linux-sg2042/arch/s390/crypto/crc32-vx.c

315 lines
8.4 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Crypto-API module for CRC-32 algorithms implemented with the
* z/Architecture Vector Extension Facility.
*
* Copyright IBM Corp. 2015
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
*/
#define KMSG_COMPONENT "crc32-vx"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/module.h>
#include <linux/cpufeature.h>
#include <linux/crc32.h>
#include <crypto/internal/hash.h>
#include <asm/fpu/api.h>
#define CRC32_BLOCK_SIZE 1
#define CRC32_DIGEST_SIZE 4
#define VX_MIN_LEN 64
#define VX_ALIGNMENT 16L
#define VX_ALIGN_MASK (VX_ALIGNMENT - 1)
struct crc_ctx {
u32 key;
};
struct crc_desc_ctx {
u32 crc;
};
/* Prototypes for functions in assembly files */
u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
/*
* DEFINE_CRC32_VX() - Define a CRC-32 function using the vector extension
*
* Creates a function to perform a particular CRC-32 computation. Depending
* on the message buffer, the hardware-accelerated or software implementation
* is used. Note that the message buffer is aligned to improve fetch
* operations of VECTOR LOAD MULTIPLE instructions.
*
*/
#define DEFINE_CRC32_VX(___fname, ___crc32_vx, ___crc32_sw) \
static u32 __pure ___fname(u32 crc, \
unsigned char const *data, size_t datalen) \
{ \
struct kernel_fpu vxstate; \
unsigned long prealign, aligned, remaining; \
\
if (datalen < VX_MIN_LEN + VX_ALIGN_MASK) \
return ___crc32_sw(crc, data, datalen); \
\
if ((unsigned long)data & VX_ALIGN_MASK) { \
prealign = VX_ALIGNMENT - \
((unsigned long)data & VX_ALIGN_MASK); \
datalen -= prealign; \
crc = ___crc32_sw(crc, data, prealign); \
data = (void *)((unsigned long)data + prealign); \
} \
\
aligned = datalen & ~VX_ALIGN_MASK; \
remaining = datalen & VX_ALIGN_MASK; \
\
kernel_fpu_begin(&vxstate, KERNEL_VXR_LOW); \
crc = ___crc32_vx(crc, data, aligned); \
kernel_fpu_end(&vxstate, KERNEL_VXR_LOW); \
\
if (remaining) \
crc = ___crc32_sw(crc, data + aligned, remaining); \
\
return crc; \
}
DEFINE_CRC32_VX(crc32_le_vx, crc32_le_vgfm_16, crc32_le)
DEFINE_CRC32_VX(crc32_be_vx, crc32_be_vgfm_16, crc32_be)
DEFINE_CRC32_VX(crc32c_le_vx, crc32c_le_vgfm_16, __crc32c_le)
static int crc32_vx_cra_init_zero(struct crypto_tfm *tfm)
{
struct crc_ctx *mctx = crypto_tfm_ctx(tfm);
mctx->key = 0;
return 0;
}
static int crc32_vx_cra_init_invert(struct crypto_tfm *tfm)
{
struct crc_ctx *mctx = crypto_tfm_ctx(tfm);
mctx->key = ~0;
return 0;
}
static int crc32_vx_init(struct shash_desc *desc)
{
struct crc_ctx *mctx = crypto_shash_ctx(desc->tfm);
struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
ctx->crc = mctx->key;
return 0;
}
static int crc32_vx_setkey(struct crypto_shash *tfm, const u8 *newkey,
unsigned int newkeylen)
{
struct crc_ctx *mctx = crypto_shash_ctx(tfm);
if (newkeylen != sizeof(mctx->key)) {
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
mctx->key = le32_to_cpu(*(__le32 *)newkey);
return 0;
}
static int crc32be_vx_setkey(struct crypto_shash *tfm, const u8 *newkey,
unsigned int newkeylen)
{
struct crc_ctx *mctx = crypto_shash_ctx(tfm);
if (newkeylen != sizeof(mctx->key)) {
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
mctx->key = be32_to_cpu(*(__be32 *)newkey);
return 0;
}
static int crc32le_vx_final(struct shash_desc *desc, u8 *out)
{
struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
*(__le32 *)out = cpu_to_le32p(&ctx->crc);
return 0;
}
static int crc32be_vx_final(struct shash_desc *desc, u8 *out)
{
struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
*(__be32 *)out = cpu_to_be32p(&ctx->crc);
return 0;
}
static int crc32c_vx_final(struct shash_desc *desc, u8 *out)
{
struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
/*
* Perform a final XOR with 0xFFFFFFFF to be in sync
* with the generic crc32c shash implementation.
*/
*(__le32 *)out = ~cpu_to_le32p(&ctx->crc);
return 0;
}
static int __crc32le_vx_finup(u32 *crc, const u8 *data, unsigned int len,
u8 *out)
{
*(__le32 *)out = cpu_to_le32(crc32_le_vx(*crc, data, len));
return 0;
}
static int __crc32be_vx_finup(u32 *crc, const u8 *data, unsigned int len,
u8 *out)
{
*(__be32 *)out = cpu_to_be32(crc32_be_vx(*crc, data, len));
return 0;
}
static int __crc32c_vx_finup(u32 *crc, const u8 *data, unsigned int len,
u8 *out)
{
/*
* Perform a final XOR with 0xFFFFFFFF to be in sync
* with the generic crc32c shash implementation.
*/
*(__le32 *)out = ~cpu_to_le32(crc32c_le_vx(*crc, data, len));
return 0;
}
#define CRC32_VX_FINUP(alg, func) \
static int alg ## _vx_finup(struct shash_desc *desc, const u8 *data, \
unsigned int datalen, u8 *out) \
{ \
return __ ## alg ## _vx_finup(shash_desc_ctx(desc), \
data, datalen, out); \
}
CRC32_VX_FINUP(crc32le, crc32_le_vx)
CRC32_VX_FINUP(crc32be, crc32_be_vx)
CRC32_VX_FINUP(crc32c, crc32c_le_vx)
#define CRC32_VX_DIGEST(alg, func) \
static int alg ## _vx_digest(struct shash_desc *desc, const u8 *data, \
unsigned int len, u8 *out) \
{ \
return __ ## alg ## _vx_finup(crypto_shash_ctx(desc->tfm), \
data, len, out); \
}
CRC32_VX_DIGEST(crc32le, crc32_le_vx)
CRC32_VX_DIGEST(crc32be, crc32_be_vx)
CRC32_VX_DIGEST(crc32c, crc32c_le_vx)
#define CRC32_VX_UPDATE(alg, func) \
static int alg ## _vx_update(struct shash_desc *desc, const u8 *data, \
unsigned int datalen) \
{ \
struct crc_desc_ctx *ctx = shash_desc_ctx(desc); \
ctx->crc = func(ctx->crc, data, datalen); \
return 0; \
}
CRC32_VX_UPDATE(crc32le, crc32_le_vx)
CRC32_VX_UPDATE(crc32be, crc32_be_vx)
CRC32_VX_UPDATE(crc32c, crc32c_le_vx)
static struct shash_alg crc32_vx_algs[] = {
/* CRC-32 LE */
{
.init = crc32_vx_init,
.setkey = crc32_vx_setkey,
.update = crc32le_vx_update,
.final = crc32le_vx_final,
.finup = crc32le_vx_finup,
.digest = crc32le_vx_digest,
.descsize = sizeof(struct crc_desc_ctx),
.digestsize = CRC32_DIGEST_SIZE,
.base = {
.cra_name = "crc32",
.cra_driver_name = "crc32-vx",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_OPTIONAL_KEY,
.cra_blocksize = CRC32_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crc_ctx),
.cra_module = THIS_MODULE,
.cra_init = crc32_vx_cra_init_zero,
},
},
/* CRC-32 BE */
{
.init = crc32_vx_init,
.setkey = crc32be_vx_setkey,
.update = crc32be_vx_update,
.final = crc32be_vx_final,
.finup = crc32be_vx_finup,
.digest = crc32be_vx_digest,
.descsize = sizeof(struct crc_desc_ctx),
.digestsize = CRC32_DIGEST_SIZE,
.base = {
.cra_name = "crc32be",
.cra_driver_name = "crc32be-vx",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_OPTIONAL_KEY,
.cra_blocksize = CRC32_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crc_ctx),
.cra_module = THIS_MODULE,
.cra_init = crc32_vx_cra_init_zero,
},
},
/* CRC-32C LE */
{
.init = crc32_vx_init,
.setkey = crc32_vx_setkey,
.update = crc32c_vx_update,
.final = crc32c_vx_final,
.finup = crc32c_vx_finup,
.digest = crc32c_vx_digest,
.descsize = sizeof(struct crc_desc_ctx),
.digestsize = CRC32_DIGEST_SIZE,
.base = {
.cra_name = "crc32c",
.cra_driver_name = "crc32c-vx",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_OPTIONAL_KEY,
.cra_blocksize = CRC32_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crc_ctx),
.cra_module = THIS_MODULE,
.cra_init = crc32_vx_cra_init_invert,
},
},
};
static int __init crc_vx_mod_init(void)
{
return crypto_register_shashes(crc32_vx_algs,
ARRAY_SIZE(crc32_vx_algs));
}
static void __exit crc_vx_mod_exit(void)
{
crypto_unregister_shashes(crc32_vx_algs, ARRAY_SIZE(crc32_vx_algs));
}
module_cpu_feature_match(VXRS, crc_vx_mod_init);
module_exit(crc_vx_mod_exit);
MODULE_AUTHOR("Hendrik Brueckner <brueckner@linux.vnet.ibm.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("crc32");
MODULE_ALIAS_CRYPTO("crc32-vx");
MODULE_ALIAS_CRYPTO("crc32c");
MODULE_ALIAS_CRYPTO("crc32c-vx");