linux-sg2042/drivers/iio/adc/nau7802.c

582 lines
14 KiB
C
Raw Normal View History

/*
* Driver for the Nuvoton NAU7802 ADC
*
* Copyright 2013 Free Electrons
*
* Licensed under the GPLv2 or later.
*/
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/wait.h>
#include <linux/log2.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#define NAU7802_REG_PUCTRL 0x00
#define NAU7802_PUCTRL_RR(x) (x << 0)
#define NAU7802_PUCTRL_RR_BIT NAU7802_PUCTRL_RR(1)
#define NAU7802_PUCTRL_PUD(x) (x << 1)
#define NAU7802_PUCTRL_PUD_BIT NAU7802_PUCTRL_PUD(1)
#define NAU7802_PUCTRL_PUA(x) (x << 2)
#define NAU7802_PUCTRL_PUA_BIT NAU7802_PUCTRL_PUA(1)
#define NAU7802_PUCTRL_PUR(x) (x << 3)
#define NAU7802_PUCTRL_PUR_BIT NAU7802_PUCTRL_PUR(1)
#define NAU7802_PUCTRL_CS(x) (x << 4)
#define NAU7802_PUCTRL_CS_BIT NAU7802_PUCTRL_CS(1)
#define NAU7802_PUCTRL_CR(x) (x << 5)
#define NAU7802_PUCTRL_CR_BIT NAU7802_PUCTRL_CR(1)
#define NAU7802_PUCTRL_AVDDS(x) (x << 7)
#define NAU7802_PUCTRL_AVDDS_BIT NAU7802_PUCTRL_AVDDS(1)
#define NAU7802_REG_CTRL1 0x01
#define NAU7802_CTRL1_VLDO(x) (x << 3)
#define NAU7802_CTRL1_GAINS(x) (x)
#define NAU7802_CTRL1_GAINS_BITS 0x07
#define NAU7802_REG_CTRL2 0x02
#define NAU7802_CTRL2_CHS(x) (x << 7)
#define NAU7802_CTRL2_CRS(x) (x << 4)
#define NAU7802_SAMP_FREQ_320 0x07
#define NAU7802_CTRL2_CHS_BIT NAU7802_CTRL2_CHS(1)
#define NAU7802_REG_ADC_B2 0x12
#define NAU7802_REG_ADC_B1 0x13
#define NAU7802_REG_ADC_B0 0x14
#define NAU7802_REG_ADC_CTRL 0x15
#define NAU7802_MIN_CONVERSIONS 6
struct nau7802_state {
struct i2c_client *client;
s32 last_value;
struct mutex lock;
struct mutex data_lock;
u32 vref_mv;
u32 conversion_count;
u32 min_conversions;
u8 sample_rate;
u32 scale_avail[8];
struct completion value_ok;
};
#define NAU7802_CHANNEL(chan) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = (chan), \
.scan_index = (chan), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ) \
}
static const struct iio_chan_spec nau7802_chan_array[] = {
NAU7802_CHANNEL(0),
NAU7802_CHANNEL(1),
};
static const u16 nau7802_sample_freq_avail[] = {10, 20, 40, 80,
10, 10, 10, 320};
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 40 80 320");
static struct attribute *nau7802_attributes[] = {
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
NULL
};
static const struct attribute_group nau7802_attribute_group = {
.attrs = nau7802_attributes,
};
static int nau7802_set_gain(struct nau7802_state *st, int gain)
{
int ret;
mutex_lock(&st->lock);
st->conversion_count = 0;
ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
if (ret < 0)
goto nau7802_sysfs_set_gain_out;
ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
(ret & (~NAU7802_CTRL1_GAINS_BITS)) |
gain);
nau7802_sysfs_set_gain_out:
mutex_unlock(&st->lock);
return ret;
}
static int nau7802_read_conversion(struct nau7802_state *st)
{
int data;
mutex_lock(&st->data_lock);
data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B2);
if (data < 0)
goto nau7802_read_conversion_out;
st->last_value = data << 16;
data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B1);
if (data < 0)
goto nau7802_read_conversion_out;
st->last_value |= data << 8;
data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B0);
if (data < 0)
goto nau7802_read_conversion_out;
st->last_value |= data;
st->last_value = sign_extend32(st->last_value, 23);
nau7802_read_conversion_out:
mutex_unlock(&st->data_lock);
return data;
}
/*
* Conversions are synchronised on the rising edge of NAU7802_PUCTRL_CS_BIT
*/
static int nau7802_sync(struct nau7802_state *st)
{
int ret;
ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
if (ret < 0)
return ret;
ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
ret | NAU7802_PUCTRL_CS_BIT);
return ret;
}
static irqreturn_t nau7802_eoc_trigger(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct nau7802_state *st = iio_priv(indio_dev);
int status;
status = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
if (status < 0)
return IRQ_HANDLED;
if (!(status & NAU7802_PUCTRL_CR_BIT))
return IRQ_NONE;
if (nau7802_read_conversion(st) < 0)
return IRQ_HANDLED;
/*
* Because there is actually only one ADC for both channels, we have to
* wait for enough conversions to happen before getting a significant
* value when changing channels and the values are far apart.
*/
if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
st->conversion_count++;
if (st->conversion_count >= NAU7802_MIN_CONVERSIONS)
complete_all(&st->value_ok);
return IRQ_HANDLED;
}
static int nau7802_read_irq(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val)
{
struct nau7802_state *st = iio_priv(indio_dev);
int ret;
INIT_COMPLETION(st->value_ok);
enable_irq(st->client->irq);
nau7802_sync(st);
/* read registers to ensure we flush everything */
ret = nau7802_read_conversion(st);
if (ret < 0)
goto read_chan_info_failure;
/* Wait for a conversion to finish */
ret = wait_for_completion_interruptible_timeout(&st->value_ok,
msecs_to_jiffies(1000));
if (ret == 0)
ret = -ETIMEDOUT;
if (ret < 0)
goto read_chan_info_failure;
disable_irq(st->client->irq);
*val = st->last_value;
return IIO_VAL_INT;
read_chan_info_failure:
disable_irq(st->client->irq);
return ret;
}
static int nau7802_read_poll(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val)
{
struct nau7802_state *st = iio_priv(indio_dev);
int ret;
nau7802_sync(st);
/* read registers to ensure we flush everything */
ret = nau7802_read_conversion(st);
if (ret < 0)
return ret;
/*
* Because there is actually only one ADC for both channels, we have to
* wait for enough conversions to happen before getting a significant
* value when changing channels and the values are far appart.
*/
do {
ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
if (ret < 0)
return ret;
while (!(ret & NAU7802_PUCTRL_CR_BIT)) {
if (st->sample_rate != NAU7802_SAMP_FREQ_320)
msleep(20);
else
mdelay(4);
ret = i2c_smbus_read_byte_data(st->client,
NAU7802_REG_PUCTRL);
if (ret < 0)
return ret;
}
ret = nau7802_read_conversion(st);
if (ret < 0)
return ret;
if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
st->conversion_count++;
} while (st->conversion_count < NAU7802_MIN_CONVERSIONS);
*val = st->last_value;
return IIO_VAL_INT;
}
static int nau7802_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct nau7802_state *st = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&st->lock);
/*
* Select the channel to use
* - Channel 1 is value 0 in the CHS register
* - Channel 2 is value 1 in the CHS register
*/
ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL2);
if (ret < 0) {
mutex_unlock(&st->lock);
return ret;
}
if (((ret & NAU7802_CTRL2_CHS_BIT) && !chan->channel) ||
(!(ret & NAU7802_CTRL2_CHS_BIT) &&
chan->channel)) {
st->conversion_count = 0;
ret = i2c_smbus_write_byte_data(st->client,
NAU7802_REG_CTRL2,
NAU7802_CTRL2_CHS(chan->channel) |
NAU7802_CTRL2_CRS(st->sample_rate));
if (ret < 0) {
mutex_unlock(&st->lock);
return ret;
}
}
if (st->client->irq)
ret = nau7802_read_irq(indio_dev, chan, val);
else
ret = nau7802_read_poll(indio_dev, chan, val);
mutex_unlock(&st->lock);
return ret;
case IIO_CHAN_INFO_SCALE:
ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
if (ret < 0)
return ret;
/*
* We have 24 bits of signed data, that means 23 bits of data
* plus the sign bit
*/
*val = st->vref_mv;
*val2 = 23 + (ret & NAU7802_CTRL1_GAINS_BITS);
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = nau7802_sample_freq_avail[st->sample_rate];
*val2 = 0;
return IIO_VAL_INT;
default:
break;
}
return -EINVAL;
}
static int nau7802_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct nau7802_state *st = iio_priv(indio_dev);
int i, ret;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
if (val2 == st->scale_avail[i])
return nau7802_set_gain(st, i);
break;
case IIO_CHAN_INFO_SAMP_FREQ:
for (i = 0; i < ARRAY_SIZE(nau7802_sample_freq_avail); i++)
if (val == nau7802_sample_freq_avail[i]) {
mutex_lock(&st->lock);
st->sample_rate = i;
st->conversion_count = 0;
ret = i2c_smbus_write_byte_data(st->client,
NAU7802_REG_CTRL2,
NAU7802_CTRL2_CRS(st->sample_rate));
mutex_unlock(&st->lock);
return ret;
}
break;
default:
break;
}
return -EINVAL;
}
static int nau7802_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
return IIO_VAL_INT_PLUS_NANO;
}
static const struct iio_info nau7802_info = {
.driver_module = THIS_MODULE,
.read_raw = &nau7802_read_raw,
.write_raw = &nau7802_write_raw,
.write_raw_get_fmt = nau7802_write_raw_get_fmt,
.attrs = &nau7802_attribute_group,
};
static int nau7802_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct iio_dev *indio_dev;
struct nau7802_state *st;
struct device_node *np = client->dev.of_node;
int i, ret;
u8 data;
u32 tmp = 0;
if (!client->dev.of_node) {
dev_err(&client->dev, "No device tree node available.\n");
return -EINVAL;
}
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st));
if (indio_dev == NULL)
return -ENOMEM;
st = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
indio_dev->dev.parent = &client->dev;
indio_dev->name = dev_name(&client->dev);
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &nau7802_info;
st->client = client;
/* Reset the device */
ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
NAU7802_PUCTRL_RR_BIT);
if (ret < 0)
return ret;
/* Enter normal operation mode */
ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
NAU7802_PUCTRL_PUD_BIT);
if (ret < 0)
return ret;
/*
* After about 200 usecs, the device should be ready and then
* the Power Up bit will be set to 1. If not, wait for it.
*/
udelay(210);
ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
if (ret < 0)
return ret;
if (!(ret & NAU7802_PUCTRL_PUR_BIT))
return ret;
of_property_read_u32(np, "nuvoton,vldo", &tmp);
st->vref_mv = tmp;
data = NAU7802_PUCTRL_PUD_BIT | NAU7802_PUCTRL_PUA_BIT |
NAU7802_PUCTRL_CS_BIT;
if (tmp >= 2400)
data |= NAU7802_PUCTRL_AVDDS_BIT;
ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, data);
if (ret < 0)
return ret;
ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_ADC_CTRL, 0x30);
if (ret < 0)
return ret;
if (tmp >= 2400) {
data = NAU7802_CTRL1_VLDO((4500 - tmp) / 300);
ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
data);
if (ret < 0)
return ret;
}
/* Populate available ADC input ranges */
for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
st->scale_avail[i] = (((u64)st->vref_mv) * 1000000000ULL)
>> (23 + i);
init_completion(&st->value_ok);
/*
* The ADC fires continuously and we can't do anything about
* it. So we need to have the IRQ disabled by default, and we
* will enable them back when we will need them..
*/
if (client->irq) {
ret = request_threaded_irq(client->irq,
NULL,
nau7802_eoc_trigger,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
client->dev.driver->name,
indio_dev);
if (ret) {
/*
* What may happen here is that our IRQ controller is
* not able to get level interrupt but this is required
* by this ADC as when going over 40 sample per second,
* the interrupt line may stay high between conversions.
* So, we continue no matter what but we switch to
* polling mode.
*/
dev_info(&client->dev,
"Failed to allocate IRQ, using polling mode\n");
client->irq = 0;
} else
disable_irq(client->irq);
}
if (!client->irq) {
/*
* We are polling, use the fastest sample rate by
* default
*/
st->sample_rate = NAU7802_SAMP_FREQ_320;
ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL2,
NAU7802_CTRL2_CRS(st->sample_rate));
if (ret)
goto error_free_irq;
}
/* Setup the ADC channels available on the board */
indio_dev->num_channels = ARRAY_SIZE(nau7802_chan_array);
indio_dev->channels = nau7802_chan_array;
mutex_init(&st->lock);
mutex_init(&st->data_lock);
ret = iio_device_register(indio_dev);
if (ret < 0) {
dev_err(&client->dev, "Couldn't register the device.\n");
goto error_device_register;
}
return 0;
error_device_register:
mutex_destroy(&st->lock);
mutex_destroy(&st->data_lock);
error_free_irq:
if (client->irq)
free_irq(client->irq, indio_dev);
return ret;
}
static int nau7802_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct nau7802_state *st = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
mutex_destroy(&st->lock);
mutex_destroy(&st->data_lock);
if (client->irq)
free_irq(client->irq, indio_dev);
return 0;
}
static const struct i2c_device_id nau7802_i2c_id[] = {
{ "nau7802", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, nau7802_i2c_id);
static const struct of_device_id nau7802_dt_ids[] = {
{ .compatible = "nuvoton,nau7802" },
{},
};
MODULE_DEVICE_TABLE(of, nau7802_dt_ids);
static struct i2c_driver nau7802_driver = {
.probe = nau7802_probe,
.remove = nau7802_remove,
.id_table = nau7802_i2c_id,
.driver = {
.name = "nau7802",
.of_match_table = of_match_ptr(nau7802_dt_ids),
},
};
module_i2c_driver(nau7802_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Nuvoton NAU7802 ADC Driver");
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");