linux-sg2042/Documentation/kdump/gdbmacros.txt

202 lines
5.9 KiB
Plaintext
Raw Normal View History

[PATCH] kdump: Documentation for Kdump This patch contains the documentation for the kexec based crash dump tool. Quick kdump-howto ================================================================ 1) Download and build kexec-tools. 2) Download and build the latest kexec/kdump (-mm) kernel patchset. Two kernels need to be built in order to get this feature working. A) First kernel: a) Enable "kexec system call" feature: CONFIG_KEXEC=y b) Physical load address (use default): CONFIG_PHYSICAL_START=0x100000 c) Enable "sysfs file system support": CONFIG_SYSFS=y d) Boot into first kernel with the command line parameter "crashkernel=Y@X": For example: "crashkernel=64M@16M". B) Second kernel: a) Enable "kernel crash dumps" feature: CONFIG_CRASH_DUMP=y b) Physical load addreess, use same load address as X in "crashkernel" kernel parameter in d) above, e.g., 16 MB or 0x1000000. CONFIG_PHYSICAL_START=0x1000000 c) Enable "/proc/vmcore support" (Optional, in Pseudo filesystems). CONFIG_PROC_VMCORE=y 3) Boot into the first kernel. 4) Load the second kernel to be booted using: kexec -p <second-kernel> --crash-dump --args-linux --append="root=<root-dev> maxcpus=1 init 1" 5) System reboots into the second kernel when a panic occurs. A module can be written to force the panic, for testing purposes. 6) See Documentation/kdump.txt for how to read the first kernel's memory image and how to analyze it. Signed-off-by: Hariprasad Nellitheertha <hari@in.ibm.com> Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: randy_dunlap <rdunlap@xenotime.net> Signed-off-by: Maneesh Soni <maneesh@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-26 05:58:15 +08:00
#
# This file contains a few gdb macros (user defined commands) to extract
# useful information from kernel crashdump (kdump) like stack traces of
# all the processes or a particular process and trapinfo.
#
# These macros can be used by copying this file in .gdbinit (put in home
# directory or current directory) or by invoking gdb command with
# --command=<command-file-name> option
#
# Credits:
# Alexander Nyberg <alexn@telia.com>
# V Srivatsa <vatsa@in.ibm.com>
# Maneesh Soni <maneesh@in.ibm.com>
#
define bttnobp
set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
set $init_t=&init_task
set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
while ($next_t != $init_t)
set $next_t=(struct task_struct *)$next_t
printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
printf "===================\n"
set var $stackp = $next_t.thread.esp
set var $stack_top = ($stackp & ~4095) + 4096
while ($stackp < $stack_top)
if (*($stackp) > _stext && *($stackp) < _sinittext)
info symbol *($stackp)
end
set $stackp += 4
end
set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
while ($next_th != $next_t)
set $next_th=(struct task_struct *)$next_th
printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
printf "===================\n"
set var $stackp = $next_t.thread.esp
set var $stack_top = ($stackp & ~4095) + 4096
while ($stackp < $stack_top)
if (*($stackp) > _stext && *($stackp) < _sinittext)
info symbol *($stackp)
end
set $stackp += 4
end
set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
end
set $next_t=(char *)($next_t->tasks.next) - $tasks_off
end
end
document bttnobp
dump all thread stack traces on a kernel compiled with !CONFIG_FRAME_POINTER
end
define btt
set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
set $init_t=&init_task
set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
while ($next_t != $init_t)
set $next_t=(struct task_struct *)$next_t
printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
printf "===================\n"
set var $stackp = $next_t.thread.esp
set var $stack_top = ($stackp & ~4095) + 4096
set var $stack_bot = ($stackp & ~4095)
set $stackp = *($stackp)
while (($stackp < $stack_top) && ($stackp > $stack_bot))
set var $addr = *($stackp + 4)
info symbol $addr
set $stackp = *($stackp)
end
set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
while ($next_th != $next_t)
set $next_th=(struct task_struct *)$next_th
printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
printf "===================\n"
set var $stackp = $next_t.thread.esp
set var $stack_top = ($stackp & ~4095) + 4096
set var $stack_bot = ($stackp & ~4095)
set $stackp = *($stackp)
while (($stackp < $stack_top) && ($stackp > $stack_bot))
set var $addr = *($stackp + 4)
info symbol $addr
set $stackp = *($stackp)
end
set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
end
set $next_t=(char *)($next_t->tasks.next) - $tasks_off
end
end
document btt
dump all thread stack traces on a kernel compiled with CONFIG_FRAME_POINTER
end
define btpid
set var $pid = $arg0
set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
set $init_t=&init_task
set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
set var $pid_task = 0
while ($next_t != $init_t)
set $next_t=(struct task_struct *)$next_t
if ($next_t.pid == $pid)
set $pid_task = $next_t
end
set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
while ($next_th != $next_t)
set $next_th=(struct task_struct *)$next_th
if ($next_th.pid == $pid)
set $pid_task = $next_th
end
set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
end
set $next_t=(char *)($next_t->tasks.next) - $tasks_off
end
printf "\npid %d; comm %s:\n", $pid_task.pid, $pid_task.comm
printf "===================\n"
set var $stackp = $pid_task.thread.esp
set var $stack_top = ($stackp & ~4095) + 4096
set var $stack_bot = ($stackp & ~4095)
set $stackp = *($stackp)
while (($stackp < $stack_top) && ($stackp > $stack_bot))
set var $addr = *($stackp + 4)
info symbol $addr
set $stackp = *($stackp)
end
end
document btpid
backtrace of pid
end
define trapinfo
set var $pid = $arg0
set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
set $init_t=&init_task
set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
set var $pid_task = 0
while ($next_t != $init_t)
set $next_t=(struct task_struct *)$next_t
if ($next_t.pid == $pid)
set $pid_task = $next_t
end
set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
while ($next_th != $next_t)
set $next_th=(struct task_struct *)$next_th
if ($next_th.pid == $pid)
set $pid_task = $next_th
end
set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
end
set $next_t=(char *)($next_t->tasks.next) - $tasks_off
end
printf "Trapno %ld, cr2 0x%lx, error_code %ld\n", $pid_task.thread.trap_no, \
$pid_task.thread.cr2, $pid_task.thread.error_code
end
document trapinfo
Run info threads and lookup pid of thread #1
'trapinfo <pid>' will tell you by which trap & possibly
address the kernel panicked.
[PATCH] kdump: Documentation for Kdump This patch contains the documentation for the kexec based crash dump tool. Quick kdump-howto ================================================================ 1) Download and build kexec-tools. 2) Download and build the latest kexec/kdump (-mm) kernel patchset. Two kernels need to be built in order to get this feature working. A) First kernel: a) Enable "kexec system call" feature: CONFIG_KEXEC=y b) Physical load address (use default): CONFIG_PHYSICAL_START=0x100000 c) Enable "sysfs file system support": CONFIG_SYSFS=y d) Boot into first kernel with the command line parameter "crashkernel=Y@X": For example: "crashkernel=64M@16M". B) Second kernel: a) Enable "kernel crash dumps" feature: CONFIG_CRASH_DUMP=y b) Physical load addreess, use same load address as X in "crashkernel" kernel parameter in d) above, e.g., 16 MB or 0x1000000. CONFIG_PHYSICAL_START=0x1000000 c) Enable "/proc/vmcore support" (Optional, in Pseudo filesystems). CONFIG_PROC_VMCORE=y 3) Boot into the first kernel. 4) Load the second kernel to be booted using: kexec -p <second-kernel> --crash-dump --args-linux --append="root=<root-dev> maxcpus=1 init 1" 5) System reboots into the second kernel when a panic occurs. A module can be written to force the panic, for testing purposes. 6) See Documentation/kdump.txt for how to read the first kernel's memory image and how to analyze it. Signed-off-by: Hariprasad Nellitheertha <hari@in.ibm.com> Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: randy_dunlap <rdunlap@xenotime.net> Signed-off-by: Maneesh Soni <maneesh@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-26 05:58:15 +08:00
end
define dmesg
set $i = 0
set $end_idx = (log_end - 1) & (log_buf_len - 1)
while ($i < logged_chars)
set $idx = (log_end - 1 - logged_chars + $i) & (log_buf_len - 1)
if ($idx + 100 <= $end_idx) || \
($end_idx <= $idx && $idx + 100 < log_buf_len)
printf "%.100s", &log_buf[$idx]
set $i = $i + 100
else
printf "%c", log_buf[$idx]
set $i = $i + 1
end
end
end
document dmesg
print the kernel ring buffer
end