linux-sg2042/security/inode.c

237 lines
6.7 KiB
C
Raw Normal View History

/*
* inode.c - securityfs
*
* Copyright (C) 2005 Greg Kroah-Hartman <gregkh@suse.de>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* Based on fs/debugfs/inode.c which had the following copyright notice:
* Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com>
* Copyright (C) 2004 IBM Inc.
*/
/* #define DEBUG */
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/namei.h>
#include <linux/security.h>
#include <linux/magic.h>
static struct vfsmount *mount;
static int mount_count;
static inline int positive(struct dentry *dentry)
{
return d_really_is_positive(dentry) && !d_unhashed(dentry);
}
static int fill_super(struct super_block *sb, void *data, int silent)
{
static struct tree_descr files[] = {{""}};
return simple_fill_super(sb, SECURITYFS_MAGIC, files);
}
static struct dentry *get_sb(struct file_system_type *fs_type,
[PATCH] VFS: Permit filesystem to override root dentry on mount Extend the get_sb() filesystem operation to take an extra argument that permits the VFS to pass in the target vfsmount that defines the mountpoint. The filesystem is then required to manually set the superblock and root dentry pointers. For most filesystems, this should be done with simple_set_mnt() which will set the superblock pointer and then set the root dentry to the superblock's s_root (as per the old default behaviour). The get_sb() op now returns an integer as there's now no need to return the superblock pointer. This patch permits a superblock to be implicitly shared amongst several mount points, such as can be done with NFS to avoid potential inode aliasing. In such a case, simple_set_mnt() would not be called, and instead the mnt_root and mnt_sb would be set directly. The patch also makes the following changes: (*) the get_sb_*() convenience functions in the core kernel now take a vfsmount pointer argument and return an integer, so most filesystems have to change very little. (*) If one of the convenience function is not used, then get_sb() should normally call simple_set_mnt() to instantiate the vfsmount. This will always return 0, and so can be tail-called from get_sb(). (*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the dcache upon superblock destruction rather than shrink_dcache_anon(). This is required because the superblock may now have multiple trees that aren't actually bound to s_root, but that still need to be cleaned up. The currently called functions assume that the whole tree is rooted at s_root, and that anonymous dentries are not the roots of trees which results in dentries being left unculled. However, with the way NFS superblock sharing are currently set to be implemented, these assumptions are violated: the root of the filesystem is simply a dummy dentry and inode (the real inode for '/' may well be inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries with child trees. [*] Anonymous until discovered from another tree. (*) The documentation has been adjusted, including the additional bit of changing ext2_* into foo_* in the documentation. [akpm@osdl.org: convert ipath_fs, do other stuff] Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Nathan Scott <nathans@sgi.com> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:02:57 +08:00
int flags, const char *dev_name,
void *data)
{
return mount_single(fs_type, flags, data, fill_super);
}
static struct file_system_type fs_type = {
.owner = THIS_MODULE,
.name = "securityfs",
.mount = get_sb,
.kill_sb = kill_litter_super,
};
/**
* securityfs_create_file - create a file in the securityfs filesystem
*
* @name: a pointer to a string containing the name of the file to create.
* @mode: the permission that the file should have
* @parent: a pointer to the parent dentry for this file. This should be a
* directory dentry if set. If this parameter is %NULL, then the
* file will be created in the root of the securityfs filesystem.
* @data: a pointer to something that the caller will want to get to later
* on. The inode.i_private pointer will point to this value on
* the open() call.
* @fops: a pointer to a struct file_operations that should be used for
* this file.
*
* This is the basic "create a file" function for securityfs. It allows for a
* wide range of flexibility in creating a file, or a directory (if you
* want to create a directory, the securityfs_create_dir() function is
* recommended to be used instead).
*
* This function returns a pointer to a dentry if it succeeds. This
* pointer must be passed to the securityfs_remove() function when the file is
* to be removed (no automatic cleanup happens if your module is unloaded,
* you are responsible here). If an error occurs, the function will return
* the error value (via ERR_PTR).
*
* If securityfs is not enabled in the kernel, the value %-ENODEV is
* returned.
*/
struct dentry *securityfs_create_file(const char *name, umode_t mode,
struct dentry *parent, void *data,
const struct file_operations *fops)
{
struct dentry *dentry;
int is_dir = S_ISDIR(mode);
struct inode *dir, *inode;
int error;
if (!is_dir) {
BUG_ON(!fops);
mode = (mode & S_IALLUGO) | S_IFREG;
}
pr_debug("securityfs: creating file '%s'\n",name);
error = simple_pin_fs(&fs_type, &mount, &mount_count);
if (error)
return ERR_PTR(error);
if (!parent)
parent = mount->mnt_root;
dir = d_inode(parent);
mutex_lock(&dir->i_mutex);
dentry = lookup_one_len(name, parent, strlen(name));
if (IS_ERR(dentry))
goto out;
if (d_really_is_positive(dentry)) {
error = -EEXIST;
goto out1;
}
inode = new_inode(dir->i_sb);
if (!inode) {
error = -ENOMEM;
goto out1;
}
inode->i_ino = get_next_ino();
inode->i_mode = mode;
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
inode->i_private = data;
if (is_dir) {
inode->i_op = &simple_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
inc_nlink(inode);
inc_nlink(dir);
} else {
inode->i_fop = fops;
}
d_instantiate(dentry, inode);
dget(dentry);
mutex_unlock(&dir->i_mutex);
return dentry;
out1:
dput(dentry);
dentry = ERR_PTR(error);
out:
mutex_unlock(&dir->i_mutex);
simple_release_fs(&mount, &mount_count);
return dentry;
}
EXPORT_SYMBOL_GPL(securityfs_create_file);
/**
* securityfs_create_dir - create a directory in the securityfs filesystem
*
* @name: a pointer to a string containing the name of the directory to
* create.
* @parent: a pointer to the parent dentry for this file. This should be a
* directory dentry if set. If this parameter is %NULL, then the
* directory will be created in the root of the securityfs filesystem.
*
* This function creates a directory in securityfs with the given @name.
*
* This function returns a pointer to a dentry if it succeeds. This
* pointer must be passed to the securityfs_remove() function when the file is
* to be removed (no automatic cleanup happens if your module is unloaded,
* you are responsible here). If an error occurs, %NULL will be returned.
*
* If securityfs is not enabled in the kernel, the value %-ENODEV is
* returned. It is not wise to check for this value, but rather, check for
* %NULL or !%NULL instead as to eliminate the need for #ifdef in the calling
* code.
*/
struct dentry *securityfs_create_dir(const char *name, struct dentry *parent)
{
return securityfs_create_file(name,
S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO,
parent, NULL, NULL);
}
EXPORT_SYMBOL_GPL(securityfs_create_dir);
/**
* securityfs_remove - removes a file or directory from the securityfs filesystem
*
* @dentry: a pointer to a the dentry of the file or directory to be removed.
*
* This function removes a file or directory in securityfs that was previously
* created with a call to another securityfs function (like
* securityfs_create_file() or variants thereof.)
*
* This function is required to be called in order for the file to be
* removed. No automatic cleanup of files will happen when a module is
* removed; you are responsible here.
*/
void securityfs_remove(struct dentry *dentry)
{
struct dentry *parent;
if (!dentry || IS_ERR(dentry))
return;
parent = dentry->d_parent;
if (!parent || d_really_is_negative(parent))
return;
mutex_lock(&d_inode(parent)->i_mutex);
if (positive(dentry)) {
if (d_really_is_positive(dentry)) {
VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry) Convert the following where appropriate: (1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry). (2) S_ISREG(dentry->d_inode) to d_is_reg(dentry). (3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry). This is actually more complicated than it appears as some calls should be converted to d_can_lookup() instead. The difference is whether the directory in question is a real dir with a ->lookup op or whether it's a fake dir with a ->d_automount op. In some circumstances, we can subsume checks for dentry->d_inode not being NULL into this, provided we the code isn't in a filesystem that expects d_inode to be NULL if the dirent really *is* negative (ie. if we're going to use d_inode() rather than d_backing_inode() to get the inode pointer). Note that the dentry type field may be set to something other than DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS manages the fall-through from a negative dentry to a lower layer. In such a case, the dentry type of the negative union dentry is set to the same as the type of the lower dentry. However, if you know d_inode is not NULL at the call site, then you can use the d_is_xxx() functions even in a filesystem. There is one further complication: a 0,0 chardev dentry may be labelled DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE. Strictly, this was intended for special directory entry types that don't have attached inodes. The following perl+coccinelle script was used: use strict; my @callers; open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') || die "Can't grep for S_ISDIR and co. callers"; @callers = <$fd>; close($fd); unless (@callers) { print "No matches\n"; exit(0); } my @cocci = ( '@@', 'expression E;', '@@', '', '- S_ISLNK(E->d_inode->i_mode)', '+ d_is_symlink(E)', '', '@@', 'expression E;', '@@', '', '- S_ISDIR(E->d_inode->i_mode)', '+ d_is_dir(E)', '', '@@', 'expression E;', '@@', '', '- S_ISREG(E->d_inode->i_mode)', '+ d_is_reg(E)' ); my $coccifile = "tmp.sp.cocci"; open($fd, ">$coccifile") || die $coccifile; print($fd "$_\n") || die $coccifile foreach (@cocci); close($fd); foreach my $file (@callers) { chomp $file; print "Processing ", $file, "\n"; system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 || die "spatch failed"; } [AV: overlayfs parts skipped] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-01-29 20:02:35 +08:00
if (d_is_dir(dentry))
simple_rmdir(d_inode(parent), dentry);
else
simple_unlink(d_inode(parent), dentry);
dput(dentry);
}
}
mutex_unlock(&d_inode(parent)->i_mutex);
simple_release_fs(&mount, &mount_count);
}
EXPORT_SYMBOL_GPL(securityfs_remove);
static struct kobject *security_kobj;
static int __init securityfs_init(void)
{
int retval;
security_kobj = kobject_create_and_add("security", kernel_kobj);
if (!security_kobj)
return -EINVAL;
retval = register_filesystem(&fs_type);
if (retval)
kobject_put(security_kobj);
return retval;
}
core_initcall(securityfs_init);
MODULE_LICENSE("GPL");