Slot Control
without touching the power/indicator/interlock controls.
Link: http://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-v2-spec-update.html
Tested-by: Rajat Jain <rajatxjain@gmail.com> (IDT 807a controller)
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
2014-06-14 05:06:40 +08:00
|
|
|
/* Wait for any previous command that might still be in progress */
|
|
|
|
pcie_wait_cmd(ctrl);
|
|
|
|
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_SLTSTA, &slot_status);
|
2008-12-19 14:19:02 +08:00
|
|
|
if (slot_status & PCI_EXP_SLTSTA_CC) {
|
2014-02-21 09:42:31 +08:00
|
|
|
pcie_capability_write_word(pdev, PCI_EXP_SLTSTA,
|
|
|
|
PCI_EXP_SLTSTA_CC);
|
pciehp: fix slow probing
Fix the "pciehp probing slow" problem reported from Jan C. Nordholz in
http://bugzilla.kernel.org/show_bug.cgi?id=10751.
The command completed bit in Slot Status register applies only to
commands issued to control the attention indicator, power indicator,
power controller, or electromechanical interlock. However, writes to
other parts of the Slot Control register would end up writing to the
control fields. Hence, any write to Slot Control register is
considered as a command. However, if the controller doesn't support
any of attention indicator, power indicator, power controller and
electromechanical interlock, command completed bit would not set in
writing to Slot Control register. In this case, we should not wait for
command completed bit set, otherwise all commands would be considered
not completed in timeout seconds (1 sec.).
The cause of the problem is pciehp driver didn't take this situation
into account. This patch changes pciehp to take it into account. This
patch also add the check for "No Command Completed Support" bit in
Slot Capability register. If it is set, we should not wait for command
completed bit set as well.
This problem seems to be revealed by the commit
c27fb883dffe11aa4cb35ecea1fa1832ba45d4da that fixed the bug that
pciehp did not wait for command completed properly (pciehp just
ignored the command completion event).
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Kristen Carlson Accardi <kristen.c.accardi@intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-27 18:04:30 +08:00
|
|
|
if (!ctrl->no_cmd_complete) {
|
|
|
|
/*
|
|
|
|
* After 1 sec and CMD_COMPLETED still not set, just
|
|
|
|
* proceed forward to issue the next command according
|
|
|
|
* to spec. Just print out the error message.
|
|
|
|
*/
|
2008-10-23 10:47:32 +08:00
|
|
|
ctrl_dbg(ctrl, "CMD_COMPLETED not clear after 1 sec\n");
|
pciehp: fix slow probing
Fix the "pciehp probing slow" problem reported from Jan C. Nordholz in
http://bugzilla.kernel.org/show_bug.cgi?id=10751.
The command completed bit in Slot Status register applies only to
commands issued to control the attention indicator, power indicator,
power controller, or electromechanical interlock. However, writes to
other parts of the Slot Control register would end up writing to the
control fields. Hence, any write to Slot Control register is
considered as a command. However, if the controller doesn't support
any of attention indicator, power indicator, power controller and
electromechanical interlock, command completed bit would not set in
writing to Slot Control register. In this case, we should not wait for
command completed bit set, otherwise all commands would be considered
not completed in timeout seconds (1 sec.).
The cause of the problem is pciehp driver didn't take this situation
into account. This patch changes pciehp to take it into account. This
patch also add the check for "No Command Completed Support" bit in
Slot Capability register. If it is set, we should not wait for command
completed bit set as well.
This problem seems to be revealed by the commit
c27fb883dffe11aa4cb35ecea1fa1832ba45d4da that fixed the bug that
pciehp did not wait for command completed properly (pciehp just
ignored the command completion event).
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Kristen Carlson Accardi <kristen.c.accardi@intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-27 18:04:30 +08:00
|
|
|
} else if (!NO_CMD_CMPL(ctrl)) {
|
|
|
|
/*
|
2013-11-15 02:28:18 +08:00
|
|
|
* This controller seems to notify of command completed
|
pciehp: fix slow probing
Fix the "pciehp probing slow" problem reported from Jan C. Nordholz in
http://bugzilla.kernel.org/show_bug.cgi?id=10751.
The command completed bit in Slot Status register applies only to
commands issued to control the attention indicator, power indicator,
power controller, or electromechanical interlock. However, writes to
other parts of the Slot Control register would end up writing to the
control fields. Hence, any write to Slot Control register is
considered as a command. However, if the controller doesn't support
any of attention indicator, power indicator, power controller and
electromechanical interlock, command completed bit would not set in
writing to Slot Control register. In this case, we should not wait for
command completed bit set, otherwise all commands would be considered
not completed in timeout seconds (1 sec.).
The cause of the problem is pciehp driver didn't take this situation
into account. This patch changes pciehp to take it into account. This
patch also add the check for "No Command Completed Support" bit in
Slot Capability register. If it is set, we should not wait for command
completed bit set as well.
This problem seems to be revealed by the commit
c27fb883dffe11aa4cb35ecea1fa1832ba45d4da that fixed the bug that
pciehp did not wait for command completed properly (pciehp just
ignored the command completion event).
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Kristen Carlson Accardi <kristen.c.accardi@intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-27 18:04:30 +08:00
|
|
|
* event even though it supports none of power
|
|
|
|
* controller, attention led, power led and EMI.
|
|
|
|
*/
|
2014-04-19 08:13:50 +08:00
|
|
|
ctrl_dbg(ctrl, "Unexpected CMD_COMPLETED. Need to wait for command completed event\n");
|
pciehp: fix slow probing
Fix the "pciehp probing slow" problem reported from Jan C. Nordholz in
http://bugzilla.kernel.org/show_bug.cgi?id=10751.
The command completed bit in Slot Status register applies only to
commands issued to control the attention indicator, power indicator,
power controller, or electromechanical interlock. However, writes to
other parts of the Slot Control register would end up writing to the
control fields. Hence, any write to Slot Control register is
considered as a command. However, if the controller doesn't support
any of attention indicator, power indicator, power controller and
electromechanical interlock, command completed bit would not set in
writing to Slot Control register. In this case, we should not wait for
command completed bit set, otherwise all commands would be considered
not completed in timeout seconds (1 sec.).
The cause of the problem is pciehp driver didn't take this situation
into account. This patch changes pciehp to take it into account. This
patch also add the check for "No Command Completed Support" bit in
Slot Capability register. If it is set, we should not wait for command
completed bit set as well.
This problem seems to be revealed by the commit
c27fb883dffe11aa4cb35ecea1fa1832ba45d4da that fixed the bug that
pciehp did not wait for command completed properly (pciehp just
ignored the command completion event).
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Kristen Carlson Accardi <kristen.c.accardi@intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-27 18:04:30 +08:00
|
|
|
ctrl->no_cmd_complete = 0;
|
|
|
|
} else {
|
2014-04-19 08:13:50 +08:00
|
|
|
ctrl_dbg(ctrl, "Unexpected CMD_COMPLETED. Maybe the controller is broken\n");
|
pciehp: fix slow probing
Fix the "pciehp probing slow" problem reported from Jan C. Nordholz in
http://bugzilla.kernel.org/show_bug.cgi?id=10751.
The command completed bit in Slot Status register applies only to
commands issued to control the attention indicator, power indicator,
power controller, or electromechanical interlock. However, writes to
other parts of the Slot Control register would end up writing to the
control fields. Hence, any write to Slot Control register is
considered as a command. However, if the controller doesn't support
any of attention indicator, power indicator, power controller and
electromechanical interlock, command completed bit would not set in
writing to Slot Control register. In this case, we should not wait for
command completed bit set, otherwise all commands would be considered
not completed in timeout seconds (1 sec.).
The cause of the problem is pciehp driver didn't take this situation
into account. This patch changes pciehp to take it into account. This
patch also add the check for "No Command Completed Support" bit in
Slot Capability register. If it is set, we should not wait for command
completed bit set as well.
This problem seems to be revealed by the commit
c27fb883dffe11aa4cb35ecea1fa1832ba45d4da that fixed the bug that
pciehp did not wait for command completed properly (pciehp just
ignored the command completion event).
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Kristen Carlson Accardi <kristen.c.accardi@intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-27 18:04:30 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_SLTCTL, &slot_ctrl);
|
2007-06-01 00:43:34 +08:00
|
|
|
slot_ctrl &= ~mask;
|
2008-04-26 05:39:14 +08:00
|
|
|
slot_ctrl |= (cmd & mask);
|
2007-06-01 00:43:34 +08:00
|
|
|
ctrl->cmd_busy = 1;
|
2008-04-26 05:39:02 +08:00
|
|
|
smp_mb();
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_write_word(pdev, PCI_EXP_SLTCTL, slot_ctrl);
|
PCI: pciehp: Compute timeout from hotplug command start time
If we issue a hotplug command, go do something else, then come back and
wait for the command to complete, we don't have to wait the whole timeout
period, because some of it elapsed while we were doing something else.
Keep track of the time we issued the command, and wait only until the
timeout period from that point has elapsed.
For controllers with errata like Intel CF118, we previously timed out
before issuing the second hotplug command:
At time T1 (during boot):
- Write DLLSCE, ABPE, PDCE, etc. to Slot Control
At time T2 (hotplug event):
- Wait for command completion (CC) in Slot Status
- Timeout at T2 + 1 second because CC is never set in Slot Status
- Write PCC, PIC, etc. to Slot Control
With this change, we wait until T1 + 1 second instead of T2 + 1 second.
If the hotplug event is more than 1 second after the boot-time
initialization, we won't wait for the timeout at all.
We still emit a "Timeout on hotplug command" message if it timed out; we
should see this on the first hotplug event on every controller with this
erratum, as well as on real errors on controllers without the erratum.
Link: http://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-v2-spec-update.html
Tested-by: Rajat Jain <rajatxjain@gmail.com> (IDT 807a controller)
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
2014-06-14 23:55:49 +08:00
|
|
|
ctrl->cmd_started = jiffies;
|
2014-06-14 03:58:35 +08:00
|
|
|
ctrl->slot_ctrl = slot_ctrl;
|
2007-06-01 00:43:34 +08:00
|
|
|
|
2006-12-22 09:01:09 +08:00
|
|
|
mutex_unlock(&ctrl->ctrl_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2014-02-05 10:28:43 +08:00
|
|
|
bool pciehp_check_link_active(struct controller *ctrl)
|
2008-10-22 13:31:44 +08:00
|
|
|
{
|
2013-05-10 01:26:16 +08:00
|
|
|
struct pci_dev *pdev = ctrl_dev(ctrl);
|
2012-01-28 02:55:12 +08:00
|
|
|
u16 lnk_status;
|
2013-12-15 04:06:07 +08:00
|
|
|
bool ret;
|
2008-10-22 13:31:44 +08:00
|
|
|
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
|
2012-01-28 02:55:12 +08:00
|
|
|
ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
|
|
|
|
|
|
|
|
if (ret)
|
|
|
|
ctrl_dbg(ctrl, "%s: lnk_status = %x\n", __func__, lnk_status);
|
|
|
|
|
|
|
|
return ret;
|
2008-10-22 13:31:44 +08:00
|
|
|
}
|
|
|
|
|
2012-01-28 02:55:13 +08:00
|
|
|
static void __pcie_wait_link_active(struct controller *ctrl, bool active)
|
2008-10-22 13:31:44 +08:00
|
|
|
{
|
|
|
|
int timeout = 1000;
|
|
|
|
|
2014-02-05 10:28:43 +08:00
|
|
|
if (pciehp_check_link_active(ctrl) == active)
|
2008-10-22 13:31:44 +08:00
|
|
|
return;
|
|
|
|
while (timeout > 0) {
|
|
|
|
msleep(10);
|
|
|
|
timeout -= 10;
|
2014-02-05 10:28:43 +08:00
|
|
|
if (pciehp_check_link_active(ctrl) == active)
|
2008-10-22 13:31:44 +08:00
|
|
|
return;
|
|
|
|
}
|
2012-01-28 02:55:13 +08:00
|
|
|
ctrl_dbg(ctrl, "Data Link Layer Link Active not %s in 1000 msec\n",
|
|
|
|
active ? "set" : "cleared");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void pcie_wait_link_active(struct controller *ctrl)
|
|
|
|
{
|
|
|
|
__pcie_wait_link_active(ctrl, true);
|
|
|
|
}
|
|
|
|
|
2012-01-28 02:55:11 +08:00
|
|
|
static bool pci_bus_check_dev(struct pci_bus *bus, int devfn)
|
|
|
|
{
|
|
|
|
u32 l;
|
|
|
|
int count = 0;
|
|
|
|
int delay = 1000, step = 20;
|
|
|
|
bool found = false;
|
|
|
|
|
|
|
|
do {
|
|
|
|
found = pci_bus_read_dev_vendor_id(bus, devfn, &l, 0);
|
|
|
|
count++;
|
|
|
|
|
|
|
|
if (found)
|
|
|
|
break;
|
|
|
|
|
|
|
|
msleep(step);
|
|
|
|
delay -= step;
|
|
|
|
} while (delay > 0);
|
|
|
|
|
|
|
|
if (count > 1 && pciehp_debug)
|
|
|
|
printk(KERN_DEBUG "pci %04x:%02x:%02x.%d id reading try %d times with interval %d ms to get %08x\n",
|
|
|
|
pci_domain_nr(bus), bus->number, PCI_SLOT(devfn),
|
|
|
|
PCI_FUNC(devfn), count, step, l);
|
|
|
|
|
|
|
|
return found;
|
|
|
|
}
|
|
|
|
|
2009-09-15 16:30:48 +08:00
|
|
|
int pciehp_check_link_status(struct controller *ctrl)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2013-05-10 01:26:16 +08:00
|
|
|
struct pci_dev *pdev = ctrl_dev(ctrl);
|
2013-12-15 04:06:07 +08:00
|
|
|
bool found;
|
2005-04-17 06:20:36 +08:00
|
|
|
u16 lnk_status;
|
|
|
|
|
2014-04-19 08:13:49 +08:00
|
|
|
/*
|
|
|
|
* Data Link Layer Link Active Reporting must be capable for
|
|
|
|
* hot-plug capable downstream port. But old controller might
|
|
|
|
* not implement it. In this case, we wait for 1000 ms.
|
|
|
|
*/
|
|
|
|
if (ctrl->link_active_reporting)
|
|
|
|
pcie_wait_link_active(ctrl);
|
|
|
|
else
|
|
|
|
msleep(1000);
|
2008-10-22 13:31:44 +08:00
|
|
|
|
2012-01-28 02:55:11 +08:00
|
|
|
/* wait 100ms before read pci conf, and try in 1s */
|
|
|
|
msleep(100);
|
|
|
|
found = pci_bus_check_dev(ctrl->pcie->port->subordinate,
|
|
|
|
PCI_DEVFN(0, 0));
|
2011-11-10 15:40:37 +08:00
|
|
|
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
|
2008-09-05 11:11:26 +08:00
|
|
|
ctrl_dbg(ctrl, "%s: lnk_status = %x\n", __func__, lnk_status);
|
2008-12-19 14:19:02 +08:00
|
|
|
if ((lnk_status & PCI_EXP_LNKSTA_LT) ||
|
|
|
|
!(lnk_status & PCI_EXP_LNKSTA_NLW)) {
|
2014-04-19 08:13:49 +08:00
|
|
|
ctrl_err(ctrl, "Link Training Error occurs\n");
|
2013-12-15 04:06:07 +08:00
|
|
|
return -1;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2011-11-07 23:53:23 +08:00
|
|
|
pcie_update_link_speed(ctrl->pcie->port->subordinate, lnk_status);
|
|
|
|
|
2013-12-15 04:06:07 +08:00
|
|
|
if (!found)
|
|
|
|
return -1;
|
2012-01-28 02:55:11 +08:00
|
|
|
|
2013-12-15 04:06:07 +08:00
|
|
|
return 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2012-01-28 02:55:14 +08:00
|
|
|
static int __pciehp_link_set(struct controller *ctrl, bool enable)
|
|
|
|
{
|
2013-05-10 01:26:16 +08:00
|
|
|
struct pci_dev *pdev = ctrl_dev(ctrl);
|
2012-01-28 02:55:14 +08:00
|
|
|
u16 lnk_ctrl;
|
|
|
|
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &lnk_ctrl);
|
2012-01-28 02:55:14 +08:00
|
|
|
|
|
|
|
if (enable)
|
|
|
|
lnk_ctrl &= ~PCI_EXP_LNKCTL_LD;
|
|
|
|
else
|
|
|
|
lnk_ctrl |= PCI_EXP_LNKCTL_LD;
|
|
|
|
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_write_word(pdev, PCI_EXP_LNKCTL, lnk_ctrl);
|
2012-01-28 02:55:14 +08:00
|
|
|
ctrl_dbg(ctrl, "%s: lnk_ctrl = %x\n", __func__, lnk_ctrl);
|
2013-12-15 04:06:07 +08:00
|
|
|
return 0;
|
2012-01-28 02:55:14 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int pciehp_link_enable(struct controller *ctrl)
|
|
|
|
{
|
|
|
|
return __pciehp_link_set(ctrl, true);
|
|
|
|
}
|
|
|
|
|
2013-12-15 04:06:16 +08:00
|
|
|
void pciehp_get_attention_status(struct slot *slot, u8 *status)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2006-12-22 09:01:04 +08:00
|
|
|
struct controller *ctrl = slot->ctrl;
|
2013-05-10 01:26:16 +08:00
|
|
|
struct pci_dev *pdev = ctrl_dev(ctrl);
|
2005-04-17 06:20:36 +08:00
|
|
|
u16 slot_ctrl;
|
|
|
|
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_SLTCTL, &slot_ctrl);
|
2009-11-11 13:34:52 +08:00
|
|
|
ctrl_dbg(ctrl, "%s: SLOTCTRL %x, value read %x\n", __func__,
|
|
|
|
pci_pcie_cap(ctrl->pcie->port) + PCI_EXP_SLTCTL, slot_ctrl);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2013-12-15 04:06:53 +08:00
|
|
|
switch (slot_ctrl & PCI_EXP_SLTCTL_AIC) {
|
|
|
|
case PCI_EXP_SLTCTL_ATTN_IND_ON:
|
2005-04-17 06:20:36 +08:00
|
|
|
*status = 1; /* On */
|
|
|
|
break;
|
2013-12-15 04:06:53 +08:00
|
|
|
case PCI_EXP_SLTCTL_ATTN_IND_BLINK:
|
2005-04-17 06:20:36 +08:00
|
|
|
*status = 2; /* Blink */
|
|
|
|
break;
|
2013-12-15 04:06:53 +08:00
|
|
|
case PCI_EXP_SLTCTL_ATTN_IND_OFF:
|
2005-04-17 06:20:36 +08:00
|
|
|
*status = 0; /* Off */
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
*status = 0xFF;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-12-15 04:06:16 +08:00
|
|
|
void pciehp_get_power_status(struct slot *slot, u8 *status)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2006-12-22 09:01:04 +08:00
|
|
|
struct controller *ctrl = slot->ctrl;
|
2013-05-10 01:26:16 +08:00
|
|
|
struct pci_dev *pdev = ctrl_dev(ctrl);
|
2005-04-17 06:20:36 +08:00
|
|
|
u16 slot_ctrl;
|
|
|
|
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_SLTCTL, &slot_ctrl);
|
2009-11-11 13:34:52 +08:00
|
|
|
ctrl_dbg(ctrl, "%s: SLOTCTRL %x value read %x\n", __func__,
|
|
|
|
pci_pcie_cap(ctrl->pcie->port) + PCI_EXP_SLTCTL, slot_ctrl);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2013-12-15 04:06:53 +08:00
|
|
|
switch (slot_ctrl & PCI_EXP_SLTCTL_PCC) {
|
|
|
|
case PCI_EXP_SLTCTL_PWR_ON:
|
|
|
|
*status = 1; /* On */
|
2005-04-17 06:20:36 +08:00
|
|
|
break;
|
2013-12-15 04:06:53 +08:00
|
|
|
case PCI_EXP_SLTCTL_PWR_OFF:
|
|
|
|
*status = 0; /* Off */
|
2005-04-17 06:20:36 +08:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
*status = 0xFF;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-12-15 04:06:16 +08:00
|
|
|
void pciehp_get_latch_status(struct slot *slot, u8 *status)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2013-12-15 04:06:07 +08:00
|
|
|
struct pci_dev *pdev = ctrl_dev(slot->ctrl);
|
2005-04-17 06:20:36 +08:00
|
|
|
u16 slot_status;
|
|
|
|
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_SLTSTA, &slot_status);
|
2008-12-19 14:19:02 +08:00
|
|
|
*status = !!(slot_status & PCI_EXP_SLTSTA_MRLSS);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2013-12-15 04:06:16 +08:00
|
|
|
void pciehp_get_adapter_status(struct slot *slot, u8 *status)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2013-12-15 04:06:07 +08:00
|
|
|
struct pci_dev *pdev = ctrl_dev(slot->ctrl);
|
2005-04-17 06:20:36 +08:00
|
|
|
u16 slot_status;
|
|
|
|
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_SLTSTA, &slot_status);
|
2008-12-19 14:19:02 +08:00
|
|
|
*status = !!(slot_status & PCI_EXP_SLTSTA_PDS);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2009-09-15 16:30:48 +08:00
|
|
|
int pciehp_query_power_fault(struct slot *slot)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2013-12-15 04:06:07 +08:00
|
|
|
struct pci_dev *pdev = ctrl_dev(slot->ctrl);
|
2005-04-17 06:20:36 +08:00
|
|
|
u16 slot_status;
|
|
|
|
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_SLTSTA, &slot_status);
|
2008-12-19 14:19:02 +08:00
|
|
|
return !!(slot_status & PCI_EXP_SLTSTA_PFD);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2013-12-15 04:06:16 +08:00
|
|
|
void pciehp_set_attention_status(struct slot *slot, u8 value)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2006-12-22 09:01:04 +08:00
|
|
|
struct controller *ctrl = slot->ctrl;
|
2007-06-01 00:43:34 +08:00
|
|
|
u16 slot_cmd;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2013-12-16 08:23:54 +08:00
|
|
|
if (!ATTN_LED(ctrl))
|
|
|
|
return;
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
switch (value) {
|
2014-04-19 08:13:49 +08:00
|
|
|
case 0: /* turn off */
|
2013-12-15 04:06:53 +08:00
|
|
|
slot_cmd = PCI_EXP_SLTCTL_ATTN_IND_OFF;
|
2009-10-05 16:42:59 +08:00
|
|
|
break;
|
|
|
|
case 1: /* turn on */
|
2013-12-15 04:06:53 +08:00
|
|
|
slot_cmd = PCI_EXP_SLTCTL_ATTN_IND_ON;
|
2009-10-05 16:42:59 +08:00
|
|
|
break;
|
|
|
|
case 2: /* turn blink */
|
2013-12-15 04:06:53 +08:00
|
|
|
slot_cmd = PCI_EXP_SLTCTL_ATTN_IND_BLINK;
|
2009-10-05 16:42:59 +08:00
|
|
|
break;
|
|
|
|
default:
|
2013-12-15 04:06:16 +08:00
|
|
|
return;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2009-11-11 13:34:52 +08:00
|
|
|
ctrl_dbg(ctrl, "%s: SLOTCTRL %x write cmd %x\n", __func__,
|
|
|
|
pci_pcie_cap(ctrl->pcie->port) + PCI_EXP_SLTCTL, slot_cmd);
|
2013-12-15 04:06:53 +08:00
|
|
|
pcie_write_cmd(ctrl, slot_cmd, PCI_EXP_SLTCTL_AIC);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2009-09-15 16:30:48 +08:00
|
|
|
void pciehp_green_led_on(struct slot *slot)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2006-12-22 09:01:04 +08:00
|
|
|
struct controller *ctrl = slot->ctrl;
|
2007-08-10 07:09:34 +08:00
|
|
|
|
2013-12-16 08:23:54 +08:00
|
|
|
if (!PWR_LED(ctrl))
|
|
|
|
return;
|
|
|
|
|
2013-12-15 04:06:53 +08:00
|
|
|
pcie_write_cmd(ctrl, PCI_EXP_SLTCTL_PWR_IND_ON, PCI_EXP_SLTCTL_PIC);
|
2009-11-11 13:34:52 +08:00
|
|
|
ctrl_dbg(ctrl, "%s: SLOTCTRL %x write cmd %x\n", __func__,
|
2013-12-15 04:06:53 +08:00
|
|
|
pci_pcie_cap(ctrl->pcie->port) + PCI_EXP_SLTCTL,
|
|
|
|
PCI_EXP_SLTCTL_PWR_IND_ON);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2009-09-15 16:30:48 +08:00
|
|
|
void pciehp_green_led_off(struct slot *slot)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2006-12-22 09:01:04 +08:00
|
|
|
struct controller *ctrl = slot->ctrl;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2013-12-16 08:23:54 +08:00
|
|
|
if (!PWR_LED(ctrl))
|
|
|
|
return;
|
|
|
|
|
2013-12-15 04:06:53 +08:00
|
|
|
pcie_write_cmd(ctrl, PCI_EXP_SLTCTL_PWR_IND_OFF, PCI_EXP_SLTCTL_PIC);
|
2009-11-11 13:34:52 +08:00
|
|
|
ctrl_dbg(ctrl, "%s: SLOTCTRL %x write cmd %x\n", __func__,
|
2013-12-15 04:06:53 +08:00
|
|
|
pci_pcie_cap(ctrl->pcie->port) + PCI_EXP_SLTCTL,
|
|
|
|
PCI_EXP_SLTCTL_PWR_IND_OFF);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2009-09-15 16:30:48 +08:00
|
|
|
void pciehp_green_led_blink(struct slot *slot)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2006-12-22 09:01:04 +08:00
|
|
|
struct controller *ctrl = slot->ctrl;
|
2007-08-10 07:09:34 +08:00
|
|
|
|
2013-12-16 08:23:54 +08:00
|
|
|
if (!PWR_LED(ctrl))
|
|
|
|
return;
|
|
|
|
|
2013-12-15 04:06:53 +08:00
|
|
|
pcie_write_cmd(ctrl, PCI_EXP_SLTCTL_PWR_IND_BLINK, PCI_EXP_SLTCTL_PIC);
|
2009-11-11 13:34:52 +08:00
|
|
|
ctrl_dbg(ctrl, "%s: SLOTCTRL %x write cmd %x\n", __func__,
|
2013-12-15 04:06:53 +08:00
|
|
|
pci_pcie_cap(ctrl->pcie->port) + PCI_EXP_SLTCTL,
|
|
|
|
PCI_EXP_SLTCTL_PWR_IND_BLINK);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2014-04-19 08:13:49 +08:00
|
|
|
int pciehp_power_on_slot(struct slot *slot)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2006-12-22 09:01:04 +08:00
|
|
|
struct controller *ctrl = slot->ctrl;
|
2013-05-10 01:26:16 +08:00
|
|
|
struct pci_dev *pdev = ctrl_dev(ctrl);
|
2007-06-01 00:43:34 +08:00
|
|
|
u16 slot_status;
|
2013-12-15 04:06:07 +08:00
|
|
|
int retval;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-11-24 07:44:54 +08:00
|
|
|
/* Clear sticky power-fault bit from previous power failures */
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_SLTSTA, &slot_status);
|
2013-12-15 04:06:40 +08:00
|
|
|
if (slot_status & PCI_EXP_SLTSTA_PFD)
|
|
|
|
pcie_capability_write_word(pdev, PCI_EXP_SLTSTA,
|
|
|
|
PCI_EXP_SLTSTA_PFD);
|
2009-11-13 14:14:10 +08:00
|
|
|
ctrl->power_fault_detected = 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2013-12-15 04:06:53 +08:00
|
|
|
pcie_write_cmd(ctrl, PCI_EXP_SLTCTL_PWR_ON, PCI_EXP_SLTCTL_PCC);
|
2009-11-11 13:34:52 +08:00
|
|
|
ctrl_dbg(ctrl, "%s: SLOTCTRL %x write cmd %x\n", __func__,
|
2013-12-15 04:06:53 +08:00
|
|
|
pci_pcie_cap(ctrl->pcie->port) + PCI_EXP_SLTCTL,
|
|
|
|
PCI_EXP_SLTCTL_PWR_ON);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2012-01-28 02:55:15 +08:00
|
|
|
retval = pciehp_link_enable(ctrl);
|
|
|
|
if (retval)
|
|
|
|
ctrl_err(ctrl, "%s: Can not enable the link!\n", __func__);
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
2014-04-19 08:13:49 +08:00
|
|
|
void pciehp_power_off_slot(struct slot *slot)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2006-12-22 09:01:04 +08:00
|
|
|
struct controller *ctrl = slot->ctrl;
|
2007-12-20 18:45:09 +08:00
|
|
|
|
2013-12-15 04:06:53 +08:00
|
|
|
pcie_write_cmd(ctrl, PCI_EXP_SLTCTL_PWR_OFF, PCI_EXP_SLTCTL_PCC);
|
2009-11-11 13:34:52 +08:00
|
|
|
ctrl_dbg(ctrl, "%s: SLOTCTRL %x write cmd %x\n", __func__,
|
2013-12-15 04:06:53 +08:00
|
|
|
pci_pcie_cap(ctrl->pcie->port) + PCI_EXP_SLTCTL,
|
|
|
|
PCI_EXP_SLTCTL_PWR_OFF);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2006-12-22 09:01:04 +08:00
|
|
|
static irqreturn_t pcie_isr(int irq, void *dev_id)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2006-12-22 09:01:04 +08:00
|
|
|
struct controller *ctrl = (struct controller *)dev_id;
|
2013-05-10 01:26:16 +08:00
|
|
|
struct pci_dev *pdev = ctrl_dev(ctrl);
|
2009-09-15 16:24:46 +08:00
|
|
|
struct slot *slot = ctrl->slot;
|
2008-04-26 05:38:57 +08:00
|
|
|
u16 detected, intr_loc;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2008-04-26 05:38:57 +08:00
|
|
|
/*
|
|
|
|
* In order to guarantee that all interrupt events are
|
|
|
|
* serviced, we need to re-inspect Slot Status register after
|
|
|
|
* clearing what is presumed to be the last pending interrupt.
|
|
|
|
*/
|
|
|
|
intr_loc = 0;
|
|
|
|
do {
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_SLTSTA, &detected);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2008-12-19 14:19:02 +08:00
|
|
|
detected &= (PCI_EXP_SLTSTA_ABP | PCI_EXP_SLTSTA_PFD |
|
|
|
|
PCI_EXP_SLTSTA_MRLSC | PCI_EXP_SLTSTA_PDC |
|
2014-02-05 10:29:10 +08:00
|
|
|
PCI_EXP_SLTSTA_CC | PCI_EXP_SLTSTA_DLLSC);
|
2009-02-03 14:06:13 +08:00
|
|
|
detected &= ~intr_loc;
|
2008-04-26 05:38:57 +08:00
|
|
|
intr_loc |= detected;
|
|
|
|
if (!intr_loc)
|
2005-04-17 06:20:36 +08:00
|
|
|
return IRQ_NONE;
|
2013-12-15 04:06:07 +08:00
|
|
|
if (detected)
|
|
|
|
pcie_capability_write_word(pdev, PCI_EXP_SLTSTA,
|
|
|
|
intr_loc);
|
2008-04-26 05:38:57 +08:00
|
|
|
} while (detected);
|
2007-08-10 07:09:34 +08:00
|
|
|
|
2008-09-05 11:11:26 +08:00
|
|
|
ctrl_dbg(ctrl, "%s: intr_loc %x\n", __func__, intr_loc);
|
2007-08-10 07:09:34 +08:00
|
|
|
|
2008-04-26 05:38:57 +08:00
|
|
|
/* Check Command Complete Interrupt Pending */
|
2008-12-19 14:19:02 +08:00
|
|
|
if (intr_loc & PCI_EXP_SLTSTA_CC) {
|
2006-12-22 09:01:10 +08:00
|
|
|
ctrl->cmd_busy = 0;
|
2008-04-26 05:39:02 +08:00
|
|
|
smp_mb();
|
2008-05-28 13:59:44 +08:00
|
|
|
wake_up(&ctrl->queue);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2008-12-19 14:19:02 +08:00
|
|
|
if (!(intr_loc & ~PCI_EXP_SLTSTA_CC))
|
2008-05-27 18:03:16 +08:00
|
|
|
return IRQ_HANDLED;
|
|
|
|
|
2008-04-26 05:38:57 +08:00
|
|
|
/* Check MRL Sensor Changed */
|
2008-12-19 14:19:02 +08:00
|
|
|
if (intr_loc & PCI_EXP_SLTSTA_MRLSC)
|
2009-09-15 16:24:46 +08:00
|
|
|
pciehp_handle_switch_change(slot);
|
2006-12-22 09:01:04 +08:00
|
|
|
|
2008-04-26 05:38:57 +08:00
|
|
|
/* Check Attention Button Pressed */
|
2008-12-19 14:19:02 +08:00
|
|
|
if (intr_loc & PCI_EXP_SLTSTA_ABP)
|
2009-09-15 16:24:46 +08:00
|
|
|
pciehp_handle_attention_button(slot);
|
2006-12-22 09:01:04 +08:00
|
|
|
|
2008-04-26 05:38:57 +08:00
|
|
|
/* Check Presence Detect Changed */
|
2008-12-19 14:19:02 +08:00
|
|
|
if (intr_loc & PCI_EXP_SLTSTA_PDC)
|
2009-09-15 16:24:46 +08:00
|
|
|
pciehp_handle_presence_change(slot);
|
2006-12-22 09:01:04 +08:00
|
|
|
|
2008-04-26 05:38:57 +08:00
|
|
|
/* Check Power Fault Detected */
|
2009-02-03 14:06:16 +08:00
|
|
|
if ((intr_loc & PCI_EXP_SLTSTA_PFD) && !ctrl->power_fault_detected) {
|
|
|
|
ctrl->power_fault_detected = 1;
|
2009-09-15 16:24:46 +08:00
|
|
|
pciehp_handle_power_fault(slot);
|
2009-02-03 14:06:16 +08:00
|
|
|
}
|
2014-02-05 10:29:10 +08:00
|
|
|
|
|
|
|
if (intr_loc & PCI_EXP_SLTSTA_DLLSC)
|
|
|
|
pciehp_handle_linkstate_change(slot);
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
2013-12-15 04:06:16 +08:00
|
|
|
void pcie_enable_notification(struct controller *ctrl)
|
2007-11-22 07:07:55 +08:00
|
|
|
{
|
2008-04-26 05:39:05 +08:00
|
|
|
u16 cmd, mask;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2009-11-13 14:14:10 +08:00
|
|
|
/*
|
|
|
|
* TBD: Power fault detected software notification support.
|
|
|
|
*
|
|
|
|
* Power fault detected software notification is not enabled
|
|
|
|
* now, because it caused power fault detected interrupt storm
|
|
|
|
* on some machines. On those machines, power fault detected
|
|
|
|
* bit in the slot status register was set again immediately
|
|
|
|
* when it is cleared in the interrupt service routine, and
|
|
|
|
* next power fault detected interrupt was notified again.
|
|
|
|
*/
|
2014-02-05 10:29:23 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Always enable link events: thus link-up and link-down shall
|
|
|
|
* always be treated as hotplug and unplug respectively. Enable
|
|
|
|
* presence detect only if Attention Button is not present.
|
|
|
|
*/
|
|
|
|
cmd = PCI_EXP_SLTCTL_DLLSCE;
|
2008-04-26 05:39:06 +08:00
|
|
|
if (ATTN_BUTTN(ctrl))
|
2008-12-19 14:19:02 +08:00
|
|
|
cmd |= PCI_EXP_SLTCTL_ABPE;
|
2014-02-05 10:29:23 +08:00
|
|
|
else
|
|
|
|
cmd |= PCI_EXP_SLTCTL_PDCE;
|
2008-04-26 05:39:06 +08:00
|
|
|
if (MRL_SENS(ctrl))
|
2008-12-19 14:19:02 +08:00
|
|
|
cmd |= PCI_EXP_SLTCTL_MRLSCE;
|
2008-04-26 05:39:05 +08:00
|
|
|
if (!pciehp_poll_mode)
|
2008-12-19 14:19:02 +08:00
|
|
|
cmd |= PCI_EXP_SLTCTL_HPIE | PCI_EXP_SLTCTL_CCIE;
|
2008-04-26 05:39:05 +08:00
|
|
|
|
2008-12-19 14:19:02 +08:00
|
|
|
mask = (PCI_EXP_SLTCTL_PDCE | PCI_EXP_SLTCTL_ABPE |
|
|
|
|
PCI_EXP_SLTCTL_MRLSCE | PCI_EXP_SLTCTL_PFDE |
|
2014-02-05 10:29:23 +08:00
|
|
|
PCI_EXP_SLTCTL_HPIE | PCI_EXP_SLTCTL_CCIE |
|
|
|
|
PCI_EXP_SLTCTL_DLLSCE);
|
2008-04-26 05:39:05 +08:00
|
|
|
|
2013-12-15 04:06:16 +08:00
|
|
|
pcie_write_cmd(ctrl, cmd, mask);
|
2008-06-20 11:07:08 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void pcie_disable_notification(struct controller *ctrl)
|
|
|
|
{
|
|
|
|
u16 mask;
|
2013-12-15 04:06:16 +08:00
|
|
|
|
2008-12-19 14:19:02 +08:00
|
|
|
mask = (PCI_EXP_SLTCTL_PDCE | PCI_EXP_SLTCTL_ABPE |
|
|
|
|
PCI_EXP_SLTCTL_MRLSCE | PCI_EXP_SLTCTL_PFDE |
|
2009-10-05 16:40:02 +08:00
|
|
|
PCI_EXP_SLTCTL_HPIE | PCI_EXP_SLTCTL_CCIE |
|
|
|
|
PCI_EXP_SLTCTL_DLLSCE);
|
2013-12-15 04:06:16 +08:00
|
|
|
pcie_write_cmd(ctrl, 0, mask);
|
2008-06-20 11:07:08 +08:00
|
|
|
}
|
|
|
|
|
2013-08-09 04:09:37 +08:00
|
|
|
/*
|
|
|
|
* pciehp has a 1:1 bus:slot relationship so we ultimately want a secondary
|
2014-02-19 10:53:19 +08:00
|
|
|
* bus reset of the bridge, but at the same time we want to ensure that it is
|
|
|
|
* not seen as a hot-unplug, followed by the hot-plug of the device. Thus,
|
|
|
|
* disable link state notification and presence detection change notification
|
|
|
|
* momentarily, if we see that they could interfere. Also, clear any spurious
|
2013-08-09 04:09:37 +08:00
|
|
|
* events after.
|
|
|
|
*/
|
|
|
|
int pciehp_reset_slot(struct slot *slot, int probe)
|
|
|
|
{
|
|
|
|
struct controller *ctrl = slot->ctrl;
|
2013-05-10 01:26:16 +08:00
|
|
|
struct pci_dev *pdev = ctrl_dev(ctrl);
|
2014-02-05 10:30:40 +08:00
|
|
|
u16 stat_mask = 0, ctrl_mask = 0;
|
2013-08-09 04:09:37 +08:00
|
|
|
|
|
|
|
if (probe)
|
|
|
|
return 0;
|
|
|
|
|
2014-02-19 10:53:19 +08:00
|
|
|
if (!ATTN_BUTTN(ctrl)) {
|
2014-02-05 10:30:40 +08:00
|
|
|
ctrl_mask |= PCI_EXP_SLTCTL_PDCE;
|
|
|
|
stat_mask |= PCI_EXP_SLTSTA_PDC;
|
2013-08-09 04:09:37 +08:00
|
|
|
}
|
2014-02-05 10:30:40 +08:00
|
|
|
ctrl_mask |= PCI_EXP_SLTCTL_DLLSCE;
|
|
|
|
stat_mask |= PCI_EXP_SLTSTA_DLLSC;
|
|
|
|
|
|
|
|
pcie_write_cmd(ctrl, 0, ctrl_mask);
|
|
|
|
if (pciehp_poll_mode)
|
|
|
|
del_timer_sync(&ctrl->poll_timer);
|
2013-08-09 04:09:37 +08:00
|
|
|
|
|
|
|
pci_reset_bridge_secondary_bus(ctrl->pcie->port);
|
|
|
|
|
2014-02-05 10:30:40 +08:00
|
|
|
pcie_capability_write_word(pdev, PCI_EXP_SLTSTA, stat_mask);
|
|
|
|
pcie_write_cmd(ctrl, ctrl_mask, ctrl_mask);
|
|
|
|
if (pciehp_poll_mode)
|
|
|
|
int_poll_timeout(ctrl->poll_timer.data);
|
2013-08-09 04:09:37 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-01-29 11:31:18 +08:00
|
|
|
int pcie_init_notification(struct controller *ctrl)
|
2008-06-20 11:07:08 +08:00
|
|
|
{
|
|
|
|
if (pciehp_request_irq(ctrl))
|
|
|
|
return -1;
|
2013-12-15 04:06:16 +08:00
|
|
|
pcie_enable_notification(ctrl);
|
2009-01-29 11:31:18 +08:00
|
|
|
ctrl->notification_enabled = 1;
|
2008-06-20 11:07:08 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void pcie_shutdown_notification(struct controller *ctrl)
|
|
|
|
{
|
2009-01-29 11:31:18 +08:00
|
|
|
if (ctrl->notification_enabled) {
|
|
|
|
pcie_disable_notification(ctrl);
|
|
|
|
pciehp_free_irq(ctrl);
|
|
|
|
ctrl->notification_enabled = 0;
|
|
|
|
}
|
2008-06-20 11:07:08 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int pcie_init_slot(struct controller *ctrl)
|
|
|
|
{
|
|
|
|
struct slot *slot;
|
|
|
|
|
|
|
|
slot = kzalloc(sizeof(*slot), GFP_KERNEL);
|
|
|
|
if (!slot)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2013-07-04 06:04:57 +08:00
|
|
|
slot->wq = alloc_workqueue("pciehp-%u", 0, 0, PSN(ctrl));
|
2013-01-11 10:15:54 +08:00
|
|
|
if (!slot->wq)
|
|
|
|
goto abort;
|
|
|
|
|
2008-06-20 11:07:08 +08:00
|
|
|
slot->ctrl = ctrl;
|
|
|
|
mutex_init(&slot->lock);
|
2014-02-05 10:31:11 +08:00
|
|
|
mutex_init(&slot->hotplug_lock);
|
2008-06-20 11:07:08 +08:00
|
|
|
INIT_DELAYED_WORK(&slot->work, pciehp_queue_pushbutton_work);
|
2009-09-15 16:24:46 +08:00
|
|
|
ctrl->slot = slot;
|
2005-04-17 06:20:36 +08:00
|
|
|
return 0;
|
2013-01-11 10:15:54 +08:00
|
|
|
abort:
|
|
|
|
kfree(slot);
|
|
|
|
return -ENOMEM;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2007-11-29 07:11:46 +08:00
|
|
|
|
2008-06-20 11:07:08 +08:00
|
|
|
static void pcie_cleanup_slot(struct controller *ctrl)
|
|
|
|
{
|
2009-09-15 16:24:46 +08:00
|
|
|
struct slot *slot = ctrl->slot;
|
2008-06-20 11:07:08 +08:00
|
|
|
cancel_delayed_work(&slot->work);
|
2013-01-11 10:15:54 +08:00
|
|
|
destroy_workqueue(slot->wq);
|
2008-06-20 11:07:08 +08:00
|
|
|
kfree(slot);
|
|
|
|
}
|
|
|
|
|
2008-04-26 05:39:08 +08:00
|
|
|
static inline void dbg_ctrl(struct controller *ctrl)
|
2007-11-29 07:11:46 +08:00
|
|
|
{
|
2008-04-26 05:39:08 +08:00
|
|
|
int i;
|
|
|
|
u16 reg16;
|
2009-09-15 16:30:14 +08:00
|
|
|
struct pci_dev *pdev = ctrl->pcie->port;
|
2007-11-29 07:11:46 +08:00
|
|
|
|
2008-04-26 05:39:08 +08:00
|
|
|
if (!pciehp_debug)
|
|
|
|
return;
|
2007-11-29 07:11:46 +08:00
|
|
|
|
2008-09-05 11:11:26 +08:00
|
|
|
ctrl_info(ctrl, "Hotplug Controller:\n");
|
|
|
|
ctrl_info(ctrl, " Seg/Bus/Dev/Func/IRQ : %s IRQ %d\n",
|
|
|
|
pci_name(pdev), pdev->irq);
|
|
|
|
ctrl_info(ctrl, " Vendor ID : 0x%04x\n", pdev->vendor);
|
|
|
|
ctrl_info(ctrl, " Device ID : 0x%04x\n", pdev->device);
|
|
|
|
ctrl_info(ctrl, " Subsystem ID : 0x%04x\n",
|
|
|
|
pdev->subsystem_device);
|
|
|
|
ctrl_info(ctrl, " Subsystem Vendor ID : 0x%04x\n",
|
|
|
|
pdev->subsystem_vendor);
|
2009-11-11 13:34:52 +08:00
|
|
|
ctrl_info(ctrl, " PCIe Cap offset : 0x%02x\n",
|
|
|
|
pci_pcie_cap(pdev));
|
2008-04-26 05:39:08 +08:00
|
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
|
|
|
if (!pci_resource_len(pdev, i))
|
|
|
|
continue;
|
2010-03-17 05:53:08 +08:00
|
|
|
ctrl_info(ctrl, " PCI resource [%d] : %pR\n",
|
|
|
|
i, &pdev->resource[i]);
|
2007-11-29 07:11:46 +08:00
|
|
|
}
|
2008-09-05 11:11:26 +08:00
|
|
|
ctrl_info(ctrl, "Slot Capabilities : 0x%08x\n", ctrl->slot_cap);
|
2009-09-15 16:28:53 +08:00
|
|
|
ctrl_info(ctrl, " Physical Slot Number : %d\n", PSN(ctrl));
|
2008-09-05 11:11:26 +08:00
|
|
|
ctrl_info(ctrl, " Attention Button : %3s\n",
|
|
|
|
ATTN_BUTTN(ctrl) ? "yes" : "no");
|
|
|
|
ctrl_info(ctrl, " Power Controller : %3s\n",
|
|
|
|
POWER_CTRL(ctrl) ? "yes" : "no");
|
|
|
|
ctrl_info(ctrl, " MRL Sensor : %3s\n",
|
|
|
|
MRL_SENS(ctrl) ? "yes" : "no");
|
|
|
|
ctrl_info(ctrl, " Attention Indicator : %3s\n",
|
|
|
|
ATTN_LED(ctrl) ? "yes" : "no");
|
|
|
|
ctrl_info(ctrl, " Power Indicator : %3s\n",
|
|
|
|
PWR_LED(ctrl) ? "yes" : "no");
|
|
|
|
ctrl_info(ctrl, " Hot-Plug Surprise : %3s\n",
|
|
|
|
HP_SUPR_RM(ctrl) ? "yes" : "no");
|
|
|
|
ctrl_info(ctrl, " EMI Present : %3s\n",
|
|
|
|
EMI(ctrl) ? "yes" : "no");
|
|
|
|
ctrl_info(ctrl, " Command Completed : %3s\n",
|
|
|
|
NO_CMD_CMPL(ctrl) ? "no" : "yes");
|
2013-05-10 01:26:16 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_SLTSTA, ®16);
|
2008-09-05 11:11:26 +08:00
|
|
|
ctrl_info(ctrl, "Slot Status : 0x%04x\n", reg16);
|
2013-05-10 01:26:16 +08:00
|
|
|
pcie_capability_read_word(pdev, PCI_EXP_SLTCTL, ®16);
|
2008-09-05 11:11:26 +08:00
|
|
|
ctrl_info(ctrl, "Slot Control : 0x%04x\n", reg16);
|
2008-04-26 05:39:08 +08:00
|
|
|
}
|
2007-11-29 07:11:46 +08:00
|
|
|
|
2014-04-19 08:13:49 +08:00
|
|
|
#define FLAG(x, y) (((x) & (y)) ? '+' : '-')
|
2013-12-15 04:06:36 +08:00
|
|
|
|
2008-06-20 11:07:08 +08:00
|
|
|
struct controller *pcie_init(struct pcie_device *dev)
|
2008-04-26 05:39:08 +08:00
|
|
|
{
|
2008-06-20 11:07:08 +08:00
|
|
|
struct controller *ctrl;
|
2008-10-22 13:31:44 +08:00
|
|
|
u32 slot_cap, link_cap;
|
2008-04-26 05:39:08 +08:00
|
|
|
struct pci_dev *pdev = dev->port;
|
2007-11-29 07:11:46 +08:00
|
|
|
|
2008-06-20 11:07:08 +08:00
|
|
|
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
|
|
|
|
if (!ctrl) {
|
2008-10-23 10:47:32 +08:00
|
|
|
dev_err(&dev->device, "%s: Out of memory\n", __func__);
|
2008-06-20 11:07:08 +08:00
|
|
|
goto abort;
|
|
|
|
}
|
2008-08-22 16:16:48 +08:00
|
|
|
ctrl->pcie = dev;
|
2013-12-15 04:06:07 +08:00
|
|
|
pcie_capability_read_dword(pdev, PCI_EXP_SLTCAP, &slot_cap);
|
2008-04-26 05:39:08 +08:00
|
|
|
ctrl->slot_cap = slot_cap;
|
2007-11-29 07:11:46 +08:00
|
|
|
mutex_init(&ctrl->ctrl_lock);
|
|
|
|
init_waitqueue_head(&ctrl->queue);
|
2008-04-26 05:39:08 +08:00
|
|
|
dbg_ctrl(ctrl);
|
pciehp: fix slow probing
Fix the "pciehp probing slow" problem reported from Jan C. Nordholz in
http://bugzilla.kernel.org/show_bug.cgi?id=10751.
The command completed bit in Slot Status register applies only to
commands issued to control the attention indicator, power indicator,
power controller, or electromechanical interlock. However, writes to
other parts of the Slot Control register would end up writing to the
control fields. Hence, any write to Slot Control register is
considered as a command. However, if the controller doesn't support
any of attention indicator, power indicator, power controller and
electromechanical interlock, command completed bit would not set in
writing to Slot Control register. In this case, we should not wait for
command completed bit set, otherwise all commands would be considered
not completed in timeout seconds (1 sec.).
The cause of the problem is pciehp driver didn't take this situation
into account. This patch changes pciehp to take it into account. This
patch also add the check for "No Command Completed Support" bit in
Slot Capability register. If it is set, we should not wait for command
completed bit set as well.
This problem seems to be revealed by the commit
c27fb883dffe11aa4cb35ecea1fa1832ba45d4da that fixed the bug that
pciehp did not wait for command completed properly (pciehp just
ignored the command completion event).
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Kristen Carlson Accardi <kristen.c.accardi@intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-27 18:04:30 +08:00
|
|
|
/*
|
|
|
|
* Controller doesn't notify of command completion if the "No
|
|
|
|
* Command Completed Support" bit is set in Slot Capability
|
|
|
|
* register or the controller supports none of power
|
|
|
|
* controller, attention led, power led and EMI.
|
|
|
|
*/
|
|
|
|
if (NO_CMD_CMPL(ctrl) ||
|
|
|
|
!(POWER_CTRL(ctrl) | ATTN_LED(ctrl) | PWR_LED(ctrl) | EMI(ctrl)))
|
2014-04-19 08:13:49 +08:00
|
|
|
ctrl->no_cmd_complete = 1;
|
|
|
|
|
|
|
|
/* Check if Data Link Layer Link Active Reporting is implemented */
|
|
|
|
pcie_capability_read_dword(pdev, PCI_EXP_LNKCAP, &link_cap);
|
|
|
|
if (link_cap & PCI_EXP_LNKCAP_DLLLARC) {
|
|
|
|
ctrl_dbg(ctrl, "Link Active Reporting supported\n");
|
|
|
|
ctrl->link_active_reporting = 1;
|
|
|
|
}
|
2008-10-22 13:31:44 +08:00
|
|
|
|
2008-06-20 11:07:08 +08:00
|
|
|
/* Clear all remaining event bits in Slot Status register */
|
2013-12-15 04:06:47 +08:00
|
|
|
pcie_capability_write_word(pdev, PCI_EXP_SLTSTA,
|
|
|
|
PCI_EXP_SLTSTA_ABP | PCI_EXP_SLTSTA_PFD |
|
|
|
|
PCI_EXP_SLTSTA_MRLSC | PCI_EXP_SLTSTA_PDC |
|
|
|
|
PCI_EXP_SLTSTA_CC);
|
2007-11-29 07:11:46 +08:00
|
|
|
|
2013-11-15 02:28:18 +08:00
|
|
|
/* Disable software notification */
|
2008-06-20 11:07:08 +08:00
|
|
|
pcie_disable_notification(ctrl);
|
2007-11-22 07:07:55 +08:00
|
|
|
|
2013-12-15 04:06:36 +08:00
|
|
|
ctrl_info(ctrl, "Slot #%d AttnBtn%c AttnInd%c PwrInd%c PwrCtrl%c MRL%c Interlock%c NoCompl%c LLActRep%c\n",
|
|
|
|
(slot_cap & PCI_EXP_SLTCAP_PSN) >> 19,
|
|
|
|
FLAG(slot_cap, PCI_EXP_SLTCAP_ABP),
|
|
|
|
FLAG(slot_cap, PCI_EXP_SLTCAP_AIP),
|
|
|
|
FLAG(slot_cap, PCI_EXP_SLTCAP_PIP),
|
|
|
|
FLAG(slot_cap, PCI_EXP_SLTCAP_PCP),
|
|
|
|
FLAG(slot_cap, PCI_EXP_SLTCAP_MRLSP),
|
|
|
|
FLAG(slot_cap, PCI_EXP_SLTCAP_EIP),
|
|
|
|
FLAG(slot_cap, PCI_EXP_SLTCAP_NCCS),
|
|
|
|
FLAG(link_cap, PCI_EXP_LNKCAP_DLLLARC));
|
2008-06-20 11:07:08 +08:00
|
|
|
|
|
|
|
if (pcie_init_slot(ctrl))
|
|
|
|
goto abort_ctrl;
|
2008-04-26 05:39:08 +08:00
|
|
|
|
2008-06-20 11:07:08 +08:00
|
|
|
return ctrl;
|
|
|
|
|
|
|
|
abort_ctrl:
|
|
|
|
kfree(ctrl);
|
2007-11-29 07:11:46 +08:00
|
|
|
abort:
|
2008-06-20 11:07:08 +08:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2009-09-15 16:30:48 +08:00
|
|
|
void pciehp_release_ctrl(struct controller *ctrl)
|
2008-06-20 11:07:08 +08:00
|
|
|
{
|
|
|
|
pcie_shutdown_notification(ctrl);
|
|
|
|
pcie_cleanup_slot(ctrl);
|
|
|
|
kfree(ctrl);
|
2007-11-29 07:11:46 +08:00
|
|
|
}
|