linux-sg2042/arch/x86/kernel/head_64.S

525 lines
13 KiB
ArmAsm
Raw Normal View History

/*
* linux/arch/x86_64/kernel/head.S -- start in 32bit and switch to 64bit
*
* Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
* Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
* Copyright (C) 2000 Karsten Keil <kkeil@suse.de>
* Copyright (C) 2001,2002 Andi Kleen <ak@suse.de>
* Copyright (C) 2005 Eric Biederman <ebiederm@xmission.com>
*/
#include <linux/linkage.h>
#include <linux/threads.h>
#include <linux/init.h>
#include <asm/segment.h>
#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/msr.h>
#include <asm/cache.h>
#include <asm/processor-flags.h>
#include <asm/percpu.h>
#include <asm/nops.h>
#ifdef CONFIG_PARAVIRT
#include <asm/asm-offsets.h>
#include <asm/paravirt.h>
#define GET_CR2_INTO(reg) GET_CR2_INTO_RAX ; movq %rax, reg
#else
#define GET_CR2_INTO(reg) movq %cr2, reg
#define INTERRUPT_RETURN iretq
#endif
/* we are not able to switch in one step to the final KERNEL ADDRESS SPACE
* because we need identity-mapped pages.
*
*/
#define pud_index(x) (((x) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
L4_PAGE_OFFSET = pgd_index(__PAGE_OFFSET)
L3_PAGE_OFFSET = pud_index(__PAGE_OFFSET)
L4_START_KERNEL = pgd_index(__START_KERNEL_map)
L3_START_KERNEL = pud_index(__START_KERNEL_map)
.text
__HEAD
.code64
.globl startup_64
startup_64:
/*
* At this point the CPU runs in 64bit mode CS.L = 1 CS.D = 0,
* and someone has loaded an identity mapped page table
* for us. These identity mapped page tables map all of the
* kernel pages and possibly all of memory.
*
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
* %rsi holds a physical pointer to real_mode_data.
*
* We come here either directly from a 64bit bootloader, or from
* arch/x86_64/boot/compressed/head.S.
*
* We only come here initially at boot nothing else comes here.
*
* Since we may be loaded at an address different from what we were
* compiled to run at we first fixup the physical addresses in our page
* tables and then reload them.
*/
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
/*
* Compute the delta between the address I am compiled to run at and the
* address I am actually running at.
*/
leaq _text(%rip), %rbp
subq $_text - __START_KERNEL_map, %rbp
/* Is the address not 2M aligned? */
movq %rbp, %rax
andl $~PMD_PAGE_MASK, %eax
testl %eax, %eax
jnz bad_address
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
/*
* Is the address too large?
*/
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
leaq _text(%rip), %rax
shrq $MAX_PHYSMEM_BITS, %rax
jnz bad_address
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
/*
* Fixup the physical addresses in the page table
*/
addq %rbp, early_level4_pgt + (L4_START_KERNEL*8)(%rip)
addq %rbp, level3_kernel_pgt + (510*8)(%rip)
addq %rbp, level3_kernel_pgt + (511*8)(%rip)
addq %rbp, level2_fixmap_pgt + (506*8)(%rip)
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
/*
* Set up the identity mapping for the switchover. These
* entries should *NOT* have the global bit set! This also
* creates a bunch of nonsense entries but that is fine --
* it avoids problems around wraparound.
*/
leaq _text(%rip), %rdi
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
leaq early_level4_pgt(%rip), %rbx
movq %rdi, %rax
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
shrq $PGDIR_SHIFT, %rax
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
leaq (4096 + _KERNPG_TABLE)(%rbx), %rdx
movq %rdx, 0(%rbx,%rax,8)
movq %rdx, 8(%rbx,%rax,8)
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
addq $4096, %rdx
movq %rdi, %rax
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
shrq $PUD_SHIFT, %rax
andl $(PTRS_PER_PUD-1), %eax
movq %rdx, (4096+0)(%rbx,%rax,8)
movq %rdx, (4096+8)(%rbx,%rax,8)
addq $8192, %rbx
movq %rdi, %rax
shrq $PMD_SHIFT, %rdi
addq $(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL), %rax
leaq (_end - 1)(%rip), %rcx
shrq $PMD_SHIFT, %rcx
subq %rdi, %rcx
incl %ecx
1:
andq $(PTRS_PER_PMD - 1), %rdi
movq %rax, (%rbx,%rdi,8)
incq %rdi
addq $PMD_SIZE, %rax
decl %ecx
jnz 1b
/*
* Fixup the kernel text+data virtual addresses. Note that
* we might write invalid pmds, when the kernel is relocated
* cleanup_highmap() fixes this up along with the mappings
* beyond _end.
*/
leaq level2_kernel_pgt(%rip), %rdi
leaq 4096(%rdi), %r8
/* See if it is a valid page table entry */
1: testq $1, 0(%rdi)
jz 2f
addq %rbp, 0(%rdi)
/* Go to the next page */
2: addq $8, %rdi
cmp %r8, %rdi
jne 1b
/* Fixup phys_base */
addq %rbp, phys_base(%rip)
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
movq $(early_level4_pgt - __START_KERNEL_map), %rax
jmp 1f
ENTRY(secondary_startup_64)
/*
* At this point the CPU runs in 64bit mode CS.L = 1 CS.D = 0,
* and someone has loaded a mapped page table.
*
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
* %rsi holds a physical pointer to real_mode_data.
*
* We come here either from startup_64 (using physical addresses)
* or from trampoline.S (using virtual addresses).
*
* Using virtual addresses from trampoline.S removes the need
* to have any identity mapped pages in the kernel page table
* after the boot processor executes this code.
*/
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
movq $(init_level4_pgt - __START_KERNEL_map), %rax
1:
/* Enable PAE mode and PGE */
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
movl $(X86_CR4_PAE | X86_CR4_PGE), %ecx
movq %rcx, %cr4
/* Setup early boot stage 4 level pagetables. */
addq phys_base(%rip), %rax
movq %rax, %cr3
/* Ensure I am executing from virtual addresses */
movq $1f, %rax
jmp *%rax
1:
/* Check if nx is implemented */
movl $0x80000001, %eax
cpuid
movl %edx,%edi
/* Setup EFER (Extended Feature Enable Register) */
movl $MSR_EFER, %ecx
rdmsr
btsl $_EFER_SCE, %eax /* Enable System Call */
btl $20,%edi /* No Execute supported? */
jnc 1f
btsl $_EFER_NX, %eax
btsq $_PAGE_BIT_NX,early_pmd_flags(%rip)
1: wrmsr /* Make changes effective */
/* Setup cr0 */
#define CR0_STATE (X86_CR0_PE | X86_CR0_MP | X86_CR0_ET | \
X86_CR0_NE | X86_CR0_WP | X86_CR0_AM | \
X86_CR0_PG)
movl $CR0_STATE, %eax
/* Make changes effective */
movq %rax, %cr0
/* Setup a boot time stack */
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
movq stack_start(%rip), %rsp
/* zero EFLAGS after setting rsp */
pushq $0
popfq
/*
* We must switch to a new descriptor in kernel space for the GDT
* because soon the kernel won't have access anymore to the userspace
* addresses where we're currently running on. We have to do that here
* because in 32bit we couldn't load a 64bit linear address.
*/
lgdt early_gdt_descr(%rip)
/* set up data segments */
xorl %eax,%eax
movl %eax,%ds
movl %eax,%ss
movl %eax,%es
/*
* We don't really need to load %fs or %gs, but load them anyway
* to kill any stale realmode selectors. This allows execution
* under VT hardware.
*/
movl %eax,%fs
movl %eax,%gs
/* Set up %gs.
*
* The base of %gs always points to the bottom of the irqstack
* union. If the stack protector canary is enabled, it is
* located at %gs:40. Note that, on SMP, the boot cpu uses
* init data section till per cpu areas are set up.
*/
movl $MSR_GS_BASE,%ecx
movl initial_gs(%rip),%eax
movl initial_gs+4(%rip),%edx
wrmsr
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
/* rsi is pointer to real mode structure with interesting info.
pass it to C */
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
movq %rsi, %rdi
/* Finally jump to run C code and to be on real kernel address
* Since we are running on identity-mapped space we have to jump
* to the full 64bit address, this is only possible as indirect
* jump. In addition we need to ensure %cs is set so we make this
* a far return.
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
*
* Note: do not change to far jump indirect with 64bit offset.
*
* AMD does not support far jump indirect with 64bit offset.
* AMD64 Architecture Programmer's Manual, Volume 3: states only
* JMP FAR mem16:16 FF /5 Far jump indirect,
* with the target specified by a far pointer in memory.
* JMP FAR mem16:32 FF /5 Far jump indirect,
* with the target specified by a far pointer in memory.
*
* Intel64 does support 64bit offset.
* Software Developer Manual Vol 2: states:
* FF /5 JMP m16:16 Jump far, absolute indirect,
* address given in m16:16
* FF /5 JMP m16:32 Jump far, absolute indirect,
* address given in m16:32.
* REX.W + FF /5 JMP m16:64 Jump far, absolute indirect,
* address given in m16:64.
*/
movq initial_code(%rip),%rax
pushq $0 # fake return address to stop unwinder
pushq $__KERNEL_CS # set correct cs
pushq %rax # target address in negative space
lretq
#ifdef CONFIG_HOTPLUG_CPU
/*
* Boot CPU0 entry point. It's called from play_dead(). Everything has been set
* up already except stack. We just set up stack here. Then call
* start_secondary().
*/
ENTRY(start_cpu0)
movq stack_start(%rip),%rsp
movq initial_code(%rip),%rax
pushq $0 # fake return address to stop unwinder
pushq $__KERNEL_CS # set correct cs
pushq %rax # target address in negative space
lretq
ENDPROC(start_cpu0)
#endif
/* SMP bootup changes these two */
__REFDATA
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
.balign 8
GLOBAL(initial_code)
.quad x86_64_start_kernel
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
GLOBAL(initial_gs)
.quad INIT_PER_CPU_VAR(irq_stack_union)
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
GLOBAL(stack_start)
.quad init_thread_union+THREAD_SIZE-8
.word 0
__FINITDATA
bad_address:
jmp bad_address
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
__INIT
.globl early_idt_handlers
early_idt_handlers:
# 104(%rsp) %rflags
# 96(%rsp) %cs
# 88(%rsp) %rip
# 80(%rsp) error code
i = 0
.rept NUM_EXCEPTION_VECTORS
.if (EXCEPTION_ERRCODE_MASK >> i) & 1
ASM_NOP2
.else
pushq $0 # Dummy error code, to make stack frame uniform
.endif
pushq $i # 72(%rsp) Vector number
jmp early_idt_handler
i = i + 1
.endr
/* This is global to keep gas from relaxing the jumps */
ENTRY(early_idt_handler)
cld
cmpl $2,early_recursion_flag(%rip)
jz 1f
incl early_recursion_flag(%rip)
pushq %rax # 64(%rsp)
pushq %rcx # 56(%rsp)
pushq %rdx # 48(%rsp)
pushq %rsi # 40(%rsp)
pushq %rdi # 32(%rsp)
pushq %r8 # 24(%rsp)
pushq %r9 # 16(%rsp)
pushq %r10 # 8(%rsp)
pushq %r11 # 0(%rsp)
cmpl $__KERNEL_CS,96(%rsp)
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
jne 11f
cmpl $14,72(%rsp) # Page fault?
jnz 10f
GET_CR2_INTO(%rdi) # can clobber any volatile register if pv
call early_make_pgtable
andl %eax,%eax
jz 20f # All good
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
10:
leaq 88(%rsp),%rdi # Pointer to %rip
call early_fixup_exception
andl %eax,%eax
jnz 20f # Found an exception entry
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
11:
#ifdef CONFIG_EARLY_PRINTK
GET_CR2_INTO(%r9) # can clobber any volatile register if pv
movl 80(%rsp),%r8d # error code
movl 72(%rsp),%esi # vector number
movl 96(%rsp),%edx # %cs
movq 88(%rsp),%rcx # %rip
xorl %eax,%eax
leaq early_idt_msg(%rip),%rdi
call early_printk
cmpl $2,early_recursion_flag(%rip)
jz 1f
call dump_stack
#ifdef CONFIG_KALLSYMS
leaq early_idt_ripmsg(%rip),%rdi
movq 40(%rsp),%rsi # %rip again
call __print_symbol
#endif
#endif /* EARLY_PRINTK */
1: hlt
jmp 1b
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
20: # Exception table entry found or page table generated
popq %r11
popq %r10
popq %r9
popq %r8
popq %rdi
popq %rsi
popq %rdx
popq %rcx
popq %rax
addq $16,%rsp # drop vector number and error code
decl early_recursion_flag(%rip)
INTERRUPT_RETURN
ENDPROC(early_idt_handler)
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
__INITDATA
.balign 4
early_recursion_flag:
.long 0
#ifdef CONFIG_EARLY_PRINTK
early_idt_msg:
.asciz "PANIC: early exception %02lx rip %lx:%lx error %lx cr2 %lx\n"
early_idt_ripmsg:
.asciz "RIP %s\n"
#endif /* CONFIG_EARLY_PRINTK */
#define NEXT_PAGE(name) \
.balign PAGE_SIZE; \
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
GLOBAL(name)
/* Automate the creation of 1 to 1 mapping pmd entries */
#define PMDS(START, PERM, COUNT) \
i = 0 ; \
.rept (COUNT) ; \
.quad (START) + (i << PMD_SHIFT) + (PERM) ; \
i = i + 1 ; \
.endr
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
__INITDATA
NEXT_PAGE(early_level4_pgt)
.fill 511,8,0
.quad level3_kernel_pgt - __START_KERNEL_map + _PAGE_TABLE
NEXT_PAGE(early_dynamic_pgts)
.fill 512*EARLY_DYNAMIC_PAGE_TABLES,8,0
.data
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
#ifndef CONFIG_XEN
NEXT_PAGE(init_level4_pgt)
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
.fill 512,8,0
#else
NEXT_PAGE(init_level4_pgt)
.quad level3_ident_pgt - __START_KERNEL_map + _KERNPG_TABLE
.org init_level4_pgt + L4_PAGE_OFFSET*8, 0
.quad level3_ident_pgt - __START_KERNEL_map + _KERNPG_TABLE
.org init_level4_pgt + L4_START_KERNEL*8, 0
/* (2^48-(2*1024*1024*1024))/(2^39) = 511 */
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
.quad level3_kernel_pgt - __START_KERNEL_map + _PAGE_TABLE
NEXT_PAGE(level3_ident_pgt)
.quad level2_ident_pgt - __START_KERNEL_map + _KERNPG_TABLE
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
.fill 511, 8, 0
NEXT_PAGE(level2_ident_pgt)
/* Since I easily can, map the first 1G.
* Don't set NX because code runs from these pages.
*/
PMDS(0, __PAGE_KERNEL_IDENT_LARGE_EXEC, PTRS_PER_PMD)
#endif
NEXT_PAGE(level3_kernel_pgt)
.fill L3_START_KERNEL,8,0
/* (2^48-(2*1024*1024*1024)-((2^39)*511))/(2^30) = 510 */
.quad level2_kernel_pgt - __START_KERNEL_map + _KERNPG_TABLE
.quad level2_fixmap_pgt - __START_KERNEL_map + _PAGE_TABLE
NEXT_PAGE(level2_kernel_pgt)
/*
* 512 MB kernel mapping. We spend a full page on this pagetable
* anyway.
*
* The kernel code+data+bss must not be bigger than that.
*
* (NOTE: at +512MB starts the module area, see MODULES_VADDR.
* If you want to increase this then increase MODULES_VADDR
* too.)
*/
PMDS(0, __PAGE_KERNEL_LARGE_EXEC,
KERNEL_IMAGE_SIZE/PMD_SIZE)
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
NEXT_PAGE(level2_fixmap_pgt)
.fill 506,8,0
.quad level1_fixmap_pgt - __START_KERNEL_map + _PAGE_TABLE
/* 8MB reserved for vsyscalls + a 2MB hole = 4 + 1 entries */
.fill 5,8,0
NEXT_PAGE(level1_fixmap_pgt)
.fill 512,8,0
#undef PMDS
.data
.align 16
.globl early_gdt_descr
early_gdt_descr:
.word GDT_ENTRIES*8-1
early_gdt_descr_base:
.quad INIT_PER_CPU_VAR(gdt_page)
ENTRY(phys_base)
/* This must match the first entry in level2_kernel_pgt */
.quad 0x0000000000000000
#include "../../x86/xen/xen-head.S"
.section .bss, "aw", @nobits
.align L1_CACHE_BYTES
ENTRY(idt_table)
.skip IDT_ENTRIES * 16
.align L1_CACHE_BYTES
ENTRY(nmi_idt_table)
.skip IDT_ENTRIES * 16
__PAGE_ALIGNED_BSS
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
NEXT_PAGE(empty_zero_page)
.skip PAGE_SIZE