linux-sg2042/security/selinux/ss/sidtab.c

367 lines
7.0 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* Implementation of the SID table type.
*
* Author : Stephen Smalley, <sds@tycho.nsa.gov>
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include "flask.h"
#include "security.h"
#include "sidtab.h"
#define SIDTAB_HASH(sid) \
(sid & SIDTAB_HASH_MASK)
int sidtab_init(struct sidtab *s)
{
int i;
s->htable = kmalloc_array(SIDTAB_SIZE, sizeof(*s->htable), GFP_ATOMIC);
if (!s->htable)
return -ENOMEM;
for (i = 0; i < SECINITSID_NUM; i++)
s->isids[i].set = 0;
for (i = 0; i < SIDTAB_SIZE; i++)
s->htable[i] = NULL;
for (i = 0; i < SIDTAB_CACHE_LEN; i++)
s->cache[i] = NULL;
s->nel = 0;
s->next_sid = 0;
s->shutdown = 0;
spin_lock_init(&s->lock);
return 0;
}
static int sidtab_insert(struct sidtab *s, u32 sid, struct context *context)
{
int hvalue;
struct sidtab_node *prev, *cur, *newnode;
if (!s)
return -ENOMEM;
hvalue = SIDTAB_HASH(sid);
prev = NULL;
cur = s->htable[hvalue];
while (cur && sid > cur->sid) {
prev = cur;
cur = cur->next;
}
if (cur && sid == cur->sid)
return -EEXIST;
newnode = kmalloc(sizeof(*newnode), GFP_ATOMIC);
if (!newnode)
return -ENOMEM;
newnode->sid = sid;
if (context_cpy(&newnode->context, context)) {
kfree(newnode);
return -ENOMEM;
}
if (prev) {
newnode->next = prev->next;
wmb();
prev->next = newnode;
} else {
newnode->next = s->htable[hvalue];
wmb();
s->htable[hvalue] = newnode;
}
s->nel++;
if (sid >= s->next_sid)
s->next_sid = sid + 1;
return 0;
}
int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
{
struct sidtab_isid_entry *entry;
int rc;
if (sid == 0 || sid > SECINITSID_NUM)
return -EINVAL;
entry = &s->isids[sid - 1];
rc = context_cpy(&entry->context, context);
if (rc)
return rc;
entry->set = 1;
return 0;
}
static struct context *sidtab_lookup(struct sidtab *s, u32 sid)
{
int hvalue;
struct sidtab_node *cur;
hvalue = SIDTAB_HASH(sid);
cur = s->htable[hvalue];
while (cur && sid > cur->sid)
cur = cur->next;
if (!cur || sid != cur->sid)
return NULL;
selinux: support deferred mapping of contexts Introduce SELinux support for deferred mapping of security contexts in the SID table upon policy reload, and use this support for inode security contexts when the context is not yet valid under the current policy. Only processes with CAP_MAC_ADMIN + mac_admin permission in policy can set undefined security contexts on inodes. Inodes with such undefined contexts are treated as having the unlabeled context until the context becomes valid upon a policy reload that defines the context. Context invalidation upon policy reload also uses this support to save the context information in the SID table and later recover it upon a subsequent policy reload that defines the context again. This support is to enable package managers and similar programs to set down file contexts unknown to the system policy at the time the file is created in order to better support placing loadable policy modules in packages and to support build systems that need to create images of different distro releases with different policies w/o requiring all of the contexts to be defined or legal in the build host policy. With this patch applied, the following sequence is possible, although in practice it is recommended that this permission only be allowed to specific program domains such as the package manager. # rmdir baz # rm bar # touch bar # chcon -t foo_exec_t bar # foo_exec_t is not yet defined chcon: failed to change context of `bar' to `system_u:object_r:foo_exec_t': Invalid argument # mkdir -Z system_u:object_r:foo_exec_t baz mkdir: failed to set default file creation context to `system_u:object_r:foo_exec_t': Invalid argument # cat setundefined.te policy_module(setundefined, 1.0) require { type unconfined_t; type unlabeled_t; } files_type(unlabeled_t) allow unconfined_t self:capability2 mac_admin; # make -f /usr/share/selinux/devel/Makefile setundefined.pp # semodule -i setundefined.pp # chcon -t foo_exec_t bar # foo_exec_t is not yet defined # mkdir -Z system_u:object_r:foo_exec_t baz # ls -Zd bar baz -rw-r--r-- root root system_u:object_r:unlabeled_t bar drwxr-xr-x root root system_u:object_r:unlabeled_t baz # cat foo.te policy_module(foo, 1.0) type foo_exec_t; files_type(foo_exec_t) # make -f /usr/share/selinux/devel/Makefile foo.pp # semodule -i foo.pp # defines foo_exec_t # ls -Zd bar baz -rw-r--r-- root root user_u:object_r:foo_exec_t bar drwxr-xr-x root root system_u:object_r:foo_exec_t baz # semodule -r foo # ls -Zd bar baz -rw-r--r-- root root system_u:object_r:unlabeled_t bar drwxr-xr-x root root system_u:object_r:unlabeled_t baz # semodule -i foo.pp # ls -Zd bar baz -rw-r--r-- root root user_u:object_r:foo_exec_t bar drwxr-xr-x root root system_u:object_r:foo_exec_t baz # semodule -r setundefined foo # chcon -t foo_exec_t bar # no longer defined and not allowed chcon: failed to change context of `bar' to `system_u:object_r:foo_exec_t': Invalid argument # rmdir baz # mkdir -Z system_u:object_r:foo_exec_t baz mkdir: failed to set default file creation context to `system_u:object_r:foo_exec_t': Invalid argument Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-05-08 01:03:20 +08:00
return &cur->context;
}
static struct context *sidtab_lookup_initial(struct sidtab *s, u32 sid)
{
return s->isids[sid - 1].set ? &s->isids[sid - 1].context : NULL;
}
static struct context *sidtab_search_core(struct sidtab *s, u32 sid, int force)
{
struct context *context;
if (!s)
return NULL;
if (sid != 0) {
if (sid > SECINITSID_NUM)
context = sidtab_lookup(s, sid - (SECINITSID_NUM + 1));
else
context = sidtab_lookup_initial(s, sid);
if (context && (!context->len || force))
return context;
}
return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
}
selinux: support deferred mapping of contexts Introduce SELinux support for deferred mapping of security contexts in the SID table upon policy reload, and use this support for inode security contexts when the context is not yet valid under the current policy. Only processes with CAP_MAC_ADMIN + mac_admin permission in policy can set undefined security contexts on inodes. Inodes with such undefined contexts are treated as having the unlabeled context until the context becomes valid upon a policy reload that defines the context. Context invalidation upon policy reload also uses this support to save the context information in the SID table and later recover it upon a subsequent policy reload that defines the context again. This support is to enable package managers and similar programs to set down file contexts unknown to the system policy at the time the file is created in order to better support placing loadable policy modules in packages and to support build systems that need to create images of different distro releases with different policies w/o requiring all of the contexts to be defined or legal in the build host policy. With this patch applied, the following sequence is possible, although in practice it is recommended that this permission only be allowed to specific program domains such as the package manager. # rmdir baz # rm bar # touch bar # chcon -t foo_exec_t bar # foo_exec_t is not yet defined chcon: failed to change context of `bar' to `system_u:object_r:foo_exec_t': Invalid argument # mkdir -Z system_u:object_r:foo_exec_t baz mkdir: failed to set default file creation context to `system_u:object_r:foo_exec_t': Invalid argument # cat setundefined.te policy_module(setundefined, 1.0) require { type unconfined_t; type unlabeled_t; } files_type(unlabeled_t) allow unconfined_t self:capability2 mac_admin; # make -f /usr/share/selinux/devel/Makefile setundefined.pp # semodule -i setundefined.pp # chcon -t foo_exec_t bar # foo_exec_t is not yet defined # mkdir -Z system_u:object_r:foo_exec_t baz # ls -Zd bar baz -rw-r--r-- root root system_u:object_r:unlabeled_t bar drwxr-xr-x root root system_u:object_r:unlabeled_t baz # cat foo.te policy_module(foo, 1.0) type foo_exec_t; files_type(foo_exec_t) # make -f /usr/share/selinux/devel/Makefile foo.pp # semodule -i foo.pp # defines foo_exec_t # ls -Zd bar baz -rw-r--r-- root root user_u:object_r:foo_exec_t bar drwxr-xr-x root root system_u:object_r:foo_exec_t baz # semodule -r foo # ls -Zd bar baz -rw-r--r-- root root system_u:object_r:unlabeled_t bar drwxr-xr-x root root system_u:object_r:unlabeled_t baz # semodule -i foo.pp # ls -Zd bar baz -rw-r--r-- root root user_u:object_r:foo_exec_t bar drwxr-xr-x root root system_u:object_r:foo_exec_t baz # semodule -r setundefined foo # chcon -t foo_exec_t bar # no longer defined and not allowed chcon: failed to change context of `bar' to `system_u:object_r:foo_exec_t': Invalid argument # rmdir baz # mkdir -Z system_u:object_r:foo_exec_t baz mkdir: failed to set default file creation context to `system_u:object_r:foo_exec_t': Invalid argument Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-05-08 01:03:20 +08:00
struct context *sidtab_search(struct sidtab *s, u32 sid)
{
return sidtab_search_core(s, sid, 0);
}
struct context *sidtab_search_force(struct sidtab *s, u32 sid)
{
return sidtab_search_core(s, sid, 1);
}
static int sidtab_map(struct sidtab *s,
int (*apply)(u32 sid,
struct context *context,
void *args),
void *args)
{
int i, rc = 0;
struct sidtab_node *cur;
if (!s)
goto out;
for (i = 0; i < SIDTAB_SIZE; i++) {
cur = s->htable[i];
while (cur) {
rc = apply(cur->sid, &cur->context, args);
if (rc)
goto out;
cur = cur->next;
}
}
out:
return rc;
}
/* Clone the SID into the new SID table. */
static int clone_sid(u32 sid, struct context *context, void *arg)
{
struct sidtab *s = arg;
return sidtab_insert(s, sid, context);
}
int sidtab_convert(struct sidtab *s, struct sidtab *news,
int (*convert)(u32 sid,
struct context *context,
void *args),
void *args)
{
unsigned long flags;
int rc;
spin_lock_irqsave(&s->lock, flags);
s->shutdown = 1;
spin_unlock_irqrestore(&s->lock, flags);
rc = sidtab_map(s, clone_sid, news);
if (rc)
return rc;
return sidtab_map(news, convert, args);
}
selinux: cache sidtab_context_to_sid results sidtab_context_to_sid takes up a large share of time when creating large numbers of new inodes (~30-40% in oprofile runs). This patch implements a cache of 3 entries which is checked before we do a full context_to_sid lookup. On one system this showed over a x3 improvement in the number of inodes that could be created per second and around a 20% improvement on another system. Any time we look up the same context string sucessivly (imagine ls -lZ) we should hit this cache hot. A cache miss should have a relatively minor affect on performance next to doing the full table search. All operations on the cache are done COMPLETELY lockless. We know that all struct sidtab_node objects created will never be deleted until a new policy is loaded thus we never have to worry about a pointer being dereferenced. Since we also know that pointer assignment is atomic we know that the cache will always have valid pointers. Given this information we implement a FIFO cache in an array of 3 pointers. Every result (whether a cache hit or table lookup) will be places in the 0 spot of the cache and the rest of the entries moved down one spot. The 3rd entry will be lost. Races are possible and are even likely to happen. Lets assume that 4 tasks are hitting sidtab_context_to_sid. The first task checks against the first entry in the cache and it is a miss. Now lets assume a second task updates the cache with a new entry. This will push the first entry back to the second spot. Now the first task might check against the second entry (which it already checked) and will miss again. Now say some third task updates the cache and push the second entry to the third spot. The first task my check the third entry (for the third time!) and again have a miss. At which point it will just do a full table lookup. No big deal! Signed-off-by: Eric Paris <eparis@redhat.com>
2010-12-08 05:17:28 +08:00
static void sidtab_update_cache(struct sidtab *s, struct sidtab_node *n, int loc)
{
BUG_ON(loc >= SIDTAB_CACHE_LEN);
while (loc > 0) {
s->cache[loc] = s->cache[loc - 1];
loc--;
}
s->cache[0] = n;
}
static inline int sidtab_search_context(struct sidtab *s,
struct context *context, u32 *sid)
{
int i;
struct sidtab_node *cur;
for (i = 0; i < SIDTAB_SIZE; i++) {
cur = s->htable[i];
while (cur) {
selinux: cache sidtab_context_to_sid results sidtab_context_to_sid takes up a large share of time when creating large numbers of new inodes (~30-40% in oprofile runs). This patch implements a cache of 3 entries which is checked before we do a full context_to_sid lookup. On one system this showed over a x3 improvement in the number of inodes that could be created per second and around a 20% improvement on another system. Any time we look up the same context string sucessivly (imagine ls -lZ) we should hit this cache hot. A cache miss should have a relatively minor affect on performance next to doing the full table search. All operations on the cache are done COMPLETELY lockless. We know that all struct sidtab_node objects created will never be deleted until a new policy is loaded thus we never have to worry about a pointer being dereferenced. Since we also know that pointer assignment is atomic we know that the cache will always have valid pointers. Given this information we implement a FIFO cache in an array of 3 pointers. Every result (whether a cache hit or table lookup) will be places in the 0 spot of the cache and the rest of the entries moved down one spot. The 3rd entry will be lost. Races are possible and are even likely to happen. Lets assume that 4 tasks are hitting sidtab_context_to_sid. The first task checks against the first entry in the cache and it is a miss. Now lets assume a second task updates the cache with a new entry. This will push the first entry back to the second spot. Now the first task might check against the second entry (which it already checked) and will miss again. Now say some third task updates the cache and push the second entry to the third spot. The first task my check the third entry (for the third time!) and again have a miss. At which point it will just do a full table lookup. No big deal! Signed-off-by: Eric Paris <eparis@redhat.com>
2010-12-08 05:17:28 +08:00
if (context_cmp(&cur->context, context)) {
sidtab_update_cache(s, cur, SIDTAB_CACHE_LEN - 1);
*sid = cur->sid;
return 0;
selinux: cache sidtab_context_to_sid results sidtab_context_to_sid takes up a large share of time when creating large numbers of new inodes (~30-40% in oprofile runs). This patch implements a cache of 3 entries which is checked before we do a full context_to_sid lookup. On one system this showed over a x3 improvement in the number of inodes that could be created per second and around a 20% improvement on another system. Any time we look up the same context string sucessivly (imagine ls -lZ) we should hit this cache hot. A cache miss should have a relatively minor affect on performance next to doing the full table search. All operations on the cache are done COMPLETELY lockless. We know that all struct sidtab_node objects created will never be deleted until a new policy is loaded thus we never have to worry about a pointer being dereferenced. Since we also know that pointer assignment is atomic we know that the cache will always have valid pointers. Given this information we implement a FIFO cache in an array of 3 pointers. Every result (whether a cache hit or table lookup) will be places in the 0 spot of the cache and the rest of the entries moved down one spot. The 3rd entry will be lost. Races are possible and are even likely to happen. Lets assume that 4 tasks are hitting sidtab_context_to_sid. The first task checks against the first entry in the cache and it is a miss. Now lets assume a second task updates the cache with a new entry. This will push the first entry back to the second spot. Now the first task might check against the second entry (which it already checked) and will miss again. Now say some third task updates the cache and push the second entry to the third spot. The first task my check the third entry (for the third time!) and again have a miss. At which point it will just do a full table lookup. No big deal! Signed-off-by: Eric Paris <eparis@redhat.com>
2010-12-08 05:17:28 +08:00
}
cur = cur->next;
}
}
return -ENOENT;
}
static inline int sidtab_search_cache(struct sidtab *s, struct context *context,
u32 *sid)
selinux: cache sidtab_context_to_sid results sidtab_context_to_sid takes up a large share of time when creating large numbers of new inodes (~30-40% in oprofile runs). This patch implements a cache of 3 entries which is checked before we do a full context_to_sid lookup. On one system this showed over a x3 improvement in the number of inodes that could be created per second and around a 20% improvement on another system. Any time we look up the same context string sucessivly (imagine ls -lZ) we should hit this cache hot. A cache miss should have a relatively minor affect on performance next to doing the full table search. All operations on the cache are done COMPLETELY lockless. We know that all struct sidtab_node objects created will never be deleted until a new policy is loaded thus we never have to worry about a pointer being dereferenced. Since we also know that pointer assignment is atomic we know that the cache will always have valid pointers. Given this information we implement a FIFO cache in an array of 3 pointers. Every result (whether a cache hit or table lookup) will be places in the 0 spot of the cache and the rest of the entries moved down one spot. The 3rd entry will be lost. Races are possible and are even likely to happen. Lets assume that 4 tasks are hitting sidtab_context_to_sid. The first task checks against the first entry in the cache and it is a miss. Now lets assume a second task updates the cache with a new entry. This will push the first entry back to the second spot. Now the first task might check against the second entry (which it already checked) and will miss again. Now say some third task updates the cache and push the second entry to the third spot. The first task my check the third entry (for the third time!) and again have a miss. At which point it will just do a full table lookup. No big deal! Signed-off-by: Eric Paris <eparis@redhat.com>
2010-12-08 05:17:28 +08:00
{
int i;
struct sidtab_node *node;
for (i = 0; i < SIDTAB_CACHE_LEN; i++) {
node = s->cache[i];
if (unlikely(!node))
return -ENOENT;
selinux: cache sidtab_context_to_sid results sidtab_context_to_sid takes up a large share of time when creating large numbers of new inodes (~30-40% in oprofile runs). This patch implements a cache of 3 entries which is checked before we do a full context_to_sid lookup. On one system this showed over a x3 improvement in the number of inodes that could be created per second and around a 20% improvement on another system. Any time we look up the same context string sucessivly (imagine ls -lZ) we should hit this cache hot. A cache miss should have a relatively minor affect on performance next to doing the full table search. All operations on the cache are done COMPLETELY lockless. We know that all struct sidtab_node objects created will never be deleted until a new policy is loaded thus we never have to worry about a pointer being dereferenced. Since we also know that pointer assignment is atomic we know that the cache will always have valid pointers. Given this information we implement a FIFO cache in an array of 3 pointers. Every result (whether a cache hit or table lookup) will be places in the 0 spot of the cache and the rest of the entries moved down one spot. The 3rd entry will be lost. Races are possible and are even likely to happen. Lets assume that 4 tasks are hitting sidtab_context_to_sid. The first task checks against the first entry in the cache and it is a miss. Now lets assume a second task updates the cache with a new entry. This will push the first entry back to the second spot. Now the first task might check against the second entry (which it already checked) and will miss again. Now say some third task updates the cache and push the second entry to the third spot. The first task my check the third entry (for the third time!) and again have a miss. At which point it will just do a full table lookup. No big deal! Signed-off-by: Eric Paris <eparis@redhat.com>
2010-12-08 05:17:28 +08:00
if (context_cmp(&node->context, context)) {
sidtab_update_cache(s, node, i);
*sid = node->sid;
return 0;
selinux: cache sidtab_context_to_sid results sidtab_context_to_sid takes up a large share of time when creating large numbers of new inodes (~30-40% in oprofile runs). This patch implements a cache of 3 entries which is checked before we do a full context_to_sid lookup. On one system this showed over a x3 improvement in the number of inodes that could be created per second and around a 20% improvement on another system. Any time we look up the same context string sucessivly (imagine ls -lZ) we should hit this cache hot. A cache miss should have a relatively minor affect on performance next to doing the full table search. All operations on the cache are done COMPLETELY lockless. We know that all struct sidtab_node objects created will never be deleted until a new policy is loaded thus we never have to worry about a pointer being dereferenced. Since we also know that pointer assignment is atomic we know that the cache will always have valid pointers. Given this information we implement a FIFO cache in an array of 3 pointers. Every result (whether a cache hit or table lookup) will be places in the 0 spot of the cache and the rest of the entries moved down one spot. The 3rd entry will be lost. Races are possible and are even likely to happen. Lets assume that 4 tasks are hitting sidtab_context_to_sid. The first task checks against the first entry in the cache and it is a miss. Now lets assume a second task updates the cache with a new entry. This will push the first entry back to the second spot. Now the first task might check against the second entry (which it already checked) and will miss again. Now say some third task updates the cache and push the second entry to the third spot. The first task my check the third entry (for the third time!) and again have a miss. At which point it will just do a full table lookup. No big deal! Signed-off-by: Eric Paris <eparis@redhat.com>
2010-12-08 05:17:28 +08:00
}
}
return -ENOENT;
selinux: cache sidtab_context_to_sid results sidtab_context_to_sid takes up a large share of time when creating large numbers of new inodes (~30-40% in oprofile runs). This patch implements a cache of 3 entries which is checked before we do a full context_to_sid lookup. On one system this showed over a x3 improvement in the number of inodes that could be created per second and around a 20% improvement on another system. Any time we look up the same context string sucessivly (imagine ls -lZ) we should hit this cache hot. A cache miss should have a relatively minor affect on performance next to doing the full table search. All operations on the cache are done COMPLETELY lockless. We know that all struct sidtab_node objects created will never be deleted until a new policy is loaded thus we never have to worry about a pointer being dereferenced. Since we also know that pointer assignment is atomic we know that the cache will always have valid pointers. Given this information we implement a FIFO cache in an array of 3 pointers. Every result (whether a cache hit or table lookup) will be places in the 0 spot of the cache and the rest of the entries moved down one spot. The 3rd entry will be lost. Races are possible and are even likely to happen. Lets assume that 4 tasks are hitting sidtab_context_to_sid. The first task checks against the first entry in the cache and it is a miss. Now lets assume a second task updates the cache with a new entry. This will push the first entry back to the second spot. Now the first task might check against the second entry (which it already checked) and will miss again. Now say some third task updates the cache and push the second entry to the third spot. The first task my check the third entry (for the third time!) and again have a miss. At which point it will just do a full table lookup. No big deal! Signed-off-by: Eric Paris <eparis@redhat.com>
2010-12-08 05:17:28 +08:00
}
static int sidtab_reverse_lookup(struct sidtab *s, struct context *context,
u32 *sid)
{
int ret;
unsigned long flags;
ret = sidtab_search_cache(s, context, sid);
if (ret)
ret = sidtab_search_context(s, context, sid);
if (ret) {
spin_lock_irqsave(&s->lock, flags);
/* Rescan now that we hold the lock. */
ret = sidtab_search_context(s, context, sid);
if (!ret)
goto unlock_out;
/* No SID exists for the context. Allocate a new one. */
if (s->next_sid == (UINT_MAX - SECINITSID_NUM - 1) ||
s->shutdown) {
ret = -ENOMEM;
goto unlock_out;
}
*sid = s->next_sid++;
selinux: support deferred mapping of contexts Introduce SELinux support for deferred mapping of security contexts in the SID table upon policy reload, and use this support for inode security contexts when the context is not yet valid under the current policy. Only processes with CAP_MAC_ADMIN + mac_admin permission in policy can set undefined security contexts on inodes. Inodes with such undefined contexts are treated as having the unlabeled context until the context becomes valid upon a policy reload that defines the context. Context invalidation upon policy reload also uses this support to save the context information in the SID table and later recover it upon a subsequent policy reload that defines the context again. This support is to enable package managers and similar programs to set down file contexts unknown to the system policy at the time the file is created in order to better support placing loadable policy modules in packages and to support build systems that need to create images of different distro releases with different policies w/o requiring all of the contexts to be defined or legal in the build host policy. With this patch applied, the following sequence is possible, although in practice it is recommended that this permission only be allowed to specific program domains such as the package manager. # rmdir baz # rm bar # touch bar # chcon -t foo_exec_t bar # foo_exec_t is not yet defined chcon: failed to change context of `bar' to `system_u:object_r:foo_exec_t': Invalid argument # mkdir -Z system_u:object_r:foo_exec_t baz mkdir: failed to set default file creation context to `system_u:object_r:foo_exec_t': Invalid argument # cat setundefined.te policy_module(setundefined, 1.0) require { type unconfined_t; type unlabeled_t; } files_type(unlabeled_t) allow unconfined_t self:capability2 mac_admin; # make -f /usr/share/selinux/devel/Makefile setundefined.pp # semodule -i setundefined.pp # chcon -t foo_exec_t bar # foo_exec_t is not yet defined # mkdir -Z system_u:object_r:foo_exec_t baz # ls -Zd bar baz -rw-r--r-- root root system_u:object_r:unlabeled_t bar drwxr-xr-x root root system_u:object_r:unlabeled_t baz # cat foo.te policy_module(foo, 1.0) type foo_exec_t; files_type(foo_exec_t) # make -f /usr/share/selinux/devel/Makefile foo.pp # semodule -i foo.pp # defines foo_exec_t # ls -Zd bar baz -rw-r--r-- root root user_u:object_r:foo_exec_t bar drwxr-xr-x root root system_u:object_r:foo_exec_t baz # semodule -r foo # ls -Zd bar baz -rw-r--r-- root root system_u:object_r:unlabeled_t bar drwxr-xr-x root root system_u:object_r:unlabeled_t baz # semodule -i foo.pp # ls -Zd bar baz -rw-r--r-- root root user_u:object_r:foo_exec_t bar drwxr-xr-x root root system_u:object_r:foo_exec_t baz # semodule -r setundefined foo # chcon -t foo_exec_t bar # no longer defined and not allowed chcon: failed to change context of `bar' to `system_u:object_r:foo_exec_t': Invalid argument # rmdir baz # mkdir -Z system_u:object_r:foo_exec_t baz mkdir: failed to set default file creation context to `system_u:object_r:foo_exec_t': Invalid argument Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-05-08 01:03:20 +08:00
if (context->len)
pr_info("SELinux: Context %s is not valid (left unmapped).\n",
selinux: support deferred mapping of contexts Introduce SELinux support for deferred mapping of security contexts in the SID table upon policy reload, and use this support for inode security contexts when the context is not yet valid under the current policy. Only processes with CAP_MAC_ADMIN + mac_admin permission in policy can set undefined security contexts on inodes. Inodes with such undefined contexts are treated as having the unlabeled context until the context becomes valid upon a policy reload that defines the context. Context invalidation upon policy reload also uses this support to save the context information in the SID table and later recover it upon a subsequent policy reload that defines the context again. This support is to enable package managers and similar programs to set down file contexts unknown to the system policy at the time the file is created in order to better support placing loadable policy modules in packages and to support build systems that need to create images of different distro releases with different policies w/o requiring all of the contexts to be defined or legal in the build host policy. With this patch applied, the following sequence is possible, although in practice it is recommended that this permission only be allowed to specific program domains such as the package manager. # rmdir baz # rm bar # touch bar # chcon -t foo_exec_t bar # foo_exec_t is not yet defined chcon: failed to change context of `bar' to `system_u:object_r:foo_exec_t': Invalid argument # mkdir -Z system_u:object_r:foo_exec_t baz mkdir: failed to set default file creation context to `system_u:object_r:foo_exec_t': Invalid argument # cat setundefined.te policy_module(setundefined, 1.0) require { type unconfined_t; type unlabeled_t; } files_type(unlabeled_t) allow unconfined_t self:capability2 mac_admin; # make -f /usr/share/selinux/devel/Makefile setundefined.pp # semodule -i setundefined.pp # chcon -t foo_exec_t bar # foo_exec_t is not yet defined # mkdir -Z system_u:object_r:foo_exec_t baz # ls -Zd bar baz -rw-r--r-- root root system_u:object_r:unlabeled_t bar drwxr-xr-x root root system_u:object_r:unlabeled_t baz # cat foo.te policy_module(foo, 1.0) type foo_exec_t; files_type(foo_exec_t) # make -f /usr/share/selinux/devel/Makefile foo.pp # semodule -i foo.pp # defines foo_exec_t # ls -Zd bar baz -rw-r--r-- root root user_u:object_r:foo_exec_t bar drwxr-xr-x root root system_u:object_r:foo_exec_t baz # semodule -r foo # ls -Zd bar baz -rw-r--r-- root root system_u:object_r:unlabeled_t bar drwxr-xr-x root root system_u:object_r:unlabeled_t baz # semodule -i foo.pp # ls -Zd bar baz -rw-r--r-- root root user_u:object_r:foo_exec_t bar drwxr-xr-x root root system_u:object_r:foo_exec_t baz # semodule -r setundefined foo # chcon -t foo_exec_t bar # no longer defined and not allowed chcon: failed to change context of `bar' to `system_u:object_r:foo_exec_t': Invalid argument # rmdir baz # mkdir -Z system_u:object_r:foo_exec_t baz mkdir: failed to set default file creation context to `system_u:object_r:foo_exec_t': Invalid argument Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-05-08 01:03:20 +08:00
context->str);
ret = sidtab_insert(s, *sid, context);
if (ret)
s->next_sid--;
unlock_out:
spin_unlock_irqrestore(&s->lock, flags);
}
return ret;
}
int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid)
{
int rc;
u32 i;
for (i = 0; i < SECINITSID_NUM; i++) {
struct sidtab_isid_entry *entry = &s->isids[i];
if (entry->set && context_cmp(context, &entry->context)) {
*sid = i + 1;
return 0;
}
}
rc = sidtab_reverse_lookup(s, context, sid);
if (rc)
return rc;
*sid += SECINITSID_NUM + 1;
return 0;
}
void sidtab_hash_eval(struct sidtab *h, char *tag)
{
int i, chain_len, slots_used, max_chain_len;
struct sidtab_node *cur;
slots_used = 0;
max_chain_len = 0;
for (i = 0; i < SIDTAB_SIZE; i++) {
cur = h->htable[i];
if (cur) {
slots_used++;
chain_len = 0;
while (cur) {
chain_len++;
cur = cur->next;
}
if (chain_len > max_chain_len)
max_chain_len = chain_len;
}
}
pr_debug("%s: %d entries and %d/%d buckets used, longest "
"chain length %d\n", tag, h->nel, slots_used, SIDTAB_SIZE,
max_chain_len);
}
void sidtab_destroy(struct sidtab *s)
{
int i;
struct sidtab_node *cur, *temp;
if (!s)
return;
for (i = 0; i < SECINITSID_NUM; i++)
if (s->isids[i].set)
context_destroy(&s->isids[i].context);
for (i = 0; i < SIDTAB_SIZE; i++) {
cur = s->htable[i];
while (cur) {
temp = cur;
cur = cur->next;
context_destroy(&temp->context);
kfree(temp);
}
s->htable[i] = NULL;
}
kfree(s->htable);
s->htable = NULL;
s->nel = 0;
s->next_sid = 1;
}