linux-sg2042/arch/mips/math-emu/ieee754dp.h

86 lines
2.3 KiB
C
Raw Normal View History

/*
* IEEE754 floating point
* double precision internal header file
*/
/*
* MIPS floating point support
* Copyright (C) 1994-2000 Algorithmics Ltd.
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <linux/compiler.h>
#include "ieee754int.h"
#define assert(expr) ((void)0)
#define DP_EBIAS 1023
#define DP_EMIN (-1022)
#define DP_EMAX 1023
#define DP_FBITS 52
#define DP_MBITS 52
#define DP_MBIT(x) ((u64)1 << (x))
#define DP_HIDDEN_BIT DP_MBIT(DP_FBITS)
#define DP_SIGN_BIT DP_MBIT(63)
#define DPSIGN(dp) (dp.sign)
#define DPBEXP(dp) (dp.bexp)
#define DPMANT(dp) (dp.mant)
static inline int ieee754dp_finite(union ieee754dp x)
{
return DPBEXP(x) != DP_EMAX + 1 + DP_EBIAS;
}
/* 3bit extended double precision sticky right shift */
#define XDPSRS(v,rs) \
((rs > (DP_FBITS+3))?1:((v) >> (rs)) | ((v) << (64-(rs)) != 0))
#define XDPSRSX1() \
(xe++, (xm = (xm >> 1) | (xm & 1)))
#define XDPSRS1(v) \
(((v) >> 1) | ((v) & 1))
/* 32bit * 32bit => 64bit unsigned integer multiplication */
#define DPXMULT(x, y) ((u64)(x) * (u64)y)
/* convert denormal to normalized with extended exponent */
#define DPDNORMx(m,e) \
while ((m >> DP_FBITS) == 0) { m <<= 1; e--; }
#define DPDNORMX DPDNORMx(xm, xe)
#define DPDNORMY DPDNORMx(ym, ye)
#define DPDNORMZ DPDNORMx(zm, ze)
static inline union ieee754dp builddp(int s, int bx, u64 m)
{
union ieee754dp r;
assert((s) == 0 || (s) == 1);
assert((bx) >= DP_EMIN - 1 + DP_EBIAS
&& (bx) <= DP_EMAX + 1 + DP_EBIAS);
assert(((m) >> DP_FBITS) == 0);
r.sign = s;
r.bexp = bx;
r.mant = m;
return r;
}
extern union ieee754dp __cold ieee754dp_nanxcpt(union ieee754dp);
extern union ieee754dp ieee754dp_format(int, int, u64);