linux-sg2042/drivers/media/dvb-frontends/dib3000mc.c

941 lines
26 KiB
C
Raw Normal View History

/*
* Driver for DiBcom DiB3000MC/P-demodulator.
*
* Copyright (C) 2004-7 DiBcom (http://www.dibcom.fr/)
* Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@desy.de)
*
* This code is partially based on the previous dib3000mc.c .
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, version 2.
*/
#include <linux/kernel.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/i2c.h>
#include "dvb_frontend.h"
#include "dib3000mc.h"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
static int buggy_sfn_workaround;
module_param(buggy_sfn_workaround, int, 0644);
MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)");
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB3000MC/P:"); printk(args); printk("\n"); } } while (0)
struct dib3000mc_state {
struct dvb_frontend demod;
struct dib3000mc_config *cfg;
u8 i2c_addr;
struct i2c_adapter *i2c_adap;
struct dibx000_i2c_master i2c_master;
u32 timf;
u32 current_bandwidth;
u16 dev_id;
u8 sfn_workaround_active :1;
};
static u16 dib3000mc_read_word(struct dib3000mc_state *state, u16 reg)
{
u8 wb[2] = { (reg >> 8) | 0x80, reg & 0xff };
u8 rb[2];
struct i2c_msg msg[2] = {
{ .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 },
{ .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 },
};
if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
dprintk("i2c read error on %d\n",reg);
return (rb[0] << 8) | rb[1];
}
static int dib3000mc_write_word(struct dib3000mc_state *state, u16 reg, u16 val)
{
u8 b[4] = {
(reg >> 8) & 0xff, reg & 0xff,
(val >> 8) & 0xff, val & 0xff,
};
struct i2c_msg msg = {
.addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
};
return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
}
static int dib3000mc_identify(struct dib3000mc_state *state)
{
u16 value;
if ((value = dib3000mc_read_word(state, 1025)) != 0x01b3) {
dprintk("-E- DiB3000MC/P: wrong Vendor ID (read=0x%x)\n",value);
return -EREMOTEIO;
}
value = dib3000mc_read_word(state, 1026);
if (value != 0x3001 && value != 0x3002) {
dprintk("-E- DiB3000MC/P: wrong Device ID (%x)\n",value);
return -EREMOTEIO;
}
state->dev_id = value;
dprintk("-I- found DiB3000MC/P: %x\n",state->dev_id);
return 0;
}
static int dib3000mc_set_timing(struct dib3000mc_state *state, s16 nfft, u32 bw, u8 update_offset)
{
u32 timf;
if (state->timf == 0) {
timf = 1384402; // default value for 8MHz
if (update_offset)
msleep(200); // first time we do an update
} else
timf = state->timf;
timf *= (bw / 1000);
if (update_offset) {
s16 tim_offs = dib3000mc_read_word(state, 416);
if (tim_offs & 0x2000)
tim_offs -= 0x4000;
if (nfft == TRANSMISSION_MODE_2K)
tim_offs *= 4;
timf += tim_offs;
state->timf = timf / (bw / 1000);
}
dprintk("timf: %d\n", timf);
dib3000mc_write_word(state, 23, (u16) (timf >> 16));
dib3000mc_write_word(state, 24, (u16) (timf ) & 0xffff);
return 0;
}
static int dib3000mc_setup_pwm_state(struct dib3000mc_state *state)
{
u16 reg_51, reg_52 = state->cfg->agc->setup & 0xfefb;
if (state->cfg->pwm3_inversion) {
reg_51 = (2 << 14) | (0 << 10) | (7 << 6) | (2 << 2) | (2 << 0);
reg_52 |= (1 << 2);
} else {
reg_51 = (2 << 14) | (4 << 10) | (7 << 6) | (2 << 2) | (2 << 0);
reg_52 |= (1 << 8);
}
dib3000mc_write_word(state, 51, reg_51);
dib3000mc_write_word(state, 52, reg_52);
if (state->cfg->use_pwm3)
dib3000mc_write_word(state, 245, (1 << 3) | (1 << 0));
else
dib3000mc_write_word(state, 245, 0);
dib3000mc_write_word(state, 1040, 0x3);
return 0;
}
static int dib3000mc_set_output_mode(struct dib3000mc_state *state, int mode)
{
int ret = 0;
u16 fifo_threshold = 1792;
u16 outreg = 0;
u16 outmode = 0;
u16 elecout = 1;
u16 smo_reg = dib3000mc_read_word(state, 206) & 0x0010; /* keep the pid_parse bit */
dprintk("-I- Setting output mode for demod %p to %d\n",
&state->demod, mode);
switch (mode) {
case OUTMODE_HIGH_Z: // disable
elecout = 0;
break;
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
outmode = 0;
break;
case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
outmode = 1;
break;
case OUTMODE_MPEG2_SERIAL: // STBs with serial input
outmode = 2;
break;
case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
elecout = 3;
/*ADDR @ 206 :
P_smo_error_discard [1;6:6] = 0
P_smo_rs_discard [1;5:5] = 0
P_smo_pid_parse [1;4:4] = 0
P_smo_fifo_flush [1;3:3] = 0
P_smo_mode [2;2:1] = 11
P_smo_ovf_prot [1;0:0] = 0
*/
smo_reg |= 3 << 1;
fifo_threshold = 512;
outmode = 5;
break;
case OUTMODE_DIVERSITY:
outmode = 4;
elecout = 1;
break;
default:
dprintk("Unhandled output_mode passed to be set for demod %p\n",&state->demod);
outmode = 0;
break;
}
if ((state->cfg->output_mpeg2_in_188_bytes))
smo_reg |= (1 << 5); // P_smo_rs_discard [1;5:5] = 1
outreg = dib3000mc_read_word(state, 244) & 0x07FF;
outreg |= (outmode << 11);
ret |= dib3000mc_write_word(state, 244, outreg);
ret |= dib3000mc_write_word(state, 206, smo_reg); /*smo_ mode*/
ret |= dib3000mc_write_word(state, 207, fifo_threshold); /* synchronous fread */
ret |= dib3000mc_write_word(state, 1040, elecout); /* P_out_cfg */
return ret;
}
static int dib3000mc_set_bandwidth(struct dib3000mc_state *state, u32 bw)
{
u16 bw_cfg[6] = { 0 };
u16 imp_bw_cfg[3] = { 0 };
u16 reg;
/* settings here are for 27.7MHz */
switch (bw) {
case 8000:
bw_cfg[0] = 0x0019; bw_cfg[1] = 0x5c30; bw_cfg[2] = 0x0054; bw_cfg[3] = 0x88a0; bw_cfg[4] = 0x01a6; bw_cfg[5] = 0xab20;
imp_bw_cfg[0] = 0x04db; imp_bw_cfg[1] = 0x00db; imp_bw_cfg[2] = 0x00b7;
break;
case 7000:
bw_cfg[0] = 0x001c; bw_cfg[1] = 0xfba5; bw_cfg[2] = 0x0060; bw_cfg[3] = 0x9c25; bw_cfg[4] = 0x01e3; bw_cfg[5] = 0x0cb7;
imp_bw_cfg[0] = 0x04c0; imp_bw_cfg[1] = 0x00c0; imp_bw_cfg[2] = 0x00a0;
break;
case 6000:
bw_cfg[0] = 0x0021; bw_cfg[1] = 0xd040; bw_cfg[2] = 0x0070; bw_cfg[3] = 0xb62b; bw_cfg[4] = 0x0233; bw_cfg[5] = 0x8ed5;
imp_bw_cfg[0] = 0x04a5; imp_bw_cfg[1] = 0x00a5; imp_bw_cfg[2] = 0x0089;
break;
case 5000:
bw_cfg[0] = 0x0028; bw_cfg[1] = 0x9380; bw_cfg[2] = 0x0087; bw_cfg[3] = 0x4100; bw_cfg[4] = 0x02a4; bw_cfg[5] = 0x4500;
imp_bw_cfg[0] = 0x0489; imp_bw_cfg[1] = 0x0089; imp_bw_cfg[2] = 0x0072;
break;
default: return -EINVAL;
}
for (reg = 6; reg < 12; reg++)
dib3000mc_write_word(state, reg, bw_cfg[reg - 6]);
dib3000mc_write_word(state, 12, 0x0000);
dib3000mc_write_word(state, 13, 0x03e8);
dib3000mc_write_word(state, 14, 0x0000);
dib3000mc_write_word(state, 15, 0x03f2);
dib3000mc_write_word(state, 16, 0x0001);
dib3000mc_write_word(state, 17, 0xb0d0);
// P_sec_len
dib3000mc_write_word(state, 18, 0x0393);
dib3000mc_write_word(state, 19, 0x8700);
for (reg = 55; reg < 58; reg++)
dib3000mc_write_word(state, reg, imp_bw_cfg[reg - 55]);
// Timing configuration
dib3000mc_set_timing(state, TRANSMISSION_MODE_2K, bw, 0);
return 0;
}
static u16 impulse_noise_val[29] =
{
0x38, 0x6d9, 0x3f28, 0x7a7, 0x3a74, 0x196, 0x32a, 0x48c, 0x3ffe, 0x7f3,
0x2d94, 0x76, 0x53d, 0x3ff8, 0x7e3, 0x3320, 0x76, 0x5b3, 0x3feb, 0x7d2,
0x365e, 0x76, 0x48c, 0x3ffe, 0x5b3, 0x3feb, 0x76, 0x0000, 0xd
};
static void dib3000mc_set_impulse_noise(struct dib3000mc_state *state, u8 mode, s16 nfft)
{
u16 i;
for (i = 58; i < 87; i++)
dib3000mc_write_word(state, i, impulse_noise_val[i-58]);
if (nfft == TRANSMISSION_MODE_8K) {
dib3000mc_write_word(state, 58, 0x3b);
dib3000mc_write_word(state, 84, 0x00);
dib3000mc_write_word(state, 85, 0x8200);
}
dib3000mc_write_word(state, 34, 0x1294);
dib3000mc_write_word(state, 35, 0x1ff8);
if (mode == 1)
dib3000mc_write_word(state, 55, dib3000mc_read_word(state, 55) | (1 << 10));
}
static int dib3000mc_init(struct dvb_frontend *demod)
{
struct dib3000mc_state *state = demod->demodulator_priv;
struct dibx000_agc_config *agc = state->cfg->agc;
// Restart Configuration
dib3000mc_write_word(state, 1027, 0x8000);
dib3000mc_write_word(state, 1027, 0x0000);
// power up the demod + mobility configuration
dib3000mc_write_word(state, 140, 0x0000);
dib3000mc_write_word(state, 1031, 0);
if (state->cfg->mobile_mode) {
dib3000mc_write_word(state, 139, 0x0000);
dib3000mc_write_word(state, 141, 0x0000);
dib3000mc_write_word(state, 175, 0x0002);
dib3000mc_write_word(state, 1032, 0x0000);
} else {
dib3000mc_write_word(state, 139, 0x0001);
dib3000mc_write_word(state, 141, 0x0000);
dib3000mc_write_word(state, 175, 0x0000);
dib3000mc_write_word(state, 1032, 0x012C);
}
dib3000mc_write_word(state, 1033, 0x0000);
// P_clk_cfg
dib3000mc_write_word(state, 1037, 0x3130);
// other configurations
// P_ctrl_sfreq
dib3000mc_write_word(state, 33, (5 << 0));
dib3000mc_write_word(state, 88, (1 << 10) | (0x10 << 0));
// Phase noise control
// P_fft_phacor_inh, P_fft_phacor_cpe, P_fft_powrange
dib3000mc_write_word(state, 99, (1 << 9) | (0x20 << 0));
if (state->cfg->phase_noise_mode == 0)
dib3000mc_write_word(state, 111, 0x00);
else
dib3000mc_write_word(state, 111, 0x02);
// P_agc_global
dib3000mc_write_word(state, 50, 0x8000);
// agc setup misc
dib3000mc_setup_pwm_state(state);
// P_agc_counter_lock
dib3000mc_write_word(state, 53, 0x87);
// P_agc_counter_unlock
dib3000mc_write_word(state, 54, 0x87);
/* agc */
dib3000mc_write_word(state, 36, state->cfg->max_time);
dib3000mc_write_word(state, 37, (state->cfg->agc_command1 << 13) | (state->cfg->agc_command2 << 12) | (0x1d << 0));
dib3000mc_write_word(state, 38, state->cfg->pwm3_value);
dib3000mc_write_word(state, 39, state->cfg->ln_adc_level);
// set_agc_loop_Bw
dib3000mc_write_word(state, 40, 0x0179);
dib3000mc_write_word(state, 41, 0x03f0);
dib3000mc_write_word(state, 42, agc->agc1_max);
dib3000mc_write_word(state, 43, agc->agc1_min);
dib3000mc_write_word(state, 44, agc->agc2_max);
dib3000mc_write_word(state, 45, agc->agc2_min);
dib3000mc_write_word(state, 46, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
dib3000mc_write_word(state, 47, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
dib3000mc_write_word(state, 48, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
dib3000mc_write_word(state, 49, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
// Begin: TimeOut registers
// P_pha3_thres
dib3000mc_write_word(state, 110, 3277);
// P_timf_alpha = 6, P_corm_alpha = 6, P_corm_thres = 0x80
dib3000mc_write_word(state, 26, 0x6680);
// lock_mask0
dib3000mc_write_word(state, 1, 4);
// lock_mask1
dib3000mc_write_word(state, 2, 4);
// lock_mask2
dib3000mc_write_word(state, 3, 0x1000);
// P_search_maxtrial=1
dib3000mc_write_word(state, 5, 1);
dib3000mc_set_bandwidth(state, 8000);
// div_lock_mask
dib3000mc_write_word(state, 4, 0x814);
dib3000mc_write_word(state, 21, (1 << 9) | 0x164);
dib3000mc_write_word(state, 22, 0x463d);
// Spurious rm cfg
// P_cspu_regul, P_cspu_win_cut
dib3000mc_write_word(state, 120, 0x200f);
// P_adp_selec_monit
dib3000mc_write_word(state, 134, 0);
// Fec cfg
dib3000mc_write_word(state, 195, 0x10);
// diversity register: P_dvsy_sync_wait..
dib3000mc_write_word(state, 180, 0x2FF0);
// Impulse noise configuration
dib3000mc_set_impulse_noise(state, 0, TRANSMISSION_MODE_8K);
// output mode set-up
dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z);
/* close the i2c-gate */
dib3000mc_write_word(state, 769, (1 << 7) );
return 0;
}
static int dib3000mc_sleep(struct dvb_frontend *demod)
{
struct dib3000mc_state *state = demod->demodulator_priv;
dib3000mc_write_word(state, 1031, 0xFFFF);
dib3000mc_write_word(state, 1032, 0xFFFF);
dib3000mc_write_word(state, 1033, 0xFFF0);
return 0;
}
static void dib3000mc_set_adp_cfg(struct dib3000mc_state *state, s16 qam)
{
u16 cfg[4] = { 0 },reg;
switch (qam) {
case QPSK:
cfg[0] = 0x099a; cfg[1] = 0x7fae; cfg[2] = 0x0333; cfg[3] = 0x7ff0;
break;
case QAM_16:
cfg[0] = 0x023d; cfg[1] = 0x7fdf; cfg[2] = 0x00a4; cfg[3] = 0x7ff0;
break;
case QAM_64:
cfg[0] = 0x0148; cfg[1] = 0x7ff0; cfg[2] = 0x00a4; cfg[3] = 0x7ff8;
break;
}
for (reg = 129; reg < 133; reg++)
dib3000mc_write_word(state, reg, cfg[reg - 129]);
}
static void dib3000mc_set_channel_cfg(struct dib3000mc_state *state,
struct dtv_frontend_properties *ch, u16 seq)
{
u16 value;
u32 bw = BANDWIDTH_TO_KHZ(ch->bandwidth_hz);
dib3000mc_set_bandwidth(state, bw);
dib3000mc_set_timing(state, ch->transmission_mode, bw, 0);
// if (boost)
// dib3000mc_write_word(state, 100, (11 << 6) + 6);
// else
dib3000mc_write_word(state, 100, (16 << 6) + 9);
dib3000mc_write_word(state, 1027, 0x0800);
dib3000mc_write_word(state, 1027, 0x0000);
//Default cfg isi offset adp
dib3000mc_write_word(state, 26, 0x6680);
dib3000mc_write_word(state, 29, 0x1273);
dib3000mc_write_word(state, 33, 5);
dib3000mc_set_adp_cfg(state, QAM_16);
dib3000mc_write_word(state, 133, 15564);
dib3000mc_write_word(state, 12 , 0x0);
dib3000mc_write_word(state, 13 , 0x3e8);
dib3000mc_write_word(state, 14 , 0x0);
dib3000mc_write_word(state, 15 , 0x3f2);
dib3000mc_write_word(state, 93,0);
dib3000mc_write_word(state, 94,0);
dib3000mc_write_word(state, 95,0);
dib3000mc_write_word(state, 96,0);
dib3000mc_write_word(state, 97,0);
dib3000mc_write_word(state, 98,0);
dib3000mc_set_impulse_noise(state, 0, ch->transmission_mode);
value = 0;
switch (ch->transmission_mode) {
case TRANSMISSION_MODE_2K: value |= (0 << 7); break;
default:
case TRANSMISSION_MODE_8K: value |= (1 << 7); break;
}
switch (ch->guard_interval) {
case GUARD_INTERVAL_1_32: value |= (0 << 5); break;
case GUARD_INTERVAL_1_16: value |= (1 << 5); break;
case GUARD_INTERVAL_1_4: value |= (3 << 5); break;
default:
case GUARD_INTERVAL_1_8: value |= (2 << 5); break;
}
switch (ch->modulation) {
case QPSK: value |= (0 << 3); break;
case QAM_16: value |= (1 << 3); break;
default:
case QAM_64: value |= (2 << 3); break;
}
switch (HIERARCHY_1) {
case HIERARCHY_2: value |= 2; break;
case HIERARCHY_4: value |= 4; break;
default:
case HIERARCHY_1: value |= 1; break;
}
dib3000mc_write_word(state, 0, value);
dib3000mc_write_word(state, 5, (1 << 8) | ((seq & 0xf) << 4));
value = 0;
if (ch->hierarchy == 1)
value |= (1 << 4);
if (1 == 1)
value |= 1;
switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) {
case FEC_2_3: value |= (2 << 1); break;
case FEC_3_4: value |= (3 << 1); break;
case FEC_5_6: value |= (5 << 1); break;
case FEC_7_8: value |= (7 << 1); break;
default:
case FEC_1_2: value |= (1 << 1); break;
}
dib3000mc_write_word(state, 181, value);
// diversity synchro delay add 50% SFN margin
switch (ch->transmission_mode) {
case TRANSMISSION_MODE_8K: value = 256; break;
case TRANSMISSION_MODE_2K:
default: value = 64; break;
}
switch (ch->guard_interval) {
case GUARD_INTERVAL_1_16: value *= 2; break;
case GUARD_INTERVAL_1_8: value *= 4; break;
case GUARD_INTERVAL_1_4: value *= 8; break;
default:
case GUARD_INTERVAL_1_32: value *= 1; break;
}
value <<= 4;
value |= dib3000mc_read_word(state, 180) & 0x000f;
dib3000mc_write_word(state, 180, value);
// restart demod
value = dib3000mc_read_word(state, 0);
dib3000mc_write_word(state, 0, value | (1 << 9));
dib3000mc_write_word(state, 0, value);
msleep(30);
dib3000mc_set_impulse_noise(state, state->cfg->impulse_noise_mode, ch->transmission_mode);
}
static int dib3000mc_autosearch_start(struct dvb_frontend *demod)
{
struct dtv_frontend_properties *chan = &demod->dtv_property_cache;
struct dib3000mc_state *state = demod->demodulator_priv;
u16 reg;
// u32 val;
struct dtv_frontend_properties schan;
schan = *chan;
/* TODO what is that ? */
/* a channel for autosearch */
schan.transmission_mode = TRANSMISSION_MODE_8K;
schan.guard_interval = GUARD_INTERVAL_1_32;
schan.modulation = QAM_64;
schan.code_rate_HP = FEC_2_3;
schan.code_rate_LP = FEC_2_3;
schan.hierarchy = 0;
dib3000mc_set_channel_cfg(state, &schan, 11);
reg = dib3000mc_read_word(state, 0);
dib3000mc_write_word(state, 0, reg | (1 << 8));
dib3000mc_read_word(state, 511);
dib3000mc_write_word(state, 0, reg);
return 0;
}
static int dib3000mc_autosearch_is_irq(struct dvb_frontend *demod)
{
struct dib3000mc_state *state = demod->demodulator_priv;
u16 irq_pending = dib3000mc_read_word(state, 511);
if (irq_pending & 0x1) // failed
return 1;
if (irq_pending & 0x2) // succeeded
return 2;
return 0; // still pending
}
static int dib3000mc_tune(struct dvb_frontend *demod)
{
struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
struct dib3000mc_state *state = demod->demodulator_priv;
// ** configure demod **
dib3000mc_set_channel_cfg(state, ch, 0);
// activates isi
if (state->sfn_workaround_active) {
dprintk("SFN workaround is active\n");
dib3000mc_write_word(state, 29, 0x1273);
dib3000mc_write_word(state, 108, 0x4000); // P_pha3_force_pha_shift
} else {
dib3000mc_write_word(state, 29, 0x1073);
dib3000mc_write_word(state, 108, 0x0000); // P_pha3_force_pha_shift
}
dib3000mc_set_adp_cfg(state, (u8)ch->modulation);
if (ch->transmission_mode == TRANSMISSION_MODE_8K) {
dib3000mc_write_word(state, 26, 38528);
dib3000mc_write_word(state, 33, 8);
} else {
dib3000mc_write_word(state, 26, 30336);
dib3000mc_write_word(state, 33, 6);
}
if (dib3000mc_read_word(state, 509) & 0x80)
dib3000mc_set_timing(state, ch->transmission_mode,
BANDWIDTH_TO_KHZ(ch->bandwidth_hz), 1);
return 0;
}
struct i2c_adapter * dib3000mc_get_tuner_i2c_master(struct dvb_frontend *demod, int gating)
{
struct dib3000mc_state *st = demod->demodulator_priv;
return dibx000_get_i2c_adapter(&st->i2c_master, DIBX000_I2C_INTERFACE_TUNER, gating);
}
EXPORT_SYMBOL(dib3000mc_get_tuner_i2c_master);
static int dib3000mc_get_frontend(struct dvb_frontend* fe)
{
struct dtv_frontend_properties *fep = &fe->dtv_property_cache;
struct dib3000mc_state *state = fe->demodulator_priv;
u16 tps = dib3000mc_read_word(state,458);
fep->inversion = INVERSION_AUTO;
fep->bandwidth_hz = state->current_bandwidth;
switch ((tps >> 8) & 0x1) {
case 0: fep->transmission_mode = TRANSMISSION_MODE_2K; break;
case 1: fep->transmission_mode = TRANSMISSION_MODE_8K; break;
}
switch (tps & 0x3) {
case 0: fep->guard_interval = GUARD_INTERVAL_1_32; break;
case 1: fep->guard_interval = GUARD_INTERVAL_1_16; break;
case 2: fep->guard_interval = GUARD_INTERVAL_1_8; break;
case 3: fep->guard_interval = GUARD_INTERVAL_1_4; break;
}
switch ((tps >> 13) & 0x3) {
case 0: fep->modulation = QPSK; break;
case 1: fep->modulation = QAM_16; break;
case 2:
default: fep->modulation = QAM_64; break;
}
/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
/* (tps >> 12) & 0x1 == hrch is used, (tps >> 9) & 0x7 == alpha */
fep->hierarchy = HIERARCHY_NONE;
switch ((tps >> 5) & 0x7) {
case 1: fep->code_rate_HP = FEC_1_2; break;
case 2: fep->code_rate_HP = FEC_2_3; break;
case 3: fep->code_rate_HP = FEC_3_4; break;
case 5: fep->code_rate_HP = FEC_5_6; break;
case 7:
default: fep->code_rate_HP = FEC_7_8; break;
}
switch ((tps >> 2) & 0x7) {
case 1: fep->code_rate_LP = FEC_1_2; break;
case 2: fep->code_rate_LP = FEC_2_3; break;
case 3: fep->code_rate_LP = FEC_3_4; break;
case 5: fep->code_rate_LP = FEC_5_6; break;
case 7:
default: fep->code_rate_LP = FEC_7_8; break;
}
return 0;
}
static int dib3000mc_set_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *fep = &fe->dtv_property_cache;
struct dib3000mc_state *state = fe->demodulator_priv;
int ret;
dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z);
state->current_bandwidth = fep->bandwidth_hz;
dib3000mc_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->bandwidth_hz));
/* maybe the parameter has been changed */
state->sfn_workaround_active = buggy_sfn_workaround;
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe);
msleep(100);
}
if (fep->transmission_mode == TRANSMISSION_MODE_AUTO ||
fep->guard_interval == GUARD_INTERVAL_AUTO ||
fep->modulation == QAM_AUTO ||
fep->code_rate_HP == FEC_AUTO) {
int i = 1000, found;
dib3000mc_autosearch_start(fe);
do {
msleep(1);
found = dib3000mc_autosearch_is_irq(fe);
} while (found == 0 && i--);
dprintk("autosearch returns: %d\n",found);
if (found == 0 || found == 1)
return 0; // no channel found
dib3000mc_get_frontend(fe);
}
ret = dib3000mc_tune(fe);
/* make this a config parameter */
dib3000mc_set_output_mode(state, OUTMODE_MPEG2_FIFO);
return ret;
}
static int dib3000mc_read_status(struct dvb_frontend *fe, fe_status_t *stat)
{
struct dib3000mc_state *state = fe->demodulator_priv;
u16 lock = dib3000mc_read_word(state, 509);
*stat = 0;
if (lock & 0x8000)
*stat |= FE_HAS_SIGNAL;
if (lock & 0x3000)
*stat |= FE_HAS_CARRIER;
if (lock & 0x0100)
*stat |= FE_HAS_VITERBI;
if (lock & 0x0010)
*stat |= FE_HAS_SYNC;
if (lock & 0x0008)
*stat |= FE_HAS_LOCK;
return 0;
}
static int dib3000mc_read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct dib3000mc_state *state = fe->demodulator_priv;
*ber = (dib3000mc_read_word(state, 500) << 16) | dib3000mc_read_word(state, 501);
return 0;
}
static int dib3000mc_read_unc_blocks(struct dvb_frontend *fe, u32 *unc)
{
struct dib3000mc_state *state = fe->demodulator_priv;
*unc = dib3000mc_read_word(state, 508);
return 0;
}
static int dib3000mc_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
struct dib3000mc_state *state = fe->demodulator_priv;
u16 val = dib3000mc_read_word(state, 392);
*strength = 65535 - val;
return 0;
}
static int dib3000mc_read_snr(struct dvb_frontend* fe, u16 *snr)
{
*snr = 0x0000;
return 0;
}
static int dib3000mc_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1000;
return 0;
}
static void dib3000mc_release(struct dvb_frontend *fe)
{
struct dib3000mc_state *state = fe->demodulator_priv;
dibx000_exit_i2c_master(&state->i2c_master);
kfree(state);
}
int dib3000mc_pid_control(struct dvb_frontend *fe, int index, int pid,int onoff)
{
struct dib3000mc_state *state = fe->demodulator_priv;
dib3000mc_write_word(state, 212 + index, onoff ? (1 << 13) | pid : 0);
return 0;
}
EXPORT_SYMBOL(dib3000mc_pid_control);
int dib3000mc_pid_parse(struct dvb_frontend *fe, int onoff)
{
struct dib3000mc_state *state = fe->demodulator_priv;
u16 tmp = dib3000mc_read_word(state, 206) & ~(1 << 4);
tmp |= (onoff << 4);
return dib3000mc_write_word(state, 206, tmp);
}
EXPORT_SYMBOL(dib3000mc_pid_parse);
void dib3000mc_set_config(struct dvb_frontend *fe, struct dib3000mc_config *cfg)
{
struct dib3000mc_state *state = fe->demodulator_priv;
state->cfg = cfg;
}
EXPORT_SYMBOL(dib3000mc_set_config);
int dib3000mc_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib3000mc_config cfg[])
{
struct dib3000mc_state *dmcst;
int k;
u8 new_addr;
static u8 DIB3000MC_I2C_ADDRESS[] = {20,22,24,26};
dmcst = kzalloc(sizeof(struct dib3000mc_state), GFP_KERNEL);
if (dmcst == NULL)
return -ENOMEM;
dmcst->i2c_adap = i2c;
for (k = no_of_demods-1; k >= 0; k--) {
dmcst->cfg = &cfg[k];
/* designated i2c address */
new_addr = DIB3000MC_I2C_ADDRESS[k];
dmcst->i2c_addr = new_addr;
if (dib3000mc_identify(dmcst) != 0) {
dmcst->i2c_addr = default_addr;
if (dib3000mc_identify(dmcst) != 0) {
dprintk("-E- DiB3000P/MC #%d: not identified\n", k);
kfree(dmcst);
return -ENODEV;
}
}
dib3000mc_set_output_mode(dmcst, OUTMODE_MPEG2_PAR_CONT_CLK);
// set new i2c address and force divstr (Bit 1) to value 0 (Bit 0)
dib3000mc_write_word(dmcst, 1024, (new_addr << 3) | 0x1);
dmcst->i2c_addr = new_addr;
}
for (k = 0; k < no_of_demods; k++) {
dmcst->cfg = &cfg[k];
dmcst->i2c_addr = DIB3000MC_I2C_ADDRESS[k];
dib3000mc_write_word(dmcst, 1024, dmcst->i2c_addr << 3);
/* turn off data output */
dib3000mc_set_output_mode(dmcst, OUTMODE_HIGH_Z);
}
kfree(dmcst);
return 0;
}
EXPORT_SYMBOL(dib3000mc_i2c_enumeration);
static struct dvb_frontend_ops dib3000mc_ops;
struct dvb_frontend * dib3000mc_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib3000mc_config *cfg)
{
struct dvb_frontend *demod;
struct dib3000mc_state *st;
st = kzalloc(sizeof(struct dib3000mc_state), GFP_KERNEL);
if (st == NULL)
return NULL;
st->cfg = cfg;
st->i2c_adap = i2c_adap;
st->i2c_addr = i2c_addr;
demod = &st->demod;
demod->demodulator_priv = st;
memcpy(&st->demod.ops, &dib3000mc_ops, sizeof(struct dvb_frontend_ops));
if (dib3000mc_identify(st) != 0)
goto error;
dibx000_init_i2c_master(&st->i2c_master, DIB3000MC, st->i2c_adap, st->i2c_addr);
dib3000mc_write_word(st, 1037, 0x3130);
return demod;
error:
kfree(st);
return NULL;
}
EXPORT_SYMBOL(dib3000mc_attach);
static struct dvb_frontend_ops dib3000mc_ops = {
.delsys = { SYS_DVBT },
.info = {
.name = "DiBcom 3000MC/P",
.frequency_min = 44250000,
.frequency_max = 867250000,
.frequency_stepsize = 62500,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_RECOVER |
FE_CAN_HIERARCHY_AUTO,
},
.release = dib3000mc_release,
.init = dib3000mc_init,
.sleep = dib3000mc_sleep,
.set_frontend = dib3000mc_set_frontend,
.get_tune_settings = dib3000mc_fe_get_tune_settings,
.get_frontend = dib3000mc_get_frontend,
.read_status = dib3000mc_read_status,
.read_ber = dib3000mc_read_ber,
.read_signal_strength = dib3000mc_read_signal_strength,
.read_snr = dib3000mc_read_snr,
.read_ucblocks = dib3000mc_read_unc_blocks,
};
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 3000MC/P COFDM demodulator");
MODULE_LICENSE("GPL");