linux-sg2042/mm/Makefile

37 lines
1.2 KiB
Makefile
Raw Normal View History

#
# Makefile for the linux memory manager.
#
mmu-y := nommu.o
mmu-$(CONFIG_MMU) := fremap.o highmem.o madvise.o memory.o mincore.o \
mlock.o mmap.o mprotect.o mremap.o msync.o rmap.o \
vmalloc.o
obj-y := bootmem.o filemap.o mempool.o oom_kill.o fadvise.o \
page_alloc.o page-writeback.o pdflush.o \
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:01:45 +08:00
readahead.o swap.o truncate.o vmscan.o \
prio_tree.o util.o mmzone.o vmstat.o backing-dev.o \
page_isolation.o $(mmu-y)
obj-$(CONFIG_PROC_PAGE_MONITOR) += pagewalk.o
obj-$(CONFIG_BOUNCE) += bounce.o
obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o thrash.o
obj-$(CONFIG_HAS_DMA) += dmapool.o
obj-$(CONFIG_HUGETLBFS) += hugetlb.o
obj-$(CONFIG_NUMA) += mempolicy.o
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
obj-$(CONFIG_SPARSEMEM) += sparse.o
Generic Virtual Memmap support for SPARSEMEM SPARSEMEM is a pretty nice framework that unifies quite a bit of code over all the arches. It would be great if it could be the default so that we can get rid of various forms of DISCONTIG and other variations on memory maps. So far what has hindered this are the additional lookups that SPARSEMEM introduces for virt_to_page and page_address. This goes so far that the code to do this has to be kept in a separate function and cannot be used inline. This patch introduces a virtual memmap mode for SPARSEMEM, in which the memmap is mapped into a virtually contigious area, only the active sections are physically backed. This allows virt_to_page page_address and cohorts become simple shift/add operations. No page flag fields, no table lookups, nothing involving memory is required. The two key operations pfn_to_page and page_to_page become: #define __pfn_to_page(pfn) (vmemmap + (pfn)) #define __page_to_pfn(page) ((page) - vmemmap) By having a virtual mapping for the memmap we allow simple access without wasting physical memory. As kernel memory is typically already mapped 1:1 this introduces no additional overhead. The virtual mapping must be big enough to allow a struct page to be allocated and mapped for all valid physical pages. This vill make a virtual memmap difficult to use on 32 bit platforms that support 36 address bits. However, if there is enough virtual space available and the arch already maps its 1-1 kernel space using TLBs (f.e. true of IA64 and x86_64) then this technique makes SPARSEMEM lookups even more efficient than CONFIG_FLATMEM. FLATMEM needs to read the contents of the mem_map variable to get the start of the memmap and then add the offset to the required entry. vmemmap is a constant to which we can simply add the offset. This patch has the potential to allow us to make SPARSMEM the default (and even the only) option for most systems. It should be optimal on UP, SMP and NUMA on most platforms. Then we may even be able to remove the other memory models: FLATMEM, DISCONTIG etc. [apw@shadowen.org: config cleanups, resplit code etc] [kamezawa.hiroyu@jp.fujitsu.com: Fix sparsemem_vmemmap init] [apw@shadowen.org: vmemmap: remove excess debugging] [apw@shadowen.org: simplify initialisation code and reduce duplication] [apw@shadowen.org: pull out the vmemmap code into its own file] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:13 +08:00
obj-$(CONFIG_SPARSEMEM_VMEMMAP) += sparse-vmemmap.o
obj-$(CONFIG_SHMEM) += shmem.o
obj-$(CONFIG_TMPFS_POSIX_ACL) += shmem_acl.o
obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:01:45 +08:00
obj-$(CONFIG_SLOB) += slob.o
obj-$(CONFIG_SLAB) += slab.o
SLUB core This is a new slab allocator which was motivated by the complexity of the existing code in mm/slab.c. It attempts to address a variety of concerns with the existing implementation. A. Management of object queues A particular concern was the complex management of the numerous object queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for each allocating CPU and use objects from a slab directly instead of queueing them up. B. Storage overhead of object queues SLAB Object queues exist per node, per CPU. The alien cache queue even has a queue array that contain a queue for each processor on each node. For very large systems the number of queues and the number of objects that may be caught in those queues grows exponentially. On our systems with 1k nodes / processors we have several gigabytes just tied up for storing references to objects for those queues This does not include the objects that could be on those queues. One fears that the whole memory of the machine could one day be consumed by those queues. C. SLAB meta data overhead SLAB has overhead at the beginning of each slab. This means that data cannot be naturally aligned at the beginning of a slab block. SLUB keeps all meta data in the corresponding page_struct. Objects can be naturally aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte boundaries and can fit tightly into a 4k page with no bytes left over. SLAB cannot do this. D. SLAB has a complex cache reaper SLUB does not need a cache reaper for UP systems. On SMP systems the per CPU slab may be pushed back into partial list but that operation is simple and does not require an iteration over a list of objects. SLAB expires per CPU, shared and alien object queues during cache reaping which may cause strange hold offs. E. SLAB has complex NUMA policy layer support SLUB pushes NUMA policy handling into the page allocator. This means that allocation is coarser (SLUB does interleave on a page level) but that situation was also present before 2.6.13. SLABs application of policies to individual slab objects allocated in SLAB is certainly a performance concern due to the frequent references to memory policies which may lead a sequence of objects to come from one node after another. SLUB will get a slab full of objects from one node and then will switch to the next. F. Reduction of the size of partial slab lists SLAB has per node partial lists. This means that over time a large number of partial slabs may accumulate on those lists. These can only be reused if allocator occur on specific nodes. SLUB has a global pool of partial slabs and will consume slabs from that pool to decrease fragmentation. G. Tunables SLAB has sophisticated tuning abilities for each slab cache. One can manipulate the queue sizes in detail. However, filling the queues still requires the uses of the spin lock to check out slabs. SLUB has a global parameter (min_slab_order) for tuning. Increasing the minimum slab order can decrease the locking overhead. The bigger the slab order the less motions of pages between per CPU and partial lists occur and the better SLUB will be scaling. G. Slab merging We often have slab caches with similar parameters. SLUB detects those on boot up and merges them into the corresponding general caches. This leads to more effective memory use. About 50% of all caches can be eliminated through slab merging. This will also decrease slab fragmentation because partial allocated slabs can be filled up again. Slab merging can be switched off by specifying slub_nomerge on boot up. Note that merging can expose heretofore unknown bugs in the kernel because corrupted objects may now be placed differently and corrupt differing neighboring objects. Enable sanity checks to find those. H. Diagnostics The current slab diagnostics are difficult to use and require a recompilation of the kernel. SLUB contains debugging code that is always available (but is kept out of the hot code paths). SLUB diagnostics can be enabled via the "slab_debug" option. Parameters can be specified to select a single or a group of slab caches for diagnostics. This means that the system is running with the usual performance and it is much more likely that race conditions can be reproduced. I. Resiliency If basic sanity checks are on then SLUB is capable of detecting common error conditions and recover as best as possible to allow the system to continue. J. Tracing Tracing can be enabled via the slab_debug=T,<slabcache> option during boot. SLUB will then protocol all actions on that slabcache and dump the object contents on free. K. On demand DMA cache creation. Generally DMA caches are not needed. If a kmalloc is used with __GFP_DMA then just create this single slabcache that is needed. For systems that have no ZONE_DMA requirement the support is completely eliminated. L. Performance increase Some benchmarks have shown speed improvements on kernbench in the range of 5-10%. The locking overhead of slub is based on the underlying base allocation size. If we can reliably allocate larger order pages then it is possible to increase slub performance much further. The anti-fragmentation patches may enable further performance increases. Tested on: i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator SLUB Boot options slub_nomerge Disable merging of slabs slub_min_order=x Require a minimum order for slab caches. This increases the managed chunk size and therefore reduces meta data and locking overhead. slub_min_objects=x Mininum objects per slab. Default is 8. slub_max_order=x Avoid generating slabs larger than order specified. slub_debug Enable all diagnostics for all caches slub_debug=<options> Enable selective options for all caches slub_debug=<o>,<cache> Enable selective options for a certain set of caches Available Debug options F Double Free checking, sanity and resiliency R Red zoning P Object / padding poisoning U Track last free / alloc T Trace all allocs / frees (only use for individual slabs). To use SLUB: Apply this patch and then select SLUB as the default slab allocator. [hugh@veritas.com: fix an oops-causing locking error] [akpm@linux-foundation.org: various stupid cleanups and small fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:49:36 +08:00
obj-$(CONFIG_SLUB) += slub.o
obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o
obj-$(CONFIG_FS_XIP) += filemap_xip.o
obj-$(CONFIG_MIGRATION) += migrate.o
obj-$(CONFIG_SMP) += allocpercpu.o
Quicklists for page table pages On x86_64 this cuts allocation overhead for page table pages down to a fraction (kernel compile / editing load. TSC based measurement of times spend in each function): no quicklist pte_alloc 1569048 4.3s(401ns/2.7us/179.7us) pmd_alloc 780988 2.1s(337ns/2.7us/86.1us) pud_alloc 780072 2.2s(424ns/2.8us/300.6us) pgd_alloc 260022 1s(920ns/4us/263.1us) quicklist: pte_alloc 452436 573.4ms(8ns/1.3us/121.1us) pmd_alloc 196204 174.5ms(7ns/889ns/46.1us) pud_alloc 195688 172.4ms(7ns/881ns/151.3us) pgd_alloc 65228 9.8ms(8ns/150ns/6.1us) pgd allocations are the most complex and there we see the most dramatic improvement (may be we can cut down the amount of pgds cached somewhat?). But even the pte allocations still see a doubling of performance. 1. Proven code from the IA64 arch. The method used here has been fine tuned for years and is NUMA aware. It is based on the knowledge that accesses to page table pages are sparse in nature. Taking a page off the freelists instead of allocating a zeroed pages allows a reduction of number of cachelines touched in addition to getting rid of the slab overhead. So performance improves. This is particularly useful if pgds contain standard mappings. We can save on the teardown and setup of such a page if we have some on the quicklists. This includes avoiding lists operations that are otherwise necessary on alloc and free to track pgds. 2. Light weight alternative to use slab to manage page size pages Slab overhead is significant and even page allocator use is pretty heavy weight. The use of a per cpu quicklist means that we touch only two cachelines for an allocation. There is no need to access the page_struct (unless arch code needs to fiddle around with it). So the fast past just means bringing in one cacheline at the beginning of the page. That same cacheline may then be used to store the page table entry. Or a second cacheline may be used if the page table entry is not in the first cacheline of the page. The current code will zero the page which means touching 32 cachelines (assuming 128 byte). We get down from 32 to 2 cachelines in the fast path. 3. x86_64 gets lightweight page table page management. This will allow x86_64 arch code to faster repopulate pgds and other page table entries. The list operations for pgds are reduced in the same way as for i386 to the point where a pgd is allocated from the page allocator and when it is freed back to the page allocator. A pgd can pass through the quicklists without having to be reinitialized. 64 Consolidation of code from multiple arches So far arches have their own implementation of quicklist management. This patch moves that feature into the core allowing an easier maintenance and consistent management of quicklists. Page table pages have the characteristics that they are typically zero or in a known state when they are freed. This is usually the exactly same state as needed after allocation. So it makes sense to build a list of freed page table pages and then consume the pages already in use first. Those pages have already been initialized correctly (thus no need to zero them) and are likely already cached in such a way that the MMU can use them most effectively. Page table pages are used in a sparse way so zeroing them on allocation is not too useful. Such an implementation already exits for ia64. Howver, that implementation did not support constructors and destructors as needed by i386 / x86_64. It also only supported a single quicklist. The implementation here has constructor and destructor support as well as the ability for an arch to specify how many quicklists are needed. Quicklists are defined by an arch defining CONFIG_QUICKLIST. If more than one quicklist is necessary then we can define NR_QUICK for additional lists. F.e. i386 needs two and thus has config NR_QUICK int default 2 If an arch has requested quicklist support then pages can be allocated from the quicklist (or from the page allocator if the quicklist is empty) via: quicklist_alloc(<quicklist-nr>, <gfpflags>, <constructor>) Page table pages can be freed using: quicklist_free(<quicklist-nr>, <destructor>, <page>) Pages must have a definite state after allocation and before they are freed. If no constructor is specified then pages will be zeroed on allocation and must be zeroed before they are freed. If a constructor is used then the constructor will establish a definite page state. F.e. the i386 and x86_64 pgd constructors establish certain mappings. Constructors and destructors can also be used to track the pages. i386 and x86_64 use a list of pgds in order to be able to dynamically update standard mappings. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:49:50 +08:00
obj-$(CONFIG_QUICKLIST) += quicklist.o
obj-$(CONFIG_CGROUP_MEM_CONT) += memcontrol.o
Quicklists for page table pages On x86_64 this cuts allocation overhead for page table pages down to a fraction (kernel compile / editing load. TSC based measurement of times spend in each function): no quicklist pte_alloc 1569048 4.3s(401ns/2.7us/179.7us) pmd_alloc 780988 2.1s(337ns/2.7us/86.1us) pud_alloc 780072 2.2s(424ns/2.8us/300.6us) pgd_alloc 260022 1s(920ns/4us/263.1us) quicklist: pte_alloc 452436 573.4ms(8ns/1.3us/121.1us) pmd_alloc 196204 174.5ms(7ns/889ns/46.1us) pud_alloc 195688 172.4ms(7ns/881ns/151.3us) pgd_alloc 65228 9.8ms(8ns/150ns/6.1us) pgd allocations are the most complex and there we see the most dramatic improvement (may be we can cut down the amount of pgds cached somewhat?). But even the pte allocations still see a doubling of performance. 1. Proven code from the IA64 arch. The method used here has been fine tuned for years and is NUMA aware. It is based on the knowledge that accesses to page table pages are sparse in nature. Taking a page off the freelists instead of allocating a zeroed pages allows a reduction of number of cachelines touched in addition to getting rid of the slab overhead. So performance improves. This is particularly useful if pgds contain standard mappings. We can save on the teardown and setup of such a page if we have some on the quicklists. This includes avoiding lists operations that are otherwise necessary on alloc and free to track pgds. 2. Light weight alternative to use slab to manage page size pages Slab overhead is significant and even page allocator use is pretty heavy weight. The use of a per cpu quicklist means that we touch only two cachelines for an allocation. There is no need to access the page_struct (unless arch code needs to fiddle around with it). So the fast past just means bringing in one cacheline at the beginning of the page. That same cacheline may then be used to store the page table entry. Or a second cacheline may be used if the page table entry is not in the first cacheline of the page. The current code will zero the page which means touching 32 cachelines (assuming 128 byte). We get down from 32 to 2 cachelines in the fast path. 3. x86_64 gets lightweight page table page management. This will allow x86_64 arch code to faster repopulate pgds and other page table entries. The list operations for pgds are reduced in the same way as for i386 to the point where a pgd is allocated from the page allocator and when it is freed back to the page allocator. A pgd can pass through the quicklists without having to be reinitialized. 64 Consolidation of code from multiple arches So far arches have their own implementation of quicklist management. This patch moves that feature into the core allowing an easier maintenance and consistent management of quicklists. Page table pages have the characteristics that they are typically zero or in a known state when they are freed. This is usually the exactly same state as needed after allocation. So it makes sense to build a list of freed page table pages and then consume the pages already in use first. Those pages have already been initialized correctly (thus no need to zero them) and are likely already cached in such a way that the MMU can use them most effectively. Page table pages are used in a sparse way so zeroing them on allocation is not too useful. Such an implementation already exits for ia64. Howver, that implementation did not support constructors and destructors as needed by i386 / x86_64. It also only supported a single quicklist. The implementation here has constructor and destructor support as well as the ability for an arch to specify how many quicklists are needed. Quicklists are defined by an arch defining CONFIG_QUICKLIST. If more than one quicklist is necessary then we can define NR_QUICK for additional lists. F.e. i386 needs two and thus has config NR_QUICK int default 2 If an arch has requested quicklist support then pages can be allocated from the quicklist (or from the page allocator if the quicklist is empty) via: quicklist_alloc(<quicklist-nr>, <gfpflags>, <constructor>) Page table pages can be freed using: quicklist_free(<quicklist-nr>, <destructor>, <page>) Pages must have a definite state after allocation and before they are freed. If no constructor is specified then pages will be zeroed on allocation and must be zeroed before they are freed. If a constructor is used then the constructor will establish a definite page state. F.e. the i386 and x86_64 pgd constructors establish certain mappings. Constructors and destructors can also be used to track the pages. i386 and x86_64 use a list of pgds in order to be able to dynamically update standard mappings. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:49:50 +08:00