2018-08-16 23:23:53 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/*
|
|
|
|
* Generic ring buffer
|
|
|
|
*
|
|
|
|
* Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
|
|
|
|
*/
|
2015-04-30 02:36:05 +08:00
|
|
|
#include <linux/trace_events.h>
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
#include <linux/ring_buffer.h>
|
2009-02-27 01:47:11 +08:00
|
|
|
#include <linux/trace_clock.h>
|
2017-02-01 23:36:40 +08:00
|
|
|
#include <linux/sched/clock.h>
|
2013-01-23 05:58:30 +08:00
|
|
|
#include <linux/trace_seq.h>
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
#include <linux/spinlock.h>
|
2013-03-01 08:59:17 +08:00
|
|
|
#include <linux/irq_work.h>
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
#include <linux/uaccess.h>
|
2009-02-06 14:45:16 +08:00
|
|
|
#include <linux/hardirq.h>
|
2013-03-15 23:32:53 +08:00
|
|
|
#include <linux/kthread.h> /* for self test */
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/percpu.h>
|
|
|
|
#include <linux/mutex.h>
|
2013-03-15 23:32:53 +08:00
|
|
|
#include <linux/delay.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
|
|
|
#include <linux/slab.h>
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/hash.h>
|
|
|
|
#include <linux/list.h>
|
2009-03-12 10:00:13 +08:00
|
|
|
#include <linux/cpu.h>
|
2018-04-04 23:29:57 +08:00
|
|
|
#include <linux/oom.h>
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2010-01-05 14:34:50 +08:00
|
|
|
#include <asm/local.h>
|
2008-11-04 12:15:56 +08:00
|
|
|
|
2012-05-04 09:59:50 +08:00
|
|
|
static void update_pages_handler(struct work_struct *work);
|
|
|
|
|
2009-04-16 04:53:47 +08:00
|
|
|
/*
|
|
|
|
* The ring buffer header is special. We must manually up keep it.
|
|
|
|
*/
|
|
|
|
int ring_buffer_print_entry_header(struct trace_seq *s)
|
|
|
|
{
|
2014-11-13 00:49:00 +08:00
|
|
|
trace_seq_puts(s, "# compressed entry header\n");
|
|
|
|
trace_seq_puts(s, "\ttype_len : 5 bits\n");
|
|
|
|
trace_seq_puts(s, "\ttime_delta : 27 bits\n");
|
|
|
|
trace_seq_puts(s, "\tarray : 32 bits\n");
|
|
|
|
trace_seq_putc(s, '\n');
|
|
|
|
trace_seq_printf(s, "\tpadding : type == %d\n",
|
|
|
|
RINGBUF_TYPE_PADDING);
|
|
|
|
trace_seq_printf(s, "\ttime_extend : type == %d\n",
|
|
|
|
RINGBUF_TYPE_TIME_EXTEND);
|
2018-01-16 10:51:40 +08:00
|
|
|
trace_seq_printf(s, "\ttime_stamp : type == %d\n",
|
|
|
|
RINGBUF_TYPE_TIME_STAMP);
|
2014-11-13 00:49:00 +08:00
|
|
|
trace_seq_printf(s, "\tdata max type_len == %d\n",
|
|
|
|
RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
|
|
|
|
|
|
|
|
return !trace_seq_has_overflowed(s);
|
2009-04-16 04:53:47 +08:00
|
|
|
}
|
|
|
|
|
2009-03-13 10:24:17 +08:00
|
|
|
/*
|
|
|
|
* The ring buffer is made up of a list of pages. A separate list of pages is
|
|
|
|
* allocated for each CPU. A writer may only write to a buffer that is
|
|
|
|
* associated with the CPU it is currently executing on. A reader may read
|
|
|
|
* from any per cpu buffer.
|
|
|
|
*
|
|
|
|
* The reader is special. For each per cpu buffer, the reader has its own
|
|
|
|
* reader page. When a reader has read the entire reader page, this reader
|
|
|
|
* page is swapped with another page in the ring buffer.
|
|
|
|
*
|
|
|
|
* Now, as long as the writer is off the reader page, the reader can do what
|
|
|
|
* ever it wants with that page. The writer will never write to that page
|
|
|
|
* again (as long as it is out of the ring buffer).
|
|
|
|
*
|
|
|
|
* Here's some silly ASCII art.
|
|
|
|
*
|
|
|
|
* +------+
|
|
|
|
* |reader| RING BUFFER
|
|
|
|
* |page |
|
|
|
|
* +------+ +---+ +---+ +---+
|
|
|
|
* | |-->| |-->| |
|
|
|
|
* +---+ +---+ +---+
|
|
|
|
* ^ |
|
|
|
|
* | |
|
|
|
|
* +---------------+
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* +------+
|
|
|
|
* |reader| RING BUFFER
|
|
|
|
* |page |------------------v
|
|
|
|
* +------+ +---+ +---+ +---+
|
|
|
|
* | |-->| |-->| |
|
|
|
|
* +---+ +---+ +---+
|
|
|
|
* ^ |
|
|
|
|
* | |
|
|
|
|
* +---------------+
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* +------+
|
|
|
|
* |reader| RING BUFFER
|
|
|
|
* |page |------------------v
|
|
|
|
* +------+ +---+ +---+ +---+
|
|
|
|
* ^ | |-->| |-->| |
|
|
|
|
* | +---+ +---+ +---+
|
|
|
|
* | |
|
|
|
|
* | |
|
|
|
|
* +------------------------------+
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* +------+
|
|
|
|
* |buffer| RING BUFFER
|
|
|
|
* |page |------------------v
|
|
|
|
* +------+ +---+ +---+ +---+
|
|
|
|
* ^ | | | |-->| |
|
|
|
|
* | New +---+ +---+ +---+
|
|
|
|
* | Reader------^ |
|
|
|
|
* | page |
|
|
|
|
* +------------------------------+
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* After we make this swap, the reader can hand this page off to the splice
|
|
|
|
* code and be done with it. It can even allocate a new page if it needs to
|
|
|
|
* and swap that into the ring buffer.
|
|
|
|
*
|
|
|
|
* We will be using cmpxchg soon to make all this lockless.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2012-02-23 04:50:28 +08:00
|
|
|
/* Used for individual buffers (after the counter) */
|
|
|
|
#define RB_BUFFER_OFF (1 << 20)
|
2008-11-12 04:01:42 +08:00
|
|
|
|
2012-02-23 04:50:28 +08:00
|
|
|
#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
|
2008-11-22 01:41:55 +08:00
|
|
|
|
2009-03-04 02:53:07 +08:00
|
|
|
#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
|
2009-01-10 04:27:09 +08:00
|
|
|
#define RB_ALIGNMENT 4U
|
2009-04-24 11:27:05 +08:00
|
|
|
#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
|
2009-06-11 23:12:00 +08:00
|
|
|
#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
|
2009-04-24 11:27:05 +08:00
|
|
|
|
2012-05-30 19:11:19 +08:00
|
|
|
#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
|
2010-03-19 05:54:19 +08:00
|
|
|
# define RB_FORCE_8BYTE_ALIGNMENT 0
|
|
|
|
# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
|
|
|
|
#else
|
|
|
|
# define RB_FORCE_8BYTE_ALIGNMENT 1
|
|
|
|
# define RB_ARCH_ALIGNMENT 8U
|
|
|
|
#endif
|
|
|
|
|
2012-05-30 19:11:19 +08:00
|
|
|
#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
|
|
|
|
|
2009-04-24 11:27:05 +08:00
|
|
|
/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
|
|
|
|
#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
enum {
|
|
|
|
RB_LEN_TIME_EXTEND = 8,
|
2018-01-16 10:51:40 +08:00
|
|
|
RB_LEN_TIME_STAMP = 8,
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
};
|
|
|
|
|
2010-10-08 06:18:05 +08:00
|
|
|
#define skip_time_extend(event) \
|
|
|
|
((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
|
|
|
|
|
2018-01-16 10:51:40 +08:00
|
|
|
#define extended_time(event) \
|
|
|
|
(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
|
|
|
|
|
2009-03-22 16:30:49 +08:00
|
|
|
static inline int rb_null_event(struct ring_buffer_event *event)
|
|
|
|
{
|
2009-09-03 22:23:58 +08:00
|
|
|
return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
|
2009-03-22 16:30:49 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void rb_event_set_padding(struct ring_buffer_event *event)
|
|
|
|
{
|
2009-09-03 22:23:58 +08:00
|
|
|
/* padding has a NULL time_delta */
|
2009-04-24 11:27:05 +08:00
|
|
|
event->type_len = RINGBUF_TYPE_PADDING;
|
2009-03-22 16:30:49 +08:00
|
|
|
event->time_delta = 0;
|
|
|
|
}
|
|
|
|
|
2009-01-10 04:27:09 +08:00
|
|
|
static unsigned
|
2009-03-22 16:30:49 +08:00
|
|
|
rb_event_data_length(struct ring_buffer_event *event)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
|
|
|
unsigned length;
|
|
|
|
|
2009-04-24 11:27:05 +08:00
|
|
|
if (event->type_len)
|
|
|
|
length = event->type_len * RB_ALIGNMENT;
|
2009-03-22 16:30:49 +08:00
|
|
|
else
|
|
|
|
length = event->array[0];
|
|
|
|
return length + RB_EVNT_HDR_SIZE;
|
|
|
|
}
|
|
|
|
|
2010-10-08 06:18:05 +08:00
|
|
|
/*
|
|
|
|
* Return the length of the given event. Will return
|
|
|
|
* the length of the time extend if the event is a
|
|
|
|
* time extend.
|
|
|
|
*/
|
|
|
|
static inline unsigned
|
2009-03-22 16:30:49 +08:00
|
|
|
rb_event_length(struct ring_buffer_event *event)
|
|
|
|
{
|
2009-04-24 11:27:05 +08:00
|
|
|
switch (event->type_len) {
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
case RINGBUF_TYPE_PADDING:
|
2009-03-22 16:30:49 +08:00
|
|
|
if (rb_null_event(event))
|
|
|
|
/* undefined */
|
|
|
|
return -1;
|
2009-04-24 11:27:05 +08:00
|
|
|
return event->array[0] + RB_EVNT_HDR_SIZE;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
case RINGBUF_TYPE_TIME_EXTEND:
|
|
|
|
return RB_LEN_TIME_EXTEND;
|
|
|
|
|
|
|
|
case RINGBUF_TYPE_TIME_STAMP:
|
|
|
|
return RB_LEN_TIME_STAMP;
|
|
|
|
|
|
|
|
case RINGBUF_TYPE_DATA:
|
2009-03-22 16:30:49 +08:00
|
|
|
return rb_event_data_length(event);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
/* not hit */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2010-10-08 06:18:05 +08:00
|
|
|
/*
|
|
|
|
* Return total length of time extend and data,
|
|
|
|
* or just the event length for all other events.
|
|
|
|
*/
|
|
|
|
static inline unsigned
|
|
|
|
rb_event_ts_length(struct ring_buffer_event *event)
|
|
|
|
{
|
|
|
|
unsigned len = 0;
|
|
|
|
|
2018-01-16 10:51:40 +08:00
|
|
|
if (extended_time(event)) {
|
2010-10-08 06:18:05 +08:00
|
|
|
/* time extends include the data event after it */
|
|
|
|
len = RB_LEN_TIME_EXTEND;
|
|
|
|
event = skip_time_extend(event);
|
|
|
|
}
|
|
|
|
return len + rb_event_length(event);
|
|
|
|
}
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_event_length - return the length of the event
|
|
|
|
* @event: the event to get the length of
|
2010-10-08 06:18:05 +08:00
|
|
|
*
|
|
|
|
* Returns the size of the data load of a data event.
|
|
|
|
* If the event is something other than a data event, it
|
|
|
|
* returns the size of the event itself. With the exception
|
|
|
|
* of a TIME EXTEND, where it still returns the size of the
|
|
|
|
* data load of the data event after it.
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
*/
|
|
|
|
unsigned ring_buffer_event_length(struct ring_buffer_event *event)
|
|
|
|
{
|
2010-10-08 06:18:05 +08:00
|
|
|
unsigned length;
|
|
|
|
|
2018-01-16 10:51:40 +08:00
|
|
|
if (extended_time(event))
|
2010-10-08 06:18:05 +08:00
|
|
|
event = skip_time_extend(event);
|
|
|
|
|
|
|
|
length = rb_event_length(event);
|
2009-04-24 11:27:05 +08:00
|
|
|
if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
|
2009-01-07 22:32:11 +08:00
|
|
|
return length;
|
|
|
|
length -= RB_EVNT_HDR_SIZE;
|
|
|
|
if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
|
|
|
|
length -= sizeof(event->array[0]);
|
|
|
|
return length;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_event_length);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/* inline for ring buffer fast paths */
|
2016-11-24 00:40:34 +08:00
|
|
|
static __always_inline void *
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
rb_event_data(struct ring_buffer_event *event)
|
|
|
|
{
|
2018-01-16 10:51:40 +08:00
|
|
|
if (extended_time(event))
|
2010-10-08 06:18:05 +08:00
|
|
|
event = skip_time_extend(event);
|
2009-04-24 11:27:05 +08:00
|
|
|
BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/* If length is in len field, then array[0] has the data */
|
2009-04-24 11:27:05 +08:00
|
|
|
if (event->type_len)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
return (void *)&event->array[0];
|
|
|
|
/* Otherwise length is in array[0] and array[1] has the data */
|
|
|
|
return (void *)&event->array[1];
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_event_data - return the data of the event
|
|
|
|
* @event: the event to get the data from
|
|
|
|
*/
|
|
|
|
void *ring_buffer_event_data(struct ring_buffer_event *event)
|
|
|
|
{
|
|
|
|
return rb_event_data(event);
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_event_data);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
#define for_each_buffer_cpu(buffer, cpu) \
|
2009-01-01 07:42:22 +08:00
|
|
|
for_each_cpu(cpu, buffer->cpumask)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
#define TS_SHIFT 27
|
|
|
|
#define TS_MASK ((1ULL << TS_SHIFT) - 1)
|
|
|
|
#define TS_DELTA_TEST (~TS_MASK)
|
|
|
|
|
2018-01-16 10:51:40 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_event_time_stamp - return the event's extended timestamp
|
|
|
|
* @event: the event to get the timestamp of
|
|
|
|
*
|
|
|
|
* Returns the extended timestamp associated with a data event.
|
|
|
|
* An extended time_stamp is a 64-bit timestamp represented
|
|
|
|
* internally in a special way that makes the best use of space
|
|
|
|
* contained within a ring buffer event. This function decodes
|
|
|
|
* it and maps it to a straight u64 value.
|
|
|
|
*/
|
|
|
|
u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
|
|
|
|
{
|
|
|
|
u64 ts;
|
|
|
|
|
|
|
|
ts = event->array[0];
|
|
|
|
ts <<= TS_SHIFT;
|
|
|
|
ts += event->time_delta;
|
|
|
|
|
|
|
|
return ts;
|
|
|
|
}
|
|
|
|
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
/* Flag when events were overwritten */
|
|
|
|
#define RB_MISSED_EVENTS (1 << 31)
|
2010-04-01 10:11:42 +08:00
|
|
|
/* Missed count stored at end */
|
|
|
|
#define RB_MISSED_STORED (1 << 30)
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
|
2017-12-23 09:32:35 +08:00
|
|
|
#define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
|
|
|
|
|
2008-12-03 04:34:06 +08:00
|
|
|
struct buffer_data_page {
|
2008-10-01 23:14:54 +08:00
|
|
|
u64 time_stamp; /* page time stamp */
|
2009-02-10 14:03:18 +08:00
|
|
|
local_t commit; /* write committed index */
|
2012-05-30 19:11:19 +08:00
|
|
|
unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
|
2008-12-03 04:34:06 +08:00
|
|
|
};
|
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
/*
|
|
|
|
* Note, the buffer_page list must be first. The buffer pages
|
|
|
|
* are allocated in cache lines, which means that each buffer
|
|
|
|
* page will be at the beginning of a cache line, and thus
|
|
|
|
* the least significant bits will be zero. We use this to
|
|
|
|
* add flags in the list struct pointers, to make the ring buffer
|
|
|
|
* lockless.
|
|
|
|
*/
|
2008-12-03 04:34:06 +08:00
|
|
|
struct buffer_page {
|
2009-05-02 06:44:45 +08:00
|
|
|
struct list_head list; /* list of buffer pages */
|
2008-12-03 04:34:06 +08:00
|
|
|
local_t write; /* index for next write */
|
2008-10-04 14:00:58 +08:00
|
|
|
unsigned read; /* index for next read */
|
2009-05-02 06:44:45 +08:00
|
|
|
local_t entries; /* entries on this page */
|
2010-04-01 10:11:42 +08:00
|
|
|
unsigned long real_end; /* real end of data */
|
2008-12-03 04:34:06 +08:00
|
|
|
struct buffer_data_page *page; /* Actual data page */
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
};
|
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
/*
|
|
|
|
* The buffer page counters, write and entries, must be reset
|
|
|
|
* atomically when crossing page boundaries. To synchronize this
|
|
|
|
* update, two counters are inserted into the number. One is
|
|
|
|
* the actual counter for the write position or count on the page.
|
|
|
|
*
|
|
|
|
* The other is a counter of updaters. Before an update happens
|
|
|
|
* the update partition of the counter is incremented. This will
|
|
|
|
* allow the updater to update the counter atomically.
|
|
|
|
*
|
|
|
|
* The counter is 20 bits, and the state data is 12.
|
|
|
|
*/
|
|
|
|
#define RB_WRITE_MASK 0xfffff
|
|
|
|
#define RB_WRITE_INTCNT (1 << 20)
|
|
|
|
|
2008-12-03 12:50:03 +08:00
|
|
|
static void rb_init_page(struct buffer_data_page *bpage)
|
2008-12-03 04:34:06 +08:00
|
|
|
{
|
2008-12-03 12:50:03 +08:00
|
|
|
local_set(&bpage->commit, 0);
|
2008-12-03 04:34:06 +08:00
|
|
|
}
|
|
|
|
|
2009-03-04 08:51:40 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_page_len - the size of data on the page.
|
|
|
|
* @page: The page to read
|
|
|
|
*
|
|
|
|
* Returns the amount of data on the page, including buffer page header.
|
|
|
|
*/
|
2009-03-03 13:27:49 +08:00
|
|
|
size_t ring_buffer_page_len(void *page)
|
|
|
|
{
|
2017-12-23 09:32:35 +08:00
|
|
|
struct buffer_data_page *bpage = page;
|
|
|
|
|
|
|
|
return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
|
2009-03-04 08:51:40 +08:00
|
|
|
+ BUF_PAGE_HDR_SIZE;
|
2009-03-03 13:27:49 +08:00
|
|
|
}
|
|
|
|
|
2008-09-30 11:02:40 +08:00
|
|
|
/*
|
|
|
|
* Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
|
|
|
|
* this issue out.
|
|
|
|
*/
|
2009-01-10 04:27:09 +08:00
|
|
|
static void free_buffer_page(struct buffer_page *bpage)
|
2008-09-30 11:02:40 +08:00
|
|
|
{
|
2009-01-10 04:27:09 +08:00
|
|
|
free_page((unsigned long)bpage->page);
|
2008-10-01 23:14:54 +08:00
|
|
|
kfree(bpage);
|
2008-09-30 11:02:40 +08:00
|
|
|
}
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/*
|
|
|
|
* We need to fit the time_stamp delta into 27 bits.
|
|
|
|
*/
|
|
|
|
static inline int test_time_stamp(u64 delta)
|
|
|
|
{
|
|
|
|
if (delta & TS_DELTA_TEST)
|
|
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-03-04 08:51:40 +08:00
|
|
|
#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-05-12 02:42:53 +08:00
|
|
|
/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
|
|
|
|
#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
|
|
|
|
|
2009-04-16 04:53:47 +08:00
|
|
|
int ring_buffer_print_page_header(struct trace_seq *s)
|
|
|
|
{
|
|
|
|
struct buffer_data_page field;
|
2014-11-13 00:49:00 +08:00
|
|
|
|
|
|
|
trace_seq_printf(s, "\tfield: u64 timestamp;\t"
|
|
|
|
"offset:0;\tsize:%u;\tsigned:%u;\n",
|
|
|
|
(unsigned int)sizeof(field.time_stamp),
|
|
|
|
(unsigned int)is_signed_type(u64));
|
|
|
|
|
|
|
|
trace_seq_printf(s, "\tfield: local_t commit;\t"
|
|
|
|
"offset:%u;\tsize:%u;\tsigned:%u;\n",
|
|
|
|
(unsigned int)offsetof(typeof(field), commit),
|
|
|
|
(unsigned int)sizeof(field.commit),
|
|
|
|
(unsigned int)is_signed_type(long));
|
|
|
|
|
|
|
|
trace_seq_printf(s, "\tfield: int overwrite;\t"
|
|
|
|
"offset:%u;\tsize:%u;\tsigned:%u;\n",
|
|
|
|
(unsigned int)offsetof(typeof(field), commit),
|
|
|
|
1,
|
|
|
|
(unsigned int)is_signed_type(long));
|
|
|
|
|
|
|
|
trace_seq_printf(s, "\tfield: char data;\t"
|
|
|
|
"offset:%u;\tsize:%u;\tsigned:%u;\n",
|
|
|
|
(unsigned int)offsetof(typeof(field), data),
|
|
|
|
(unsigned int)BUF_PAGE_SIZE,
|
|
|
|
(unsigned int)is_signed_type(char));
|
|
|
|
|
|
|
|
return !trace_seq_has_overflowed(s);
|
2009-04-16 04:53:47 +08:00
|
|
|
}
|
|
|
|
|
2013-03-01 08:59:17 +08:00
|
|
|
struct rb_irq_work {
|
|
|
|
struct irq_work work;
|
|
|
|
wait_queue_head_t waiters;
|
ring-buffer: Do not wake up a splice waiter when page is not full
When an application connects to the ring buffer via splice, it can only
read full pages. Splice does not work with partial pages. If there is
not enough data to fill a page, the splice command will either block
or return -EAGAIN (if set to nonblock).
Code was added where if the page is not full, to just sleep again.
The problem is, it will get woken up again on the next event. That
is, when something is written into the ring buffer, if there is a waiter
it will wake it up. The waiter would then check the buffer, see that
it still does not have enough data to fill a page and go back to sleep.
To make matters worse, when the waiter goes back to sleep, it could
cause another event, which would wake it back up again to see it
doesn't have enough data and sleep again. This produces a tremendous
overhead and fills the ring buffer with noise.
For example, recording sched_switch on an idle system for 10 seconds
produces 25,350,475 events!!!
Create another wait queue for those waiters wanting full pages.
When an event is written, it only wakes up waiters if there's a full
page of data. It does not wake up the waiter if the page is not yet
full.
After this change, recording sched_switch on an idle system for 10
seconds produces only 800 events. Getting rid of 25,349,675 useless
events (99.9969% of events!!), is something to take seriously.
Cc: stable@vger.kernel.org # 3.16+
Cc: Rabin Vincent <rabin@rab.in>
Fixes: e30f53aad220 "tracing: Do not busy wait in buffer splice"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-02-11 11:14:53 +08:00
|
|
|
wait_queue_head_t full_waiters;
|
2013-03-01 08:59:17 +08:00
|
|
|
bool waiters_pending;
|
ring-buffer: Do not wake up a splice waiter when page is not full
When an application connects to the ring buffer via splice, it can only
read full pages. Splice does not work with partial pages. If there is
not enough data to fill a page, the splice command will either block
or return -EAGAIN (if set to nonblock).
Code was added where if the page is not full, to just sleep again.
The problem is, it will get woken up again on the next event. That
is, when something is written into the ring buffer, if there is a waiter
it will wake it up. The waiter would then check the buffer, see that
it still does not have enough data to fill a page and go back to sleep.
To make matters worse, when the waiter goes back to sleep, it could
cause another event, which would wake it back up again to see it
doesn't have enough data and sleep again. This produces a tremendous
overhead and fills the ring buffer with noise.
For example, recording sched_switch on an idle system for 10 seconds
produces 25,350,475 events!!!
Create another wait queue for those waiters wanting full pages.
When an event is written, it only wakes up waiters if there's a full
page of data. It does not wake up the waiter if the page is not yet
full.
After this change, recording sched_switch on an idle system for 10
seconds produces only 800 events. Getting rid of 25,349,675 useless
events (99.9969% of events!!), is something to take seriously.
Cc: stable@vger.kernel.org # 3.16+
Cc: Rabin Vincent <rabin@rab.in>
Fixes: e30f53aad220 "tracing: Do not busy wait in buffer splice"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-02-11 11:14:53 +08:00
|
|
|
bool full_waiters_pending;
|
|
|
|
bool wakeup_full;
|
2013-03-01 08:59:17 +08:00
|
|
|
};
|
|
|
|
|
2015-05-29 05:13:14 +08:00
|
|
|
/*
|
|
|
|
* Structure to hold event state and handle nested events.
|
|
|
|
*/
|
|
|
|
struct rb_event_info {
|
|
|
|
u64 ts;
|
|
|
|
u64 delta;
|
|
|
|
unsigned long length;
|
|
|
|
struct buffer_page *tail_page;
|
|
|
|
int add_timestamp;
|
|
|
|
};
|
|
|
|
|
2015-05-29 22:32:28 +08:00
|
|
|
/*
|
|
|
|
* Used for which event context the event is in.
|
|
|
|
* NMI = 0
|
|
|
|
* IRQ = 1
|
|
|
|
* SOFTIRQ = 2
|
|
|
|
* NORMAL = 3
|
|
|
|
*
|
|
|
|
* See trace_recursive_lock() comment below for more details.
|
|
|
|
*/
|
|
|
|
enum {
|
|
|
|
RB_CTX_NMI,
|
|
|
|
RB_CTX_IRQ,
|
|
|
|
RB_CTX_SOFTIRQ,
|
|
|
|
RB_CTX_NORMAL,
|
|
|
|
RB_CTX_MAX
|
|
|
|
};
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/*
|
|
|
|
* head_page == tail_page && head == tail then buffer is empty.
|
|
|
|
*/
|
|
|
|
struct ring_buffer_per_cpu {
|
|
|
|
int cpu;
|
2010-03-25 19:27:36 +08:00
|
|
|
atomic_t record_disabled;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
struct ring_buffer *buffer;
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spinlock_t reader_lock; /* serialize readers */
|
2009-12-03 02:49:50 +08:00
|
|
|
arch_spinlock_t lock;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
struct lock_class_key lock_key;
|
2017-05-01 21:35:09 +08:00
|
|
|
struct buffer_data_page *free_page;
|
2016-05-12 23:01:24 +08:00
|
|
|
unsigned long nr_pages;
|
2015-05-27 22:27:47 +08:00
|
|
|
unsigned int current_context;
|
2009-03-31 03:32:01 +08:00
|
|
|
struct list_head *pages;
|
2008-10-04 14:00:58 +08:00
|
|
|
struct buffer_page *head_page; /* read from head */
|
|
|
|
struct buffer_page *tail_page; /* write to tail */
|
2009-02-10 14:03:18 +08:00
|
|
|
struct buffer_page *commit_page; /* committed pages */
|
2008-10-01 12:29:53 +08:00
|
|
|
struct buffer_page *reader_page;
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
unsigned long lost_events;
|
|
|
|
unsigned long last_overrun;
|
2018-02-08 06:26:32 +08:00
|
|
|
unsigned long nest;
|
2011-08-17 05:46:16 +08:00
|
|
|
local_t entries_bytes;
|
2009-05-01 08:49:44 +08:00
|
|
|
local_t entries;
|
2011-07-16 05:23:58 +08:00
|
|
|
local_t overrun;
|
|
|
|
local_t commit_overrun;
|
|
|
|
local_t dropped_events;
|
2009-06-17 00:37:57 +08:00
|
|
|
local_t committing;
|
|
|
|
local_t commits;
|
2009-03-27 23:00:29 +08:00
|
|
|
unsigned long read;
|
2011-08-17 05:46:16 +08:00
|
|
|
unsigned long read_bytes;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
u64 write_stamp;
|
|
|
|
u64 read_stamp;
|
2012-02-03 04:00:41 +08:00
|
|
|
/* ring buffer pages to update, > 0 to add, < 0 to remove */
|
2016-05-12 23:01:24 +08:00
|
|
|
long nr_pages_to_update;
|
2012-02-03 04:00:41 +08:00
|
|
|
struct list_head new_pages; /* new pages to add */
|
2012-05-04 09:59:50 +08:00
|
|
|
struct work_struct update_pages_work;
|
2012-05-19 04:29:51 +08:00
|
|
|
struct completion update_done;
|
2013-03-01 08:59:17 +08:00
|
|
|
|
|
|
|
struct rb_irq_work irq_work;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
struct ring_buffer {
|
|
|
|
unsigned flags;
|
|
|
|
int cpus;
|
|
|
|
atomic_t record_disabled;
|
2012-05-04 09:59:50 +08:00
|
|
|
atomic_t resize_disabled;
|
2009-02-10 03:04:06 +08:00
|
|
|
cpumask_var_t cpumask;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-06-09 00:18:39 +08:00
|
|
|
struct lock_class_key *reader_lock_key;
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
struct mutex mutex;
|
|
|
|
|
|
|
|
struct ring_buffer_per_cpu **buffers;
|
2009-03-12 10:00:13 +08:00
|
|
|
|
2016-11-27 07:13:34 +08:00
|
|
|
struct hlist_node node;
|
2009-03-18 05:22:06 +08:00
|
|
|
u64 (*clock)(void);
|
2013-03-01 08:59:17 +08:00
|
|
|
|
|
|
|
struct rb_irq_work irq_work;
|
2018-01-16 10:51:39 +08:00
|
|
|
bool time_stamp_abs;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
struct ring_buffer_iter {
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
unsigned long head;
|
|
|
|
struct buffer_page *head_page;
|
2010-01-26 04:17:47 +08:00
|
|
|
struct buffer_page *cache_reader_page;
|
|
|
|
unsigned long cache_read;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
u64 read_stamp;
|
|
|
|
};
|
|
|
|
|
2013-03-01 08:59:17 +08:00
|
|
|
/*
|
|
|
|
* rb_wake_up_waiters - wake up tasks waiting for ring buffer input
|
|
|
|
*
|
|
|
|
* Schedules a delayed work to wake up any task that is blocked on the
|
|
|
|
* ring buffer waiters queue.
|
|
|
|
*/
|
|
|
|
static void rb_wake_up_waiters(struct irq_work *work)
|
|
|
|
{
|
|
|
|
struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
|
|
|
|
|
|
|
|
wake_up_all(&rbwork->waiters);
|
ring-buffer: Do not wake up a splice waiter when page is not full
When an application connects to the ring buffer via splice, it can only
read full pages. Splice does not work with partial pages. If there is
not enough data to fill a page, the splice command will either block
or return -EAGAIN (if set to nonblock).
Code was added where if the page is not full, to just sleep again.
The problem is, it will get woken up again on the next event. That
is, when something is written into the ring buffer, if there is a waiter
it will wake it up. The waiter would then check the buffer, see that
it still does not have enough data to fill a page and go back to sleep.
To make matters worse, when the waiter goes back to sleep, it could
cause another event, which would wake it back up again to see it
doesn't have enough data and sleep again. This produces a tremendous
overhead and fills the ring buffer with noise.
For example, recording sched_switch on an idle system for 10 seconds
produces 25,350,475 events!!!
Create another wait queue for those waiters wanting full pages.
When an event is written, it only wakes up waiters if there's a full
page of data. It does not wake up the waiter if the page is not yet
full.
After this change, recording sched_switch on an idle system for 10
seconds produces only 800 events. Getting rid of 25,349,675 useless
events (99.9969% of events!!), is something to take seriously.
Cc: stable@vger.kernel.org # 3.16+
Cc: Rabin Vincent <rabin@rab.in>
Fixes: e30f53aad220 "tracing: Do not busy wait in buffer splice"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-02-11 11:14:53 +08:00
|
|
|
if (rbwork->wakeup_full) {
|
|
|
|
rbwork->wakeup_full = false;
|
|
|
|
wake_up_all(&rbwork->full_waiters);
|
|
|
|
}
|
2013-03-01 08:59:17 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_wait - wait for input to the ring buffer
|
|
|
|
* @buffer: buffer to wait on
|
|
|
|
* @cpu: the cpu buffer to wait on
|
2014-11-11 02:46:34 +08:00
|
|
|
* @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
|
2013-03-01 08:59:17 +08:00
|
|
|
*
|
|
|
|
* If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
|
|
|
|
* as data is added to any of the @buffer's cpu buffers. Otherwise
|
|
|
|
* it will wait for data to be added to a specific cpu buffer.
|
|
|
|
*/
|
2014-11-11 02:46:34 +08:00
|
|
|
int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
|
2013-03-01 08:59:17 +08:00
|
|
|
{
|
2014-11-11 02:46:34 +08:00
|
|
|
struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
|
2013-03-01 08:59:17 +08:00
|
|
|
DEFINE_WAIT(wait);
|
|
|
|
struct rb_irq_work *work;
|
2014-11-11 02:46:34 +08:00
|
|
|
int ret = 0;
|
2013-03-01 08:59:17 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Depending on what the caller is waiting for, either any
|
|
|
|
* data in any cpu buffer, or a specific buffer, put the
|
|
|
|
* caller on the appropriate wait queue.
|
|
|
|
*/
|
ring-buffer: Do not wake up a splice waiter when page is not full
When an application connects to the ring buffer via splice, it can only
read full pages. Splice does not work with partial pages. If there is
not enough data to fill a page, the splice command will either block
or return -EAGAIN (if set to nonblock).
Code was added where if the page is not full, to just sleep again.
The problem is, it will get woken up again on the next event. That
is, when something is written into the ring buffer, if there is a waiter
it will wake it up. The waiter would then check the buffer, see that
it still does not have enough data to fill a page and go back to sleep.
To make matters worse, when the waiter goes back to sleep, it could
cause another event, which would wake it back up again to see it
doesn't have enough data and sleep again. This produces a tremendous
overhead and fills the ring buffer with noise.
For example, recording sched_switch on an idle system for 10 seconds
produces 25,350,475 events!!!
Create another wait queue for those waiters wanting full pages.
When an event is written, it only wakes up waiters if there's a full
page of data. It does not wake up the waiter if the page is not yet
full.
After this change, recording sched_switch on an idle system for 10
seconds produces only 800 events. Getting rid of 25,349,675 useless
events (99.9969% of events!!), is something to take seriously.
Cc: stable@vger.kernel.org # 3.16+
Cc: Rabin Vincent <rabin@rab.in>
Fixes: e30f53aad220 "tracing: Do not busy wait in buffer splice"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-02-11 11:14:53 +08:00
|
|
|
if (cpu == RING_BUFFER_ALL_CPUS) {
|
2013-03-01 08:59:17 +08:00
|
|
|
work = &buffer->irq_work;
|
ring-buffer: Do not wake up a splice waiter when page is not full
When an application connects to the ring buffer via splice, it can only
read full pages. Splice does not work with partial pages. If there is
not enough data to fill a page, the splice command will either block
or return -EAGAIN (if set to nonblock).
Code was added where if the page is not full, to just sleep again.
The problem is, it will get woken up again on the next event. That
is, when something is written into the ring buffer, if there is a waiter
it will wake it up. The waiter would then check the buffer, see that
it still does not have enough data to fill a page and go back to sleep.
To make matters worse, when the waiter goes back to sleep, it could
cause another event, which would wake it back up again to see it
doesn't have enough data and sleep again. This produces a tremendous
overhead and fills the ring buffer with noise.
For example, recording sched_switch on an idle system for 10 seconds
produces 25,350,475 events!!!
Create another wait queue for those waiters wanting full pages.
When an event is written, it only wakes up waiters if there's a full
page of data. It does not wake up the waiter if the page is not yet
full.
After this change, recording sched_switch on an idle system for 10
seconds produces only 800 events. Getting rid of 25,349,675 useless
events (99.9969% of events!!), is something to take seriously.
Cc: stable@vger.kernel.org # 3.16+
Cc: Rabin Vincent <rabin@rab.in>
Fixes: e30f53aad220 "tracing: Do not busy wait in buffer splice"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-02-11 11:14:53 +08:00
|
|
|
/* Full only makes sense on per cpu reads */
|
|
|
|
full = false;
|
|
|
|
} else {
|
2014-06-10 21:46:00 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
|
|
|
return -ENODEV;
|
2013-03-01 08:59:17 +08:00
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
work = &cpu_buffer->irq_work;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-11-11 02:46:34 +08:00
|
|
|
while (true) {
|
ring-buffer: Do not wake up a splice waiter when page is not full
When an application connects to the ring buffer via splice, it can only
read full pages. Splice does not work with partial pages. If there is
not enough data to fill a page, the splice command will either block
or return -EAGAIN (if set to nonblock).
Code was added where if the page is not full, to just sleep again.
The problem is, it will get woken up again on the next event. That
is, when something is written into the ring buffer, if there is a waiter
it will wake it up. The waiter would then check the buffer, see that
it still does not have enough data to fill a page and go back to sleep.
To make matters worse, when the waiter goes back to sleep, it could
cause another event, which would wake it back up again to see it
doesn't have enough data and sleep again. This produces a tremendous
overhead and fills the ring buffer with noise.
For example, recording sched_switch on an idle system for 10 seconds
produces 25,350,475 events!!!
Create another wait queue for those waiters wanting full pages.
When an event is written, it only wakes up waiters if there's a full
page of data. It does not wake up the waiter if the page is not yet
full.
After this change, recording sched_switch on an idle system for 10
seconds produces only 800 events. Getting rid of 25,349,675 useless
events (99.9969% of events!!), is something to take seriously.
Cc: stable@vger.kernel.org # 3.16+
Cc: Rabin Vincent <rabin@rab.in>
Fixes: e30f53aad220 "tracing: Do not busy wait in buffer splice"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-02-11 11:14:53 +08:00
|
|
|
if (full)
|
|
|
|
prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
|
|
|
|
else
|
|
|
|
prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
|
2014-11-11 02:46:34 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The events can happen in critical sections where
|
|
|
|
* checking a work queue can cause deadlocks.
|
|
|
|
* After adding a task to the queue, this flag is set
|
|
|
|
* only to notify events to try to wake up the queue
|
|
|
|
* using irq_work.
|
|
|
|
*
|
|
|
|
* We don't clear it even if the buffer is no longer
|
|
|
|
* empty. The flag only causes the next event to run
|
|
|
|
* irq_work to do the work queue wake up. The worse
|
|
|
|
* that can happen if we race with !trace_empty() is that
|
|
|
|
* an event will cause an irq_work to try to wake up
|
|
|
|
* an empty queue.
|
|
|
|
*
|
|
|
|
* There's no reason to protect this flag either, as
|
|
|
|
* the work queue and irq_work logic will do the necessary
|
|
|
|
* synchronization for the wake ups. The only thing
|
|
|
|
* that is necessary is that the wake up happens after
|
|
|
|
* a task has been queued. It's OK for spurious wake ups.
|
|
|
|
*/
|
ring-buffer: Do not wake up a splice waiter when page is not full
When an application connects to the ring buffer via splice, it can only
read full pages. Splice does not work with partial pages. If there is
not enough data to fill a page, the splice command will either block
or return -EAGAIN (if set to nonblock).
Code was added where if the page is not full, to just sleep again.
The problem is, it will get woken up again on the next event. That
is, when something is written into the ring buffer, if there is a waiter
it will wake it up. The waiter would then check the buffer, see that
it still does not have enough data to fill a page and go back to sleep.
To make matters worse, when the waiter goes back to sleep, it could
cause another event, which would wake it back up again to see it
doesn't have enough data and sleep again. This produces a tremendous
overhead and fills the ring buffer with noise.
For example, recording sched_switch on an idle system for 10 seconds
produces 25,350,475 events!!!
Create another wait queue for those waiters wanting full pages.
When an event is written, it only wakes up waiters if there's a full
page of data. It does not wake up the waiter if the page is not yet
full.
After this change, recording sched_switch on an idle system for 10
seconds produces only 800 events. Getting rid of 25,349,675 useless
events (99.9969% of events!!), is something to take seriously.
Cc: stable@vger.kernel.org # 3.16+
Cc: Rabin Vincent <rabin@rab.in>
Fixes: e30f53aad220 "tracing: Do not busy wait in buffer splice"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-02-11 11:14:53 +08:00
|
|
|
if (full)
|
|
|
|
work->full_waiters_pending = true;
|
|
|
|
else
|
|
|
|
work->waiters_pending = true;
|
2014-11-11 02:46:34 +08:00
|
|
|
|
|
|
|
if (signal_pending(current)) {
|
|
|
|
ret = -EINTR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (cpu != RING_BUFFER_ALL_CPUS &&
|
|
|
|
!ring_buffer_empty_cpu(buffer, cpu)) {
|
|
|
|
unsigned long flags;
|
|
|
|
bool pagebusy;
|
|
|
|
|
|
|
|
if (!full)
|
|
|
|
break;
|
|
|
|
|
|
|
|
raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
|
|
|
|
pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
|
|
|
|
raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
|
|
|
|
|
|
|
|
if (!pagebusy)
|
|
|
|
break;
|
|
|
|
}
|
2013-03-01 08:59:17 +08:00
|
|
|
|
|
|
|
schedule();
|
2014-11-11 02:46:34 +08:00
|
|
|
}
|
2013-03-01 08:59:17 +08:00
|
|
|
|
ring-buffer: Do not wake up a splice waiter when page is not full
When an application connects to the ring buffer via splice, it can only
read full pages. Splice does not work with partial pages. If there is
not enough data to fill a page, the splice command will either block
or return -EAGAIN (if set to nonblock).
Code was added where if the page is not full, to just sleep again.
The problem is, it will get woken up again on the next event. That
is, when something is written into the ring buffer, if there is a waiter
it will wake it up. The waiter would then check the buffer, see that
it still does not have enough data to fill a page and go back to sleep.
To make matters worse, when the waiter goes back to sleep, it could
cause another event, which would wake it back up again to see it
doesn't have enough data and sleep again. This produces a tremendous
overhead and fills the ring buffer with noise.
For example, recording sched_switch on an idle system for 10 seconds
produces 25,350,475 events!!!
Create another wait queue for those waiters wanting full pages.
When an event is written, it only wakes up waiters if there's a full
page of data. It does not wake up the waiter if the page is not yet
full.
After this change, recording sched_switch on an idle system for 10
seconds produces only 800 events. Getting rid of 25,349,675 useless
events (99.9969% of events!!), is something to take seriously.
Cc: stable@vger.kernel.org # 3.16+
Cc: Rabin Vincent <rabin@rab.in>
Fixes: e30f53aad220 "tracing: Do not busy wait in buffer splice"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-02-11 11:14:53 +08:00
|
|
|
if (full)
|
|
|
|
finish_wait(&work->full_waiters, &wait);
|
|
|
|
else
|
|
|
|
finish_wait(&work->waiters, &wait);
|
2014-11-11 02:46:34 +08:00
|
|
|
|
|
|
|
return ret;
|
2013-03-01 08:59:17 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_poll_wait - poll on buffer input
|
|
|
|
* @buffer: buffer to wait on
|
|
|
|
* @cpu: the cpu buffer to wait on
|
|
|
|
* @filp: the file descriptor
|
|
|
|
* @poll_table: The poll descriptor
|
|
|
|
*
|
|
|
|
* If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
|
|
|
|
* as data is added to any of the @buffer's cpu buffers. Otherwise
|
|
|
|
* it will wait for data to be added to a specific cpu buffer.
|
|
|
|
*
|
2018-02-12 06:34:03 +08:00
|
|
|
* Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
|
2013-03-01 08:59:17 +08:00
|
|
|
* zero otherwise.
|
|
|
|
*/
|
2017-07-17 10:11:54 +08:00
|
|
|
__poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
|
2013-03-01 08:59:17 +08:00
|
|
|
struct file *filp, poll_table *poll_table)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
struct rb_irq_work *work;
|
|
|
|
|
|
|
|
if (cpu == RING_BUFFER_ALL_CPUS)
|
|
|
|
work = &buffer->irq_work;
|
|
|
|
else {
|
2013-05-24 02:21:36 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
|
|
|
return -EINVAL;
|
|
|
|
|
2013-03-01 08:59:17 +08:00
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
work = &cpu_buffer->irq_work;
|
|
|
|
}
|
|
|
|
|
|
|
|
poll_wait(filp, &work->waiters, poll_table);
|
2014-08-26 01:59:41 +08:00
|
|
|
work->waiters_pending = true;
|
|
|
|
/*
|
|
|
|
* There's a tight race between setting the waiters_pending and
|
|
|
|
* checking if the ring buffer is empty. Once the waiters_pending bit
|
|
|
|
* is set, the next event will wake the task up, but we can get stuck
|
|
|
|
* if there's only a single event in.
|
|
|
|
*
|
|
|
|
* FIXME: Ideally, we need a memory barrier on the writer side as well,
|
|
|
|
* but adding a memory barrier to all events will cause too much of a
|
|
|
|
* performance hit in the fast path. We only need a memory barrier when
|
|
|
|
* the buffer goes from empty to having content. But as this race is
|
|
|
|
* extremely small, and it's not a problem if another event comes in, we
|
|
|
|
* will fix it later.
|
|
|
|
*/
|
|
|
|
smp_mb();
|
2013-03-01 08:59:17 +08:00
|
|
|
|
|
|
|
if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
|
|
|
|
(cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
|
2018-02-12 06:34:03 +08:00
|
|
|
return EPOLLIN | EPOLLRDNORM;
|
2013-03-01 08:59:17 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-11-11 12:07:30 +08:00
|
|
|
/* buffer may be either ring_buffer or ring_buffer_per_cpu */
|
2009-09-04 07:53:46 +08:00
|
|
|
#define RB_WARN_ON(b, cond) \
|
|
|
|
({ \
|
|
|
|
int _____ret = unlikely(cond); \
|
|
|
|
if (_____ret) { \
|
|
|
|
if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
|
|
|
|
struct ring_buffer_per_cpu *__b = \
|
|
|
|
(void *)b; \
|
|
|
|
atomic_inc(&__b->buffer->record_disabled); \
|
|
|
|
} else \
|
|
|
|
atomic_inc(&b->record_disabled); \
|
|
|
|
WARN_ON(1); \
|
|
|
|
} \
|
|
|
|
_____ret; \
|
2008-11-12 04:28:41 +08:00
|
|
|
})
|
2008-11-11 12:07:30 +08:00
|
|
|
|
2009-03-18 05:22:06 +08:00
|
|
|
/* Up this if you want to test the TIME_EXTENTS and normalization */
|
|
|
|
#define DEBUG_SHIFT 0
|
|
|
|
|
2009-10-24 07:36:19 +08:00
|
|
|
static inline u64 rb_time_stamp(struct ring_buffer *buffer)
|
2009-05-12 04:28:23 +08:00
|
|
|
{
|
|
|
|
/* shift to debug/test normalization and TIME_EXTENTS */
|
|
|
|
return buffer->clock() << DEBUG_SHIFT;
|
|
|
|
}
|
|
|
|
|
2009-03-18 05:22:06 +08:00
|
|
|
u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
|
|
|
|
{
|
|
|
|
u64 time;
|
|
|
|
|
|
|
|
preempt_disable_notrace();
|
2009-10-24 07:36:19 +08:00
|
|
|
time = rb_time_stamp(buffer);
|
2009-03-18 05:22:06 +08:00
|
|
|
preempt_enable_no_resched_notrace();
|
|
|
|
|
|
|
|
return time;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
|
|
|
|
|
|
|
|
void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
|
|
|
|
int cpu, u64 *ts)
|
|
|
|
{
|
|
|
|
/* Just stupid testing the normalize function and deltas */
|
|
|
|
*ts >>= DEBUG_SHIFT;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
|
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
/*
|
|
|
|
* Making the ring buffer lockless makes things tricky.
|
|
|
|
* Although writes only happen on the CPU that they are on,
|
|
|
|
* and they only need to worry about interrupts. Reads can
|
|
|
|
* happen on any CPU.
|
|
|
|
*
|
|
|
|
* The reader page is always off the ring buffer, but when the
|
|
|
|
* reader finishes with a page, it needs to swap its page with
|
|
|
|
* a new one from the buffer. The reader needs to take from
|
|
|
|
* the head (writes go to the tail). But if a writer is in overwrite
|
|
|
|
* mode and wraps, it must push the head page forward.
|
|
|
|
*
|
|
|
|
* Here lies the problem.
|
|
|
|
*
|
|
|
|
* The reader must be careful to replace only the head page, and
|
|
|
|
* not another one. As described at the top of the file in the
|
|
|
|
* ASCII art, the reader sets its old page to point to the next
|
|
|
|
* page after head. It then sets the page after head to point to
|
|
|
|
* the old reader page. But if the writer moves the head page
|
|
|
|
* during this operation, the reader could end up with the tail.
|
|
|
|
*
|
|
|
|
* We use cmpxchg to help prevent this race. We also do something
|
|
|
|
* special with the page before head. We set the LSB to 1.
|
|
|
|
*
|
|
|
|
* When the writer must push the page forward, it will clear the
|
|
|
|
* bit that points to the head page, move the head, and then set
|
|
|
|
* the bit that points to the new head page.
|
|
|
|
*
|
|
|
|
* We also don't want an interrupt coming in and moving the head
|
|
|
|
* page on another writer. Thus we use the second LSB to catch
|
|
|
|
* that too. Thus:
|
|
|
|
*
|
|
|
|
* head->list->prev->next bit 1 bit 0
|
|
|
|
* ------- -------
|
|
|
|
* Normal page 0 0
|
|
|
|
* Points to head page 0 1
|
|
|
|
* New head page 1 0
|
|
|
|
*
|
|
|
|
* Note we can not trust the prev pointer of the head page, because:
|
|
|
|
*
|
|
|
|
* +----+ +-----+ +-----+
|
|
|
|
* | |------>| T |---X--->| N |
|
|
|
|
* | |<------| | | |
|
|
|
|
* +----+ +-----+ +-----+
|
|
|
|
* ^ ^ |
|
|
|
|
* | +-----+ | |
|
|
|
|
* +----------| R |----------+ |
|
|
|
|
* | |<-----------+
|
|
|
|
* +-----+
|
|
|
|
*
|
|
|
|
* Key: ---X--> HEAD flag set in pointer
|
|
|
|
* T Tail page
|
|
|
|
* R Reader page
|
|
|
|
* N Next page
|
|
|
|
*
|
|
|
|
* (see __rb_reserve_next() to see where this happens)
|
|
|
|
*
|
|
|
|
* What the above shows is that the reader just swapped out
|
|
|
|
* the reader page with a page in the buffer, but before it
|
|
|
|
* could make the new header point back to the new page added
|
|
|
|
* it was preempted by a writer. The writer moved forward onto
|
|
|
|
* the new page added by the reader and is about to move forward
|
|
|
|
* again.
|
|
|
|
*
|
|
|
|
* You can see, it is legitimate for the previous pointer of
|
|
|
|
* the head (or any page) not to point back to itself. But only
|
2018-05-16 23:17:06 +08:00
|
|
|
* temporarily.
|
2009-03-27 23:00:29 +08:00
|
|
|
*/
|
|
|
|
|
|
|
|
#define RB_PAGE_NORMAL 0UL
|
|
|
|
#define RB_PAGE_HEAD 1UL
|
|
|
|
#define RB_PAGE_UPDATE 2UL
|
|
|
|
|
|
|
|
|
|
|
|
#define RB_FLAG_MASK 3UL
|
|
|
|
|
|
|
|
/* PAGE_MOVED is not part of the mask */
|
|
|
|
#define RB_PAGE_MOVED 4UL
|
|
|
|
|
|
|
|
/*
|
|
|
|
* rb_list_head - remove any bit
|
|
|
|
*/
|
|
|
|
static struct list_head *rb_list_head(struct list_head *list)
|
|
|
|
{
|
|
|
|
unsigned long val = (unsigned long)list;
|
|
|
|
|
|
|
|
return (struct list_head *)(val & ~RB_FLAG_MASK);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2009-10-24 07:36:19 +08:00
|
|
|
* rb_is_head_page - test if the given page is the head page
|
2009-03-27 23:00:29 +08:00
|
|
|
*
|
|
|
|
* Because the reader may move the head_page pointer, we can
|
|
|
|
* not trust what the head page is (it may be pointing to
|
|
|
|
* the reader page). But if the next page is a header page,
|
|
|
|
* its flags will be non zero.
|
|
|
|
*/
|
2011-01-17 07:09:38 +08:00
|
|
|
static inline int
|
2009-03-27 23:00:29 +08:00
|
|
|
rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct buffer_page *page, struct list_head *list)
|
|
|
|
{
|
|
|
|
unsigned long val;
|
|
|
|
|
|
|
|
val = (unsigned long)list->next;
|
|
|
|
|
|
|
|
if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
|
|
|
|
return RB_PAGE_MOVED;
|
|
|
|
|
|
|
|
return val & RB_FLAG_MASK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* rb_is_reader_page
|
|
|
|
*
|
|
|
|
* The unique thing about the reader page, is that, if the
|
|
|
|
* writer is ever on it, the previous pointer never points
|
|
|
|
* back to the reader page.
|
|
|
|
*/
|
2015-09-29 22:43:31 +08:00
|
|
|
static bool rb_is_reader_page(struct buffer_page *page)
|
2009-03-27 23:00:29 +08:00
|
|
|
{
|
|
|
|
struct list_head *list = page->list.prev;
|
|
|
|
|
|
|
|
return rb_list_head(list->next) != &page->list;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* rb_set_list_to_head - set a list_head to be pointing to head.
|
|
|
|
*/
|
|
|
|
static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct list_head *list)
|
|
|
|
{
|
|
|
|
unsigned long *ptr;
|
|
|
|
|
|
|
|
ptr = (unsigned long *)&list->next;
|
|
|
|
*ptr |= RB_PAGE_HEAD;
|
|
|
|
*ptr &= ~RB_PAGE_UPDATE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* rb_head_page_activate - sets up head page
|
|
|
|
*/
|
|
|
|
static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
|
|
|
struct buffer_page *head;
|
|
|
|
|
|
|
|
head = cpu_buffer->head_page;
|
|
|
|
if (!head)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the previous list pointer to have the HEAD flag.
|
|
|
|
*/
|
|
|
|
rb_set_list_to_head(cpu_buffer, head->list.prev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void rb_list_head_clear(struct list_head *list)
|
|
|
|
{
|
|
|
|
unsigned long *ptr = (unsigned long *)&list->next;
|
|
|
|
|
|
|
|
*ptr &= ~RB_FLAG_MASK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2018-05-16 23:17:06 +08:00
|
|
|
* rb_head_page_deactivate - clears head page ptr (for free list)
|
2009-03-27 23:00:29 +08:00
|
|
|
*/
|
|
|
|
static void
|
|
|
|
rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
|
|
|
struct list_head *hd;
|
|
|
|
|
|
|
|
/* Go through the whole list and clear any pointers found. */
|
|
|
|
rb_list_head_clear(cpu_buffer->pages);
|
|
|
|
|
|
|
|
list_for_each(hd, cpu_buffer->pages)
|
|
|
|
rb_list_head_clear(hd);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct buffer_page *head,
|
|
|
|
struct buffer_page *prev,
|
|
|
|
int old_flag, int new_flag)
|
|
|
|
{
|
|
|
|
struct list_head *list;
|
|
|
|
unsigned long val = (unsigned long)&head->list;
|
|
|
|
unsigned long ret;
|
|
|
|
|
|
|
|
list = &prev->list;
|
|
|
|
|
|
|
|
val &= ~RB_FLAG_MASK;
|
|
|
|
|
2009-09-14 21:31:35 +08:00
|
|
|
ret = cmpxchg((unsigned long *)&list->next,
|
|
|
|
val | old_flag, val | new_flag);
|
2009-03-27 23:00:29 +08:00
|
|
|
|
|
|
|
/* check if the reader took the page */
|
|
|
|
if ((ret & ~RB_FLAG_MASK) != val)
|
|
|
|
return RB_PAGE_MOVED;
|
|
|
|
|
|
|
|
return ret & RB_FLAG_MASK;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct buffer_page *head,
|
|
|
|
struct buffer_page *prev,
|
|
|
|
int old_flag)
|
|
|
|
{
|
|
|
|
return rb_head_page_set(cpu_buffer, head, prev,
|
|
|
|
old_flag, RB_PAGE_UPDATE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct buffer_page *head,
|
|
|
|
struct buffer_page *prev,
|
|
|
|
int old_flag)
|
|
|
|
{
|
|
|
|
return rb_head_page_set(cpu_buffer, head, prev,
|
|
|
|
old_flag, RB_PAGE_HEAD);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct buffer_page *head,
|
|
|
|
struct buffer_page *prev,
|
|
|
|
int old_flag)
|
|
|
|
{
|
|
|
|
return rb_head_page_set(cpu_buffer, head, prev,
|
|
|
|
old_flag, RB_PAGE_NORMAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct buffer_page **bpage)
|
|
|
|
{
|
|
|
|
struct list_head *p = rb_list_head((*bpage)->list.next);
|
|
|
|
|
|
|
|
*bpage = list_entry(p, struct buffer_page, list);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct buffer_page *
|
|
|
|
rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
|
|
|
struct buffer_page *head;
|
|
|
|
struct buffer_page *page;
|
|
|
|
struct list_head *list;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/* sanity check */
|
|
|
|
list = cpu_buffer->pages;
|
|
|
|
if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
page = head = cpu_buffer->head_page;
|
|
|
|
/*
|
|
|
|
* It is possible that the writer moves the header behind
|
|
|
|
* where we started, and we miss in one loop.
|
|
|
|
* A second loop should grab the header, but we'll do
|
|
|
|
* three loops just because I'm paranoid.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
|
|
do {
|
|
|
|
if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
|
|
|
|
cpu_buffer->head_page = page;
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
rb_inc_page(cpu_buffer, &page);
|
|
|
|
} while (page != head);
|
|
|
|
}
|
|
|
|
|
|
|
|
RB_WARN_ON(cpu_buffer, 1);
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int rb_head_page_replace(struct buffer_page *old,
|
|
|
|
struct buffer_page *new)
|
|
|
|
{
|
|
|
|
unsigned long *ptr = (unsigned long *)&old->list.prev->next;
|
|
|
|
unsigned long val;
|
|
|
|
unsigned long ret;
|
|
|
|
|
|
|
|
val = *ptr & ~RB_FLAG_MASK;
|
|
|
|
val |= RB_PAGE_HEAD;
|
|
|
|
|
2009-09-14 21:31:35 +08:00
|
|
|
ret = cmpxchg(ptr, val, (unsigned long)&new->list);
|
2009-03-27 23:00:29 +08:00
|
|
|
|
|
|
|
return ret == val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* rb_tail_page_update - move the tail page forward
|
|
|
|
*/
|
2015-11-18 04:15:19 +08:00
|
|
|
static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
|
2009-03-27 23:00:29 +08:00
|
|
|
struct buffer_page *tail_page,
|
|
|
|
struct buffer_page *next_page)
|
|
|
|
{
|
|
|
|
unsigned long old_entries;
|
|
|
|
unsigned long old_write;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The tail page now needs to be moved forward.
|
|
|
|
*
|
|
|
|
* We need to reset the tail page, but without messing
|
|
|
|
* with possible erasing of data brought in by interrupts
|
|
|
|
* that have moved the tail page and are currently on it.
|
|
|
|
*
|
|
|
|
* We add a counter to the write field to denote this.
|
|
|
|
*/
|
|
|
|
old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
|
|
|
|
old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Just make sure we have seen our old_write and synchronize
|
|
|
|
* with any interrupts that come in.
|
|
|
|
*/
|
|
|
|
barrier();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the tail page is still the same as what we think
|
|
|
|
* it is, then it is up to us to update the tail
|
|
|
|
* pointer.
|
|
|
|
*/
|
2015-11-18 03:03:11 +08:00
|
|
|
if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
|
2009-03-27 23:00:29 +08:00
|
|
|
/* Zero the write counter */
|
|
|
|
unsigned long val = old_write & ~RB_WRITE_MASK;
|
|
|
|
unsigned long eval = old_entries & ~RB_WRITE_MASK;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This will only succeed if an interrupt did
|
|
|
|
* not come in and change it. In which case, we
|
|
|
|
* do not want to modify it.
|
2009-07-15 16:27:30 +08:00
|
|
|
*
|
|
|
|
* We add (void) to let the compiler know that we do not care
|
|
|
|
* about the return value of these functions. We use the
|
|
|
|
* cmpxchg to only update if an interrupt did not already
|
|
|
|
* do it for us. If the cmpxchg fails, we don't care.
|
2009-03-27 23:00:29 +08:00
|
|
|
*/
|
2009-07-15 16:27:30 +08:00
|
|
|
(void)local_cmpxchg(&next_page->write, old_write, val);
|
|
|
|
(void)local_cmpxchg(&next_page->entries, old_entries, eval);
|
2009-03-27 23:00:29 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* No need to worry about races with clearing out the commit.
|
|
|
|
* it only can increment when a commit takes place. But that
|
|
|
|
* only happens in the outer most nested commit.
|
|
|
|
*/
|
|
|
|
local_set(&next_page->page->commit, 0);
|
|
|
|
|
2015-11-18 04:15:19 +08:00
|
|
|
/* Again, either we update tail_page or an interrupt does */
|
|
|
|
(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
|
2009-03-27 23:00:29 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct buffer_page *bpage)
|
|
|
|
{
|
|
|
|
unsigned long val = (unsigned long)bpage;
|
|
|
|
|
|
|
|
if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* rb_check_list - make sure a pointer to a list has the last bits zero
|
|
|
|
*/
|
|
|
|
static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct list_head *list)
|
|
|
|
{
|
|
|
|
if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
|
|
|
|
return 1;
|
|
|
|
if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
|
|
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/**
|
2013-07-15 16:32:50 +08:00
|
|
|
* rb_check_pages - integrity check of buffer pages
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
* @cpu_buffer: CPU buffer with pages to test
|
|
|
|
*
|
2009-02-10 14:03:18 +08:00
|
|
|
* As a safety measure we check to make sure the data pages have not
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
* been corrupted.
|
|
|
|
*/
|
|
|
|
static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
2009-03-31 03:32:01 +08:00
|
|
|
struct list_head *head = cpu_buffer->pages;
|
2008-12-03 12:50:03 +08:00
|
|
|
struct buffer_page *bpage, *tmp;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2012-05-17 07:46:32 +08:00
|
|
|
/* Reset the head page if it exists */
|
|
|
|
if (cpu_buffer->head_page)
|
|
|
|
rb_set_head_page(cpu_buffer);
|
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
rb_head_page_deactivate(cpu_buffer);
|
|
|
|
|
2008-11-12 04:28:41 +08:00
|
|
|
if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
|
|
|
|
return -1;
|
|
|
|
if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
|
|
|
|
return -1;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
if (rb_check_list(cpu_buffer, head))
|
|
|
|
return -1;
|
|
|
|
|
2008-12-03 12:50:03 +08:00
|
|
|
list_for_each_entry_safe(bpage, tmp, head, list) {
|
2008-11-12 04:28:41 +08:00
|
|
|
if (RB_WARN_ON(cpu_buffer,
|
2008-12-03 12:50:03 +08:00
|
|
|
bpage->list.next->prev != &bpage->list))
|
2008-11-12 04:28:41 +08:00
|
|
|
return -1;
|
|
|
|
if (RB_WARN_ON(cpu_buffer,
|
2008-12-03 12:50:03 +08:00
|
|
|
bpage->list.prev->next != &bpage->list))
|
2008-11-12 04:28:41 +08:00
|
|
|
return -1;
|
2009-03-27 23:00:29 +08:00
|
|
|
if (rb_check_list(cpu_buffer, &bpage->list))
|
|
|
|
return -1;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
rb_head_page_activate(cpu_buffer);
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-05-12 23:01:24 +08:00
|
|
|
static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
2008-12-03 12:50:03 +08:00
|
|
|
struct buffer_page *bpage, *tmp;
|
2018-04-04 23:29:57 +08:00
|
|
|
bool user_thread = current->mm != NULL;
|
|
|
|
gfp_t mflags;
|
2016-05-12 23:01:24 +08:00
|
|
|
long i;
|
2009-03-31 03:32:01 +08:00
|
|
|
|
2018-04-04 23:29:57 +08:00
|
|
|
/*
|
|
|
|
* Check if the available memory is there first.
|
|
|
|
* Note, si_mem_available() only gives us a rough estimate of available
|
|
|
|
* memory. It may not be accurate. But we don't care, we just want
|
|
|
|
* to prevent doing any allocation when it is obvious that it is
|
|
|
|
* not going to succeed.
|
|
|
|
*/
|
ring-buffer: Check if memory is available before allocation
The ring buffer is made up of a link list of pages. When making the ring
buffer bigger, it will allocate all the pages it needs before adding to the
ring buffer, and if it fails, it frees them and returns an error. This makes
increasing the ring buffer size an all or nothing action. When this was
first created, the pages were allocated with "NORETRY". This was to not
cause any Out-Of-Memory (OOM) actions from allocating the ring buffer. But
NORETRY was too strict, as the ring buffer would fail to expand even when
there's memory available, but was taken up in the page cache.
Commit 848618857d253 ("tracing/ring_buffer: Try harder to allocate") changed
the allocating from NORETRY to RETRY_MAYFAIL. The RETRY_MAYFAIL would
allocate from the page cache, but if there was no memory available, it would
simple fail the allocation and not trigger an OOM.
This worked fine, but had one problem. As the ring buffer would allocate one
page at a time, it could take up all memory in the system before it failed
to allocate and free that memory. If the allocation is happening and the
ring buffer allocates all memory and then tries to take more than available,
its allocation will not trigger an OOM, but if there's any allocation that
happens someplace else, that could trigger an OOM, even though once the ring
buffer's allocation fails, it would free up all the previous memory it tried
to allocate, and allow other memory allocations to succeed.
Commit d02bd27bd33dd ("mm/page_alloc.c: calculate 'available' memory in a
separate function") separated out si_mem_availble() as a separate function
that could be used to see how much memory is available in the system. Using
this function to make sure that the ring buffer could be allocated before it
tries to allocate pages we can avoid allocating all memory in the system and
making it vulnerable to OOMs if other allocations are taking place.
Link: http://lkml.kernel.org/r/1522320104-6573-1-git-send-email-zhaoyang.huang@spreadtrum.com
CC: stable@vger.kernel.org
Cc: linux-mm@kvack.org
Fixes: 848618857d253 ("tracing/ring_buffer: Try harder to allocate")
Requires: d02bd27bd33dd ("mm/page_alloc.c: calculate 'available' memory in a separate function")
Reported-by: Zhaoyang Huang <huangzhaoyang@gmail.com>
Tested-by: Joel Fernandes <joelaf@google.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-04-02 22:33:56 +08:00
|
|
|
i = si_mem_available();
|
|
|
|
if (i < nr_pages)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2018-04-04 23:29:57 +08:00
|
|
|
/*
|
|
|
|
* __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
|
|
|
|
* gracefully without invoking oom-killer and the system is not
|
|
|
|
* destabilized.
|
|
|
|
*/
|
|
|
|
mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If a user thread allocates too much, and si_mem_available()
|
|
|
|
* reports there's enough memory, even though there is not.
|
|
|
|
* Make sure the OOM killer kills this thread. This can happen
|
|
|
|
* even with RETRY_MAYFAIL because another task may be doing
|
|
|
|
* an allocation after this task has taken all memory.
|
|
|
|
* This is the task the OOM killer needs to take out during this
|
|
|
|
* loop, even if it was triggered by an allocation somewhere else.
|
|
|
|
*/
|
|
|
|
if (user_thread)
|
|
|
|
set_current_oom_origin();
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
for (i = 0; i < nr_pages; i++) {
|
2011-05-04 08:56:42 +08:00
|
|
|
struct page *page;
|
2018-04-04 23:29:57 +08:00
|
|
|
|
2008-12-03 12:50:03 +08:00
|
|
|
bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
|
2018-04-04 23:29:57 +08:00
|
|
|
mflags, cpu_to_node(cpu));
|
2008-12-03 12:50:03 +08:00
|
|
|
if (!bpage)
|
2008-10-01 23:14:54 +08:00
|
|
|
goto free_pages;
|
2009-03-27 23:00:29 +08:00
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
list_add(&bpage->list, pages);
|
2009-03-27 23:00:29 +08:00
|
|
|
|
2018-04-04 23:29:57 +08:00
|
|
|
page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
|
2011-05-04 08:56:42 +08:00
|
|
|
if (!page)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
goto free_pages;
|
2011-05-04 08:56:42 +08:00
|
|
|
bpage->page = page_address(page);
|
2008-12-03 12:50:03 +08:00
|
|
|
rb_init_page(bpage->page);
|
2018-04-04 23:29:57 +08:00
|
|
|
|
|
|
|
if (user_thread && fatal_signal_pending(current))
|
|
|
|
goto free_pages;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2018-04-04 23:29:57 +08:00
|
|
|
if (user_thread)
|
|
|
|
clear_current_oom_origin();
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
free_pages:
|
|
|
|
list_for_each_entry_safe(bpage, tmp, pages, list) {
|
|
|
|
list_del_init(&bpage->list);
|
|
|
|
free_buffer_page(bpage);
|
|
|
|
}
|
2018-04-04 23:29:57 +08:00
|
|
|
if (user_thread)
|
|
|
|
clear_current_oom_origin();
|
2012-02-03 04:00:41 +08:00
|
|
|
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
|
2016-05-12 23:01:24 +08:00
|
|
|
unsigned long nr_pages)
|
2012-02-03 04:00:41 +08:00
|
|
|
{
|
|
|
|
LIST_HEAD(pages);
|
|
|
|
|
|
|
|
WARN_ON(!nr_pages);
|
|
|
|
|
|
|
|
if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2009-03-31 03:32:01 +08:00
|
|
|
/*
|
|
|
|
* The ring buffer page list is a circular list that does not
|
|
|
|
* start and end with a list head. All page list items point to
|
|
|
|
* other pages.
|
|
|
|
*/
|
|
|
|
cpu_buffer->pages = pages.next;
|
|
|
|
list_del(&pages);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
cpu_buffer->nr_pages = nr_pages;
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
rb_check_pages(cpu_buffer);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct ring_buffer_per_cpu *
|
2016-05-12 23:01:24 +08:00
|
|
|
rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
2008-12-03 12:50:03 +08:00
|
|
|
struct buffer_page *bpage;
|
2011-05-04 08:56:42 +08:00
|
|
|
struct page *page;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
|
|
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
|
|
if (!cpu_buffer)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
cpu_buffer->cpu = cpu;
|
|
|
|
cpu_buffer->buffer = buffer;
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_lock_init(&cpu_buffer->reader_lock);
|
2009-06-09 00:18:39 +08:00
|
|
|
lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
|
2009-12-03 19:38:57 +08:00
|
|
|
cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
|
2012-05-04 09:59:50 +08:00
|
|
|
INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
|
2012-05-19 04:29:51 +08:00
|
|
|
init_completion(&cpu_buffer->update_done);
|
2013-03-01 08:59:17 +08:00
|
|
|
init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
|
2013-03-05 06:33:05 +08:00
|
|
|
init_waitqueue_head(&cpu_buffer->irq_work.waiters);
|
ring-buffer: Do not wake up a splice waiter when page is not full
When an application connects to the ring buffer via splice, it can only
read full pages. Splice does not work with partial pages. If there is
not enough data to fill a page, the splice command will either block
or return -EAGAIN (if set to nonblock).
Code was added where if the page is not full, to just sleep again.
The problem is, it will get woken up again on the next event. That
is, when something is written into the ring buffer, if there is a waiter
it will wake it up. The waiter would then check the buffer, see that
it still does not have enough data to fill a page and go back to sleep.
To make matters worse, when the waiter goes back to sleep, it could
cause another event, which would wake it back up again to see it
doesn't have enough data and sleep again. This produces a tremendous
overhead and fills the ring buffer with noise.
For example, recording sched_switch on an idle system for 10 seconds
produces 25,350,475 events!!!
Create another wait queue for those waiters wanting full pages.
When an event is written, it only wakes up waiters if there's a full
page of data. It does not wake up the waiter if the page is not yet
full.
After this change, recording sched_switch on an idle system for 10
seconds produces only 800 events. Getting rid of 25,349,675 useless
events (99.9969% of events!!), is something to take seriously.
Cc: stable@vger.kernel.org # 3.16+
Cc: Rabin Vincent <rabin@rab.in>
Fixes: e30f53aad220 "tracing: Do not busy wait in buffer splice"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-02-11 11:14:53 +08:00
|
|
|
init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2008-12-03 12:50:03 +08:00
|
|
|
bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
|
2008-10-01 23:14:54 +08:00
|
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
2008-12-03 12:50:03 +08:00
|
|
|
if (!bpage)
|
2008-10-01 23:14:54 +08:00
|
|
|
goto fail_free_buffer;
|
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
rb_check_bpage(cpu_buffer, bpage);
|
|
|
|
|
2008-12-03 12:50:03 +08:00
|
|
|
cpu_buffer->reader_page = bpage;
|
2011-05-04 08:56:42 +08:00
|
|
|
page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
|
|
|
|
if (!page)
|
2008-10-01 23:14:54 +08:00
|
|
|
goto fail_free_reader;
|
2011-05-04 08:56:42 +08:00
|
|
|
bpage->page = page_address(page);
|
2008-12-03 12:50:03 +08:00
|
|
|
rb_init_page(bpage->page);
|
2008-10-01 23:14:54 +08:00
|
|
|
|
2008-10-01 12:29:53 +08:00
|
|
|
INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
|
2012-06-23 02:50:05 +08:00
|
|
|
INIT_LIST_HEAD(&cpu_buffer->new_pages);
|
2008-10-01 12:29:53 +08:00
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
ret = rb_allocate_pages(cpu_buffer, nr_pages);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
if (ret < 0)
|
2008-10-01 12:29:53 +08:00
|
|
|
goto fail_free_reader;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
cpu_buffer->head_page
|
2009-03-31 03:32:01 +08:00
|
|
|
= list_entry(cpu_buffer->pages, struct buffer_page, list);
|
2008-10-04 14:00:59 +08:00
|
|
|
cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
rb_head_page_activate(cpu_buffer);
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
return cpu_buffer;
|
|
|
|
|
2008-10-01 12:29:53 +08:00
|
|
|
fail_free_reader:
|
|
|
|
free_buffer_page(cpu_buffer->reader_page);
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
fail_free_buffer:
|
|
|
|
kfree(cpu_buffer);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
2009-03-31 03:32:01 +08:00
|
|
|
struct list_head *head = cpu_buffer->pages;
|
2008-12-03 12:50:03 +08:00
|
|
|
struct buffer_page *bpage, *tmp;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2008-10-01 12:29:53 +08:00
|
|
|
free_buffer_page(cpu_buffer->reader_page);
|
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
rb_head_page_deactivate(cpu_buffer);
|
|
|
|
|
2009-03-31 03:32:01 +08:00
|
|
|
if (head) {
|
|
|
|
list_for_each_entry_safe(bpage, tmp, head, list) {
|
|
|
|
list_del_init(&bpage->list);
|
|
|
|
free_buffer_page(bpage);
|
|
|
|
}
|
|
|
|
bpage = list_entry(head, struct buffer_page, list);
|
2008-12-03 12:50:03 +08:00
|
|
|
free_buffer_page(bpage);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2009-03-31 03:32:01 +08:00
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
kfree(cpu_buffer);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2013-07-15 16:32:50 +08:00
|
|
|
* __ring_buffer_alloc - allocate a new ring_buffer
|
2008-11-24 19:24:12 +08:00
|
|
|
* @size: the size in bytes per cpu that is needed.
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
* @flags: attributes to set for the ring buffer.
|
|
|
|
*
|
|
|
|
* Currently the only flag that is available is the RB_FL_OVERWRITE
|
|
|
|
* flag. This flag means that the buffer will overwrite old data
|
|
|
|
* when the buffer wraps. If this flag is not set, the buffer will
|
|
|
|
* drop data when the tail hits the head.
|
|
|
|
*/
|
2009-06-09 00:18:39 +08:00
|
|
|
struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
|
|
|
|
struct lock_class_key *key)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer *buffer;
|
2016-05-12 23:01:24 +08:00
|
|
|
long nr_pages;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
int bsize;
|
2016-05-12 23:01:24 +08:00
|
|
|
int cpu;
|
2016-11-27 07:13:34 +08:00
|
|
|
int ret;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/* keep it in its own cache line */
|
|
|
|
buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!buffer)
|
|
|
|
return NULL;
|
|
|
|
|
2016-12-07 21:31:33 +08:00
|
|
|
if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
|
2009-01-01 07:42:22 +08:00
|
|
|
goto fail_free_buffer;
|
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
buffer->flags = flags;
|
2009-03-18 05:22:06 +08:00
|
|
|
buffer->clock = trace_clock_local;
|
2009-06-09 00:18:39 +08:00
|
|
|
buffer->reader_lock_key = key;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2013-03-01 08:59:17 +08:00
|
|
|
init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
|
2013-03-05 06:33:05 +08:00
|
|
|
init_waitqueue_head(&buffer->irq_work.waiters);
|
2013-03-01 08:59:17 +08:00
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/* need at least two pages */
|
2012-02-03 04:00:41 +08:00
|
|
|
if (nr_pages < 2)
|
|
|
|
nr_pages = 2;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
buffer->cpus = nr_cpu_ids;
|
|
|
|
|
|
|
|
bsize = sizeof(void *) * nr_cpu_ids;
|
|
|
|
buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!buffer->buffers)
|
2009-01-01 07:42:22 +08:00
|
|
|
goto fail_free_cpumask;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2016-11-27 07:13:34 +08:00
|
|
|
cpu = raw_smp_processor_id();
|
|
|
|
cpumask_set_cpu(cpu, buffer->cpumask);
|
|
|
|
buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
|
|
|
|
if (!buffer->buffers[cpu])
|
|
|
|
goto fail_free_buffers;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2016-11-27 07:13:34 +08:00
|
|
|
ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
|
|
|
|
if (ret < 0)
|
|
|
|
goto fail_free_buffers;
|
2009-03-12 10:00:13 +08:00
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
mutex_init(&buffer->mutex);
|
|
|
|
|
|
|
|
return buffer;
|
|
|
|
|
|
|
|
fail_free_buffers:
|
|
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
if (buffer->buffers[cpu])
|
|
|
|
rb_free_cpu_buffer(buffer->buffers[cpu]);
|
|
|
|
}
|
|
|
|
kfree(buffer->buffers);
|
|
|
|
|
2009-01-01 07:42:22 +08:00
|
|
|
fail_free_cpumask:
|
|
|
|
free_cpumask_var(buffer->cpumask);
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
fail_free_buffer:
|
|
|
|
kfree(buffer);
|
|
|
|
return NULL;
|
|
|
|
}
|
2009-06-09 00:18:39 +08:00
|
|
|
EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_free - free a ring buffer.
|
|
|
|
* @buffer: the buffer to free.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
ring_buffer_free(struct ring_buffer *buffer)
|
|
|
|
{
|
|
|
|
int cpu;
|
|
|
|
|
2016-11-27 07:13:34 +08:00
|
|
|
cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
|
2009-03-12 10:00:13 +08:00
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
for_each_buffer_cpu(buffer, cpu)
|
|
|
|
rb_free_cpu_buffer(buffer->buffers[cpu]);
|
|
|
|
|
2009-08-07 18:49:29 +08:00
|
|
|
kfree(buffer->buffers);
|
2009-01-01 07:42:22 +08:00
|
|
|
free_cpumask_var(buffer->cpumask);
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
kfree(buffer);
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_free);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-03-18 05:22:06 +08:00
|
|
|
void ring_buffer_set_clock(struct ring_buffer *buffer,
|
|
|
|
u64 (*clock)(void))
|
|
|
|
{
|
|
|
|
buffer->clock = clock;
|
|
|
|
}
|
|
|
|
|
2018-01-16 10:51:39 +08:00
|
|
|
void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
|
|
|
|
{
|
|
|
|
buffer->time_stamp_abs = abs;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
|
|
|
|
{
|
|
|
|
return buffer->time_stamp_abs;
|
|
|
|
}
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
|
|
|
|
|
2012-05-04 09:59:50 +08:00
|
|
|
static inline unsigned long rb_page_entries(struct buffer_page *bpage)
|
|
|
|
{
|
|
|
|
return local_read(&bpage->entries) & RB_WRITE_MASK;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline unsigned long rb_page_write(struct buffer_page *bpage)
|
|
|
|
{
|
|
|
|
return local_read(&bpage->write) & RB_WRITE_MASK;
|
|
|
|
}
|
|
|
|
|
2012-05-04 09:59:51 +08:00
|
|
|
static int
|
2016-05-12 23:01:24 +08:00
|
|
|
rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
2012-05-04 09:59:50 +08:00
|
|
|
struct list_head *tail_page, *to_remove, *next_page;
|
|
|
|
struct buffer_page *to_remove_page, *tmp_iter_page;
|
|
|
|
struct buffer_page *last_page, *first_page;
|
2016-05-12 23:01:24 +08:00
|
|
|
unsigned long nr_removed;
|
2012-05-04 09:59:50 +08:00
|
|
|
unsigned long head_bit;
|
|
|
|
int page_entries;
|
|
|
|
|
|
|
|
head_bit = 0;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_lock_irq(&cpu_buffer->reader_lock);
|
2012-05-04 09:59:50 +08:00
|
|
|
atomic_inc(&cpu_buffer->record_disabled);
|
|
|
|
/*
|
|
|
|
* We don't race with the readers since we have acquired the reader
|
|
|
|
* lock. We also don't race with writers after disabling recording.
|
|
|
|
* This makes it easy to figure out the first and the last page to be
|
|
|
|
* removed from the list. We unlink all the pages in between including
|
|
|
|
* the first and last pages. This is done in a busy loop so that we
|
|
|
|
* lose the least number of traces.
|
|
|
|
* The pages are freed after we restart recording and unlock readers.
|
|
|
|
*/
|
|
|
|
tail_page = &cpu_buffer->tail_page->list;
|
2009-03-27 23:00:29 +08:00
|
|
|
|
2012-05-04 09:59:50 +08:00
|
|
|
/*
|
|
|
|
* tail page might be on reader page, we remove the next page
|
|
|
|
* from the ring buffer
|
|
|
|
*/
|
|
|
|
if (cpu_buffer->tail_page == cpu_buffer->reader_page)
|
|
|
|
tail_page = rb_list_head(tail_page->next);
|
|
|
|
to_remove = tail_page;
|
|
|
|
|
|
|
|
/* start of pages to remove */
|
|
|
|
first_page = list_entry(rb_list_head(to_remove->next),
|
|
|
|
struct buffer_page, list);
|
|
|
|
|
|
|
|
for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
|
|
|
|
to_remove = rb_list_head(to_remove)->next;
|
|
|
|
head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
2012-05-04 09:59:50 +08:00
|
|
|
next_page = rb_list_head(to_remove)->next;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2012-05-04 09:59:50 +08:00
|
|
|
/*
|
|
|
|
* Now we remove all pages between tail_page and next_page.
|
|
|
|
* Make sure that we have head_bit value preserved for the
|
|
|
|
* next page
|
|
|
|
*/
|
|
|
|
tail_page->next = (struct list_head *)((unsigned long)next_page |
|
|
|
|
head_bit);
|
|
|
|
next_page = rb_list_head(next_page);
|
|
|
|
next_page->prev = tail_page;
|
|
|
|
|
|
|
|
/* make sure pages points to a valid page in the ring buffer */
|
|
|
|
cpu_buffer->pages = next_page;
|
|
|
|
|
|
|
|
/* update head page */
|
|
|
|
if (head_bit)
|
|
|
|
cpu_buffer->head_page = list_entry(next_page,
|
|
|
|
struct buffer_page, list);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* change read pointer to make sure any read iterators reset
|
|
|
|
* themselves
|
|
|
|
*/
|
|
|
|
cpu_buffer->read = 0;
|
|
|
|
|
|
|
|
/* pages are removed, resume tracing and then free the pages */
|
|
|
|
atomic_dec(&cpu_buffer->record_disabled);
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_unlock_irq(&cpu_buffer->reader_lock);
|
2012-05-04 09:59:50 +08:00
|
|
|
|
|
|
|
RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
|
|
|
|
|
|
|
|
/* last buffer page to remove */
|
|
|
|
last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
|
|
|
|
list);
|
|
|
|
tmp_iter_page = first_page;
|
|
|
|
|
|
|
|
do {
|
|
|
|
to_remove_page = tmp_iter_page;
|
|
|
|
rb_inc_page(cpu_buffer, &tmp_iter_page);
|
|
|
|
|
|
|
|
/* update the counters */
|
|
|
|
page_entries = rb_page_entries(to_remove_page);
|
|
|
|
if (page_entries) {
|
|
|
|
/*
|
|
|
|
* If something was added to this page, it was full
|
|
|
|
* since it is not the tail page. So we deduct the
|
|
|
|
* bytes consumed in ring buffer from here.
|
2012-06-30 03:31:41 +08:00
|
|
|
* Increment overrun to account for the lost events.
|
2012-05-04 09:59:50 +08:00
|
|
|
*/
|
2012-06-30 03:31:41 +08:00
|
|
|
local_add(page_entries, &cpu_buffer->overrun);
|
2012-05-04 09:59:50 +08:00
|
|
|
local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We have already removed references to this list item, just
|
|
|
|
* free up the buffer_page and its page
|
|
|
|
*/
|
|
|
|
free_buffer_page(to_remove_page);
|
|
|
|
nr_removed--;
|
|
|
|
|
|
|
|
} while (to_remove_page != last_page);
|
|
|
|
|
|
|
|
RB_WARN_ON(cpu_buffer, nr_removed);
|
2012-05-04 09:59:51 +08:00
|
|
|
|
|
|
|
return nr_removed == 0;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
2012-05-04 09:59:51 +08:00
|
|
|
static int
|
|
|
|
rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
2012-05-04 09:59:51 +08:00
|
|
|
struct list_head *pages = &cpu_buffer->new_pages;
|
|
|
|
int retries, success;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_lock_irq(&cpu_buffer->reader_lock);
|
2012-05-04 09:59:51 +08:00
|
|
|
/*
|
|
|
|
* We are holding the reader lock, so the reader page won't be swapped
|
|
|
|
* in the ring buffer. Now we are racing with the writer trying to
|
|
|
|
* move head page and the tail page.
|
|
|
|
* We are going to adapt the reader page update process where:
|
|
|
|
* 1. We first splice the start and end of list of new pages between
|
|
|
|
* the head page and its previous page.
|
|
|
|
* 2. We cmpxchg the prev_page->next to point from head page to the
|
|
|
|
* start of new pages list.
|
|
|
|
* 3. Finally, we update the head->prev to the end of new list.
|
|
|
|
*
|
|
|
|
* We will try this process 10 times, to make sure that we don't keep
|
|
|
|
* spinning.
|
|
|
|
*/
|
|
|
|
retries = 10;
|
|
|
|
success = 0;
|
|
|
|
while (retries--) {
|
|
|
|
struct list_head *head_page, *prev_page, *r;
|
|
|
|
struct list_head *last_page, *first_page;
|
|
|
|
struct list_head *head_page_with_bit;
|
2009-03-27 23:00:29 +08:00
|
|
|
|
2012-05-04 09:59:51 +08:00
|
|
|
head_page = &rb_set_head_page(cpu_buffer)->list;
|
2012-11-30 11:27:22 +08:00
|
|
|
if (!head_page)
|
|
|
|
break;
|
2012-05-04 09:59:51 +08:00
|
|
|
prev_page = head_page->prev;
|
|
|
|
|
|
|
|
first_page = pages->next;
|
|
|
|
last_page = pages->prev;
|
|
|
|
|
|
|
|
head_page_with_bit = (struct list_head *)
|
|
|
|
((unsigned long)head_page | RB_PAGE_HEAD);
|
|
|
|
|
|
|
|
last_page->next = head_page_with_bit;
|
|
|
|
first_page->prev = prev_page;
|
|
|
|
|
|
|
|
r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
|
|
|
|
|
|
|
|
if (r == head_page_with_bit) {
|
|
|
|
/*
|
|
|
|
* yay, we replaced the page pointer to our new list,
|
|
|
|
* now, we just have to update to head page's prev
|
|
|
|
* pointer to point to end of list
|
|
|
|
*/
|
|
|
|
head_page->prev = last_page;
|
|
|
|
success = 1;
|
|
|
|
break;
|
|
|
|
}
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
2012-05-04 09:59:51 +08:00
|
|
|
if (success)
|
|
|
|
INIT_LIST_HEAD(pages);
|
|
|
|
/*
|
|
|
|
* If we weren't successful in adding in new pages, warn and stop
|
|
|
|
* tracing
|
|
|
|
*/
|
|
|
|
RB_WARN_ON(cpu_buffer, !success);
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_unlock_irq(&cpu_buffer->reader_lock);
|
2012-05-04 09:59:51 +08:00
|
|
|
|
|
|
|
/* free pages if they weren't inserted */
|
|
|
|
if (!success) {
|
|
|
|
struct buffer_page *bpage, *tmp;
|
|
|
|
list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
|
|
|
|
list) {
|
|
|
|
list_del_init(&bpage->list);
|
|
|
|
free_buffer_page(bpage);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return success;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
2012-05-04 09:59:50 +08:00
|
|
|
static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
|
2012-02-03 04:00:41 +08:00
|
|
|
{
|
2012-05-04 09:59:51 +08:00
|
|
|
int success;
|
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
if (cpu_buffer->nr_pages_to_update > 0)
|
2012-05-04 09:59:51 +08:00
|
|
|
success = rb_insert_pages(cpu_buffer);
|
2012-02-03 04:00:41 +08:00
|
|
|
else
|
2012-05-04 09:59:51 +08:00
|
|
|
success = rb_remove_pages(cpu_buffer,
|
|
|
|
-cpu_buffer->nr_pages_to_update);
|
2012-05-04 09:59:50 +08:00
|
|
|
|
2012-05-04 09:59:51 +08:00
|
|
|
if (success)
|
|
|
|
cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
|
2012-05-04 09:59:50 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void update_pages_handler(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
|
|
|
|
struct ring_buffer_per_cpu, update_pages_work);
|
|
|
|
rb_update_pages(cpu_buffer);
|
2012-05-19 04:29:51 +08:00
|
|
|
complete(&cpu_buffer->update_done);
|
2012-02-03 04:00:41 +08:00
|
|
|
}
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_resize - resize the ring buffer
|
|
|
|
* @buffer: the buffer to resize.
|
|
|
|
* @size: the new size.
|
2013-07-15 16:32:50 +08:00
|
|
|
* @cpu_id: the cpu buffer to resize
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
*
|
|
|
|
* Minimum size is 2 * BUF_PAGE_SIZE.
|
|
|
|
*
|
2012-05-04 09:59:50 +08:00
|
|
|
* Returns 0 on success and < 0 on failure.
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
*/
|
2012-02-03 04:00:41 +08:00
|
|
|
int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
|
|
|
|
int cpu_id)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
2016-05-12 23:01:24 +08:00
|
|
|
unsigned long nr_pages;
|
2012-05-04 09:59:50 +08:00
|
|
|
int cpu, err = 0;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2008-11-13 21:58:31 +08:00
|
|
|
/*
|
|
|
|
* Always succeed at resizing a non-existent buffer:
|
|
|
|
*/
|
|
|
|
if (!buffer)
|
|
|
|
return size;
|
|
|
|
|
2012-05-24 03:35:17 +08:00
|
|
|
/* Make sure the requested buffer exists */
|
|
|
|
if (cpu_id != RING_BUFFER_ALL_CPUS &&
|
|
|
|
!cpumask_test_cpu(cpu_id, buffer->cpumask))
|
|
|
|
return size;
|
|
|
|
|
2016-05-13 21:34:12 +08:00
|
|
|
nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/* we need a minimum of two pages */
|
2016-05-13 21:34:12 +08:00
|
|
|
if (nr_pages < 2)
|
|
|
|
nr_pages = 2;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2016-05-13 21:34:12 +08:00
|
|
|
size = nr_pages * BUF_PAGE_SIZE;
|
2009-12-11 11:54:27 +08:00
|
|
|
|
2012-05-04 09:59:50 +08:00
|
|
|
/*
|
|
|
|
* Don't succeed if resizing is disabled, as a reader might be
|
|
|
|
* manipulating the ring buffer and is expecting a sane state while
|
|
|
|
* this is true.
|
|
|
|
*/
|
|
|
|
if (atomic_read(&buffer->resize_disabled))
|
|
|
|
return -EBUSY;
|
2009-12-11 11:54:27 +08:00
|
|
|
|
2012-05-04 09:59:50 +08:00
|
|
|
/* prevent another thread from changing buffer sizes */
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
mutex_lock(&buffer->mutex);
|
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
if (cpu_id == RING_BUFFER_ALL_CPUS) {
|
|
|
|
/* calculate the pages to update */
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
cpu_buffer->nr_pages_to_update = nr_pages -
|
|
|
|
cpu_buffer->nr_pages;
|
|
|
|
/*
|
|
|
|
* nothing more to do for removing pages or no update
|
|
|
|
*/
|
|
|
|
if (cpu_buffer->nr_pages_to_update <= 0)
|
|
|
|
continue;
|
2011-06-08 08:01:42 +08:00
|
|
|
/*
|
2012-02-03 04:00:41 +08:00
|
|
|
* to add pages, make sure all new pages can be
|
|
|
|
* allocated without receiving ENOMEM
|
2011-06-08 08:01:42 +08:00
|
|
|
*/
|
2012-02-03 04:00:41 +08:00
|
|
|
INIT_LIST_HEAD(&cpu_buffer->new_pages);
|
|
|
|
if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
|
2012-05-04 09:59:50 +08:00
|
|
|
&cpu_buffer->new_pages, cpu)) {
|
2012-02-03 04:00:41 +08:00
|
|
|
/* not enough memory for new pages */
|
2012-05-04 09:59:50 +08:00
|
|
|
err = -ENOMEM;
|
|
|
|
goto out_err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
get_online_cpus();
|
|
|
|
/*
|
|
|
|
* Fire off all the required work handlers
|
2012-05-19 04:29:51 +08:00
|
|
|
* We can't schedule on offline CPUs, but it's not necessary
|
2012-05-04 09:59:50 +08:00
|
|
|
* since we can change their buffer sizes without any race.
|
|
|
|
*/
|
|
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
2012-05-19 04:29:51 +08:00
|
|
|
if (!cpu_buffer->nr_pages_to_update)
|
2012-05-04 09:59:50 +08:00
|
|
|
continue;
|
|
|
|
|
2014-07-17 03:07:13 +08:00
|
|
|
/* Can't run something on an offline CPU. */
|
|
|
|
if (!cpu_online(cpu)) {
|
2013-03-07 22:27:42 +08:00
|
|
|
rb_update_pages(cpu_buffer);
|
|
|
|
cpu_buffer->nr_pages_to_update = 0;
|
|
|
|
} else {
|
2012-05-19 04:29:51 +08:00
|
|
|
schedule_work_on(cpu,
|
|
|
|
&cpu_buffer->update_pages_work);
|
2013-03-07 22:27:42 +08:00
|
|
|
}
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
/* wait for all the updates to complete */
|
|
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
2012-05-19 04:29:51 +08:00
|
|
|
if (!cpu_buffer->nr_pages_to_update)
|
2012-05-04 09:59:50 +08:00
|
|
|
continue;
|
|
|
|
|
2012-05-19 04:29:51 +08:00
|
|
|
if (cpu_online(cpu))
|
|
|
|
wait_for_completion(&cpu_buffer->update_done);
|
2012-05-04 09:59:50 +08:00
|
|
|
cpu_buffer->nr_pages_to_update = 0;
|
2012-02-03 04:00:41 +08:00
|
|
|
}
|
2012-05-04 09:59:50 +08:00
|
|
|
|
|
|
|
put_online_cpus();
|
2012-02-03 04:00:41 +08:00
|
|
|
} else {
|
2018-05-16 23:17:06 +08:00
|
|
|
/* Make sure this CPU has been initialized */
|
2012-10-11 07:40:27 +08:00
|
|
|
if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
|
|
|
|
goto out;
|
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
cpu_buffer = buffer->buffers[cpu_id];
|
2012-05-04 09:59:50 +08:00
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
if (nr_pages == cpu_buffer->nr_pages)
|
|
|
|
goto out;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
cpu_buffer->nr_pages_to_update = nr_pages -
|
|
|
|
cpu_buffer->nr_pages;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&cpu_buffer->new_pages);
|
|
|
|
if (cpu_buffer->nr_pages_to_update > 0 &&
|
|
|
|
__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
|
2012-05-04 09:59:50 +08:00
|
|
|
&cpu_buffer->new_pages, cpu_id)) {
|
|
|
|
err = -ENOMEM;
|
|
|
|
goto out_err;
|
|
|
|
}
|
2012-02-03 04:00:41 +08:00
|
|
|
|
2012-05-04 09:59:50 +08:00
|
|
|
get_online_cpus();
|
|
|
|
|
2014-07-17 03:07:13 +08:00
|
|
|
/* Can't run something on an offline CPU. */
|
|
|
|
if (!cpu_online(cpu_id))
|
2013-03-07 22:27:42 +08:00
|
|
|
rb_update_pages(cpu_buffer);
|
|
|
|
else {
|
2012-05-04 09:59:50 +08:00
|
|
|
schedule_work_on(cpu_id,
|
|
|
|
&cpu_buffer->update_pages_work);
|
2012-05-19 04:29:51 +08:00
|
|
|
wait_for_completion(&cpu_buffer->update_done);
|
2013-03-07 22:27:42 +08:00
|
|
|
}
|
2012-05-04 09:59:50 +08:00
|
|
|
|
|
|
|
cpu_buffer->nr_pages_to_update = 0;
|
2012-05-19 04:29:51 +08:00
|
|
|
put_online_cpus();
|
2012-02-03 04:00:41 +08:00
|
|
|
}
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
out:
|
2012-05-15 05:02:33 +08:00
|
|
|
/*
|
|
|
|
* The ring buffer resize can happen with the ring buffer
|
|
|
|
* enabled, so that the update disturbs the tracing as little
|
|
|
|
* as possible. But if the buffer is disabled, we do not need
|
|
|
|
* to worry about that, and we can take the time to verify
|
|
|
|
* that the buffer is not corrupt.
|
|
|
|
*/
|
|
|
|
if (atomic_read(&buffer->record_disabled)) {
|
|
|
|
atomic_inc(&buffer->record_disabled);
|
|
|
|
/*
|
|
|
|
* Even though the buffer was disabled, we must make sure
|
|
|
|
* that it is truly disabled before calling rb_check_pages.
|
|
|
|
* There could have been a race between checking
|
|
|
|
* record_disable and incrementing it.
|
|
|
|
*/
|
|
|
|
synchronize_sched();
|
|
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
rb_check_pages(cpu_buffer);
|
|
|
|
}
|
|
|
|
atomic_dec(&buffer->record_disabled);
|
|
|
|
}
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
mutex_unlock(&buffer->mutex);
|
|
|
|
return size;
|
|
|
|
|
2012-05-04 09:59:50 +08:00
|
|
|
out_err:
|
2012-02-03 04:00:41 +08:00
|
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
struct buffer_page *bpage, *tmp;
|
2012-05-04 09:59:50 +08:00
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
cpu_buffer->nr_pages_to_update = 0;
|
2012-05-04 09:59:50 +08:00
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
if (list_empty(&cpu_buffer->new_pages))
|
|
|
|
continue;
|
2012-05-04 09:59:50 +08:00
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
|
|
|
|
list) {
|
|
|
|
list_del_init(&bpage->list);
|
|
|
|
free_buffer_page(bpage);
|
|
|
|
}
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2008-11-19 02:22:13 +08:00
|
|
|
mutex_unlock(&buffer->mutex);
|
2012-05-04 09:59:50 +08:00
|
|
|
return err;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_resize);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2010-12-09 05:46:47 +08:00
|
|
|
void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
|
|
|
|
{
|
|
|
|
mutex_lock(&buffer->mutex);
|
|
|
|
if (val)
|
|
|
|
buffer->flags |= RB_FL_OVERWRITE;
|
|
|
|
else
|
|
|
|
buffer->flags &= ~RB_FL_OVERWRITE;
|
|
|
|
mutex_unlock(&buffer->mutex);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
|
|
|
|
|
2016-11-24 09:35:32 +08:00
|
|
|
static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
2008-12-03 12:50:03 +08:00
|
|
|
return bpage->page->data + index;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
2016-11-24 09:35:32 +08:00
|
|
|
static __always_inline struct ring_buffer_event *
|
2008-10-01 12:29:53 +08:00
|
|
|
rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
2008-10-04 14:00:58 +08:00
|
|
|
return __rb_page_index(cpu_buffer->reader_page,
|
|
|
|
cpu_buffer->reader_page->read);
|
|
|
|
}
|
|
|
|
|
2016-11-24 09:35:32 +08:00
|
|
|
static __always_inline struct ring_buffer_event *
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
rb_iter_head_event(struct ring_buffer_iter *iter)
|
|
|
|
{
|
2008-10-04 14:00:58 +08:00
|
|
|
return __rb_page_index(iter->head_page, iter->head);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
2016-11-24 09:35:32 +08:00
|
|
|
static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
|
2008-10-04 14:00:59 +08:00
|
|
|
{
|
2008-12-03 04:34:06 +08:00
|
|
|
return local_read(&bpage->page->commit);
|
2008-10-04 14:00:59 +08:00
|
|
|
}
|
|
|
|
|
2011-03-31 09:57:33 +08:00
|
|
|
/* Size is determined by what has been committed */
|
2016-11-24 09:35:32 +08:00
|
|
|
static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
|
2008-10-04 14:00:59 +08:00
|
|
|
{
|
|
|
|
return rb_page_commit(bpage);
|
|
|
|
}
|
|
|
|
|
2016-11-24 09:35:32 +08:00
|
|
|
static __always_inline unsigned
|
2008-10-04 14:00:59 +08:00
|
|
|
rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
|
|
|
return rb_page_commit(cpu_buffer->commit_page);
|
|
|
|
}
|
|
|
|
|
2016-11-24 09:35:32 +08:00
|
|
|
static __always_inline unsigned
|
2008-10-04 14:00:59 +08:00
|
|
|
rb_event_index(struct ring_buffer_event *event)
|
|
|
|
{
|
|
|
|
unsigned long addr = (unsigned long)event;
|
|
|
|
|
2009-06-11 21:29:58 +08:00
|
|
|
return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
|
2008-10-04 14:00:59 +08:00
|
|
|
}
|
|
|
|
|
2009-01-10 04:27:09 +08:00
|
|
|
static void rb_inc_iter(struct ring_buffer_iter *iter)
|
2008-10-01 12:29:53 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The iterator could be on the reader page (it starts there).
|
|
|
|
* But the head could have moved, since the reader was
|
|
|
|
* found. Check for this case and assign the iterator
|
|
|
|
* to the head page instead of next.
|
|
|
|
*/
|
|
|
|
if (iter->head_page == cpu_buffer->reader_page)
|
2009-03-27 23:00:29 +08:00
|
|
|
iter->head_page = rb_set_head_page(cpu_buffer);
|
2008-10-01 12:29:53 +08:00
|
|
|
else
|
|
|
|
rb_inc_page(cpu_buffer, &iter->head_page);
|
|
|
|
|
2008-12-03 04:34:06 +08:00
|
|
|
iter->read_stamp = iter->head_page->page->time_stamp;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
iter->head = 0;
|
|
|
|
}
|
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
/*
|
|
|
|
* rb_handle_head_page - writer hit the head page
|
|
|
|
*
|
|
|
|
* Returns: +1 to retry page
|
|
|
|
* 0 to continue
|
|
|
|
* -1 on error
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct buffer_page *tail_page,
|
|
|
|
struct buffer_page *next_page)
|
|
|
|
{
|
|
|
|
struct buffer_page *new_head;
|
|
|
|
int entries;
|
|
|
|
int type;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
entries = rb_page_entries(next_page);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The hard part is here. We need to move the head
|
|
|
|
* forward, and protect against both readers on
|
|
|
|
* other CPUs and writers coming in via interrupts.
|
|
|
|
*/
|
|
|
|
type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
|
|
|
|
RB_PAGE_HEAD);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* type can be one of four:
|
|
|
|
* NORMAL - an interrupt already moved it for us
|
|
|
|
* HEAD - we are the first to get here.
|
|
|
|
* UPDATE - we are the interrupt interrupting
|
|
|
|
* a current move.
|
|
|
|
* MOVED - a reader on another CPU moved the next
|
|
|
|
* pointer to its reader page. Give up
|
|
|
|
* and try again.
|
|
|
|
*/
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case RB_PAGE_HEAD:
|
|
|
|
/*
|
|
|
|
* We changed the head to UPDATE, thus
|
|
|
|
* it is our responsibility to update
|
|
|
|
* the counters.
|
|
|
|
*/
|
|
|
|
local_add(entries, &cpu_buffer->overrun);
|
2011-08-17 05:46:16 +08:00
|
|
|
local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
|
2009-03-27 23:00:29 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The entries will be zeroed out when we move the
|
|
|
|
* tail page.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* still more to do */
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RB_PAGE_UPDATE:
|
|
|
|
/*
|
|
|
|
* This is an interrupt that interrupt the
|
|
|
|
* previous update. Still more to do.
|
|
|
|
*/
|
|
|
|
break;
|
|
|
|
case RB_PAGE_NORMAL:
|
|
|
|
/*
|
|
|
|
* An interrupt came in before the update
|
|
|
|
* and processed this for us.
|
|
|
|
* Nothing left to do.
|
|
|
|
*/
|
|
|
|
return 1;
|
|
|
|
case RB_PAGE_MOVED:
|
|
|
|
/*
|
|
|
|
* The reader is on another CPU and just did
|
|
|
|
* a swap with our next_page.
|
|
|
|
* Try again.
|
|
|
|
*/
|
|
|
|
return 1;
|
|
|
|
default:
|
|
|
|
RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Now that we are here, the old head pointer is
|
|
|
|
* set to UPDATE. This will keep the reader from
|
|
|
|
* swapping the head page with the reader page.
|
|
|
|
* The reader (on another CPU) will spin till
|
|
|
|
* we are finished.
|
|
|
|
*
|
|
|
|
* We just need to protect against interrupts
|
|
|
|
* doing the job. We will set the next pointer
|
|
|
|
* to HEAD. After that, we set the old pointer
|
|
|
|
* to NORMAL, but only if it was HEAD before.
|
|
|
|
* otherwise we are an interrupt, and only
|
|
|
|
* want the outer most commit to reset it.
|
|
|
|
*/
|
|
|
|
new_head = next_page;
|
|
|
|
rb_inc_page(cpu_buffer, &new_head);
|
|
|
|
|
|
|
|
ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
|
|
|
|
RB_PAGE_NORMAL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Valid returns are:
|
|
|
|
* HEAD - an interrupt came in and already set it.
|
|
|
|
* NORMAL - One of two things:
|
|
|
|
* 1) We really set it.
|
|
|
|
* 2) A bunch of interrupts came in and moved
|
|
|
|
* the page forward again.
|
|
|
|
*/
|
|
|
|
switch (ret) {
|
|
|
|
case RB_PAGE_HEAD:
|
|
|
|
case RB_PAGE_NORMAL:
|
|
|
|
/* OK */
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
RB_WARN_ON(cpu_buffer, 1);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* It is possible that an interrupt came in,
|
|
|
|
* set the head up, then more interrupts came in
|
|
|
|
* and moved it again. When we get back here,
|
|
|
|
* the page would have been set to NORMAL but we
|
|
|
|
* just set it back to HEAD.
|
|
|
|
*
|
|
|
|
* How do you detect this? Well, if that happened
|
|
|
|
* the tail page would have moved.
|
|
|
|
*/
|
|
|
|
if (ret == RB_PAGE_NORMAL) {
|
2015-11-18 03:03:11 +08:00
|
|
|
struct buffer_page *buffer_tail_page;
|
|
|
|
|
|
|
|
buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
|
2009-03-27 23:00:29 +08:00
|
|
|
/*
|
|
|
|
* If the tail had moved passed next, then we need
|
|
|
|
* to reset the pointer.
|
|
|
|
*/
|
2015-11-18 03:03:11 +08:00
|
|
|
if (buffer_tail_page != tail_page &&
|
|
|
|
buffer_tail_page != next_page)
|
2009-03-27 23:00:29 +08:00
|
|
|
rb_head_page_set_normal(cpu_buffer, new_head,
|
|
|
|
next_page,
|
|
|
|
RB_PAGE_HEAD);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If this was the outer most commit (the one that
|
|
|
|
* changed the original pointer from HEAD to UPDATE),
|
|
|
|
* then it is up to us to reset it to NORMAL.
|
|
|
|
*/
|
|
|
|
if (type == RB_PAGE_HEAD) {
|
|
|
|
ret = rb_head_page_set_normal(cpu_buffer, next_page,
|
|
|
|
tail_page,
|
|
|
|
RB_PAGE_UPDATE);
|
|
|
|
if (RB_WARN_ON(cpu_buffer,
|
|
|
|
ret != RB_PAGE_UPDATE))
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-06-11 23:12:00 +08:00
|
|
|
static inline void
|
|
|
|
rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
|
2015-05-29 05:13:14 +08:00
|
|
|
unsigned long tail, struct rb_event_info *info)
|
2009-06-11 23:12:00 +08:00
|
|
|
{
|
2015-05-29 05:13:14 +08:00
|
|
|
struct buffer_page *tail_page = info->tail_page;
|
2009-06-11 23:12:00 +08:00
|
|
|
struct ring_buffer_event *event;
|
2015-05-29 05:13:14 +08:00
|
|
|
unsigned long length = info->length;
|
2009-06-11 23:12:00 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Only the event that crossed the page boundary
|
|
|
|
* must fill the old tail_page with padding.
|
|
|
|
*/
|
|
|
|
if (tail >= BUF_PAGE_SIZE) {
|
2010-05-21 23:55:21 +08:00
|
|
|
/*
|
|
|
|
* If the page was filled, then we still need
|
|
|
|
* to update the real_end. Reset it to zero
|
|
|
|
* and the reader will ignore it.
|
|
|
|
*/
|
|
|
|
if (tail == BUF_PAGE_SIZE)
|
|
|
|
tail_page->real_end = 0;
|
|
|
|
|
2009-06-11 23:12:00 +08:00
|
|
|
local_sub(length, &tail_page->write);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
event = __rb_page_index(tail_page, tail);
|
|
|
|
|
2011-08-17 05:46:16 +08:00
|
|
|
/* account for padding bytes */
|
|
|
|
local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
|
|
|
|
|
2010-04-01 10:11:42 +08:00
|
|
|
/*
|
|
|
|
* Save the original length to the meta data.
|
|
|
|
* This will be used by the reader to add lost event
|
|
|
|
* counter.
|
|
|
|
*/
|
|
|
|
tail_page->real_end = tail;
|
|
|
|
|
2009-06-11 23:12:00 +08:00
|
|
|
/*
|
|
|
|
* If this event is bigger than the minimum size, then
|
|
|
|
* we need to be careful that we don't subtract the
|
|
|
|
* write counter enough to allow another writer to slip
|
|
|
|
* in on this page.
|
|
|
|
* We put in a discarded commit instead, to make sure
|
|
|
|
* that this space is not used again.
|
|
|
|
*
|
|
|
|
* If we are less than the minimum size, we don't need to
|
|
|
|
* worry about it.
|
|
|
|
*/
|
|
|
|
if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
|
|
|
|
/* No room for any events */
|
|
|
|
|
|
|
|
/* Mark the rest of the page with padding */
|
|
|
|
rb_event_set_padding(event);
|
|
|
|
|
|
|
|
/* Set the write back to the previous setting */
|
|
|
|
local_sub(length, &tail_page->write);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Put in a discarded event */
|
|
|
|
event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
|
|
|
|
event->type_len = RINGBUF_TYPE_PADDING;
|
|
|
|
/* time delta must be non zero */
|
|
|
|
event->time_delta = 1;
|
|
|
|
|
|
|
|
/* Set write to end of buffer */
|
|
|
|
length = (tail + length) - BUF_PAGE_SIZE;
|
|
|
|
local_sub(length, &tail_page->write);
|
|
|
|
}
|
2009-05-07 03:30:07 +08:00
|
|
|
|
2015-11-18 05:36:06 +08:00
|
|
|
static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
|
|
|
|
|
2010-10-09 01:51:48 +08:00
|
|
|
/*
|
|
|
|
* This is the slow path, force gcc not to inline it.
|
|
|
|
*/
|
|
|
|
static noinline struct ring_buffer_event *
|
2009-05-07 03:30:07 +08:00
|
|
|
rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
|
2015-05-29 05:13:14 +08:00
|
|
|
unsigned long tail, struct rb_event_info *info)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
2015-05-29 05:13:14 +08:00
|
|
|
struct buffer_page *tail_page = info->tail_page;
|
2009-11-17 21:43:01 +08:00
|
|
|
struct buffer_page *commit_page = cpu_buffer->commit_page;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
struct ring_buffer *buffer = cpu_buffer->buffer;
|
2009-03-27 23:00:29 +08:00
|
|
|
struct buffer_page *next_page;
|
|
|
|
int ret;
|
2009-05-06 09:16:11 +08:00
|
|
|
|
|
|
|
next_page = tail_page;
|
|
|
|
|
|
|
|
rb_inc_page(cpu_buffer, &next_page);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If for some reason, we had an interrupt storm that made
|
|
|
|
* it all the way around the buffer, bail, and warn
|
|
|
|
* about it.
|
|
|
|
*/
|
|
|
|
if (unlikely(next_page == commit_page)) {
|
2009-03-27 23:00:29 +08:00
|
|
|
local_inc(&cpu_buffer->commit_overrun);
|
2009-05-06 09:16:11 +08:00
|
|
|
goto out_reset;
|
|
|
|
}
|
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
/*
|
|
|
|
* This is where the fun begins!
|
|
|
|
*
|
|
|
|
* We are fighting against races between a reader that
|
|
|
|
* could be on another CPU trying to swap its reader
|
|
|
|
* page with the buffer head.
|
|
|
|
*
|
|
|
|
* We are also fighting against interrupts coming in and
|
|
|
|
* moving the head or tail on us as well.
|
|
|
|
*
|
|
|
|
* If the next page is the head page then we have filled
|
|
|
|
* the buffer, unless the commit page is still on the
|
|
|
|
* reader page.
|
|
|
|
*/
|
|
|
|
if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
|
2009-05-06 09:16:11 +08:00
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
/*
|
|
|
|
* If the commit is not on the reader page, then
|
|
|
|
* move the header page.
|
|
|
|
*/
|
|
|
|
if (!rb_is_reader_page(cpu_buffer->commit_page)) {
|
|
|
|
/*
|
|
|
|
* If we are not in overwrite mode,
|
|
|
|
* this is easy, just stop here.
|
|
|
|
*/
|
2011-07-16 05:23:58 +08:00
|
|
|
if (!(buffer->flags & RB_FL_OVERWRITE)) {
|
|
|
|
local_inc(&cpu_buffer->dropped_events);
|
2009-03-27 23:00:29 +08:00
|
|
|
goto out_reset;
|
2011-07-16 05:23:58 +08:00
|
|
|
}
|
2009-03-27 23:00:29 +08:00
|
|
|
|
|
|
|
ret = rb_handle_head_page(cpu_buffer,
|
|
|
|
tail_page,
|
|
|
|
next_page);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out_reset;
|
|
|
|
if (ret)
|
|
|
|
goto out_again;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* We need to be careful here too. The
|
|
|
|
* commit page could still be on the reader
|
|
|
|
* page. We could have a small buffer, and
|
|
|
|
* have filled up the buffer with events
|
|
|
|
* from interrupts and such, and wrapped.
|
|
|
|
*
|
|
|
|
* Note, if the tail page is also the on the
|
|
|
|
* reader_page, we let it move out.
|
|
|
|
*/
|
|
|
|
if (unlikely((cpu_buffer->commit_page !=
|
|
|
|
cpu_buffer->tail_page) &&
|
|
|
|
(cpu_buffer->commit_page ==
|
|
|
|
cpu_buffer->reader_page))) {
|
|
|
|
local_inc(&cpu_buffer->commit_overrun);
|
|
|
|
goto out_reset;
|
|
|
|
}
|
2009-05-06 09:16:11 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-11-18 04:15:19 +08:00
|
|
|
rb_tail_page_update(cpu_buffer, tail_page, next_page);
|
2009-05-06 09:16:11 +08:00
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
out_again:
|
2009-05-06 09:16:11 +08:00
|
|
|
|
2015-05-29 05:13:14 +08:00
|
|
|
rb_reset_tail(cpu_buffer, tail, info);
|
2009-05-06 09:16:11 +08:00
|
|
|
|
2015-11-18 05:36:06 +08:00
|
|
|
/* Commit what we have for now. */
|
|
|
|
rb_end_commit(cpu_buffer);
|
|
|
|
/* rb_end_commit() decs committing */
|
|
|
|
local_inc(&cpu_buffer->committing);
|
|
|
|
|
2009-05-06 09:16:11 +08:00
|
|
|
/* fail and let the caller try again */
|
|
|
|
return ERR_PTR(-EAGAIN);
|
|
|
|
|
2009-02-13 02:19:48 +08:00
|
|
|
out_reset:
|
2009-01-12 11:06:18 +08:00
|
|
|
/* reset write */
|
2015-05-29 05:13:14 +08:00
|
|
|
rb_reset_tail(cpu_buffer, tail, info);
|
2009-01-12 11:06:18 +08:00
|
|
|
|
2008-10-04 14:00:59 +08:00
|
|
|
return NULL;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
2015-05-30 00:12:27 +08:00
|
|
|
/* Slow path, do not inline */
|
|
|
|
static noinline struct ring_buffer_event *
|
2018-01-16 10:51:40 +08:00
|
|
|
rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
|
2015-05-29 05:36:45 +08:00
|
|
|
{
|
2018-01-16 10:51:40 +08:00
|
|
|
if (abs)
|
|
|
|
event->type_len = RINGBUF_TYPE_TIME_STAMP;
|
|
|
|
else
|
|
|
|
event->type_len = RINGBUF_TYPE_TIME_EXTEND;
|
2015-05-29 05:36:45 +08:00
|
|
|
|
2018-01-16 10:51:40 +08:00
|
|
|
/* Not the first event on the page, or not delta? */
|
|
|
|
if (abs || rb_event_index(event)) {
|
2015-05-30 00:12:27 +08:00
|
|
|
event->time_delta = delta & TS_MASK;
|
|
|
|
event->array[0] = delta >> TS_SHIFT;
|
|
|
|
} else {
|
|
|
|
/* nope, just zero it */
|
|
|
|
event->time_delta = 0;
|
|
|
|
event->array[0] = 0;
|
|
|
|
}
|
2015-05-29 21:40:18 +08:00
|
|
|
|
2015-05-30 00:12:27 +08:00
|
|
|
return skip_time_extend(event);
|
|
|
|
}
|
2015-05-29 21:40:18 +08:00
|
|
|
|
2015-09-29 22:43:34 +08:00
|
|
|
static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
|
2015-09-03 20:57:12 +08:00
|
|
|
struct ring_buffer_event *event);
|
|
|
|
|
2015-05-30 00:12:27 +08:00
|
|
|
/**
|
|
|
|
* rb_update_event - update event type and data
|
|
|
|
* @event: the event to update
|
|
|
|
* @type: the type of event
|
|
|
|
* @length: the size of the event field in the ring buffer
|
|
|
|
*
|
|
|
|
* Update the type and data fields of the event. The length
|
|
|
|
* is the actual size that is written to the ring buffer,
|
|
|
|
* and with this, we can determine what to place into the
|
|
|
|
* data field.
|
|
|
|
*/
|
2015-09-03 20:57:12 +08:00
|
|
|
static void
|
2015-05-30 00:12:27 +08:00
|
|
|
rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct ring_buffer_event *event,
|
|
|
|
struct rb_event_info *info)
|
|
|
|
{
|
|
|
|
unsigned length = info->length;
|
|
|
|
u64 delta = info->delta;
|
2015-05-29 21:40:18 +08:00
|
|
|
|
2015-09-03 20:57:12 +08:00
|
|
|
/* Only a commit updates the timestamp */
|
|
|
|
if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
|
|
|
|
delta = 0;
|
|
|
|
|
2015-05-29 21:40:18 +08:00
|
|
|
/*
|
2015-05-30 00:12:27 +08:00
|
|
|
* If we need to add a timestamp, then we
|
2018-05-16 23:17:06 +08:00
|
|
|
* add it to the start of the reserved space.
|
2015-05-29 21:40:18 +08:00
|
|
|
*/
|
2015-05-30 00:12:27 +08:00
|
|
|
if (unlikely(info->add_timestamp)) {
|
2018-01-16 10:51:40 +08:00
|
|
|
bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
|
|
|
|
|
|
|
|
event = rb_add_time_stamp(event, info->delta, abs);
|
2015-05-30 00:12:27 +08:00
|
|
|
length -= RB_LEN_TIME_EXTEND;
|
|
|
|
delta = 0;
|
2015-05-29 21:40:18 +08:00
|
|
|
}
|
|
|
|
|
2015-05-30 00:12:27 +08:00
|
|
|
event->time_delta = delta;
|
|
|
|
length -= RB_EVNT_HDR_SIZE;
|
|
|
|
if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
|
|
|
|
event->type_len = 0;
|
|
|
|
event->array[0] = length;
|
|
|
|
} else
|
|
|
|
event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned rb_calculate_event_length(unsigned length)
|
|
|
|
{
|
|
|
|
struct ring_buffer_event event; /* Used only for sizeof array */
|
|
|
|
|
|
|
|
/* zero length can cause confusions */
|
|
|
|
if (!length)
|
|
|
|
length++;
|
|
|
|
|
|
|
|
if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
|
|
|
|
length += sizeof(event.array[0]);
|
|
|
|
|
|
|
|
length += RB_EVNT_HDR_SIZE;
|
|
|
|
length = ALIGN(length, RB_ARCH_ALIGNMENT);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In case the time delta is larger than the 27 bits for it
|
|
|
|
* in the header, we need to add a timestamp. If another
|
|
|
|
* event comes in when trying to discard this one to increase
|
|
|
|
* the length, then the timestamp will be added in the allocated
|
|
|
|
* space of this event. If length is bigger than the size needed
|
|
|
|
* for the TIME_EXTEND, then padding has to be used. The events
|
|
|
|
* length must be either RB_LEN_TIME_EXTEND, or greater than or equal
|
|
|
|
* to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
|
|
|
|
* As length is a multiple of 4, we only need to worry if it
|
|
|
|
* is 12 (RB_LEN_TIME_EXTEND + 4).
|
|
|
|
*/
|
|
|
|
if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
|
|
|
|
length += RB_ALIGNMENT;
|
|
|
|
|
|
|
|
return length;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
|
|
|
|
static inline bool sched_clock_stable(void)
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static inline int
|
|
|
|
rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct ring_buffer_event *event)
|
|
|
|
{
|
|
|
|
unsigned long new_index, old_index;
|
|
|
|
struct buffer_page *bpage;
|
|
|
|
unsigned long index;
|
|
|
|
unsigned long addr;
|
|
|
|
|
|
|
|
new_index = rb_event_index(event);
|
|
|
|
old_index = new_index + rb_event_ts_length(event);
|
|
|
|
addr = (unsigned long)event;
|
|
|
|
addr &= PAGE_MASK;
|
|
|
|
|
2015-11-18 03:03:11 +08:00
|
|
|
bpage = READ_ONCE(cpu_buffer->tail_page);
|
2015-05-30 00:12:27 +08:00
|
|
|
|
|
|
|
if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
|
|
|
|
unsigned long write_mask =
|
|
|
|
local_read(&bpage->write) & ~RB_WRITE_MASK;
|
|
|
|
unsigned long event_length = rb_event_length(event);
|
|
|
|
/*
|
|
|
|
* This is on the tail page. It is possible that
|
|
|
|
* a write could come in and move the tail page
|
|
|
|
* and write to the next page. That is fine
|
|
|
|
* because we just shorten what is on this page.
|
|
|
|
*/
|
|
|
|
old_index += write_mask;
|
|
|
|
new_index += write_mask;
|
|
|
|
index = local_cmpxchg(&bpage->write, old_index, new_index);
|
|
|
|
if (index == old_index) {
|
|
|
|
/* update counters */
|
|
|
|
local_sub(event_length, &cpu_buffer->entries_bytes);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* could not discard */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
|
|
|
local_inc(&cpu_buffer->committing);
|
|
|
|
local_inc(&cpu_buffer->commits);
|
|
|
|
}
|
|
|
|
|
2016-11-24 09:42:31 +08:00
|
|
|
static __always_inline void
|
2015-05-30 00:12:27 +08:00
|
|
|
rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
|
|
|
unsigned long max_count;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We only race with interrupts and NMIs on this CPU.
|
|
|
|
* If we own the commit event, then we can commit
|
|
|
|
* all others that interrupted us, since the interruptions
|
|
|
|
* are in stack format (they finish before they come
|
|
|
|
* back to us). This allows us to do a simple loop to
|
|
|
|
* assign the commit to the tail.
|
|
|
|
*/
|
|
|
|
again:
|
|
|
|
max_count = cpu_buffer->nr_pages * 100;
|
|
|
|
|
2015-11-18 03:03:11 +08:00
|
|
|
while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
|
2015-05-30 00:12:27 +08:00
|
|
|
if (RB_WARN_ON(cpu_buffer, !(--max_count)))
|
|
|
|
return;
|
|
|
|
if (RB_WARN_ON(cpu_buffer,
|
|
|
|
rb_is_reader_page(cpu_buffer->tail_page)))
|
|
|
|
return;
|
|
|
|
local_set(&cpu_buffer->commit_page->page->commit,
|
|
|
|
rb_page_write(cpu_buffer->commit_page));
|
|
|
|
rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
|
2015-11-18 04:15:19 +08:00
|
|
|
/* Only update the write stamp if the page has an event */
|
|
|
|
if (rb_page_write(cpu_buffer->commit_page))
|
|
|
|
cpu_buffer->write_stamp =
|
|
|
|
cpu_buffer->commit_page->page->time_stamp;
|
2015-05-30 00:12:27 +08:00
|
|
|
/* add barrier to keep gcc from optimizing too much */
|
|
|
|
barrier();
|
|
|
|
}
|
|
|
|
while (rb_commit_index(cpu_buffer) !=
|
|
|
|
rb_page_write(cpu_buffer->commit_page)) {
|
|
|
|
|
|
|
|
local_set(&cpu_buffer->commit_page->page->commit,
|
|
|
|
rb_page_write(cpu_buffer->commit_page));
|
|
|
|
RB_WARN_ON(cpu_buffer,
|
|
|
|
local_read(&cpu_buffer->commit_page->page->commit) &
|
|
|
|
~RB_WRITE_MASK);
|
|
|
|
barrier();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* again, keep gcc from optimizing */
|
|
|
|
barrier();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If an interrupt came in just after the first while loop
|
|
|
|
* and pushed the tail page forward, we will be left with
|
|
|
|
* a dangling commit that will never go forward.
|
|
|
|
*/
|
2015-11-18 03:03:11 +08:00
|
|
|
if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
|
2015-05-30 00:12:27 +08:00
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
|
2016-11-24 09:42:31 +08:00
|
|
|
static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
|
2015-05-30 00:12:27 +08:00
|
|
|
{
|
|
|
|
unsigned long commits;
|
|
|
|
|
|
|
|
if (RB_WARN_ON(cpu_buffer,
|
|
|
|
!local_read(&cpu_buffer->committing)))
|
|
|
|
return;
|
|
|
|
|
|
|
|
again:
|
|
|
|
commits = local_read(&cpu_buffer->commits);
|
|
|
|
/* synchronize with interrupts */
|
|
|
|
barrier();
|
|
|
|
if (local_read(&cpu_buffer->committing) == 1)
|
|
|
|
rb_set_commit_to_write(cpu_buffer);
|
|
|
|
|
|
|
|
local_dec(&cpu_buffer->committing);
|
|
|
|
|
|
|
|
/* synchronize with interrupts */
|
|
|
|
barrier();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Need to account for interrupts coming in between the
|
|
|
|
* updating of the commit page and the clearing of the
|
|
|
|
* committing counter.
|
|
|
|
*/
|
|
|
|
if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
|
|
|
|
!local_read(&cpu_buffer->committing)) {
|
|
|
|
local_inc(&cpu_buffer->committing);
|
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void rb_event_discard(struct ring_buffer_event *event)
|
|
|
|
{
|
2018-01-16 10:51:40 +08:00
|
|
|
if (extended_time(event))
|
2015-05-30 00:12:27 +08:00
|
|
|
event = skip_time_extend(event);
|
|
|
|
|
|
|
|
/* array[0] holds the actual length for the discarded event */
|
|
|
|
event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
|
|
|
|
event->type_len = RINGBUF_TYPE_PADDING;
|
|
|
|
/* time delta must be non zero */
|
|
|
|
if (!event->time_delta)
|
|
|
|
event->time_delta = 1;
|
|
|
|
}
|
|
|
|
|
2016-11-24 09:38:39 +08:00
|
|
|
static __always_inline bool
|
2015-05-30 00:12:27 +08:00
|
|
|
rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct ring_buffer_event *event)
|
|
|
|
{
|
|
|
|
unsigned long addr = (unsigned long)event;
|
|
|
|
unsigned long index;
|
|
|
|
|
|
|
|
index = rb_event_index(event);
|
|
|
|
addr &= PAGE_MASK;
|
|
|
|
|
|
|
|
return cpu_buffer->commit_page->page == (void *)addr &&
|
|
|
|
rb_commit_index(cpu_buffer) == index;
|
|
|
|
}
|
|
|
|
|
2016-11-24 09:38:39 +08:00
|
|
|
static __always_inline void
|
2015-05-30 00:12:27 +08:00
|
|
|
rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct ring_buffer_event *event)
|
|
|
|
{
|
|
|
|
u64 delta;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The event first in the commit queue updates the
|
|
|
|
* time stamp.
|
|
|
|
*/
|
|
|
|
if (rb_event_is_commit(cpu_buffer, event)) {
|
|
|
|
/*
|
|
|
|
* A commit event that is first on a page
|
|
|
|
* updates the write timestamp with the page stamp
|
|
|
|
*/
|
|
|
|
if (!rb_event_index(event))
|
|
|
|
cpu_buffer->write_stamp =
|
|
|
|
cpu_buffer->commit_page->page->time_stamp;
|
|
|
|
else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
|
2018-01-16 10:51:40 +08:00
|
|
|
delta = ring_buffer_event_time_stamp(event);
|
2015-05-30 00:12:27 +08:00
|
|
|
cpu_buffer->write_stamp += delta;
|
2018-01-16 10:51:40 +08:00
|
|
|
} else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
|
|
|
|
delta = ring_buffer_event_time_stamp(event);
|
|
|
|
cpu_buffer->write_stamp = delta;
|
2015-05-30 00:12:27 +08:00
|
|
|
} else
|
|
|
|
cpu_buffer->write_stamp += event->time_delta;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct ring_buffer_event *event)
|
|
|
|
{
|
|
|
|
local_inc(&cpu_buffer->entries);
|
|
|
|
rb_update_write_stamp(cpu_buffer, event);
|
|
|
|
rb_end_commit(cpu_buffer);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __always_inline void
|
|
|
|
rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
|
|
|
bool pagebusy;
|
|
|
|
|
|
|
|
if (buffer->irq_work.waiters_pending) {
|
|
|
|
buffer->irq_work.waiters_pending = false;
|
|
|
|
/* irq_work_queue() supplies it's own memory barriers */
|
|
|
|
irq_work_queue(&buffer->irq_work.work);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cpu_buffer->irq_work.waiters_pending) {
|
|
|
|
cpu_buffer->irq_work.waiters_pending = false;
|
|
|
|
/* irq_work_queue() supplies it's own memory barriers */
|
|
|
|
irq_work_queue(&cpu_buffer->irq_work.work);
|
|
|
|
}
|
|
|
|
|
|
|
|
pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
|
|
|
|
|
|
|
|
if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
|
|
|
|
cpu_buffer->irq_work.wakeup_full = true;
|
|
|
|
cpu_buffer->irq_work.full_waiters_pending = false;
|
|
|
|
/* irq_work_queue() supplies it's own memory barriers */
|
|
|
|
irq_work_queue(&cpu_buffer->irq_work.work);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The lock and unlock are done within a preempt disable section.
|
|
|
|
* The current_context per_cpu variable can only be modified
|
|
|
|
* by the current task between lock and unlock. But it can
|
2018-01-15 23:47:09 +08:00
|
|
|
* be modified more than once via an interrupt. To pass this
|
|
|
|
* information from the lock to the unlock without having to
|
|
|
|
* access the 'in_interrupt()' functions again (which do show
|
|
|
|
* a bit of overhead in something as critical as function tracing,
|
|
|
|
* we use a bitmask trick.
|
2015-05-30 00:12:27 +08:00
|
|
|
*
|
2018-01-15 23:47:09 +08:00
|
|
|
* bit 0 = NMI context
|
|
|
|
* bit 1 = IRQ context
|
|
|
|
* bit 2 = SoftIRQ context
|
|
|
|
* bit 3 = normal context.
|
2015-05-30 00:12:27 +08:00
|
|
|
*
|
2018-01-15 23:47:09 +08:00
|
|
|
* This works because this is the order of contexts that can
|
|
|
|
* preempt other contexts. A SoftIRQ never preempts an IRQ
|
|
|
|
* context.
|
|
|
|
*
|
|
|
|
* When the context is determined, the corresponding bit is
|
|
|
|
* checked and set (if it was set, then a recursion of that context
|
|
|
|
* happened).
|
|
|
|
*
|
|
|
|
* On unlock, we need to clear this bit. To do so, just subtract
|
|
|
|
* 1 from the current_context and AND it to itself.
|
|
|
|
*
|
|
|
|
* (binary)
|
|
|
|
* 101 - 1 = 100
|
|
|
|
* 101 & 100 = 100 (clearing bit zero)
|
|
|
|
*
|
|
|
|
* 1010 - 1 = 1001
|
|
|
|
* 1010 & 1001 = 1000 (clearing bit 1)
|
|
|
|
*
|
|
|
|
* The least significant bit can be cleared this way, and it
|
|
|
|
* just so happens that it is the same bit corresponding to
|
|
|
|
* the current context.
|
2015-05-30 00:12:27 +08:00
|
|
|
*/
|
|
|
|
|
|
|
|
static __always_inline int
|
|
|
|
trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
2018-01-15 23:47:09 +08:00
|
|
|
unsigned int val = cpu_buffer->current_context;
|
|
|
|
unsigned long pc = preempt_count();
|
|
|
|
int bit;
|
|
|
|
|
|
|
|
if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
|
|
|
|
bit = RB_CTX_NORMAL;
|
|
|
|
else
|
|
|
|
bit = pc & NMI_MASK ? RB_CTX_NMI :
|
2018-01-19 04:42:09 +08:00
|
|
|
pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
|
2018-01-15 23:47:09 +08:00
|
|
|
|
2018-02-08 06:26:32 +08:00
|
|
|
if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
|
2015-05-30 00:12:27 +08:00
|
|
|
return 1;
|
|
|
|
|
2018-02-08 06:26:32 +08:00
|
|
|
val |= (1 << (bit + cpu_buffer->nest));
|
2018-01-15 23:47:09 +08:00
|
|
|
cpu_buffer->current_context = val;
|
2015-05-30 00:12:27 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static __always_inline void
|
|
|
|
trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
2018-02-08 06:26:32 +08:00
|
|
|
cpu_buffer->current_context &=
|
|
|
|
cpu_buffer->current_context - (1 << cpu_buffer->nest);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The recursive locking above uses 4 bits */
|
|
|
|
#define NESTED_BITS 4
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_nest_start - Allow to trace while nested
|
|
|
|
* @buffer: The ring buffer to modify
|
|
|
|
*
|
2018-05-16 23:17:06 +08:00
|
|
|
* The ring buffer has a safety mechanism to prevent recursion.
|
2018-02-08 06:26:32 +08:00
|
|
|
* But there may be a case where a trace needs to be done while
|
|
|
|
* tracing something else. In this case, calling this function
|
|
|
|
* will allow this function to nest within a currently active
|
|
|
|
* ring_buffer_lock_reserve().
|
|
|
|
*
|
|
|
|
* Call this function before calling another ring_buffer_lock_reserve() and
|
|
|
|
* call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
|
|
|
|
*/
|
|
|
|
void ring_buffer_nest_start(struct ring_buffer *buffer)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
int cpu;
|
|
|
|
|
|
|
|
/* Enabled by ring_buffer_nest_end() */
|
|
|
|
preempt_disable_notrace();
|
|
|
|
cpu = raw_smp_processor_id();
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
2018-05-16 23:17:06 +08:00
|
|
|
/* This is the shift value for the above recursive locking */
|
2018-02-08 06:26:32 +08:00
|
|
|
cpu_buffer->nest += NESTED_BITS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_nest_end - Allow to trace while nested
|
|
|
|
* @buffer: The ring buffer to modify
|
|
|
|
*
|
|
|
|
* Must be called after ring_buffer_nest_start() and after the
|
|
|
|
* ring_buffer_unlock_commit().
|
|
|
|
*/
|
|
|
|
void ring_buffer_nest_end(struct ring_buffer *buffer)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
int cpu;
|
|
|
|
|
|
|
|
/* disabled by ring_buffer_nest_start() */
|
|
|
|
cpu = raw_smp_processor_id();
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
2018-05-16 23:17:06 +08:00
|
|
|
/* This is the shift value for the above recursive locking */
|
2018-02-08 06:26:32 +08:00
|
|
|
cpu_buffer->nest -= NESTED_BITS;
|
|
|
|
preempt_enable_notrace();
|
2015-05-30 00:12:27 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_unlock_commit - commit a reserved
|
|
|
|
* @buffer: The buffer to commit to
|
|
|
|
* @event: The event pointer to commit.
|
|
|
|
*
|
|
|
|
* This commits the data to the ring buffer, and releases any locks held.
|
|
|
|
*
|
|
|
|
* Must be paired with ring_buffer_lock_reserve.
|
|
|
|
*/
|
|
|
|
int ring_buffer_unlock_commit(struct ring_buffer *buffer,
|
|
|
|
struct ring_buffer_event *event)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
|
|
|
|
rb_commit(cpu_buffer, event);
|
|
|
|
|
|
|
|
rb_wakeups(buffer, cpu_buffer);
|
|
|
|
|
|
|
|
trace_recursive_unlock(cpu_buffer);
|
|
|
|
|
|
|
|
preempt_enable_notrace();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
|
|
|
|
|
|
|
|
static noinline void
|
|
|
|
rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct rb_event_info *info)
|
|
|
|
{
|
|
|
|
WARN_ONCE(info->delta > (1ULL << 59),
|
|
|
|
KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
|
|
|
|
(unsigned long long)info->delta,
|
|
|
|
(unsigned long long)info->ts,
|
|
|
|
(unsigned long long)cpu_buffer->write_stamp,
|
|
|
|
sched_clock_stable() ? "" :
|
|
|
|
"If you just came from a suspend/resume,\n"
|
|
|
|
"please switch to the trace global clock:\n"
|
2018-03-30 23:01:32 +08:00
|
|
|
" echo global > /sys/kernel/debug/tracing/trace_clock\n"
|
|
|
|
"or add trace_clock=global to the kernel command line\n");
|
2015-09-03 20:57:12 +08:00
|
|
|
info->add_timestamp = 1;
|
2015-05-29 05:36:45 +08:00
|
|
|
}
|
|
|
|
|
2009-05-07 03:30:07 +08:00
|
|
|
static struct ring_buffer_event *
|
|
|
|
__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
|
2015-05-29 05:13:14 +08:00
|
|
|
struct rb_event_info *info)
|
2009-05-07 03:30:07 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer_event *event;
|
2015-05-29 05:13:14 +08:00
|
|
|
struct buffer_page *tail_page;
|
2009-05-07 03:30:07 +08:00
|
|
|
unsigned long tail, write;
|
2015-09-03 20:57:12 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If the time delta since the last event is too big to
|
|
|
|
* hold in the time field of the event, then we append a
|
|
|
|
* TIME EXTEND event ahead of the data event.
|
|
|
|
*/
|
|
|
|
if (unlikely(info->add_timestamp))
|
|
|
|
info->length += RB_LEN_TIME_EXTEND;
|
2010-10-08 06:18:05 +08:00
|
|
|
|
2015-11-18 03:03:11 +08:00
|
|
|
/* Don't let the compiler play games with cpu_buffer->tail_page */
|
|
|
|
tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
|
2015-05-29 05:13:14 +08:00
|
|
|
write = local_add_return(info->length, &tail_page->write);
|
2009-03-27 23:00:29 +08:00
|
|
|
|
|
|
|
/* set write to only the index of the write */
|
|
|
|
write &= RB_WRITE_MASK;
|
2015-05-29 05:13:14 +08:00
|
|
|
tail = write - info->length;
|
2009-05-07 03:30:07 +08:00
|
|
|
|
|
|
|
/*
|
2015-05-29 21:40:18 +08:00
|
|
|
* If this is the first commit on the page, then it has the same
|
2015-09-03 20:57:12 +08:00
|
|
|
* timestamp as the page itself.
|
2009-05-07 03:30:07 +08:00
|
|
|
*/
|
2018-01-16 10:51:40 +08:00
|
|
|
if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
|
2015-05-29 21:40:18 +08:00
|
|
|
info->delta = 0;
|
|
|
|
|
2015-09-03 20:57:12 +08:00
|
|
|
/* See if we shot pass the end of this buffer page */
|
|
|
|
if (unlikely(write > BUF_PAGE_SIZE))
|
|
|
|
return rb_move_tail(cpu_buffer, tail, info);
|
2015-05-29 21:40:18 +08:00
|
|
|
|
2015-09-03 20:57:12 +08:00
|
|
|
/* We reserved something on the buffer */
|
|
|
|
|
|
|
|
event = __rb_page_index(tail_page, tail);
|
2015-05-29 21:40:18 +08:00
|
|
|
rb_update_event(cpu_buffer, event, info);
|
|
|
|
|
|
|
|
local_inc(&tail_page->entries);
|
2009-05-07 03:30:07 +08:00
|
|
|
|
2015-09-03 20:57:12 +08:00
|
|
|
/*
|
|
|
|
* If this is the first commit on the page, then update
|
|
|
|
* its timestamp.
|
|
|
|
*/
|
|
|
|
if (!tail)
|
|
|
|
tail_page->page->time_stamp = info->ts;
|
|
|
|
|
2011-08-17 05:46:16 +08:00
|
|
|
/* account for these added bytes */
|
2015-05-29 05:13:14 +08:00
|
|
|
local_add(info->length, &cpu_buffer->entries_bytes);
|
2011-08-17 05:46:16 +08:00
|
|
|
|
2009-05-07 03:30:07 +08:00
|
|
|
return event;
|
|
|
|
}
|
|
|
|
|
2016-11-24 00:36:30 +08:00
|
|
|
static __always_inline struct ring_buffer_event *
|
2009-09-05 02:11:34 +08:00
|
|
|
rb_reserve_next_event(struct ring_buffer *buffer,
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer,
|
2009-05-12 02:08:09 +08:00
|
|
|
unsigned long length)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer_event *event;
|
2015-05-29 05:13:14 +08:00
|
|
|
struct rb_event_info info;
|
2008-10-31 21:58:35 +08:00
|
|
|
int nr_loops = 0;
|
2015-09-03 20:57:12 +08:00
|
|
|
u64 diff;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-06-17 00:37:57 +08:00
|
|
|
rb_start_commit(cpu_buffer);
|
|
|
|
|
2009-09-05 02:24:40 +08:00
|
|
|
#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
|
2009-09-05 02:11:34 +08:00
|
|
|
/*
|
|
|
|
* Due to the ability to swap a cpu buffer from a buffer
|
|
|
|
* it is possible it was swapped before we committed.
|
|
|
|
* (committing stops a swap). We check for it here and
|
|
|
|
* if it happened, we have to fail the write.
|
|
|
|
*/
|
|
|
|
barrier();
|
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE()
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 05:07:29 +08:00
|
|
|
if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
|
2009-09-05 02:11:34 +08:00
|
|
|
local_dec(&cpu_buffer->committing);
|
|
|
|
local_dec(&cpu_buffer->commits);
|
|
|
|
return NULL;
|
|
|
|
}
|
2009-09-05 02:24:40 +08:00
|
|
|
#endif
|
2015-09-03 20:57:12 +08:00
|
|
|
|
2015-05-29 05:13:14 +08:00
|
|
|
info.length = rb_calculate_event_length(length);
|
2015-05-29 21:40:18 +08:00
|
|
|
again:
|
2015-09-03 20:57:12 +08:00
|
|
|
info.add_timestamp = 0;
|
|
|
|
info.delta = 0;
|
|
|
|
|
2008-10-31 21:58:35 +08:00
|
|
|
/*
|
|
|
|
* We allow for interrupts to reenter here and do a trace.
|
|
|
|
* If one does, it will cause this original code to loop
|
|
|
|
* back here. Even with heavy interrupts happening, this
|
|
|
|
* should only happen a few times in a row. If this happens
|
|
|
|
* 1000 times in a row, there must be either an interrupt
|
|
|
|
* storm or we have something buggy.
|
|
|
|
* Bail!
|
|
|
|
*/
|
2008-11-12 04:28:41 +08:00
|
|
|
if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
|
2009-06-17 00:37:57 +08:00
|
|
|
goto out_fail;
|
2008-10-31 21:58:35 +08:00
|
|
|
|
2015-09-03 20:57:12 +08:00
|
|
|
info.ts = rb_time_stamp(cpu_buffer->buffer);
|
|
|
|
diff = info.ts - cpu_buffer->write_stamp;
|
|
|
|
|
|
|
|
/* make sure this diff is calculated here */
|
|
|
|
barrier();
|
|
|
|
|
2018-01-16 10:51:40 +08:00
|
|
|
if (ring_buffer_time_stamp_abs(buffer)) {
|
|
|
|
info.delta = info.ts;
|
|
|
|
rb_handle_timestamp(cpu_buffer, &info);
|
|
|
|
} else /* Did the write stamp get updated already? */
|
|
|
|
if (likely(info.ts >= cpu_buffer->write_stamp)) {
|
2015-09-03 20:57:12 +08:00
|
|
|
info.delta = diff;
|
|
|
|
if (unlikely(test_time_stamp(info.delta)))
|
|
|
|
rb_handle_timestamp(cpu_buffer, &info);
|
|
|
|
}
|
|
|
|
|
2015-05-29 05:13:14 +08:00
|
|
|
event = __rb_reserve_next(cpu_buffer, &info);
|
|
|
|
|
2015-11-24 06:35:24 +08:00
|
|
|
if (unlikely(PTR_ERR(event) == -EAGAIN)) {
|
|
|
|
if (info.add_timestamp)
|
|
|
|
info.length -= RB_LEN_TIME_EXTEND;
|
2008-10-04 14:00:59 +08:00
|
|
|
goto again;
|
2015-11-24 06:35:24 +08:00
|
|
|
}
|
2008-10-04 14:00:59 +08:00
|
|
|
|
2009-06-17 00:37:57 +08:00
|
|
|
if (!event)
|
|
|
|
goto out_fail;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
return event;
|
2009-06-17 00:37:57 +08:00
|
|
|
|
|
|
|
out_fail:
|
|
|
|
rb_end_commit(cpu_buffer);
|
|
|
|
return NULL;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_lock_reserve - reserve a part of the buffer
|
|
|
|
* @buffer: the ring buffer to reserve from
|
|
|
|
* @length: the length of the data to reserve (excluding event header)
|
|
|
|
*
|
2018-05-16 23:17:06 +08:00
|
|
|
* Returns a reserved event on the ring buffer to copy directly to.
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
* The user of this interface will need to get the body to write into
|
|
|
|
* and can use the ring_buffer_event_data() interface.
|
|
|
|
*
|
|
|
|
* The length is the length of the data needed, not the event length
|
|
|
|
* which also includes the event header.
|
|
|
|
*
|
|
|
|
* Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
|
|
|
|
* If NULL is returned, then nothing has been allocated or locked.
|
|
|
|
*/
|
|
|
|
struct ring_buffer_event *
|
2009-02-06 02:12:56 +08:00
|
|
|
ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
struct ring_buffer_event *event;
|
2010-06-03 21:36:50 +08:00
|
|
|
int cpu;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2008-10-04 14:00:59 +08:00
|
|
|
/* If we are tracing schedule, we don't want to recurse */
|
2010-06-03 21:36:50 +08:00
|
|
|
preempt_disable_notrace();
|
2008-10-04 14:00:59 +08:00
|
|
|
|
ring-buffer: Add unlikelys to make fast path the default
I was running the trace_event benchmark and noticed that the times
to record a trace_event was all over the place. I looked at the assembly
of the ring_buffer_lock_reserver() and saw this:
<ring_buffer_lock_reserve>:
31 c0 xor %eax,%eax
48 83 3d 76 47 bd 00 cmpq $0x1,0xbd4776(%rip) # ffffffff81d10d60 <ring_buffer_flags>
01
55 push %rbp
48 89 e5 mov %rsp,%rbp
75 1d jne ffffffff8113c60d <ring_buffer_lock_reserve+0x2d>
65 ff 05 69 e3 ec 7e incl %gs:0x7eece369(%rip) # a960 <__preempt_count>
8b 47 08 mov 0x8(%rdi),%eax
85 c0 test %eax,%eax
+---- 74 12 je ffffffff8113c610 <ring_buffer_lock_reserve+0x30>
| 65 ff 0d 5b e3 ec 7e decl %gs:0x7eece35b(%rip) # a960 <__preempt_count>
| 0f 84 85 00 00 00 je ffffffff8113c690 <ring_buffer_lock_reserve+0xb0>
| 31 c0 xor %eax,%eax
| 5d pop %rbp
| c3 retq
| 90 nop
+---> 65 44 8b 05 48 e3 ec mov %gs:0x7eece348(%rip),%r8d # a960 <__preempt_count>
7e
41 81 e0 ff ff ff 7f and $0x7fffffff,%r8d
b0 08 mov $0x8,%al
65 8b 0d 58 36 ed 7e mov %gs:0x7eed3658(%rip),%ecx # fc80 <current_context>
41 f7 c0 00 ff 1f 00 test $0x1fff00,%r8d
74 1e je ffffffff8113c64f <ring_buffer_lock_reserve+0x6f>
41 f7 c0 00 00 10 00 test $0x100000,%r8d
b0 01 mov $0x1,%al
75 13 jne ffffffff8113c64f <ring_buffer_lock_reserve+0x6f>
41 81 e0 00 00 0f 00 and $0xf0000,%r8d
49 83 f8 01 cmp $0x1,%r8
19 c0 sbb %eax,%eax
83 e0 02 and $0x2,%eax
83 c0 02 add $0x2,%eax
85 c8 test %ecx,%eax
75 ab jne ffffffff8113c5fe <ring_buffer_lock_reserve+0x1e>
09 c8 or %ecx,%eax
65 89 05 24 36 ed 7e mov %eax,%gs:0x7eed3624(%rip) # fc80 <current_context>
The arrow is the fast path.
After adding the unlikely's, the fast path looks a bit better:
<ring_buffer_lock_reserve>:
31 c0 xor %eax,%eax
48 83 3d 76 47 bd 00 cmpq $0x1,0xbd4776(%rip) # ffffffff81d10d60 <ring_buffer_flags>
01
55 push %rbp
48 89 e5 mov %rsp,%rbp
75 7b jne ffffffff8113c66b <ring_buffer_lock_reserve+0x8b>
65 ff 05 69 e3 ec 7e incl %gs:0x7eece369(%rip) # a960 <__preempt_count>
8b 47 08 mov 0x8(%rdi),%eax
85 c0 test %eax,%eax
0f 85 9f 00 00 00 jne ffffffff8113c6a1 <ring_buffer_lock_reserve+0xc1>
65 8b 0d 57 e3 ec 7e mov %gs:0x7eece357(%rip),%ecx # a960 <__preempt_count>
81 e1 ff ff ff 7f and $0x7fffffff,%ecx
b0 08 mov $0x8,%al
65 8b 15 68 36 ed 7e mov %gs:0x7eed3668(%rip),%edx # fc80 <current_context>
f7 c1 00 ff 1f 00 test $0x1fff00,%ecx
75 50 jne ffffffff8113c670 <ring_buffer_lock_reserve+0x90>
85 d0 test %edx,%eax
75 7d jne ffffffff8113c6a1 <ring_buffer_lock_reserve+0xc1>
09 d0 or %edx,%eax
65 89 05 53 36 ed 7e mov %eax,%gs:0x7eed3653(%rip) # fc80 <current_context>
65 8b 05 fc da ec 7e mov %gs:0x7eecdafc(%rip),%eax # a130 <cpu_number>
89 c2 mov %eax,%edx
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-05-22 05:39:29 +08:00
|
|
|
if (unlikely(atomic_read(&buffer->record_disabled)))
|
2015-05-27 22:27:47 +08:00
|
|
|
goto out;
|
tracing: add same level recursion detection
The tracing infrastructure allows for recursion. That is, an interrupt
may interrupt the act of tracing an event, and that interrupt may very well
perform its own trace. This is a recursive trace, and is fine to do.
The problem arises when there is a bug, and the utility doing the trace
calls something that recurses back into the tracer. This recursion is not
caused by an external event like an interrupt, but by code that is not
expected to recurse. The result could be a lockup.
This patch adds a bitmask to the task structure that keeps track
of the trace recursion. To find the interrupt depth, the following
algorithm is used:
level = hardirq_count() + softirq_count() + in_nmi;
Here, level will be the depth of interrutps and softirqs, and even handles
the nmi. Then the corresponding bit is set in the recursion bitmask.
If the bit was already set, we know we had a recursion at the same level
and we warn about it and fail the writing to the buffer.
After the data has been committed to the buffer, we clear the bit.
No atomics are needed. The only races are with interrupts and they reset
the bitmask before returning anywy.
[ Impact: detect same irq level trace recursion ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-17 09:41:52 +08:00
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
cpu = raw_smp_processor_id();
|
|
|
|
|
ring-buffer: Add unlikelys to make fast path the default
I was running the trace_event benchmark and noticed that the times
to record a trace_event was all over the place. I looked at the assembly
of the ring_buffer_lock_reserver() and saw this:
<ring_buffer_lock_reserve>:
31 c0 xor %eax,%eax
48 83 3d 76 47 bd 00 cmpq $0x1,0xbd4776(%rip) # ffffffff81d10d60 <ring_buffer_flags>
01
55 push %rbp
48 89 e5 mov %rsp,%rbp
75 1d jne ffffffff8113c60d <ring_buffer_lock_reserve+0x2d>
65 ff 05 69 e3 ec 7e incl %gs:0x7eece369(%rip) # a960 <__preempt_count>
8b 47 08 mov 0x8(%rdi),%eax
85 c0 test %eax,%eax
+---- 74 12 je ffffffff8113c610 <ring_buffer_lock_reserve+0x30>
| 65 ff 0d 5b e3 ec 7e decl %gs:0x7eece35b(%rip) # a960 <__preempt_count>
| 0f 84 85 00 00 00 je ffffffff8113c690 <ring_buffer_lock_reserve+0xb0>
| 31 c0 xor %eax,%eax
| 5d pop %rbp
| c3 retq
| 90 nop
+---> 65 44 8b 05 48 e3 ec mov %gs:0x7eece348(%rip),%r8d # a960 <__preempt_count>
7e
41 81 e0 ff ff ff 7f and $0x7fffffff,%r8d
b0 08 mov $0x8,%al
65 8b 0d 58 36 ed 7e mov %gs:0x7eed3658(%rip),%ecx # fc80 <current_context>
41 f7 c0 00 ff 1f 00 test $0x1fff00,%r8d
74 1e je ffffffff8113c64f <ring_buffer_lock_reserve+0x6f>
41 f7 c0 00 00 10 00 test $0x100000,%r8d
b0 01 mov $0x1,%al
75 13 jne ffffffff8113c64f <ring_buffer_lock_reserve+0x6f>
41 81 e0 00 00 0f 00 and $0xf0000,%r8d
49 83 f8 01 cmp $0x1,%r8
19 c0 sbb %eax,%eax
83 e0 02 and $0x2,%eax
83 c0 02 add $0x2,%eax
85 c8 test %ecx,%eax
75 ab jne ffffffff8113c5fe <ring_buffer_lock_reserve+0x1e>
09 c8 or %ecx,%eax
65 89 05 24 36 ed 7e mov %eax,%gs:0x7eed3624(%rip) # fc80 <current_context>
The arrow is the fast path.
After adding the unlikely's, the fast path looks a bit better:
<ring_buffer_lock_reserve>:
31 c0 xor %eax,%eax
48 83 3d 76 47 bd 00 cmpq $0x1,0xbd4776(%rip) # ffffffff81d10d60 <ring_buffer_flags>
01
55 push %rbp
48 89 e5 mov %rsp,%rbp
75 7b jne ffffffff8113c66b <ring_buffer_lock_reserve+0x8b>
65 ff 05 69 e3 ec 7e incl %gs:0x7eece369(%rip) # a960 <__preempt_count>
8b 47 08 mov 0x8(%rdi),%eax
85 c0 test %eax,%eax
0f 85 9f 00 00 00 jne ffffffff8113c6a1 <ring_buffer_lock_reserve+0xc1>
65 8b 0d 57 e3 ec 7e mov %gs:0x7eece357(%rip),%ecx # a960 <__preempt_count>
81 e1 ff ff ff 7f and $0x7fffffff,%ecx
b0 08 mov $0x8,%al
65 8b 15 68 36 ed 7e mov %gs:0x7eed3668(%rip),%edx # fc80 <current_context>
f7 c1 00 ff 1f 00 test $0x1fff00,%ecx
75 50 jne ffffffff8113c670 <ring_buffer_lock_reserve+0x90>
85 d0 test %edx,%eax
75 7d jne ffffffff8113c6a1 <ring_buffer_lock_reserve+0xc1>
09 d0 or %edx,%eax
65 89 05 53 36 ed 7e mov %eax,%gs:0x7eed3653(%rip) # fc80 <current_context>
65 8b 05 fc da ec 7e mov %gs:0x7eecdafc(%rip),%eax # a130 <cpu_number>
89 c2 mov %eax,%edx
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-05-22 05:39:29 +08:00
|
|
|
if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
|
2008-10-01 12:29:53 +08:00
|
|
|
goto out;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
|
ring-buffer: Add unlikelys to make fast path the default
I was running the trace_event benchmark and noticed that the times
to record a trace_event was all over the place. I looked at the assembly
of the ring_buffer_lock_reserver() and saw this:
<ring_buffer_lock_reserve>:
31 c0 xor %eax,%eax
48 83 3d 76 47 bd 00 cmpq $0x1,0xbd4776(%rip) # ffffffff81d10d60 <ring_buffer_flags>
01
55 push %rbp
48 89 e5 mov %rsp,%rbp
75 1d jne ffffffff8113c60d <ring_buffer_lock_reserve+0x2d>
65 ff 05 69 e3 ec 7e incl %gs:0x7eece369(%rip) # a960 <__preempt_count>
8b 47 08 mov 0x8(%rdi),%eax
85 c0 test %eax,%eax
+---- 74 12 je ffffffff8113c610 <ring_buffer_lock_reserve+0x30>
| 65 ff 0d 5b e3 ec 7e decl %gs:0x7eece35b(%rip) # a960 <__preempt_count>
| 0f 84 85 00 00 00 je ffffffff8113c690 <ring_buffer_lock_reserve+0xb0>
| 31 c0 xor %eax,%eax
| 5d pop %rbp
| c3 retq
| 90 nop
+---> 65 44 8b 05 48 e3 ec mov %gs:0x7eece348(%rip),%r8d # a960 <__preempt_count>
7e
41 81 e0 ff ff ff 7f and $0x7fffffff,%r8d
b0 08 mov $0x8,%al
65 8b 0d 58 36 ed 7e mov %gs:0x7eed3658(%rip),%ecx # fc80 <current_context>
41 f7 c0 00 ff 1f 00 test $0x1fff00,%r8d
74 1e je ffffffff8113c64f <ring_buffer_lock_reserve+0x6f>
41 f7 c0 00 00 10 00 test $0x100000,%r8d
b0 01 mov $0x1,%al
75 13 jne ffffffff8113c64f <ring_buffer_lock_reserve+0x6f>
41 81 e0 00 00 0f 00 and $0xf0000,%r8d
49 83 f8 01 cmp $0x1,%r8
19 c0 sbb %eax,%eax
83 e0 02 and $0x2,%eax
83 c0 02 add $0x2,%eax
85 c8 test %ecx,%eax
75 ab jne ffffffff8113c5fe <ring_buffer_lock_reserve+0x1e>
09 c8 or %ecx,%eax
65 89 05 24 36 ed 7e mov %eax,%gs:0x7eed3624(%rip) # fc80 <current_context>
The arrow is the fast path.
After adding the unlikely's, the fast path looks a bit better:
<ring_buffer_lock_reserve>:
31 c0 xor %eax,%eax
48 83 3d 76 47 bd 00 cmpq $0x1,0xbd4776(%rip) # ffffffff81d10d60 <ring_buffer_flags>
01
55 push %rbp
48 89 e5 mov %rsp,%rbp
75 7b jne ffffffff8113c66b <ring_buffer_lock_reserve+0x8b>
65 ff 05 69 e3 ec 7e incl %gs:0x7eece369(%rip) # a960 <__preempt_count>
8b 47 08 mov 0x8(%rdi),%eax
85 c0 test %eax,%eax
0f 85 9f 00 00 00 jne ffffffff8113c6a1 <ring_buffer_lock_reserve+0xc1>
65 8b 0d 57 e3 ec 7e mov %gs:0x7eece357(%rip),%ecx # a960 <__preempt_count>
81 e1 ff ff ff 7f and $0x7fffffff,%ecx
b0 08 mov $0x8,%al
65 8b 15 68 36 ed 7e mov %gs:0x7eed3668(%rip),%edx # fc80 <current_context>
f7 c1 00 ff 1f 00 test $0x1fff00,%ecx
75 50 jne ffffffff8113c670 <ring_buffer_lock_reserve+0x90>
85 d0 test %edx,%eax
75 7d jne ffffffff8113c6a1 <ring_buffer_lock_reserve+0xc1>
09 d0 or %edx,%eax
65 89 05 53 36 ed 7e mov %eax,%gs:0x7eed3653(%rip) # fc80 <current_context>
65 8b 05 fc da ec 7e mov %gs:0x7eecdafc(%rip),%eax # a130 <cpu_number>
89 c2 mov %eax,%edx
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-05-22 05:39:29 +08:00
|
|
|
if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
|
2008-10-01 12:29:53 +08:00
|
|
|
goto out;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
ring-buffer: Add unlikelys to make fast path the default
I was running the trace_event benchmark and noticed that the times
to record a trace_event was all over the place. I looked at the assembly
of the ring_buffer_lock_reserver() and saw this:
<ring_buffer_lock_reserve>:
31 c0 xor %eax,%eax
48 83 3d 76 47 bd 00 cmpq $0x1,0xbd4776(%rip) # ffffffff81d10d60 <ring_buffer_flags>
01
55 push %rbp
48 89 e5 mov %rsp,%rbp
75 1d jne ffffffff8113c60d <ring_buffer_lock_reserve+0x2d>
65 ff 05 69 e3 ec 7e incl %gs:0x7eece369(%rip) # a960 <__preempt_count>
8b 47 08 mov 0x8(%rdi),%eax
85 c0 test %eax,%eax
+---- 74 12 je ffffffff8113c610 <ring_buffer_lock_reserve+0x30>
| 65 ff 0d 5b e3 ec 7e decl %gs:0x7eece35b(%rip) # a960 <__preempt_count>
| 0f 84 85 00 00 00 je ffffffff8113c690 <ring_buffer_lock_reserve+0xb0>
| 31 c0 xor %eax,%eax
| 5d pop %rbp
| c3 retq
| 90 nop
+---> 65 44 8b 05 48 e3 ec mov %gs:0x7eece348(%rip),%r8d # a960 <__preempt_count>
7e
41 81 e0 ff ff ff 7f and $0x7fffffff,%r8d
b0 08 mov $0x8,%al
65 8b 0d 58 36 ed 7e mov %gs:0x7eed3658(%rip),%ecx # fc80 <current_context>
41 f7 c0 00 ff 1f 00 test $0x1fff00,%r8d
74 1e je ffffffff8113c64f <ring_buffer_lock_reserve+0x6f>
41 f7 c0 00 00 10 00 test $0x100000,%r8d
b0 01 mov $0x1,%al
75 13 jne ffffffff8113c64f <ring_buffer_lock_reserve+0x6f>
41 81 e0 00 00 0f 00 and $0xf0000,%r8d
49 83 f8 01 cmp $0x1,%r8
19 c0 sbb %eax,%eax
83 e0 02 and $0x2,%eax
83 c0 02 add $0x2,%eax
85 c8 test %ecx,%eax
75 ab jne ffffffff8113c5fe <ring_buffer_lock_reserve+0x1e>
09 c8 or %ecx,%eax
65 89 05 24 36 ed 7e mov %eax,%gs:0x7eed3624(%rip) # fc80 <current_context>
The arrow is the fast path.
After adding the unlikely's, the fast path looks a bit better:
<ring_buffer_lock_reserve>:
31 c0 xor %eax,%eax
48 83 3d 76 47 bd 00 cmpq $0x1,0xbd4776(%rip) # ffffffff81d10d60 <ring_buffer_flags>
01
55 push %rbp
48 89 e5 mov %rsp,%rbp
75 7b jne ffffffff8113c66b <ring_buffer_lock_reserve+0x8b>
65 ff 05 69 e3 ec 7e incl %gs:0x7eece369(%rip) # a960 <__preempt_count>
8b 47 08 mov 0x8(%rdi),%eax
85 c0 test %eax,%eax
0f 85 9f 00 00 00 jne ffffffff8113c6a1 <ring_buffer_lock_reserve+0xc1>
65 8b 0d 57 e3 ec 7e mov %gs:0x7eece357(%rip),%ecx # a960 <__preempt_count>
81 e1 ff ff ff 7f and $0x7fffffff,%ecx
b0 08 mov $0x8,%al
65 8b 15 68 36 ed 7e mov %gs:0x7eed3668(%rip),%edx # fc80 <current_context>
f7 c1 00 ff 1f 00 test $0x1fff00,%ecx
75 50 jne ffffffff8113c670 <ring_buffer_lock_reserve+0x90>
85 d0 test %edx,%eax
75 7d jne ffffffff8113c6a1 <ring_buffer_lock_reserve+0xc1>
09 d0 or %edx,%eax
65 89 05 53 36 ed 7e mov %eax,%gs:0x7eed3653(%rip) # fc80 <current_context>
65 8b 05 fc da ec 7e mov %gs:0x7eecdafc(%rip),%eax # a130 <cpu_number>
89 c2 mov %eax,%edx
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-05-22 05:39:29 +08:00
|
|
|
if (unlikely(length > BUF_MAX_DATA_SIZE))
|
2008-10-04 14:00:59 +08:00
|
|
|
goto out;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2015-05-27 22:27:47 +08:00
|
|
|
if (unlikely(trace_recursive_lock(cpu_buffer)))
|
|
|
|
goto out;
|
|
|
|
|
2009-09-05 02:11:34 +08:00
|
|
|
event = rb_reserve_next_event(buffer, cpu_buffer, length);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
if (!event)
|
2015-05-27 22:27:47 +08:00
|
|
|
goto out_unlock;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
return event;
|
|
|
|
|
2015-05-27 22:27:47 +08:00
|
|
|
out_unlock:
|
|
|
|
trace_recursive_unlock(cpu_buffer);
|
2008-10-01 12:29:53 +08:00
|
|
|
out:
|
2010-06-03 21:36:50 +08:00
|
|
|
preempt_enable_notrace();
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
return NULL;
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-09-03 22:23:58 +08:00
|
|
|
/*
|
|
|
|
* Decrement the entries to the page that an event is on.
|
|
|
|
* The event does not even need to exist, only the pointer
|
|
|
|
* to the page it is on. This may only be called before the commit
|
|
|
|
* takes place.
|
|
|
|
*/
|
|
|
|
static inline void
|
|
|
|
rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct ring_buffer_event *event)
|
|
|
|
{
|
|
|
|
unsigned long addr = (unsigned long)event;
|
|
|
|
struct buffer_page *bpage = cpu_buffer->commit_page;
|
|
|
|
struct buffer_page *start;
|
|
|
|
|
|
|
|
addr &= PAGE_MASK;
|
|
|
|
|
|
|
|
/* Do the likely case first */
|
|
|
|
if (likely(bpage->page == (void *)addr)) {
|
|
|
|
local_dec(&bpage->entries);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Because the commit page may be on the reader page we
|
|
|
|
* start with the next page and check the end loop there.
|
|
|
|
*/
|
|
|
|
rb_inc_page(cpu_buffer, &bpage);
|
|
|
|
start = bpage;
|
|
|
|
do {
|
|
|
|
if (bpage->page == (void *)addr) {
|
|
|
|
local_dec(&bpage->entries);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
rb_inc_page(cpu_buffer, &bpage);
|
|
|
|
} while (bpage != start);
|
|
|
|
|
|
|
|
/* commit not part of this buffer?? */
|
|
|
|
RB_WARN_ON(cpu_buffer, 1);
|
|
|
|
}
|
|
|
|
|
2009-04-02 12:09:41 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_commit_discard - discard an event that has not been committed
|
|
|
|
* @buffer: the ring buffer
|
|
|
|
* @event: non committed event to discard
|
|
|
|
*
|
2009-09-04 03:33:41 +08:00
|
|
|
* Sometimes an event that is in the ring buffer needs to be ignored.
|
|
|
|
* This function lets the user discard an event in the ring buffer
|
|
|
|
* and then that event will not be read later.
|
|
|
|
*
|
2018-05-16 23:17:06 +08:00
|
|
|
* This function only works if it is called before the item has been
|
2009-09-04 03:33:41 +08:00
|
|
|
* committed. It will try to free the event from the ring buffer
|
2009-04-02 12:09:41 +08:00
|
|
|
* if another event has not been added behind it.
|
|
|
|
*
|
|
|
|
* If another event has been added behind it, it will set the event
|
|
|
|
* up as discarded, and perform the commit.
|
|
|
|
*
|
|
|
|
* If this function is called, do not call ring_buffer_unlock_commit on
|
|
|
|
* the event.
|
|
|
|
*/
|
|
|
|
void ring_buffer_discard_commit(struct ring_buffer *buffer,
|
|
|
|
struct ring_buffer_event *event)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
int cpu;
|
|
|
|
|
|
|
|
/* The event is discarded regardless */
|
2009-04-20 05:39:33 +08:00
|
|
|
rb_event_discard(event);
|
2009-04-02 12:09:41 +08:00
|
|
|
|
2009-06-17 00:37:57 +08:00
|
|
|
cpu = smp_processor_id();
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
|
2009-04-02 12:09:41 +08:00
|
|
|
/*
|
|
|
|
* This must only be called if the event has not been
|
|
|
|
* committed yet. Thus we can assume that preemption
|
|
|
|
* is still disabled.
|
|
|
|
*/
|
2009-06-17 00:37:57 +08:00
|
|
|
RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
|
2009-04-02 12:09:41 +08:00
|
|
|
|
2009-09-03 22:23:58 +08:00
|
|
|
rb_decrement_entry(cpu_buffer, event);
|
2009-08-06 00:02:48 +08:00
|
|
|
if (rb_try_to_discard(cpu_buffer, event))
|
2009-06-03 11:00:53 +08:00
|
|
|
goto out;
|
2009-04-02 12:09:41 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The commit is still visible by the reader, so we
|
2009-09-03 22:23:58 +08:00
|
|
|
* must still update the timestamp.
|
2009-04-02 12:09:41 +08:00
|
|
|
*/
|
2009-09-03 22:23:58 +08:00
|
|
|
rb_update_write_stamp(cpu_buffer, event);
|
2009-04-02 12:09:41 +08:00
|
|
|
out:
|
2009-06-17 00:37:57 +08:00
|
|
|
rb_end_commit(cpu_buffer);
|
2009-04-02 12:09:41 +08:00
|
|
|
|
2015-05-27 22:27:47 +08:00
|
|
|
trace_recursive_unlock(cpu_buffer);
|
2009-04-20 05:39:33 +08:00
|
|
|
|
2010-06-03 21:36:50 +08:00
|
|
|
preempt_enable_notrace();
|
2009-04-02 12:09:41 +08:00
|
|
|
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_write - write data to the buffer without reserving
|
|
|
|
* @buffer: The ring buffer to write to.
|
|
|
|
* @length: The length of the data being written (excluding the event header)
|
|
|
|
* @data: The data to write to the buffer.
|
|
|
|
*
|
|
|
|
* This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
|
|
|
|
* one function. If you already have the data to write to the buffer, it
|
|
|
|
* may be easier to simply call this function.
|
|
|
|
*
|
|
|
|
* Note, like ring_buffer_lock_reserve, the length is the length of the data
|
|
|
|
* and not the length of the event which would hold the header.
|
|
|
|
*/
|
|
|
|
int ring_buffer_write(struct ring_buffer *buffer,
|
2012-06-08 07:46:24 +08:00
|
|
|
unsigned long length,
|
|
|
|
void *data)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
struct ring_buffer_event *event;
|
|
|
|
void *body;
|
|
|
|
int ret = -EBUSY;
|
2010-06-03 21:36:50 +08:00
|
|
|
int cpu;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2010-06-03 21:36:50 +08:00
|
|
|
preempt_disable_notrace();
|
2008-10-04 14:00:59 +08:00
|
|
|
|
2010-03-08 14:50:43 +08:00
|
|
|
if (atomic_read(&buffer->record_disabled))
|
|
|
|
goto out;
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
cpu = raw_smp_processor_id();
|
|
|
|
|
2009-01-01 07:42:22 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
2008-10-01 12:29:53 +08:00
|
|
|
goto out;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
|
|
|
|
if (atomic_read(&cpu_buffer->record_disabled))
|
|
|
|
goto out;
|
|
|
|
|
2009-05-12 02:42:53 +08:00
|
|
|
if (length > BUF_MAX_DATA_SIZE)
|
|
|
|
goto out;
|
|
|
|
|
2015-05-27 22:48:56 +08:00
|
|
|
if (unlikely(trace_recursive_lock(cpu_buffer)))
|
|
|
|
goto out;
|
|
|
|
|
2009-09-05 02:11:34 +08:00
|
|
|
event = rb_reserve_next_event(buffer, cpu_buffer, length);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
if (!event)
|
2015-05-27 22:48:56 +08:00
|
|
|
goto out_unlock;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
body = rb_event_data(event);
|
|
|
|
|
|
|
|
memcpy(body, data, length);
|
|
|
|
|
|
|
|
rb_commit(cpu_buffer, event);
|
|
|
|
|
2013-03-01 08:59:17 +08:00
|
|
|
rb_wakeups(buffer, cpu_buffer);
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
ret = 0;
|
2015-05-27 22:48:56 +08:00
|
|
|
|
|
|
|
out_unlock:
|
|
|
|
trace_recursive_unlock(cpu_buffer);
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
out:
|
2010-06-03 21:36:50 +08:00
|
|
|
preempt_enable_notrace();
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_write);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2015-09-29 22:43:33 +08:00
|
|
|
static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
|
2008-10-04 14:00:59 +08:00
|
|
|
{
|
|
|
|
struct buffer_page *reader = cpu_buffer->reader_page;
|
2009-03-27 23:00:29 +08:00
|
|
|
struct buffer_page *head = rb_set_head_page(cpu_buffer);
|
2008-10-04 14:00:59 +08:00
|
|
|
struct buffer_page *commit = cpu_buffer->commit_page;
|
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
/* In case of error, head will be NULL */
|
|
|
|
if (unlikely(!head))
|
2015-09-29 22:43:33 +08:00
|
|
|
return true;
|
2009-03-27 23:00:29 +08:00
|
|
|
|
2008-10-04 14:00:59 +08:00
|
|
|
return reader->read == rb_page_commit(reader) &&
|
|
|
|
(commit == reader ||
|
|
|
|
(commit == head &&
|
|
|
|
head->read == rb_page_commit(commit)));
|
|
|
|
}
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_record_disable - stop all writes into the buffer
|
|
|
|
* @buffer: The ring buffer to stop writes to.
|
|
|
|
*
|
|
|
|
* This prevents all writes to the buffer. Any attempt to write
|
|
|
|
* to the buffer after this will fail and return NULL.
|
|
|
|
*
|
|
|
|
* The caller should call synchronize_sched() after this.
|
|
|
|
*/
|
|
|
|
void ring_buffer_record_disable(struct ring_buffer *buffer)
|
|
|
|
{
|
|
|
|
atomic_inc(&buffer->record_disabled);
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_record_enable - enable writes to the buffer
|
|
|
|
* @buffer: The ring buffer to enable writes
|
|
|
|
*
|
|
|
|
* Note, multiple disables will need the same number of enables
|
2009-12-12 05:35:39 +08:00
|
|
|
* to truly enable the writing (much like preempt_disable).
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
*/
|
|
|
|
void ring_buffer_record_enable(struct ring_buffer *buffer)
|
|
|
|
{
|
|
|
|
atomic_dec(&buffer->record_disabled);
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2012-02-23 04:50:28 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_record_off - stop all writes into the buffer
|
|
|
|
* @buffer: The ring buffer to stop writes to.
|
|
|
|
*
|
|
|
|
* This prevents all writes to the buffer. Any attempt to write
|
|
|
|
* to the buffer after this will fail and return NULL.
|
|
|
|
*
|
|
|
|
* This is different than ring_buffer_record_disable() as
|
2012-08-02 14:02:00 +08:00
|
|
|
* it works like an on/off switch, where as the disable() version
|
2012-02-23 04:50:28 +08:00
|
|
|
* must be paired with a enable().
|
|
|
|
*/
|
|
|
|
void ring_buffer_record_off(struct ring_buffer *buffer)
|
|
|
|
{
|
|
|
|
unsigned int rd;
|
|
|
|
unsigned int new_rd;
|
|
|
|
|
|
|
|
do {
|
|
|
|
rd = atomic_read(&buffer->record_disabled);
|
|
|
|
new_rd = rd | RB_BUFFER_OFF;
|
|
|
|
} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_record_off);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_record_on - restart writes into the buffer
|
|
|
|
* @buffer: The ring buffer to start writes to.
|
|
|
|
*
|
|
|
|
* This enables all writes to the buffer that was disabled by
|
|
|
|
* ring_buffer_record_off().
|
|
|
|
*
|
|
|
|
* This is different than ring_buffer_record_enable() as
|
2012-08-02 14:02:00 +08:00
|
|
|
* it works like an on/off switch, where as the enable() version
|
2012-02-23 04:50:28 +08:00
|
|
|
* must be paired with a disable().
|
|
|
|
*/
|
|
|
|
void ring_buffer_record_on(struct ring_buffer *buffer)
|
|
|
|
{
|
|
|
|
unsigned int rd;
|
|
|
|
unsigned int new_rd;
|
|
|
|
|
|
|
|
do {
|
|
|
|
rd = atomic_read(&buffer->record_disabled);
|
|
|
|
new_rd = rd & ~RB_BUFFER_OFF;
|
|
|
|
} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_record_on);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_record_is_on - return true if the ring buffer can write
|
|
|
|
* @buffer: The ring buffer to see if write is enabled
|
|
|
|
*
|
|
|
|
* Returns true if the ring buffer is in a state that it accepts writes.
|
|
|
|
*/
|
2018-08-02 09:08:30 +08:00
|
|
|
bool ring_buffer_record_is_on(struct ring_buffer *buffer)
|
2012-02-23 04:50:28 +08:00
|
|
|
{
|
|
|
|
return !atomic_read(&buffer->record_disabled);
|
|
|
|
}
|
|
|
|
|
2018-07-14 00:28:15 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_record_is_set_on - return true if the ring buffer is set writable
|
|
|
|
* @buffer: The ring buffer to see if write is set enabled
|
|
|
|
*
|
|
|
|
* Returns true if the ring buffer is set writable by ring_buffer_record_on().
|
|
|
|
* Note that this does NOT mean it is in a writable state.
|
|
|
|
*
|
|
|
|
* It may return true when the ring buffer has been disabled by
|
|
|
|
* ring_buffer_record_disable(), as that is a temporary disabling of
|
|
|
|
* the ring buffer.
|
|
|
|
*/
|
2018-08-02 09:09:50 +08:00
|
|
|
bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
|
2018-07-14 00:28:15 +08:00
|
|
|
{
|
|
|
|
return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
|
|
|
|
}
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
|
|
|
|
* @buffer: The ring buffer to stop writes to.
|
|
|
|
* @cpu: The CPU buffer to stop
|
|
|
|
*
|
|
|
|
* This prevents all writes to the buffer. Any attempt to write
|
|
|
|
* to the buffer after this will fail and return NULL.
|
|
|
|
*
|
|
|
|
* The caller should call synchronize_sched() after this.
|
|
|
|
*/
|
|
|
|
void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
|
2009-01-01 07:42:22 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
2009-03-13 01:13:49 +08:00
|
|
|
return;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
atomic_inc(&cpu_buffer->record_disabled);
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_record_enable_cpu - enable writes to the buffer
|
|
|
|
* @buffer: The ring buffer to enable writes
|
|
|
|
* @cpu: The CPU to enable.
|
|
|
|
*
|
|
|
|
* Note, multiple disables will need the same number of enables
|
2009-12-12 05:35:39 +08:00
|
|
|
* to truly enable the writing (much like preempt_disable).
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
*/
|
|
|
|
void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
|
2009-01-01 07:42:22 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
2009-03-13 01:13:49 +08:00
|
|
|
return;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
atomic_dec(&cpu_buffer->record_disabled);
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2010-09-02 00:23:12 +08:00
|
|
|
/*
|
|
|
|
* The total entries in the ring buffer is the running counter
|
|
|
|
* of entries entered into the ring buffer, minus the sum of
|
|
|
|
* the entries read from the ring buffer and the number of
|
|
|
|
* entries that were overwritten.
|
|
|
|
*/
|
|
|
|
static inline unsigned long
|
|
|
|
rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
|
|
|
return local_read(&cpu_buffer->entries) -
|
|
|
|
(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
|
|
|
|
}
|
|
|
|
|
2011-08-17 05:46:16 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
|
|
|
|
* @buffer: The ring buffer
|
|
|
|
* @cpu: The per CPU buffer to read from.
|
|
|
|
*/
|
2012-10-12 07:27:54 +08:00
|
|
|
u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
|
2011-08-17 05:46:16 +08:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
struct buffer_page *bpage;
|
2012-12-12 10:18:58 +08:00
|
|
|
u64 ret = 0;
|
2011-08-17 05:46:16 +08:00
|
|
|
|
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
2011-10-26 23:03:38 +08:00
|
|
|
raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
|
2011-08-17 05:46:16 +08:00
|
|
|
/*
|
|
|
|
* if the tail is on reader_page, oldest time stamp is on the reader
|
|
|
|
* page
|
|
|
|
*/
|
|
|
|
if (cpu_buffer->tail_page == cpu_buffer->reader_page)
|
|
|
|
bpage = cpu_buffer->reader_page;
|
|
|
|
else
|
|
|
|
bpage = rb_set_head_page(cpu_buffer);
|
2012-11-30 11:27:22 +08:00
|
|
|
if (bpage)
|
|
|
|
ret = bpage->page->time_stamp;
|
2011-10-26 23:03:38 +08:00
|
|
|
raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
|
2011-08-17 05:46:16 +08:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
|
|
|
|
* @buffer: The ring buffer
|
|
|
|
* @cpu: The per CPU buffer to read from.
|
|
|
|
*/
|
|
|
|
unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
unsigned long ret;
|
|
|
|
|
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_entries_cpu - get the number of entries in a cpu buffer
|
|
|
|
* @buffer: The ring buffer
|
|
|
|
* @cpu: The per CPU buffer to get the entries from.
|
|
|
|
*/
|
|
|
|
unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
|
2009-01-01 07:42:22 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
2009-03-13 01:13:49 +08:00
|
|
|
return 0;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
2009-03-12 10:00:13 +08:00
|
|
|
|
2010-09-02 00:23:12 +08:00
|
|
|
return rb_num_of_entries(cpu_buffer);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/**
|
2011-07-16 05:23:58 +08:00
|
|
|
* ring_buffer_overrun_cpu - get the number of overruns caused by the ring
|
|
|
|
* buffer wrapping around (only if RB_FL_OVERWRITE is on).
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
* @buffer: The ring buffer
|
|
|
|
* @cpu: The per CPU buffer to get the number of overruns from
|
|
|
|
*/
|
|
|
|
unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
2009-03-13 01:13:49 +08:00
|
|
|
unsigned long ret;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-01-01 07:42:22 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
2009-03-13 01:13:49 +08:00
|
|
|
return 0;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
2009-03-27 23:00:29 +08:00
|
|
|
ret = local_read(&cpu_buffer->overrun);
|
2009-03-12 10:00:13 +08:00
|
|
|
|
|
|
|
return ret;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-04-30 01:43:37 +08:00
|
|
|
/**
|
2011-07-16 05:23:58 +08:00
|
|
|
* ring_buffer_commit_overrun_cpu - get the number of overruns caused by
|
|
|
|
* commits failing due to the buffer wrapping around while there are uncommitted
|
|
|
|
* events, such as during an interrupt storm.
|
2009-04-30 01:43:37 +08:00
|
|
|
* @buffer: The ring buffer
|
|
|
|
* @cpu: The per CPU buffer to get the number of overruns from
|
|
|
|
*/
|
|
|
|
unsigned long
|
|
|
|
ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
unsigned long ret;
|
|
|
|
|
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
2009-03-27 23:00:29 +08:00
|
|
|
ret = local_read(&cpu_buffer->commit_overrun);
|
2009-04-30 01:43:37 +08:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
|
|
|
|
|
2011-07-16 05:23:58 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_dropped_events_cpu - get the number of dropped events caused by
|
|
|
|
* the ring buffer filling up (only if RB_FL_OVERWRITE is off).
|
|
|
|
* @buffer: The ring buffer
|
|
|
|
* @cpu: The per CPU buffer to get the number of overruns from
|
|
|
|
*/
|
|
|
|
unsigned long
|
|
|
|
ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
unsigned long ret;
|
|
|
|
|
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
ret = local_read(&cpu_buffer->dropped_events);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
|
|
|
|
|
2013-01-30 06:45:49 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_read_events_cpu - get the number of events successfully read
|
|
|
|
* @buffer: The ring buffer
|
|
|
|
* @cpu: The per CPU buffer to get the number of events read
|
|
|
|
*/
|
|
|
|
unsigned long
|
|
|
|
ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
|
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
return cpu_buffer->read;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_entries - get the number of entries in a buffer
|
|
|
|
* @buffer: The ring buffer
|
|
|
|
*
|
|
|
|
* Returns the total number of entries in the ring buffer
|
|
|
|
* (all CPU entries)
|
|
|
|
*/
|
|
|
|
unsigned long ring_buffer_entries(struct ring_buffer *buffer)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
unsigned long entries = 0;
|
|
|
|
int cpu;
|
|
|
|
|
|
|
|
/* if you care about this being correct, lock the buffer */
|
|
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
2010-09-02 00:23:12 +08:00
|
|
|
entries += rb_num_of_entries(cpu_buffer);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return entries;
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_entries);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/**
|
2009-10-24 07:36:18 +08:00
|
|
|
* ring_buffer_overruns - get the number of overruns in buffer
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
* @buffer: The ring buffer
|
|
|
|
*
|
|
|
|
* Returns the total number of overruns in the ring buffer
|
|
|
|
* (all CPU entries)
|
|
|
|
*/
|
|
|
|
unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
unsigned long overruns = 0;
|
|
|
|
int cpu;
|
|
|
|
|
|
|
|
/* if you care about this being correct, lock the buffer */
|
|
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
2009-03-27 23:00:29 +08:00
|
|
|
overruns += local_read(&cpu_buffer->overrun);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return overruns;
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_overruns);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2008-11-12 13:01:26 +08:00
|
|
|
static void rb_iter_reset(struct ring_buffer_iter *iter)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
|
|
|
|
|
2008-10-01 12:29:53 +08:00
|
|
|
/* Iterator usage is expected to have record disabled */
|
ring-buffer: Always reset iterator to reader page
When performing a consuming read, the ring buffer swaps out a
page from the ring buffer with a empty page and this page that
was swapped out becomes the new reader page. The reader page
is owned by the reader and since it was swapped out of the ring
buffer, writers do not have access to it (there's an exception
to that rule, but it's out of scope for this commit).
When reading the "trace" file, it is a non consuming read, which
means that the data in the ring buffer will not be modified.
When the trace file is opened, a ring buffer iterator is allocated
and writes to the ring buffer are disabled, such that the iterator
will not have issues iterating over the data.
Although the ring buffer disabled writes, it does not disable other
reads, or even consuming reads. If a consuming read happens, then
the iterator is reset and starts reading from the beginning again.
My tests would sometimes trigger this bug on my i386 box:
WARNING: CPU: 0 PID: 5175 at kernel/trace/trace.c:1527 __trace_find_cmdline+0x66/0xaa()
Modules linked in:
CPU: 0 PID: 5175 Comm: grep Not tainted 3.16.0-rc3-test+ #8
Hardware name: /DG965MQ, BIOS MQ96510J.86A.0372.2006.0605.1717 06/05/2006
00000000 00000000 f09c9e1c c18796b3 c1b5d74c f09c9e4c c103a0e3 c1b5154b
f09c9e78 00001437 c1b5d74c 000005f7 c10bd85a c10bd85a c1cac57c f09c9eb0
ed0e0000 f09c9e64 c103a185 00000009 f09c9e5c c1b5154b f09c9e78 f09c9e80^M
Call Trace:
[<c18796b3>] dump_stack+0x4b/0x75
[<c103a0e3>] warn_slowpath_common+0x7e/0x95
[<c10bd85a>] ? __trace_find_cmdline+0x66/0xaa
[<c10bd85a>] ? __trace_find_cmdline+0x66/0xaa
[<c103a185>] warn_slowpath_fmt+0x33/0x35
[<c10bd85a>] __trace_find_cmdline+0x66/0xaa^M
[<c10bed04>] trace_find_cmdline+0x40/0x64
[<c10c3c16>] trace_print_context+0x27/0xec
[<c10c4360>] ? trace_seq_printf+0x37/0x5b
[<c10c0b15>] print_trace_line+0x319/0x39b
[<c10ba3fb>] ? ring_buffer_read+0x47/0x50
[<c10c13b1>] s_show+0x192/0x1ab
[<c10bfd9a>] ? s_next+0x5a/0x7c
[<c112e76e>] seq_read+0x267/0x34c
[<c1115a25>] vfs_read+0x8c/0xef
[<c112e507>] ? seq_lseek+0x154/0x154
[<c1115ba2>] SyS_read+0x54/0x7f
[<c188488e>] syscall_call+0x7/0xb
---[ end trace 3f507febd6b4cc83 ]---
>>>> ##### CPU 1 buffer started ####
Which was the __trace_find_cmdline() function complaining about the pid
in the event record being negative.
After adding more test cases, this would trigger more often. Strangely
enough, it would never trigger on a single test, but instead would trigger
only when running all the tests. I believe that was the case because it
required one of the tests to be shutting down via delayed instances while
a new test started up.
After spending several days debugging this, I found that it was caused by
the iterator becoming corrupted. Debugging further, I found out why
the iterator became corrupted. It happened with the rb_iter_reset().
As consuming reads may not read the full reader page, and only part
of it, there's a "read" field to know where the last read took place.
The iterator, must also start at the read position. In the rb_iter_reset()
code, if the reader page was disconnected from the ring buffer, the iterator
would start at the head page within the ring buffer (where writes still
happen). But the mistake there was that it still used the "read" field
to start the iterator on the head page, where it should always start
at zero because readers never read from within the ring buffer where
writes occur.
I originally wrote a patch to have it set the iter->head to 0 instead
of iter->head_page->read, but then I questioned why it wasn't always
setting the iter to point to the reader page, as the reader page is
still valid. The list_empty(reader_page->list) just means that it was
successful in swapping out. But the reader_page may still have data.
There was a bug report a long time ago that was not reproducible that
had something about trace_pipe (consuming read) not matching trace
(iterator read). This may explain why that happened.
Anyway, the correct answer to this bug is to always use the reader page
an not reset the iterator to inside the writable ring buffer.
Cc: stable@vger.kernel.org # 2.6.28+
Fixes: d769041f8653 "ring_buffer: implement new locking"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-08-07 02:11:33 +08:00
|
|
|
iter->head_page = cpu_buffer->reader_page;
|
|
|
|
iter->head = cpu_buffer->reader_page->read;
|
|
|
|
|
|
|
|
iter->cache_reader_page = iter->head_page;
|
2014-10-03 04:51:18 +08:00
|
|
|
iter->cache_read = cpu_buffer->read;
|
ring-buffer: Always reset iterator to reader page
When performing a consuming read, the ring buffer swaps out a
page from the ring buffer with a empty page and this page that
was swapped out becomes the new reader page. The reader page
is owned by the reader and since it was swapped out of the ring
buffer, writers do not have access to it (there's an exception
to that rule, but it's out of scope for this commit).
When reading the "trace" file, it is a non consuming read, which
means that the data in the ring buffer will not be modified.
When the trace file is opened, a ring buffer iterator is allocated
and writes to the ring buffer are disabled, such that the iterator
will not have issues iterating over the data.
Although the ring buffer disabled writes, it does not disable other
reads, or even consuming reads. If a consuming read happens, then
the iterator is reset and starts reading from the beginning again.
My tests would sometimes trigger this bug on my i386 box:
WARNING: CPU: 0 PID: 5175 at kernel/trace/trace.c:1527 __trace_find_cmdline+0x66/0xaa()
Modules linked in:
CPU: 0 PID: 5175 Comm: grep Not tainted 3.16.0-rc3-test+ #8
Hardware name: /DG965MQ, BIOS MQ96510J.86A.0372.2006.0605.1717 06/05/2006
00000000 00000000 f09c9e1c c18796b3 c1b5d74c f09c9e4c c103a0e3 c1b5154b
f09c9e78 00001437 c1b5d74c 000005f7 c10bd85a c10bd85a c1cac57c f09c9eb0
ed0e0000 f09c9e64 c103a185 00000009 f09c9e5c c1b5154b f09c9e78 f09c9e80^M
Call Trace:
[<c18796b3>] dump_stack+0x4b/0x75
[<c103a0e3>] warn_slowpath_common+0x7e/0x95
[<c10bd85a>] ? __trace_find_cmdline+0x66/0xaa
[<c10bd85a>] ? __trace_find_cmdline+0x66/0xaa
[<c103a185>] warn_slowpath_fmt+0x33/0x35
[<c10bd85a>] __trace_find_cmdline+0x66/0xaa^M
[<c10bed04>] trace_find_cmdline+0x40/0x64
[<c10c3c16>] trace_print_context+0x27/0xec
[<c10c4360>] ? trace_seq_printf+0x37/0x5b
[<c10c0b15>] print_trace_line+0x319/0x39b
[<c10ba3fb>] ? ring_buffer_read+0x47/0x50
[<c10c13b1>] s_show+0x192/0x1ab
[<c10bfd9a>] ? s_next+0x5a/0x7c
[<c112e76e>] seq_read+0x267/0x34c
[<c1115a25>] vfs_read+0x8c/0xef
[<c112e507>] ? seq_lseek+0x154/0x154
[<c1115ba2>] SyS_read+0x54/0x7f
[<c188488e>] syscall_call+0x7/0xb
---[ end trace 3f507febd6b4cc83 ]---
>>>> ##### CPU 1 buffer started ####
Which was the __trace_find_cmdline() function complaining about the pid
in the event record being negative.
After adding more test cases, this would trigger more often. Strangely
enough, it would never trigger on a single test, but instead would trigger
only when running all the tests. I believe that was the case because it
required one of the tests to be shutting down via delayed instances while
a new test started up.
After spending several days debugging this, I found that it was caused by
the iterator becoming corrupted. Debugging further, I found out why
the iterator became corrupted. It happened with the rb_iter_reset().
As consuming reads may not read the full reader page, and only part
of it, there's a "read" field to know where the last read took place.
The iterator, must also start at the read position. In the rb_iter_reset()
code, if the reader page was disconnected from the ring buffer, the iterator
would start at the head page within the ring buffer (where writes still
happen). But the mistake there was that it still used the "read" field
to start the iterator on the head page, where it should always start
at zero because readers never read from within the ring buffer where
writes occur.
I originally wrote a patch to have it set the iter->head to 0 instead
of iter->head_page->read, but then I questioned why it wasn't always
setting the iter to point to the reader page, as the reader page is
still valid. The list_empty(reader_page->list) just means that it was
successful in swapping out. But the reader_page may still have data.
There was a bug report a long time ago that was not reproducible that
had something about trace_pipe (consuming read) not matching trace
(iterator read). This may explain why that happened.
Anyway, the correct answer to this bug is to always use the reader page
an not reset the iterator to inside the writable ring buffer.
Cc: stable@vger.kernel.org # 2.6.28+
Fixes: d769041f8653 "ring_buffer: implement new locking"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-08-07 02:11:33 +08:00
|
|
|
|
2008-10-01 12:29:53 +08:00
|
|
|
if (iter->head)
|
|
|
|
iter->read_stamp = cpu_buffer->read_stamp;
|
|
|
|
else
|
2008-12-03 04:34:06 +08:00
|
|
|
iter->read_stamp = iter->head_page->page->time_stamp;
|
2008-11-12 13:01:26 +08:00
|
|
|
}
|
2008-11-12 01:47:44 +08:00
|
|
|
|
2008-11-12 13:01:26 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_iter_reset - reset an iterator
|
|
|
|
* @iter: The iterator to reset
|
|
|
|
*
|
|
|
|
* Resets the iterator, so that it will start from the beginning
|
|
|
|
* again.
|
|
|
|
*/
|
|
|
|
void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
|
|
|
|
{
|
2009-03-12 10:00:13 +08:00
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
2008-11-12 13:01:26 +08:00
|
|
|
unsigned long flags;
|
|
|
|
|
2009-03-12 10:00:13 +08:00
|
|
|
if (!iter)
|
|
|
|
return;
|
|
|
|
|
|
|
|
cpu_buffer = iter->cpu_buffer;
|
|
|
|
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
|
2008-11-12 13:01:26 +08:00
|
|
|
rb_iter_reset(iter);
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_iter_empty - check if an iterator has no more to read
|
|
|
|
* @iter: The iterator to check
|
|
|
|
*/
|
|
|
|
int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
2017-04-20 02:29:46 +08:00
|
|
|
struct buffer_page *reader;
|
|
|
|
struct buffer_page *head_page;
|
|
|
|
struct buffer_page *commit_page;
|
|
|
|
unsigned commit;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
cpu_buffer = iter->cpu_buffer;
|
|
|
|
|
2017-04-20 02:29:46 +08:00
|
|
|
/* Remember, trace recording is off when iterator is in use */
|
|
|
|
reader = cpu_buffer->reader_page;
|
|
|
|
head_page = cpu_buffer->head_page;
|
|
|
|
commit_page = cpu_buffer->commit_page;
|
|
|
|
commit = rb_page_commit(commit_page);
|
|
|
|
|
|
|
|
return ((iter->head_page == commit_page && iter->head == commit) ||
|
|
|
|
(iter->head_page == reader && commit_page == head_page &&
|
|
|
|
head_page->read == commit &&
|
|
|
|
iter->head == rb_page_commit(cpu_buffer->reader_page)));
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
static void
|
|
|
|
rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
struct ring_buffer_event *event)
|
|
|
|
{
|
|
|
|
u64 delta;
|
|
|
|
|
2009-04-24 11:27:05 +08:00
|
|
|
switch (event->type_len) {
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
case RINGBUF_TYPE_PADDING:
|
|
|
|
return;
|
|
|
|
|
|
|
|
case RINGBUF_TYPE_TIME_EXTEND:
|
2018-01-16 10:51:40 +08:00
|
|
|
delta = ring_buffer_event_time_stamp(event);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
cpu_buffer->read_stamp += delta;
|
|
|
|
return;
|
|
|
|
|
|
|
|
case RINGBUF_TYPE_TIME_STAMP:
|
2018-01-16 10:51:40 +08:00
|
|
|
delta = ring_buffer_event_time_stamp(event);
|
|
|
|
cpu_buffer->read_stamp = delta;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
case RINGBUF_TYPE_DATA:
|
|
|
|
cpu_buffer->read_stamp += event->time_delta;
|
|
|
|
return;
|
|
|
|
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
|
|
|
|
struct ring_buffer_event *event)
|
|
|
|
{
|
|
|
|
u64 delta;
|
|
|
|
|
2009-04-24 11:27:05 +08:00
|
|
|
switch (event->type_len) {
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
case RINGBUF_TYPE_PADDING:
|
|
|
|
return;
|
|
|
|
|
|
|
|
case RINGBUF_TYPE_TIME_EXTEND:
|
2018-01-16 10:51:40 +08:00
|
|
|
delta = ring_buffer_event_time_stamp(event);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
iter->read_stamp += delta;
|
|
|
|
return;
|
|
|
|
|
|
|
|
case RINGBUF_TYPE_TIME_STAMP:
|
2018-01-16 10:51:40 +08:00
|
|
|
delta = ring_buffer_event_time_stamp(event);
|
|
|
|
iter->read_stamp = delta;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
case RINGBUF_TYPE_DATA:
|
|
|
|
iter->read_stamp += event->time_delta;
|
|
|
|
return;
|
|
|
|
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2008-10-01 12:29:53 +08:00
|
|
|
static struct buffer_page *
|
|
|
|
rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
2008-10-01 12:29:53 +08:00
|
|
|
struct buffer_page *reader = NULL;
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
unsigned long overwrite;
|
2008-10-01 12:29:53 +08:00
|
|
|
unsigned long flags;
|
2008-10-31 21:58:35 +08:00
|
|
|
int nr_loops = 0;
|
2009-03-27 23:00:29 +08:00
|
|
|
int ret;
|
2008-10-01 12:29:53 +08:00
|
|
|
|
2008-11-06 13:09:43 +08:00
|
|
|
local_irq_save(flags);
|
2009-12-03 03:01:25 +08:00
|
|
|
arch_spin_lock(&cpu_buffer->lock);
|
2008-10-01 12:29:53 +08:00
|
|
|
|
|
|
|
again:
|
2008-10-31 21:58:35 +08:00
|
|
|
/*
|
|
|
|
* This should normally only loop twice. But because the
|
|
|
|
* start of the reader inserts an empty page, it causes
|
|
|
|
* a case where we will loop three times. There should be no
|
|
|
|
* reason to loop four times (that I know of).
|
|
|
|
*/
|
2008-11-12 04:28:41 +08:00
|
|
|
if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
|
2008-10-31 21:58:35 +08:00
|
|
|
reader = NULL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2008-10-01 12:29:53 +08:00
|
|
|
reader = cpu_buffer->reader_page;
|
|
|
|
|
|
|
|
/* If there's more to read, return this page */
|
2008-10-04 14:00:59 +08:00
|
|
|
if (cpu_buffer->reader_page->read < rb_page_size(reader))
|
2008-10-01 12:29:53 +08:00
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* Never should we have an index greater than the size */
|
2008-11-12 04:28:41 +08:00
|
|
|
if (RB_WARN_ON(cpu_buffer,
|
|
|
|
cpu_buffer->reader_page->read > rb_page_size(reader)))
|
|
|
|
goto out;
|
2008-10-01 12:29:53 +08:00
|
|
|
|
|
|
|
/* check if we caught up to the tail */
|
|
|
|
reader = NULL;
|
2008-10-04 14:00:59 +08:00
|
|
|
if (cpu_buffer->commit_page == cpu_buffer->reader_page)
|
2008-10-01 12:29:53 +08:00
|
|
|
goto out;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
ring-buffer: Fix uninitialized read_stamp
The ring buffer reader page is used to swap a page from the writable
ring buffer. If the writer happens to be on that page, it ends up on the
reader page, but will simply move off of it, back into the writable ring
buffer as writes are added.
The time stamp passed back to the readers is stored in the cpu_buffer per
CPU descriptor. This stamp is updated when a swap of the reader page takes
place, and it reads the current stamp from the page taken from the writable
ring buffer. Everytime a writer goes to a new page, it updates the time stamp
of that page.
The problem happens if a reader reads a page from an empty per CPU ring buffer.
If the buffer is empty, the swap still takes place, placing the writer at the
start of the reader page. If at a later time, a write happens, it updates the
page's time stamp and continues. But the problem is that the read_stamp does
not get updated, because the page was already swapped.
The solution to this was to not swap the page if the ring buffer happens to
be empty. This also removes the side effect that the writes on the reader
page will not get updated because the writer never gets back on the reader
page without a swap. That is, if a read happens on an empty buffer, but then
no reads happen for a while. If a swap took place, and the writer were to start
writing a lot of data (function tracer), it will start overflowing the ring buffer
and overwrite the older data. But because the writer never goes back onto the
reader page, the data left on the reader page never gets overwritten. This
causes the reader to see really old data, followed by a jump to newer data.
Link: http://lkml.kernel.org/r/1340060577-9112-1-git-send-email-dhsharp@google.com
Google-Bug-Id: 6410455
Reported-by: David Sharp <dhsharp@google.com>
tested-by: David Sharp <dhsharp@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-06-29 01:35:04 +08:00
|
|
|
/* Don't bother swapping if the ring buffer is empty */
|
|
|
|
if (rb_num_of_entries(cpu_buffer) == 0)
|
|
|
|
goto out;
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/*
|
2008-10-01 12:29:53 +08:00
|
|
|
* Reset the reader page to size zero.
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
*/
|
2009-03-27 23:00:29 +08:00
|
|
|
local_set(&cpu_buffer->reader_page->write, 0);
|
|
|
|
local_set(&cpu_buffer->reader_page->entries, 0);
|
|
|
|
local_set(&cpu_buffer->reader_page->page->commit, 0);
|
2010-04-01 10:11:42 +08:00
|
|
|
cpu_buffer->reader_page->real_end = 0;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
spin:
|
|
|
|
/*
|
|
|
|
* Splice the empty reader page into the list around the head.
|
|
|
|
*/
|
|
|
|
reader = rb_set_head_page(cpu_buffer);
|
2012-11-30 11:27:22 +08:00
|
|
|
if (!reader)
|
|
|
|
goto out;
|
2010-01-07 09:40:44 +08:00
|
|
|
cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
|
2008-10-01 12:29:53 +08:00
|
|
|
cpu_buffer->reader_page->list.prev = reader->list.prev;
|
2008-10-04 14:00:59 +08:00
|
|
|
|
2009-03-31 03:32:01 +08:00
|
|
|
/*
|
|
|
|
* cpu_buffer->pages just needs to point to the buffer, it
|
|
|
|
* has no specific buffer page to point to. Lets move it out
|
2011-03-31 09:57:33 +08:00
|
|
|
* of our way so we don't accidentally swap it.
|
2009-03-31 03:32:01 +08:00
|
|
|
*/
|
|
|
|
cpu_buffer->pages = reader->list.prev;
|
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
/* The reader page will be pointing to the new head */
|
|
|
|
rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
/*
|
|
|
|
* We want to make sure we read the overruns after we set up our
|
|
|
|
* pointers to the next object. The writer side does a
|
|
|
|
* cmpxchg to cross pages which acts as the mb on the writer
|
|
|
|
* side. Note, the reader will constantly fail the swap
|
|
|
|
* while the writer is updating the pointers, so this
|
|
|
|
* guarantees that the overwrite recorded here is the one we
|
|
|
|
* want to compare with the last_overrun.
|
|
|
|
*/
|
|
|
|
smp_mb();
|
|
|
|
overwrite = local_read(&(cpu_buffer->overrun));
|
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
/*
|
|
|
|
* Here's the tricky part.
|
|
|
|
*
|
|
|
|
* We need to move the pointer past the header page.
|
|
|
|
* But we can only do that if a writer is not currently
|
|
|
|
* moving it. The page before the header page has the
|
|
|
|
* flag bit '1' set if it is pointing to the page we want.
|
|
|
|
* but if the writer is in the process of moving it
|
|
|
|
* than it will be '2' or already moved '0'.
|
|
|
|
*/
|
|
|
|
|
|
|
|
ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/*
|
2009-03-27 23:00:29 +08:00
|
|
|
* If we did not convert it, then we must try again.
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
*/
|
2009-03-27 23:00:29 +08:00
|
|
|
if (!ret)
|
|
|
|
goto spin;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
/*
|
|
|
|
* Yeah! We succeeded in replacing the page.
|
|
|
|
*
|
|
|
|
* Now make the new head point back to the reader page.
|
|
|
|
*/
|
2010-01-07 09:12:07 +08:00
|
|
|
rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
|
2009-03-27 23:00:29 +08:00
|
|
|
rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
|
2008-10-01 12:29:53 +08:00
|
|
|
|
|
|
|
/* Finally update the reader page to the new head */
|
|
|
|
cpu_buffer->reader_page = reader;
|
2015-11-23 23:35:36 +08:00
|
|
|
cpu_buffer->reader_page->read = 0;
|
2008-10-01 12:29:53 +08:00
|
|
|
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
if (overwrite != cpu_buffer->last_overrun) {
|
|
|
|
cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
|
|
|
|
cpu_buffer->last_overrun = overwrite;
|
|
|
|
}
|
|
|
|
|
2008-10-01 12:29:53 +08:00
|
|
|
goto again;
|
|
|
|
|
|
|
|
out:
|
2015-11-23 23:35:36 +08:00
|
|
|
/* Update the read_stamp on the first event */
|
|
|
|
if (reader && reader->read == 0)
|
|
|
|
cpu_buffer->read_stamp = reader->page->time_stamp;
|
|
|
|
|
2009-12-03 03:01:25 +08:00
|
|
|
arch_spin_unlock(&cpu_buffer->lock);
|
2008-11-06 13:09:43 +08:00
|
|
|
local_irq_restore(flags);
|
2008-10-01 12:29:53 +08:00
|
|
|
|
|
|
|
return reader;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
|
|
|
struct ring_buffer_event *event;
|
|
|
|
struct buffer_page *reader;
|
|
|
|
unsigned length;
|
|
|
|
|
|
|
|
reader = rb_get_reader_page(cpu_buffer);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2008-10-01 12:29:53 +08:00
|
|
|
/* This function should not be called when buffer is empty */
|
2008-11-12 04:28:41 +08:00
|
|
|
if (RB_WARN_ON(cpu_buffer, !reader))
|
|
|
|
return;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2008-10-01 12:29:53 +08:00
|
|
|
event = rb_reader_event(cpu_buffer);
|
|
|
|
|
2009-09-03 22:23:58 +08:00
|
|
|
if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
|
2009-05-01 08:49:44 +08:00
|
|
|
cpu_buffer->read++;
|
2008-10-01 12:29:53 +08:00
|
|
|
|
|
|
|
rb_update_read_stamp(cpu_buffer, event);
|
|
|
|
|
|
|
|
length = rb_event_length(event);
|
2008-10-04 14:00:58 +08:00
|
|
|
cpu_buffer->reader_page->read += length;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void rb_advance_iter(struct ring_buffer_iter *iter)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
struct ring_buffer_event *event;
|
|
|
|
unsigned length;
|
|
|
|
|
|
|
|
cpu_buffer = iter->cpu_buffer;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check if we are at the end of the buffer.
|
|
|
|
*/
|
2008-10-04 14:00:59 +08:00
|
|
|
if (iter->head >= rb_page_size(iter->head_page)) {
|
2009-06-03 21:30:10 +08:00
|
|
|
/* discarded commits can make the page empty */
|
|
|
|
if (iter->head_page == cpu_buffer->commit_page)
|
2008-11-12 04:28:41 +08:00
|
|
|
return;
|
2008-10-01 12:29:53 +08:00
|
|
|
rb_inc_iter(iter);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
event = rb_iter_head_event(iter);
|
|
|
|
|
|
|
|
length = rb_event_length(event);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This should not be called to advance the header if we are
|
|
|
|
* at the tail of the buffer.
|
|
|
|
*/
|
2008-11-12 04:28:41 +08:00
|
|
|
if (RB_WARN_ON(cpu_buffer,
|
2008-11-11 12:07:30 +08:00
|
|
|
(iter->head_page == cpu_buffer->commit_page) &&
|
2008-11-12 04:28:41 +08:00
|
|
|
(iter->head + length > rb_commit_index(cpu_buffer))))
|
|
|
|
return;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
rb_update_iter_read_stamp(iter, event);
|
|
|
|
|
|
|
|
iter->head += length;
|
|
|
|
|
|
|
|
/* check for end of page padding */
|
2008-10-04 14:00:59 +08:00
|
|
|
if ((iter->head >= rb_page_size(iter->head_page)) &&
|
|
|
|
(iter->head_page != cpu_buffer->commit_page))
|
2012-11-30 23:41:57 +08:00
|
|
|
rb_inc_iter(iter);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
|
|
|
return cpu_buffer->lost_events;
|
|
|
|
}
|
|
|
|
|
2008-11-12 01:47:44 +08:00
|
|
|
static struct ring_buffer_event *
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
|
|
|
|
unsigned long *lost_events)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer_event *event;
|
2008-10-01 12:29:53 +08:00
|
|
|
struct buffer_page *reader;
|
2008-10-31 21:58:35 +08:00
|
|
|
int nr_loops = 0;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2018-01-16 10:51:40 +08:00
|
|
|
if (ts)
|
|
|
|
*ts = 0;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
again:
|
2008-10-31 21:58:35 +08:00
|
|
|
/*
|
2010-10-08 06:18:05 +08:00
|
|
|
* We repeat when a time extend is encountered.
|
|
|
|
* Since the time extend is always attached to a data event,
|
|
|
|
* we should never loop more than once.
|
|
|
|
* (We never hit the following condition more than twice).
|
2008-10-31 21:58:35 +08:00
|
|
|
*/
|
2010-10-08 06:18:05 +08:00
|
|
|
if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
|
2008-10-31 21:58:35 +08:00
|
|
|
return NULL;
|
|
|
|
|
2008-10-01 12:29:53 +08:00
|
|
|
reader = rb_get_reader_page(cpu_buffer);
|
|
|
|
if (!reader)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
return NULL;
|
|
|
|
|
2008-10-01 12:29:53 +08:00
|
|
|
event = rb_reader_event(cpu_buffer);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-04-24 11:27:05 +08:00
|
|
|
switch (event->type_len) {
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
case RINGBUF_TYPE_PADDING:
|
2009-03-22 16:30:49 +08:00
|
|
|
if (rb_null_event(event))
|
|
|
|
RB_WARN_ON(cpu_buffer, 1);
|
|
|
|
/*
|
|
|
|
* Because the writer could be discarding every
|
|
|
|
* event it creates (which would probably be bad)
|
|
|
|
* if we were to go back to "again" then we may never
|
|
|
|
* catch up, and will trigger the warn on, or lock
|
|
|
|
* the box. Return the padding, and we will release
|
|
|
|
* the current locks, and try again.
|
|
|
|
*/
|
|
|
|
return event;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
case RINGBUF_TYPE_TIME_EXTEND:
|
|
|
|
/* Internal data, OK to advance */
|
2008-10-01 12:29:53 +08:00
|
|
|
rb_advance_reader(cpu_buffer);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
goto again;
|
|
|
|
|
|
|
|
case RINGBUF_TYPE_TIME_STAMP:
|
2018-01-16 10:51:40 +08:00
|
|
|
if (ts) {
|
|
|
|
*ts = ring_buffer_event_time_stamp(event);
|
|
|
|
ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
|
|
|
|
cpu_buffer->cpu, ts);
|
|
|
|
}
|
|
|
|
/* Internal data, OK to advance */
|
2008-10-01 12:29:53 +08:00
|
|
|
rb_advance_reader(cpu_buffer);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
goto again;
|
|
|
|
|
|
|
|
case RINGBUF_TYPE_DATA:
|
2018-01-16 10:51:40 +08:00
|
|
|
if (ts && !(*ts)) {
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
*ts = cpu_buffer->read_stamp + event->time_delta;
|
2009-07-31 20:58:04 +08:00
|
|
|
ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
|
2009-03-18 05:22:06 +08:00
|
|
|
cpu_buffer->cpu, ts);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
if (lost_events)
|
|
|
|
*lost_events = rb_lost_events(cpu_buffer);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
return event;
|
|
|
|
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_peek);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2008-11-12 01:47:44 +08:00
|
|
|
static struct ring_buffer_event *
|
|
|
|
rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer *buffer;
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
struct ring_buffer_event *event;
|
2008-10-31 21:58:35 +08:00
|
|
|
int nr_loops = 0;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2018-01-16 10:51:40 +08:00
|
|
|
if (ts)
|
|
|
|
*ts = 0;
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
cpu_buffer = iter->cpu_buffer;
|
|
|
|
buffer = cpu_buffer->buffer;
|
|
|
|
|
2010-01-26 04:17:47 +08:00
|
|
|
/*
|
|
|
|
* Check if someone performed a consuming read to
|
|
|
|
* the buffer. A consuming read invalidates the iterator
|
|
|
|
* and we need to reset the iterator in this case.
|
|
|
|
*/
|
|
|
|
if (unlikely(iter->cache_read != cpu_buffer->read ||
|
|
|
|
iter->cache_reader_page != cpu_buffer->reader_page))
|
|
|
|
rb_iter_reset(iter);
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
again:
|
2010-01-27 05:14:08 +08:00
|
|
|
if (ring_buffer_iter_empty(iter))
|
|
|
|
return NULL;
|
|
|
|
|
2008-10-31 21:58:35 +08:00
|
|
|
/*
|
ring-buffer: Up rb_iter_peek() loop count to 3
After writting a test to try to trigger the bug that caused the
ring buffer iterator to become corrupted, I hit another bug:
WARNING: CPU: 1 PID: 5281 at kernel/trace/ring_buffer.c:3766 rb_iter_peek+0x113/0x238()
Modules linked in: ipt_MASQUERADE sunrpc [...]
CPU: 1 PID: 5281 Comm: grep Tainted: G W 3.16.0-rc3-test+ #143
Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./To be filled by O.E.M., BIOS SDBLI944.86P 05/08/2007
0000000000000000 ffffffff81809a80 ffffffff81503fb0 0000000000000000
ffffffff81040ca1 ffff8800796d6010 ffffffff810c138d ffff8800796d6010
ffff880077438c80 ffff8800796d6010 ffff88007abbe600 0000000000000003
Call Trace:
[<ffffffff81503fb0>] ? dump_stack+0x4a/0x75
[<ffffffff81040ca1>] ? warn_slowpath_common+0x7e/0x97
[<ffffffff810c138d>] ? rb_iter_peek+0x113/0x238
[<ffffffff810c138d>] ? rb_iter_peek+0x113/0x238
[<ffffffff810c14df>] ? ring_buffer_iter_peek+0x2d/0x5c
[<ffffffff810c6f73>] ? tracing_iter_reset+0x6e/0x96
[<ffffffff810c74a3>] ? s_start+0xd7/0x17b
[<ffffffff8112b13e>] ? kmem_cache_alloc_trace+0xda/0xea
[<ffffffff8114cf94>] ? seq_read+0x148/0x361
[<ffffffff81132d98>] ? vfs_read+0x93/0xf1
[<ffffffff81132f1b>] ? SyS_read+0x60/0x8e
[<ffffffff8150bf9f>] ? tracesys+0xdd/0xe2
Debugging this bug, which triggers when the rb_iter_peek() loops too
many times (more than 2 times), I discovered there's a case that can
cause that function to legitimately loop 3 times!
rb_iter_peek() is different than rb_buffer_peek() as the rb_buffer_peek()
only deals with the reader page (it's for consuming reads). The
rb_iter_peek() is for traversing the buffer without consuming it, and as
such, it can loop for one more reason. That is, if we hit the end of
the reader page or any page, it will go to the next page and try again.
That is, we have this:
1. iter->head > iter->head_page->page->commit
(rb_inc_iter() which moves the iter to the next page)
try again
2. event = rb_iter_head_event()
event->type_len == RINGBUF_TYPE_TIME_EXTEND
rb_advance_iter()
try again
3. read the event.
But we never get to 3, because the count is greater than 2 and we
cause the WARNING and return NULL.
Up the counter to 3.
Cc: stable@vger.kernel.org # 2.6.37+
Fixes: 69d1b839f7ee "ring-buffer: Bind time extend and data events together"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-08-07 03:36:31 +08:00
|
|
|
* We repeat when a time extend is encountered or we hit
|
|
|
|
* the end of the page. Since the time extend is always attached
|
|
|
|
* to a data event, we should never loop more than three times.
|
|
|
|
* Once for going to next page, once on time extend, and
|
|
|
|
* finally once to get the event.
|
|
|
|
* (We never hit the following condition more than thrice).
|
2008-10-31 21:58:35 +08:00
|
|
|
*/
|
ring-buffer: Up rb_iter_peek() loop count to 3
After writting a test to try to trigger the bug that caused the
ring buffer iterator to become corrupted, I hit another bug:
WARNING: CPU: 1 PID: 5281 at kernel/trace/ring_buffer.c:3766 rb_iter_peek+0x113/0x238()
Modules linked in: ipt_MASQUERADE sunrpc [...]
CPU: 1 PID: 5281 Comm: grep Tainted: G W 3.16.0-rc3-test+ #143
Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./To be filled by O.E.M., BIOS SDBLI944.86P 05/08/2007
0000000000000000 ffffffff81809a80 ffffffff81503fb0 0000000000000000
ffffffff81040ca1 ffff8800796d6010 ffffffff810c138d ffff8800796d6010
ffff880077438c80 ffff8800796d6010 ffff88007abbe600 0000000000000003
Call Trace:
[<ffffffff81503fb0>] ? dump_stack+0x4a/0x75
[<ffffffff81040ca1>] ? warn_slowpath_common+0x7e/0x97
[<ffffffff810c138d>] ? rb_iter_peek+0x113/0x238
[<ffffffff810c138d>] ? rb_iter_peek+0x113/0x238
[<ffffffff810c14df>] ? ring_buffer_iter_peek+0x2d/0x5c
[<ffffffff810c6f73>] ? tracing_iter_reset+0x6e/0x96
[<ffffffff810c74a3>] ? s_start+0xd7/0x17b
[<ffffffff8112b13e>] ? kmem_cache_alloc_trace+0xda/0xea
[<ffffffff8114cf94>] ? seq_read+0x148/0x361
[<ffffffff81132d98>] ? vfs_read+0x93/0xf1
[<ffffffff81132f1b>] ? SyS_read+0x60/0x8e
[<ffffffff8150bf9f>] ? tracesys+0xdd/0xe2
Debugging this bug, which triggers when the rb_iter_peek() loops too
many times (more than 2 times), I discovered there's a case that can
cause that function to legitimately loop 3 times!
rb_iter_peek() is different than rb_buffer_peek() as the rb_buffer_peek()
only deals with the reader page (it's for consuming reads). The
rb_iter_peek() is for traversing the buffer without consuming it, and as
such, it can loop for one more reason. That is, if we hit the end of
the reader page or any page, it will go to the next page and try again.
That is, we have this:
1. iter->head > iter->head_page->page->commit
(rb_inc_iter() which moves the iter to the next page)
try again
2. event = rb_iter_head_event()
event->type_len == RINGBUF_TYPE_TIME_EXTEND
rb_advance_iter()
try again
3. read the event.
But we never get to 3, because the count is greater than 2 and we
cause the WARNING and return NULL.
Up the counter to 3.
Cc: stable@vger.kernel.org # 2.6.37+
Fixes: 69d1b839f7ee "ring-buffer: Bind time extend and data events together"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-08-07 03:36:31 +08:00
|
|
|
if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
|
2008-10-31 21:58:35 +08:00
|
|
|
return NULL;
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
if (rb_per_cpu_empty(cpu_buffer))
|
|
|
|
return NULL;
|
|
|
|
|
2014-07-24 07:45:12 +08:00
|
|
|
if (iter->head >= rb_page_size(iter->head_page)) {
|
2010-01-27 05:14:08 +08:00
|
|
|
rb_inc_iter(iter);
|
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
event = rb_iter_head_event(iter);
|
|
|
|
|
2009-04-24 11:27:05 +08:00
|
|
|
switch (event->type_len) {
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
case RINGBUF_TYPE_PADDING:
|
2009-03-22 16:30:49 +08:00
|
|
|
if (rb_null_event(event)) {
|
|
|
|
rb_inc_iter(iter);
|
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
rb_advance_iter(iter);
|
|
|
|
return event;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
case RINGBUF_TYPE_TIME_EXTEND:
|
|
|
|
/* Internal data, OK to advance */
|
|
|
|
rb_advance_iter(iter);
|
|
|
|
goto again;
|
|
|
|
|
|
|
|
case RINGBUF_TYPE_TIME_STAMP:
|
2018-01-16 10:51:40 +08:00
|
|
|
if (ts) {
|
|
|
|
*ts = ring_buffer_event_time_stamp(event);
|
|
|
|
ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
|
|
|
|
cpu_buffer->cpu, ts);
|
|
|
|
}
|
|
|
|
/* Internal data, OK to advance */
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
rb_advance_iter(iter);
|
|
|
|
goto again;
|
|
|
|
|
|
|
|
case RINGBUF_TYPE_DATA:
|
2018-01-16 10:51:40 +08:00
|
|
|
if (ts && !(*ts)) {
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
*ts = iter->read_stamp + event->time_delta;
|
2009-03-18 05:22:06 +08:00
|
|
|
ring_buffer_normalize_time_stamp(buffer,
|
|
|
|
cpu_buffer->cpu, ts);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
return event;
|
|
|
|
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2015-05-29 01:14:51 +08:00
|
|
|
static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
|
2009-06-17 09:22:48 +08:00
|
|
|
{
|
2015-05-29 01:14:51 +08:00
|
|
|
if (likely(!in_nmi())) {
|
|
|
|
raw_spin_lock(&cpu_buffer->reader_lock);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2009-06-17 09:22:48 +08:00
|
|
|
/*
|
|
|
|
* If an NMI die dumps out the content of the ring buffer
|
2015-05-29 01:14:51 +08:00
|
|
|
* trylock must be used to prevent a deadlock if the NMI
|
|
|
|
* preempted a task that holds the ring buffer locks. If
|
|
|
|
* we get the lock then all is fine, if not, then continue
|
|
|
|
* to do the read, but this can corrupt the ring buffer,
|
|
|
|
* so it must be permanently disabled from future writes.
|
|
|
|
* Reading from NMI is a oneshot deal.
|
2009-06-17 09:22:48 +08:00
|
|
|
*/
|
2015-05-29 01:14:51 +08:00
|
|
|
if (raw_spin_trylock(&cpu_buffer->reader_lock))
|
|
|
|
return true;
|
2009-06-17 09:22:48 +08:00
|
|
|
|
2015-05-29 01:14:51 +08:00
|
|
|
/* Continue without locking, but disable the ring buffer */
|
|
|
|
atomic_inc(&cpu_buffer->record_disabled);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
|
|
|
|
{
|
|
|
|
if (likely(locked))
|
|
|
|
raw_spin_unlock(&cpu_buffer->reader_lock);
|
|
|
|
return;
|
2009-06-17 09:22:48 +08:00
|
|
|
}
|
|
|
|
|
2008-11-12 01:47:44 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_peek - peek at the next event to be read
|
|
|
|
* @buffer: The ring buffer to read
|
|
|
|
* @cpu: The cpu to peak at
|
|
|
|
* @ts: The timestamp counter of this event.
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
* @lost_events: a variable to store if events were lost (may be NULL)
|
2008-11-12 01:47:44 +08:00
|
|
|
*
|
|
|
|
* This will return the event that will be read next, but does
|
|
|
|
* not consume the data.
|
|
|
|
*/
|
|
|
|
struct ring_buffer_event *
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
|
|
|
|
unsigned long *lost_events)
|
2008-11-12 01:47:44 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
|
2009-03-13 01:13:49 +08:00
|
|
|
struct ring_buffer_event *event;
|
2008-11-12 01:47:44 +08:00
|
|
|
unsigned long flags;
|
2015-05-29 01:14:51 +08:00
|
|
|
bool dolock;
|
2008-11-12 01:47:44 +08:00
|
|
|
|
2009-03-12 10:00:13 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
2009-03-13 01:13:49 +08:00
|
|
|
return NULL;
|
2009-03-12 10:00:13 +08:00
|
|
|
|
2009-03-22 16:30:49 +08:00
|
|
|
again:
|
2009-06-17 09:22:48 +08:00
|
|
|
local_irq_save(flags);
|
2015-05-29 01:14:51 +08:00
|
|
|
dolock = rb_reader_lock(cpu_buffer);
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
event = rb_buffer_peek(cpu_buffer, ts, lost_events);
|
2009-07-31 01:19:18 +08:00
|
|
|
if (event && event->type_len == RINGBUF_TYPE_PADDING)
|
|
|
|
rb_advance_reader(cpu_buffer);
|
2015-05-29 01:14:51 +08:00
|
|
|
rb_reader_unlock(cpu_buffer, dolock);
|
2009-06-17 09:22:48 +08:00
|
|
|
local_irq_restore(flags);
|
2008-11-12 01:47:44 +08:00
|
|
|
|
2009-09-03 22:12:13 +08:00
|
|
|
if (event && event->type_len == RINGBUF_TYPE_PADDING)
|
2009-03-22 16:30:49 +08:00
|
|
|
goto again;
|
|
|
|
|
2008-11-12 01:47:44 +08:00
|
|
|
return event;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_iter_peek - peek at the next event to be read
|
|
|
|
* @iter: The ring buffer iterator
|
|
|
|
* @ts: The timestamp counter of this event.
|
|
|
|
*
|
|
|
|
* This will return the event that will be read next, but does
|
|
|
|
* not increment the iterator.
|
|
|
|
*/
|
|
|
|
struct ring_buffer_event *
|
|
|
|
ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
|
|
|
|
struct ring_buffer_event *event;
|
|
|
|
unsigned long flags;
|
|
|
|
|
2009-03-22 16:30:49 +08:00
|
|
|
again:
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
|
2008-11-12 01:47:44 +08:00
|
|
|
event = rb_iter_peek(iter, ts);
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
|
2008-11-12 01:47:44 +08:00
|
|
|
|
2009-09-03 22:12:13 +08:00
|
|
|
if (event && event->type_len == RINGBUF_TYPE_PADDING)
|
2009-03-22 16:30:49 +08:00
|
|
|
goto again;
|
|
|
|
|
2008-11-12 01:47:44 +08:00
|
|
|
return event;
|
|
|
|
}
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_consume - return an event and consume it
|
|
|
|
* @buffer: The ring buffer to get the next event from
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
* @cpu: the cpu to read the buffer from
|
|
|
|
* @ts: a variable to store the timestamp (may be NULL)
|
|
|
|
* @lost_events: a variable to store if events were lost (may be NULL)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
*
|
|
|
|
* Returns the next event in the ring buffer, and that event is consumed.
|
|
|
|
* Meaning, that sequential reads will keep returning a different event,
|
|
|
|
* and eventually empty the ring buffer if the producer is slower.
|
|
|
|
*/
|
|
|
|
struct ring_buffer_event *
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
|
|
|
|
unsigned long *lost_events)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
2009-03-12 10:00:13 +08:00
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
struct ring_buffer_event *event = NULL;
|
2008-11-12 01:47:44 +08:00
|
|
|
unsigned long flags;
|
2015-05-29 01:14:51 +08:00
|
|
|
bool dolock;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-03-22 16:30:49 +08:00
|
|
|
again:
|
2009-03-12 10:00:13 +08:00
|
|
|
/* might be called in atomic */
|
|
|
|
preempt_disable();
|
|
|
|
|
2009-01-01 07:42:22 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
2009-03-12 10:00:13 +08:00
|
|
|
goto out;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-03-12 10:00:13 +08:00
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
2009-06-17 09:22:48 +08:00
|
|
|
local_irq_save(flags);
|
2015-05-29 01:14:51 +08:00
|
|
|
dolock = rb_reader_lock(cpu_buffer);
|
2008-11-12 01:47:44 +08:00
|
|
|
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
event = rb_buffer_peek(cpu_buffer, ts, lost_events);
|
|
|
|
if (event) {
|
|
|
|
cpu_buffer->lost_events = 0;
|
2009-07-31 01:19:18 +08:00
|
|
|
rb_advance_reader(cpu_buffer);
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
}
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2015-05-29 01:14:51 +08:00
|
|
|
rb_reader_unlock(cpu_buffer, dolock);
|
2009-06-17 09:22:48 +08:00
|
|
|
local_irq_restore(flags);
|
2008-11-12 01:47:44 +08:00
|
|
|
|
2009-03-12 10:00:13 +08:00
|
|
|
out:
|
|
|
|
preempt_enable();
|
|
|
|
|
2009-09-03 22:12:13 +08:00
|
|
|
if (event && event->type_len == RINGBUF_TYPE_PADDING)
|
2009-03-22 16:30:49 +08:00
|
|
|
goto again;
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
return event;
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_consume);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/**
|
2010-04-21 06:47:11 +08:00
|
|
|
* ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
* @buffer: The ring buffer to read from
|
|
|
|
* @cpu: The cpu buffer to iterate over
|
|
|
|
*
|
2010-04-21 06:47:11 +08:00
|
|
|
* This performs the initial preparations necessary to iterate
|
|
|
|
* through the buffer. Memory is allocated, buffer recording
|
|
|
|
* is disabled, and the iterator pointer is returned to the caller.
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
*
|
2018-05-16 23:17:06 +08:00
|
|
|
* Disabling buffer recording prevents the reading from being
|
2010-04-21 06:47:11 +08:00
|
|
|
* corrupted. This is not a consuming read, so a producer is not
|
|
|
|
* expected.
|
|
|
|
*
|
|
|
|
* After a sequence of ring_buffer_read_prepare calls, the user is
|
2013-07-15 16:32:50 +08:00
|
|
|
* expected to make at least one call to ring_buffer_read_prepare_sync.
|
2010-04-21 06:47:11 +08:00
|
|
|
* Afterwards, ring_buffer_read_start is invoked to get things going
|
|
|
|
* for real.
|
|
|
|
*
|
2013-07-15 16:32:50 +08:00
|
|
|
* This overall must be paired with ring_buffer_read_finish.
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
*/
|
|
|
|
struct ring_buffer_iter *
|
2010-04-21 06:47:11 +08:00
|
|
|
ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
2009-03-13 01:13:49 +08:00
|
|
|
struct ring_buffer_iter *iter;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-01-01 07:42:22 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
2009-03-13 01:13:49 +08:00
|
|
|
return NULL;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
iter = kmalloc(sizeof(*iter), GFP_KERNEL);
|
|
|
|
if (!iter)
|
2009-03-13 01:13:49 +08:00
|
|
|
return NULL;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
|
|
|
|
iter->cpu_buffer = cpu_buffer;
|
|
|
|
|
2012-05-04 09:59:50 +08:00
|
|
|
atomic_inc(&buffer->resize_disabled);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
atomic_inc(&cpu_buffer->record_disabled);
|
2010-04-21 06:47:11 +08:00
|
|
|
|
|
|
|
return iter;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
|
|
|
|
*
|
|
|
|
* All previously invoked ring_buffer_read_prepare calls to prepare
|
|
|
|
* iterators will be synchronized. Afterwards, read_buffer_read_start
|
|
|
|
* calls on those iterators are allowed.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
ring_buffer_read_prepare_sync(void)
|
|
|
|
{
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
synchronize_sched();
|
2010-04-21 06:47:11 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_read_start - start a non consuming read of the buffer
|
|
|
|
* @iter: The iterator returned by ring_buffer_read_prepare
|
|
|
|
*
|
|
|
|
* This finalizes the startup of an iteration through the buffer.
|
|
|
|
* The iterator comes from a call to ring_buffer_read_prepare and
|
|
|
|
* an intervening ring_buffer_read_prepare_sync must have been
|
|
|
|
* performed.
|
|
|
|
*
|
2013-07-15 16:32:50 +08:00
|
|
|
* Must be paired with ring_buffer_read_finish.
|
2010-04-21 06:47:11 +08:00
|
|
|
*/
|
|
|
|
void
|
|
|
|
ring_buffer_read_start(struct ring_buffer_iter *iter)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (!iter)
|
|
|
|
return;
|
|
|
|
|
|
|
|
cpu_buffer = iter->cpu_buffer;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
|
2009-12-03 03:01:25 +08:00
|
|
|
arch_spin_lock(&cpu_buffer->lock);
|
2008-11-12 13:01:26 +08:00
|
|
|
rb_iter_reset(iter);
|
2009-12-03 03:01:25 +08:00
|
|
|
arch_spin_unlock(&cpu_buffer->lock);
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_read_start);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/**
|
2013-07-15 16:32:50 +08:00
|
|
|
* ring_buffer_read_finish - finish reading the iterator of the buffer
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
* @iter: The iterator retrieved by ring_buffer_start
|
|
|
|
*
|
|
|
|
* This re-enables the recording to the buffer, and frees the
|
|
|
|
* iterator.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
ring_buffer_read_finish(struct ring_buffer_iter *iter)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
|
2012-11-30 11:31:16 +08:00
|
|
|
unsigned long flags;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2012-05-15 05:02:33 +08:00
|
|
|
/*
|
|
|
|
* Ring buffer is disabled from recording, here's a good place
|
2012-11-30 11:31:16 +08:00
|
|
|
* to check the integrity of the ring buffer.
|
|
|
|
* Must prevent readers from trying to read, as the check
|
|
|
|
* clears the HEAD page and readers require it.
|
2012-05-15 05:02:33 +08:00
|
|
|
*/
|
2012-11-30 11:31:16 +08:00
|
|
|
raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
|
2012-05-15 05:02:33 +08:00
|
|
|
rb_check_pages(cpu_buffer);
|
2012-11-30 11:31:16 +08:00
|
|
|
raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
|
2012-05-15 05:02:33 +08:00
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
atomic_dec(&cpu_buffer->record_disabled);
|
2012-05-04 09:59:50 +08:00
|
|
|
atomic_dec(&cpu_buffer->buffer->resize_disabled);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
kfree(iter);
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_read - read the next item in the ring buffer by the iterator
|
|
|
|
* @iter: The ring buffer iterator
|
|
|
|
* @ts: The time stamp of the event read.
|
|
|
|
*
|
|
|
|
* This reads the next event in the ring buffer and increments the iterator.
|
|
|
|
*/
|
|
|
|
struct ring_buffer_event *
|
|
|
|
ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
|
|
|
|
{
|
|
|
|
struct ring_buffer_event *event;
|
2008-11-12 01:47:44 +08:00
|
|
|
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
|
|
|
|
unsigned long flags;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
|
2009-09-03 22:02:09 +08:00
|
|
|
again:
|
2008-11-12 01:47:44 +08:00
|
|
|
event = rb_iter_peek(iter, ts);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
if (!event)
|
2008-11-12 01:47:44 +08:00
|
|
|
goto out;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-09-03 22:02:09 +08:00
|
|
|
if (event->type_len == RINGBUF_TYPE_PADDING)
|
|
|
|
goto again;
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
rb_advance_iter(iter);
|
2008-11-12 01:47:44 +08:00
|
|
|
out:
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
return event;
|
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_read);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_size - return the size of the ring buffer (in bytes)
|
|
|
|
* @buffer: The ring buffer.
|
|
|
|
*/
|
2012-02-03 04:00:41 +08:00
|
|
|
unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
2012-02-03 04:00:41 +08:00
|
|
|
/*
|
|
|
|
* Earlier, this method returned
|
|
|
|
* BUF_PAGE_SIZE * buffer->nr_pages
|
|
|
|
* Since the nr_pages field is now removed, we have converted this to
|
|
|
|
* return the per cpu buffer value.
|
|
|
|
*/
|
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_size);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
static void
|
|
|
|
rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
{
|
2009-03-27 23:00:29 +08:00
|
|
|
rb_head_page_deactivate(cpu_buffer);
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
cpu_buffer->head_page
|
2009-03-31 03:32:01 +08:00
|
|
|
= list_entry(cpu_buffer->pages, struct buffer_page, list);
|
2008-10-04 14:00:59 +08:00
|
|
|
local_set(&cpu_buffer->head_page->write, 0);
|
2009-05-02 06:44:45 +08:00
|
|
|
local_set(&cpu_buffer->head_page->entries, 0);
|
2008-12-03 04:34:06 +08:00
|
|
|
local_set(&cpu_buffer->head_page->page->commit, 0);
|
2008-10-01 12:29:53 +08:00
|
|
|
|
2008-10-04 14:00:58 +08:00
|
|
|
cpu_buffer->head_page->read = 0;
|
2008-10-04 14:00:59 +08:00
|
|
|
|
|
|
|
cpu_buffer->tail_page = cpu_buffer->head_page;
|
|
|
|
cpu_buffer->commit_page = cpu_buffer->head_page;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
|
2012-05-04 09:59:51 +08:00
|
|
|
INIT_LIST_HEAD(&cpu_buffer->new_pages);
|
2008-10-04 14:00:59 +08:00
|
|
|
local_set(&cpu_buffer->reader_page->write, 0);
|
2009-05-02 06:44:45 +08:00
|
|
|
local_set(&cpu_buffer->reader_page->entries, 0);
|
2008-12-03 04:34:06 +08:00
|
|
|
local_set(&cpu_buffer->reader_page->page->commit, 0);
|
2008-10-04 14:00:58 +08:00
|
|
|
cpu_buffer->reader_page->read = 0;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2011-08-17 05:46:16 +08:00
|
|
|
local_set(&cpu_buffer->entries_bytes, 0);
|
2009-03-27 23:00:29 +08:00
|
|
|
local_set(&cpu_buffer->overrun, 0);
|
2011-07-16 05:23:58 +08:00
|
|
|
local_set(&cpu_buffer->commit_overrun, 0);
|
|
|
|
local_set(&cpu_buffer->dropped_events, 0);
|
2009-05-01 08:49:44 +08:00
|
|
|
local_set(&cpu_buffer->entries, 0);
|
2009-06-17 00:37:57 +08:00
|
|
|
local_set(&cpu_buffer->committing, 0);
|
|
|
|
local_set(&cpu_buffer->commits, 0);
|
2009-03-27 23:00:29 +08:00
|
|
|
cpu_buffer->read = 0;
|
2011-08-17 05:46:16 +08:00
|
|
|
cpu_buffer->read_bytes = 0;
|
2009-01-22 07:45:57 +08:00
|
|
|
|
|
|
|
cpu_buffer->write_stamp = 0;
|
|
|
|
cpu_buffer->read_stamp = 0;
|
2009-03-27 23:00:29 +08:00
|
|
|
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
cpu_buffer->lost_events = 0;
|
|
|
|
cpu_buffer->last_overrun = 0;
|
|
|
|
|
2009-03-27 23:00:29 +08:00
|
|
|
rb_head_page_activate(cpu_buffer);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
|
|
|
|
* @buffer: The ring buffer to reset a per cpu buffer of
|
|
|
|
* @cpu: The CPU buffer to be reset
|
|
|
|
*/
|
|
|
|
void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
|
|
|
|
unsigned long flags;
|
|
|
|
|
2009-01-01 07:42:22 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
2009-03-13 01:13:49 +08:00
|
|
|
return;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2012-05-04 09:59:50 +08:00
|
|
|
atomic_inc(&buffer->resize_disabled);
|
2009-05-02 08:26:54 +08:00
|
|
|
atomic_inc(&cpu_buffer->record_disabled);
|
|
|
|
|
2012-05-04 09:59:50 +08:00
|
|
|
/* Make sure all commits have finished */
|
|
|
|
synchronize_sched();
|
|
|
|
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
|
2008-11-12 01:47:44 +08:00
|
|
|
|
2009-09-02 21:59:48 +08:00
|
|
|
if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
|
|
|
|
goto out;
|
|
|
|
|
2009-12-03 03:01:25 +08:00
|
|
|
arch_spin_lock(&cpu_buffer->lock);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
rb_reset_cpu(cpu_buffer);
|
|
|
|
|
2009-12-03 03:01:25 +08:00
|
|
|
arch_spin_unlock(&cpu_buffer->lock);
|
2008-11-12 01:47:44 +08:00
|
|
|
|
2009-09-02 21:59:48 +08:00
|
|
|
out:
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
|
2009-05-02 08:26:54 +08:00
|
|
|
|
|
|
|
atomic_dec(&cpu_buffer->record_disabled);
|
2012-05-04 09:59:50 +08:00
|
|
|
atomic_dec(&buffer->resize_disabled);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_reset - reset a ring buffer
|
|
|
|
* @buffer: The ring buffer to reset all cpu buffers
|
|
|
|
*/
|
|
|
|
void ring_buffer_reset(struct ring_buffer *buffer)
|
|
|
|
{
|
|
|
|
int cpu;
|
|
|
|
|
|
|
|
for_each_buffer_cpu(buffer, cpu)
|
2008-10-01 12:29:53 +08:00
|
|
|
ring_buffer_reset_cpu(buffer, cpu);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_reset);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* rind_buffer_empty - is the ring buffer empty?
|
|
|
|
* @buffer: The ring buffer to test
|
|
|
|
*/
|
2015-09-29 22:43:32 +08:00
|
|
|
bool ring_buffer_empty(struct ring_buffer *buffer)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
2009-06-17 12:39:43 +08:00
|
|
|
unsigned long flags;
|
2015-05-29 01:14:51 +08:00
|
|
|
bool dolock;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
int cpu;
|
2009-06-17 12:39:43 +08:00
|
|
|
int ret;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/* yes this is racy, but if you don't like the race, lock the buffer */
|
|
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
2009-06-17 09:22:48 +08:00
|
|
|
local_irq_save(flags);
|
2015-05-29 01:14:51 +08:00
|
|
|
dolock = rb_reader_lock(cpu_buffer);
|
2009-06-17 12:39:43 +08:00
|
|
|
ret = rb_per_cpu_empty(cpu_buffer);
|
2015-05-29 01:14:51 +08:00
|
|
|
rb_reader_unlock(cpu_buffer, dolock);
|
2009-06-17 09:22:48 +08:00
|
|
|
local_irq_restore(flags);
|
|
|
|
|
2009-06-17 12:39:43 +08:00
|
|
|
if (!ret)
|
2015-09-29 22:43:32 +08:00
|
|
|
return false;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2009-03-12 10:00:13 +08:00
|
|
|
|
2015-09-29 22:43:32 +08:00
|
|
|
return true;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_empty);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
|
|
|
|
* @buffer: The ring buffer
|
|
|
|
* @cpu: The CPU buffer to test
|
|
|
|
*/
|
2015-09-29 22:43:32 +08:00
|
|
|
bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
2009-06-17 12:39:43 +08:00
|
|
|
unsigned long flags;
|
2015-05-29 01:14:51 +08:00
|
|
|
bool dolock;
|
2009-03-13 01:13:49 +08:00
|
|
|
int ret;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-01-01 07:42:22 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
2015-09-29 22:43:32 +08:00
|
|
|
return true;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
2009-06-17 09:22:48 +08:00
|
|
|
local_irq_save(flags);
|
2015-05-29 01:14:51 +08:00
|
|
|
dolock = rb_reader_lock(cpu_buffer);
|
2009-03-12 10:00:13 +08:00
|
|
|
ret = rb_per_cpu_empty(cpu_buffer);
|
2015-05-29 01:14:51 +08:00
|
|
|
rb_reader_unlock(cpu_buffer, dolock);
|
2009-06-17 09:22:48 +08:00
|
|
|
local_irq_restore(flags);
|
2009-03-12 10:00:13 +08:00
|
|
|
|
|
|
|
return ret;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-09-05 02:24:40 +08:00
|
|
|
#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
|
|
|
|
* @buffer_a: One buffer to swap with
|
|
|
|
* @buffer_b: The other buffer to swap with
|
|
|
|
*
|
|
|
|
* This function is useful for tracers that want to take a "snapshot"
|
|
|
|
* of a CPU buffer and has another back up buffer lying around.
|
|
|
|
* it is expected that the tracer handles the cpu buffer not being
|
|
|
|
* used at the moment.
|
|
|
|
*/
|
|
|
|
int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
|
|
|
|
struct ring_buffer *buffer_b, int cpu)
|
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer_a;
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer_b;
|
2009-03-12 10:00:13 +08:00
|
|
|
int ret = -EINVAL;
|
|
|
|
|
2009-01-01 07:42:22 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
|
|
|
|
!cpumask_test_cpu(cpu, buffer_b->cpumask))
|
2009-03-12 10:00:13 +08:00
|
|
|
goto out;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2012-02-03 04:00:41 +08:00
|
|
|
cpu_buffer_a = buffer_a->buffers[cpu];
|
|
|
|
cpu_buffer_b = buffer_b->buffers[cpu];
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/* At least make sure the two buffers are somewhat the same */
|
2012-02-03 04:00:41 +08:00
|
|
|
if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
|
2009-03-12 10:00:13 +08:00
|
|
|
goto out;
|
|
|
|
|
|
|
|
ret = -EAGAIN;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2009-01-22 04:24:56 +08:00
|
|
|
if (atomic_read(&buffer_a->record_disabled))
|
2009-03-12 10:00:13 +08:00
|
|
|
goto out;
|
2009-01-22 04:24:56 +08:00
|
|
|
|
|
|
|
if (atomic_read(&buffer_b->record_disabled))
|
2009-03-12 10:00:13 +08:00
|
|
|
goto out;
|
2009-01-22 04:24:56 +08:00
|
|
|
|
|
|
|
if (atomic_read(&cpu_buffer_a->record_disabled))
|
2009-03-12 10:00:13 +08:00
|
|
|
goto out;
|
2009-01-22 04:24:56 +08:00
|
|
|
|
|
|
|
if (atomic_read(&cpu_buffer_b->record_disabled))
|
2009-03-12 10:00:13 +08:00
|
|
|
goto out;
|
2009-01-22 04:24:56 +08:00
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
/*
|
|
|
|
* We can't do a synchronize_sched here because this
|
|
|
|
* function can be called in atomic context.
|
|
|
|
* Normally this will be called from the same CPU as cpu.
|
|
|
|
* If not it's up to the caller to protect this.
|
|
|
|
*/
|
|
|
|
atomic_inc(&cpu_buffer_a->record_disabled);
|
|
|
|
atomic_inc(&cpu_buffer_b->record_disabled);
|
|
|
|
|
2009-09-02 22:56:15 +08:00
|
|
|
ret = -EBUSY;
|
|
|
|
if (local_read(&cpu_buffer_a->committing))
|
|
|
|
goto out_dec;
|
|
|
|
if (local_read(&cpu_buffer_b->committing))
|
|
|
|
goto out_dec;
|
|
|
|
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
buffer_a->buffers[cpu] = cpu_buffer_b;
|
|
|
|
buffer_b->buffers[cpu] = cpu_buffer_a;
|
|
|
|
|
|
|
|
cpu_buffer_b->buffer = buffer_a;
|
|
|
|
cpu_buffer_a->buffer = buffer_b;
|
|
|
|
|
2009-09-02 22:56:15 +08:00
|
|
|
ret = 0;
|
|
|
|
|
|
|
|
out_dec:
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
atomic_dec(&cpu_buffer_a->record_disabled);
|
|
|
|
atomic_dec(&cpu_buffer_b->record_disabled);
|
2009-03-12 10:00:13 +08:00
|
|
|
out:
|
|
|
|
return ret;
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
}
|
2008-12-11 23:49:22 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
|
2009-09-05 02:24:40 +08:00
|
|
|
#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
|
tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 11:02:38 +08:00
|
|
|
|
2008-12-03 04:34:07 +08:00
|
|
|
/**
|
|
|
|
* ring_buffer_alloc_read_page - allocate a page to read from buffer
|
|
|
|
* @buffer: the buffer to allocate for.
|
2013-07-15 16:32:50 +08:00
|
|
|
* @cpu: the cpu buffer to allocate.
|
2008-12-03 04:34:07 +08:00
|
|
|
*
|
|
|
|
* This function is used in conjunction with ring_buffer_read_page.
|
|
|
|
* When reading a full page from the ring buffer, these functions
|
|
|
|
* can be used to speed up the process. The calling function should
|
|
|
|
* allocate a few pages first with this function. Then when it
|
|
|
|
* needs to get pages from the ring buffer, it passes the result
|
|
|
|
* of this function into ring_buffer_read_page, which will swap
|
|
|
|
* the page that was allocated, with the read page of the buffer.
|
|
|
|
*
|
|
|
|
* Returns:
|
2017-08-03 02:20:54 +08:00
|
|
|
* The page allocated, or ERR_PTR
|
2008-12-03 04:34:07 +08:00
|
|
|
*/
|
2011-05-04 08:56:42 +08:00
|
|
|
void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
|
2008-12-03 04:34:07 +08:00
|
|
|
{
|
2017-08-03 02:20:54 +08:00
|
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
2017-05-01 21:35:09 +08:00
|
|
|
struct buffer_data_page *bpage = NULL;
|
|
|
|
unsigned long flags;
|
2011-05-04 08:56:42 +08:00
|
|
|
struct page *page;
|
2008-12-03 04:34:07 +08:00
|
|
|
|
2017-08-03 02:20:54 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
|
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
2017-05-01 21:35:09 +08:00
|
|
|
local_irq_save(flags);
|
|
|
|
arch_spin_lock(&cpu_buffer->lock);
|
|
|
|
|
|
|
|
if (cpu_buffer->free_page) {
|
|
|
|
bpage = cpu_buffer->free_page;
|
|
|
|
cpu_buffer->free_page = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
arch_spin_unlock(&cpu_buffer->lock);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
|
|
|
|
if (bpage)
|
|
|
|
goto out;
|
|
|
|
|
2011-06-08 08:01:42 +08:00
|
|
|
page = alloc_pages_node(cpu_to_node(cpu),
|
|
|
|
GFP_KERNEL | __GFP_NORETRY, 0);
|
2011-05-04 08:56:42 +08:00
|
|
|
if (!page)
|
2017-08-03 02:20:54 +08:00
|
|
|
return ERR_PTR(-ENOMEM);
|
2008-12-03 04:34:07 +08:00
|
|
|
|
2011-05-04 08:56:42 +08:00
|
|
|
bpage = page_address(page);
|
2008-12-03 04:34:07 +08:00
|
|
|
|
2017-05-01 21:35:09 +08:00
|
|
|
out:
|
2009-03-03 13:27:49 +08:00
|
|
|
rb_init_page(bpage);
|
|
|
|
|
2008-12-03 12:50:03 +08:00
|
|
|
return bpage;
|
2008-12-03 04:34:07 +08:00
|
|
|
}
|
2009-05-05 13:15:24 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
|
2008-12-03 04:34:07 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_free_read_page - free an allocated read page
|
|
|
|
* @buffer: the buffer the page was allocate for
|
2017-05-01 21:35:09 +08:00
|
|
|
* @cpu: the cpu buffer the page came from
|
2008-12-03 04:34:07 +08:00
|
|
|
* @data: the page to free
|
|
|
|
*
|
|
|
|
* Free a page allocated from ring_buffer_alloc_read_page.
|
|
|
|
*/
|
2017-05-01 21:35:09 +08:00
|
|
|
void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
|
2008-12-03 04:34:07 +08:00
|
|
|
{
|
2017-05-01 21:35:09 +08:00
|
|
|
struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
|
|
|
|
struct buffer_data_page *bpage = data;
|
2017-12-23 10:19:29 +08:00
|
|
|
struct page *page = virt_to_page(bpage);
|
2017-05-01 21:35:09 +08:00
|
|
|
unsigned long flags;
|
|
|
|
|
2017-12-23 10:19:29 +08:00
|
|
|
/* If the page is still in use someplace else, we can't reuse it */
|
|
|
|
if (page_ref_count(page) > 1)
|
|
|
|
goto out;
|
|
|
|
|
2017-05-01 21:35:09 +08:00
|
|
|
local_irq_save(flags);
|
|
|
|
arch_spin_lock(&cpu_buffer->lock);
|
|
|
|
|
|
|
|
if (!cpu_buffer->free_page) {
|
|
|
|
cpu_buffer->free_page = bpage;
|
|
|
|
bpage = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
arch_spin_unlock(&cpu_buffer->lock);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
|
2017-12-23 10:19:29 +08:00
|
|
|
out:
|
2017-05-01 21:35:09 +08:00
|
|
|
free_page((unsigned long)bpage);
|
2008-12-03 04:34:07 +08:00
|
|
|
}
|
2009-05-05 13:15:24 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
|
2008-12-03 04:34:07 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* ring_buffer_read_page - extract a page from the ring buffer
|
|
|
|
* @buffer: buffer to extract from
|
|
|
|
* @data_page: the page to use allocated from ring_buffer_alloc_read_page
|
2009-03-03 13:27:49 +08:00
|
|
|
* @len: amount to extract
|
2008-12-03 04:34:07 +08:00
|
|
|
* @cpu: the cpu of the buffer to extract
|
|
|
|
* @full: should the extraction only happen when the page is full.
|
|
|
|
*
|
|
|
|
* This function will pull out a page from the ring buffer and consume it.
|
|
|
|
* @data_page must be the address of the variable that was returned
|
|
|
|
* from ring_buffer_alloc_read_page. This is because the page might be used
|
|
|
|
* to swap with a page in the ring buffer.
|
|
|
|
*
|
|
|
|
* for example:
|
2013-07-15 16:32:50 +08:00
|
|
|
* rpage = ring_buffer_alloc_read_page(buffer, cpu);
|
2017-08-03 02:20:54 +08:00
|
|
|
* if (IS_ERR(rpage))
|
|
|
|
* return PTR_ERR(rpage);
|
2009-03-03 13:27:49 +08:00
|
|
|
* ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
|
2009-02-09 14:21:17 +08:00
|
|
|
* if (ret >= 0)
|
|
|
|
* process_page(rpage, ret);
|
2008-12-03 04:34:07 +08:00
|
|
|
*
|
|
|
|
* When @full is set, the function will not return true unless
|
|
|
|
* the writer is off the reader page.
|
|
|
|
*
|
|
|
|
* Note: it is up to the calling functions to handle sleeps and wakeups.
|
|
|
|
* The ring buffer can be used anywhere in the kernel and can not
|
|
|
|
* blindly call wake_up. The layer that uses the ring buffer must be
|
|
|
|
* responsible for that.
|
|
|
|
*
|
|
|
|
* Returns:
|
2009-02-09 14:21:17 +08:00
|
|
|
* >=0 if data has been transferred, returns the offset of consumed data.
|
|
|
|
* <0 if no data has been transferred.
|
2008-12-03 04:34:07 +08:00
|
|
|
*/
|
|
|
|
int ring_buffer_read_page(struct ring_buffer *buffer,
|
2009-03-03 13:27:49 +08:00
|
|
|
void **data_page, size_t len, int cpu, int full)
|
2008-12-03 04:34:07 +08:00
|
|
|
{
|
|
|
|
struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
|
|
|
|
struct ring_buffer_event *event;
|
2008-12-03 12:50:03 +08:00
|
|
|
struct buffer_data_page *bpage;
|
2009-03-03 13:27:49 +08:00
|
|
|
struct buffer_page *reader;
|
2010-04-01 10:11:42 +08:00
|
|
|
unsigned long missed_events;
|
2008-12-03 04:34:07 +08:00
|
|
|
unsigned long flags;
|
2009-03-03 13:27:49 +08:00
|
|
|
unsigned int commit;
|
2009-02-09 14:21:17 +08:00
|
|
|
unsigned int read;
|
2009-03-04 12:52:42 +08:00
|
|
|
u64 save_timestamp;
|
2009-02-09 14:21:17 +08:00
|
|
|
int ret = -1;
|
2008-12-03 04:34:07 +08:00
|
|
|
|
2009-03-12 10:00:13 +08:00
|
|
|
if (!cpumask_test_cpu(cpu, buffer->cpumask))
|
|
|
|
goto out;
|
|
|
|
|
2009-03-04 08:51:40 +08:00
|
|
|
/*
|
|
|
|
* If len is not big enough to hold the page header, then
|
|
|
|
* we can not copy anything.
|
|
|
|
*/
|
|
|
|
if (len <= BUF_PAGE_HDR_SIZE)
|
2009-03-12 10:00:13 +08:00
|
|
|
goto out;
|
2009-03-04 08:51:40 +08:00
|
|
|
|
|
|
|
len -= BUF_PAGE_HDR_SIZE;
|
|
|
|
|
2008-12-03 04:34:07 +08:00
|
|
|
if (!data_page)
|
2009-03-12 10:00:13 +08:00
|
|
|
goto out;
|
2008-12-03 04:34:07 +08:00
|
|
|
|
2008-12-03 12:50:03 +08:00
|
|
|
bpage = *data_page;
|
|
|
|
if (!bpage)
|
2009-03-12 10:00:13 +08:00
|
|
|
goto out;
|
2008-12-03 04:34:07 +08:00
|
|
|
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
|
2008-12-03 04:34:07 +08:00
|
|
|
|
2009-03-03 13:27:49 +08:00
|
|
|
reader = rb_get_reader_page(cpu_buffer);
|
|
|
|
if (!reader)
|
2009-03-12 10:00:13 +08:00
|
|
|
goto out_unlock;
|
2008-12-03 04:34:07 +08:00
|
|
|
|
2009-03-03 13:27:49 +08:00
|
|
|
event = rb_reader_event(cpu_buffer);
|
|
|
|
|
|
|
|
read = reader->read;
|
|
|
|
commit = rb_page_commit(reader);
|
2009-02-09 14:21:17 +08:00
|
|
|
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
/* Check if any events were dropped */
|
2010-04-01 10:11:42 +08:00
|
|
|
missed_events = cpu_buffer->lost_events;
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
|
2008-12-03 04:34:07 +08:00
|
|
|
/*
|
2009-03-04 08:51:40 +08:00
|
|
|
* If this page has been partially read or
|
|
|
|
* if len is not big enough to read the rest of the page or
|
|
|
|
* a writer is still on the page, then
|
|
|
|
* we must copy the data from the page to the buffer.
|
|
|
|
* Otherwise, we can simply swap the page with the one passed in.
|
2008-12-03 04:34:07 +08:00
|
|
|
*/
|
2009-03-04 08:51:40 +08:00
|
|
|
if (read || (len < (commit - read)) ||
|
2009-03-03 13:27:49 +08:00
|
|
|
cpu_buffer->reader_page == cpu_buffer->commit_page) {
|
2009-02-09 14:21:17 +08:00
|
|
|
struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
|
2009-03-04 08:51:40 +08:00
|
|
|
unsigned int rpos = read;
|
|
|
|
unsigned int pos = 0;
|
2009-03-03 13:27:49 +08:00
|
|
|
unsigned int size;
|
2008-12-03 04:34:07 +08:00
|
|
|
|
|
|
|
if (full)
|
2009-03-12 10:00:13 +08:00
|
|
|
goto out_unlock;
|
2008-12-03 04:34:07 +08:00
|
|
|
|
2009-03-03 13:27:49 +08:00
|
|
|
if (len > (commit - read))
|
|
|
|
len = (commit - read);
|
|
|
|
|
2010-10-08 06:18:05 +08:00
|
|
|
/* Always keep the time extend and data together */
|
|
|
|
size = rb_event_ts_length(event);
|
2009-03-03 13:27:49 +08:00
|
|
|
|
|
|
|
if (len < size)
|
2009-03-12 10:00:13 +08:00
|
|
|
goto out_unlock;
|
2009-03-03 13:27:49 +08:00
|
|
|
|
2009-03-04 12:52:42 +08:00
|
|
|
/* save the current timestamp, since the user will need it */
|
|
|
|
save_timestamp = cpu_buffer->read_stamp;
|
|
|
|
|
2009-03-03 13:27:49 +08:00
|
|
|
/* Need to copy one event at a time */
|
|
|
|
do {
|
2010-12-23 08:38:24 +08:00
|
|
|
/* We need the size of one event, because
|
|
|
|
* rb_advance_reader only advances by one event,
|
|
|
|
* whereas rb_event_ts_length may include the size of
|
|
|
|
* one or two events.
|
|
|
|
* We have already ensured there's enough space if this
|
|
|
|
* is a time extend. */
|
|
|
|
size = rb_event_length(event);
|
2009-03-04 08:51:40 +08:00
|
|
|
memcpy(bpage->data + pos, rpage->data + rpos, size);
|
2009-03-03 13:27:49 +08:00
|
|
|
|
|
|
|
len -= size;
|
|
|
|
|
|
|
|
rb_advance_reader(cpu_buffer);
|
2009-03-04 08:51:40 +08:00
|
|
|
rpos = reader->read;
|
|
|
|
pos += size;
|
2009-03-03 13:27:49 +08:00
|
|
|
|
2010-07-28 14:14:01 +08:00
|
|
|
if (rpos >= commit)
|
|
|
|
break;
|
|
|
|
|
2009-03-03 13:27:49 +08:00
|
|
|
event = rb_reader_event(cpu_buffer);
|
2010-10-08 06:18:05 +08:00
|
|
|
/* Always keep the time extend and data together */
|
|
|
|
size = rb_event_ts_length(event);
|
2010-12-23 08:38:24 +08:00
|
|
|
} while (len >= size);
|
2009-02-09 14:21:17 +08:00
|
|
|
|
|
|
|
/* update bpage */
|
2009-03-03 13:27:49 +08:00
|
|
|
local_set(&bpage->commit, pos);
|
2009-03-04 12:52:42 +08:00
|
|
|
bpage->time_stamp = save_timestamp;
|
2009-03-03 13:27:49 +08:00
|
|
|
|
2009-03-04 08:51:40 +08:00
|
|
|
/* we copied everything to the beginning */
|
|
|
|
read = 0;
|
2008-12-03 04:34:07 +08:00
|
|
|
} else {
|
2009-05-02 07:40:05 +08:00
|
|
|
/* update the entry counter */
|
2009-03-27 23:00:29 +08:00
|
|
|
cpu_buffer->read += rb_page_entries(reader);
|
2011-08-17 05:46:16 +08:00
|
|
|
cpu_buffer->read_bytes += BUF_PAGE_SIZE;
|
2009-05-02 07:40:05 +08:00
|
|
|
|
2008-12-03 04:34:07 +08:00
|
|
|
/* swap the pages */
|
2008-12-03 12:50:03 +08:00
|
|
|
rb_init_page(bpage);
|
2009-03-03 13:27:49 +08:00
|
|
|
bpage = reader->page;
|
|
|
|
reader->page = *data_page;
|
|
|
|
local_set(&reader->write, 0);
|
2009-05-02 06:44:45 +08:00
|
|
|
local_set(&reader->entries, 0);
|
2009-03-03 13:27:49 +08:00
|
|
|
reader->read = 0;
|
2008-12-03 12:50:03 +08:00
|
|
|
*data_page = bpage;
|
2010-04-01 10:11:42 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Use the real_end for the data size,
|
|
|
|
* This gives us a chance to store the lost events
|
|
|
|
* on the page.
|
|
|
|
*/
|
|
|
|
if (reader->real_end)
|
|
|
|
local_set(&bpage->commit, reader->real_end);
|
2008-12-03 04:34:07 +08:00
|
|
|
}
|
2009-02-09 14:21:17 +08:00
|
|
|
ret = read;
|
2008-12-03 04:34:07 +08:00
|
|
|
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
cpu_buffer->lost_events = 0;
|
2010-05-22 01:32:26 +08:00
|
|
|
|
|
|
|
commit = local_read(&bpage->commit);
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
/*
|
|
|
|
* Set a flag in the commit field if we lost events
|
|
|
|
*/
|
2010-04-01 10:11:42 +08:00
|
|
|
if (missed_events) {
|
|
|
|
/* If there is room at the end of the page to save the
|
|
|
|
* missed events, then record it there.
|
|
|
|
*/
|
|
|
|
if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
|
|
|
|
memcpy(&bpage->data[commit], &missed_events,
|
|
|
|
sizeof(missed_events));
|
|
|
|
local_add(RB_MISSED_STORED, &bpage->commit);
|
2010-05-22 01:32:26 +08:00
|
|
|
commit += sizeof(missed_events);
|
2010-04-01 10:11:42 +08:00
|
|
|
}
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
local_add(RB_MISSED_EVENTS, &bpage->commit);
|
2010-04-01 10:11:42 +08:00
|
|
|
}
|
ring-buffer: Add place holder recording of dropped events
Currently, when the ring buffer drops events, it does not record
the fact that it did so. It does inform the writer that the event
was dropped by returning a NULL event, but it does not put in any
place holder where the event was dropped.
This is not a trivial thing to add because the ring buffer mostly
runs in overwrite (flight recorder) mode. That is, when the ring
buffer is full, new data will overwrite old data.
In a produce/consumer mode, where new data is simply dropped when
the ring buffer is full, it is trivial to add the placeholder
for dropped events. When there's more room to write new data, then
a special event can be added to notify the reader about the dropped
events.
But in overwrite mode, any new write can overwrite events. A place
holder can not be inserted into the ring buffer since there never
may be room. A reader could also come in at anytime and miss the
placeholder.
Luckily, the way the ring buffer works, the read side can find out
if events were lost or not, and how many events. Everytime a write
takes place, if it overwrites the header page (the next read) it
updates a "overrun" variable that keeps track of the number of
lost events. When a reader swaps out a page from the ring buffer,
it can record this number, perfom the swap, and then check to
see if the number changed, and take the diff if it has, which would be
the number of events dropped. This can be stored by the reader
and returned to callers of the reader.
Since the reader page swap will fail if the writer moved the head
page since the time the reader page set up the swap, this gives room
to record the overruns without worrying about races. If the reader
sets up the pages, records the overrun, than performs the swap,
if the swap succeeds, then the overrun variable has not been
updated since the setup before the swap.
For binary readers of the ring buffer, a flag is set in the header
of each sub page (sub buffer) of the ring buffer. This flag is embedded
in the size field of the data on the sub buffer, in the 31st bit (the size
can be 32 or 64 bits depending on the architecture), but only 27
bits needs to be used for the actual size (less actually).
We could add a new field in the sub buffer header to also record the
number of events dropped since the last read, but this will change the
format of the binary ring buffer a bit too much. Perhaps this change can
be made if the information on the number of events dropped is considered
important enough.
Note, the notification of dropped events is only used by consuming reads
or peeking at the ring buffer. Iterating over the ring buffer does not
keep this information because the necessary data is only available when
a page swap is made, and the iterator does not swap out pages.
Cc: Robert Richter <robert.richter@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-01 01:21:56 +08:00
|
|
|
|
2010-05-22 01:32:26 +08:00
|
|
|
/*
|
|
|
|
* This page may be off to user land. Zero it out here.
|
|
|
|
*/
|
|
|
|
if (commit < BUF_PAGE_SIZE)
|
|
|
|
memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
|
|
|
|
|
2009-03-12 10:00:13 +08:00
|
|
|
out_unlock:
|
2009-07-25 23:13:33 +08:00
|
|
|
raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
|
2008-12-03 04:34:07 +08:00
|
|
|
|
2009-03-12 10:00:13 +08:00
|
|
|
out:
|
2008-12-03 04:34:07 +08:00
|
|
|
return ret;
|
|
|
|
}
|
2009-05-05 13:15:24 +08:00
|
|
|
EXPORT_SYMBOL_GPL(ring_buffer_read_page);
|
2008-12-03 04:34:07 +08:00
|
|
|
|
2016-11-27 07:13:34 +08:00
|
|
|
/*
|
|
|
|
* We only allocate new buffers, never free them if the CPU goes down.
|
|
|
|
* If we were to free the buffer, then the user would lose any trace that was in
|
|
|
|
* the buffer.
|
|
|
|
*/
|
|
|
|
int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
|
2009-03-12 10:00:13 +08:00
|
|
|
{
|
2016-11-27 07:13:34 +08:00
|
|
|
struct ring_buffer *buffer;
|
2016-05-12 23:01:24 +08:00
|
|
|
long nr_pages_same;
|
|
|
|
int cpu_i;
|
|
|
|
unsigned long nr_pages;
|
2009-03-12 10:00:13 +08:00
|
|
|
|
2016-11-27 07:13:34 +08:00
|
|
|
buffer = container_of(node, struct ring_buffer, node);
|
|
|
|
if (cpumask_test_cpu(cpu, buffer->cpumask))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
nr_pages = 0;
|
|
|
|
nr_pages_same = 1;
|
|
|
|
/* check if all cpu sizes are same */
|
|
|
|
for_each_buffer_cpu(buffer, cpu_i) {
|
|
|
|
/* fill in the size from first enabled cpu */
|
|
|
|
if (nr_pages == 0)
|
|
|
|
nr_pages = buffer->buffers[cpu_i]->nr_pages;
|
|
|
|
if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
|
|
|
|
nr_pages_same = 0;
|
|
|
|
break;
|
2009-03-12 10:00:13 +08:00
|
|
|
}
|
|
|
|
}
|
2016-11-27 07:13:34 +08:00
|
|
|
/* allocate minimum pages, user can later expand it */
|
|
|
|
if (!nr_pages_same)
|
|
|
|
nr_pages = 2;
|
|
|
|
buffer->buffers[cpu] =
|
|
|
|
rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
|
|
|
|
if (!buffer->buffers[cpu]) {
|
|
|
|
WARN(1, "failed to allocate ring buffer on CPU %u\n",
|
|
|
|
cpu);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
smp_wmb();
|
|
|
|
cpumask_set_cpu(cpu, buffer->cpumask);
|
|
|
|
return 0;
|
2009-03-12 10:00:13 +08:00
|
|
|
}
|
2013-03-15 23:32:53 +08:00
|
|
|
|
|
|
|
#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
|
|
|
|
/*
|
|
|
|
* This is a basic integrity check of the ring buffer.
|
|
|
|
* Late in the boot cycle this test will run when configured in.
|
|
|
|
* It will kick off a thread per CPU that will go into a loop
|
|
|
|
* writing to the per cpu ring buffer various sizes of data.
|
|
|
|
* Some of the data will be large items, some small.
|
|
|
|
*
|
|
|
|
* Another thread is created that goes into a spin, sending out
|
|
|
|
* IPIs to the other CPUs to also write into the ring buffer.
|
|
|
|
* this is to test the nesting ability of the buffer.
|
|
|
|
*
|
|
|
|
* Basic stats are recorded and reported. If something in the
|
|
|
|
* ring buffer should happen that's not expected, a big warning
|
|
|
|
* is displayed and all ring buffers are disabled.
|
|
|
|
*/
|
|
|
|
static struct task_struct *rb_threads[NR_CPUS] __initdata;
|
|
|
|
|
|
|
|
struct rb_test_data {
|
|
|
|
struct ring_buffer *buffer;
|
|
|
|
unsigned long events;
|
|
|
|
unsigned long bytes_written;
|
|
|
|
unsigned long bytes_alloc;
|
|
|
|
unsigned long bytes_dropped;
|
|
|
|
unsigned long events_nested;
|
|
|
|
unsigned long bytes_written_nested;
|
|
|
|
unsigned long bytes_alloc_nested;
|
|
|
|
unsigned long bytes_dropped_nested;
|
|
|
|
int min_size_nested;
|
|
|
|
int max_size_nested;
|
|
|
|
int max_size;
|
|
|
|
int min_size;
|
|
|
|
int cpu;
|
|
|
|
int cnt;
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct rb_test_data rb_data[NR_CPUS] __initdata;
|
|
|
|
|
|
|
|
/* 1 meg per cpu */
|
|
|
|
#define RB_TEST_BUFFER_SIZE 1048576
|
|
|
|
|
|
|
|
static char rb_string[] __initdata =
|
|
|
|
"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
|
|
|
|
"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
|
|
|
|
"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
|
|
|
|
|
|
|
|
static bool rb_test_started __initdata;
|
|
|
|
|
|
|
|
struct rb_item {
|
|
|
|
int size;
|
|
|
|
char str[];
|
|
|
|
};
|
|
|
|
|
|
|
|
static __init int rb_write_something(struct rb_test_data *data, bool nested)
|
|
|
|
{
|
|
|
|
struct ring_buffer_event *event;
|
|
|
|
struct rb_item *item;
|
|
|
|
bool started;
|
|
|
|
int event_len;
|
|
|
|
int size;
|
|
|
|
int len;
|
|
|
|
int cnt;
|
|
|
|
|
|
|
|
/* Have nested writes different that what is written */
|
|
|
|
cnt = data->cnt + (nested ? 27 : 0);
|
|
|
|
|
|
|
|
/* Multiply cnt by ~e, to make some unique increment */
|
|
|
|
size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
|
|
|
|
|
|
|
|
len = size + sizeof(struct rb_item);
|
|
|
|
|
|
|
|
started = rb_test_started;
|
|
|
|
/* read rb_test_started before checking buffer enabled */
|
|
|
|
smp_rmb();
|
|
|
|
|
|
|
|
event = ring_buffer_lock_reserve(data->buffer, len);
|
|
|
|
if (!event) {
|
|
|
|
/* Ignore dropped events before test starts. */
|
|
|
|
if (started) {
|
|
|
|
if (nested)
|
|
|
|
data->bytes_dropped += len;
|
|
|
|
else
|
|
|
|
data->bytes_dropped_nested += len;
|
|
|
|
}
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
event_len = ring_buffer_event_length(event);
|
|
|
|
|
|
|
|
if (RB_WARN_ON(data->buffer, event_len < len))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
item = ring_buffer_event_data(event);
|
|
|
|
item->size = size;
|
|
|
|
memcpy(item->str, rb_string, size);
|
|
|
|
|
|
|
|
if (nested) {
|
|
|
|
data->bytes_alloc_nested += event_len;
|
|
|
|
data->bytes_written_nested += len;
|
|
|
|
data->events_nested++;
|
|
|
|
if (!data->min_size_nested || len < data->min_size_nested)
|
|
|
|
data->min_size_nested = len;
|
|
|
|
if (len > data->max_size_nested)
|
|
|
|
data->max_size_nested = len;
|
|
|
|
} else {
|
|
|
|
data->bytes_alloc += event_len;
|
|
|
|
data->bytes_written += len;
|
|
|
|
data->events++;
|
|
|
|
if (!data->min_size || len < data->min_size)
|
|
|
|
data->max_size = len;
|
|
|
|
if (len > data->max_size)
|
|
|
|
data->max_size = len;
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
ring_buffer_unlock_commit(data->buffer, event);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static __init int rb_test(void *arg)
|
|
|
|
{
|
|
|
|
struct rb_test_data *data = arg;
|
|
|
|
|
|
|
|
while (!kthread_should_stop()) {
|
|
|
|
rb_write_something(data, false);
|
|
|
|
data->cnt++;
|
|
|
|
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
/* Now sleep between a min of 100-300us and a max of 1ms */
|
|
|
|
usleep_range(((data->cnt % 3) + 1) * 100, 1000);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static __init void rb_ipi(void *ignore)
|
|
|
|
{
|
|
|
|
struct rb_test_data *data;
|
|
|
|
int cpu = smp_processor_id();
|
|
|
|
|
|
|
|
data = &rb_data[cpu];
|
|
|
|
rb_write_something(data, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __init int rb_hammer_test(void *arg)
|
|
|
|
{
|
|
|
|
while (!kthread_should_stop()) {
|
|
|
|
|
|
|
|
/* Send an IPI to all cpus to write data! */
|
|
|
|
smp_call_function(rb_ipi, NULL, 1);
|
|
|
|
/* No sleep, but for non preempt, let others run */
|
|
|
|
schedule();
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static __init int test_ringbuffer(void)
|
|
|
|
{
|
|
|
|
struct task_struct *rb_hammer;
|
|
|
|
struct ring_buffer *buffer;
|
|
|
|
int cpu;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
pr_info("Running ring buffer tests...\n");
|
|
|
|
|
|
|
|
buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
|
|
|
|
if (WARN_ON(!buffer))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* Disable buffer so that threads can't write to it yet */
|
|
|
|
ring_buffer_record_off(buffer);
|
|
|
|
|
|
|
|
for_each_online_cpu(cpu) {
|
|
|
|
rb_data[cpu].buffer = buffer;
|
|
|
|
rb_data[cpu].cpu = cpu;
|
|
|
|
rb_data[cpu].cnt = cpu;
|
|
|
|
rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
|
|
|
|
"rbtester/%d", cpu);
|
2016-06-18 01:33:59 +08:00
|
|
|
if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
|
2013-03-15 23:32:53 +08:00
|
|
|
pr_cont("FAILED\n");
|
2016-06-18 01:33:59 +08:00
|
|
|
ret = PTR_ERR(rb_threads[cpu]);
|
2013-03-15 23:32:53 +08:00
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
|
|
|
|
kthread_bind(rb_threads[cpu], cpu);
|
|
|
|
wake_up_process(rb_threads[cpu]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now create the rb hammer! */
|
|
|
|
rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
|
2016-06-18 01:33:59 +08:00
|
|
|
if (WARN_ON(IS_ERR(rb_hammer))) {
|
2013-03-15 23:32:53 +08:00
|
|
|
pr_cont("FAILED\n");
|
2016-06-18 01:33:59 +08:00
|
|
|
ret = PTR_ERR(rb_hammer);
|
2013-03-15 23:32:53 +08:00
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
|
|
|
|
ring_buffer_record_on(buffer);
|
|
|
|
/*
|
|
|
|
* Show buffer is enabled before setting rb_test_started.
|
|
|
|
* Yes there's a small race window where events could be
|
|
|
|
* dropped and the thread wont catch it. But when a ring
|
|
|
|
* buffer gets enabled, there will always be some kind of
|
|
|
|
* delay before other CPUs see it. Thus, we don't care about
|
|
|
|
* those dropped events. We care about events dropped after
|
|
|
|
* the threads see that the buffer is active.
|
|
|
|
*/
|
|
|
|
smp_wmb();
|
|
|
|
rb_test_started = true;
|
|
|
|
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
/* Just run for 10 seconds */;
|
|
|
|
schedule_timeout(10 * HZ);
|
|
|
|
|
|
|
|
kthread_stop(rb_hammer);
|
|
|
|
|
|
|
|
out_free:
|
|
|
|
for_each_online_cpu(cpu) {
|
|
|
|
if (!rb_threads[cpu])
|
|
|
|
break;
|
|
|
|
kthread_stop(rb_threads[cpu]);
|
|
|
|
}
|
|
|
|
if (ret) {
|
|
|
|
ring_buffer_free(buffer);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Report! */
|
|
|
|
pr_info("finished\n");
|
|
|
|
for_each_online_cpu(cpu) {
|
|
|
|
struct ring_buffer_event *event;
|
|
|
|
struct rb_test_data *data = &rb_data[cpu];
|
|
|
|
struct rb_item *item;
|
|
|
|
unsigned long total_events;
|
|
|
|
unsigned long total_dropped;
|
|
|
|
unsigned long total_written;
|
|
|
|
unsigned long total_alloc;
|
|
|
|
unsigned long total_read = 0;
|
|
|
|
unsigned long total_size = 0;
|
|
|
|
unsigned long total_len = 0;
|
|
|
|
unsigned long total_lost = 0;
|
|
|
|
unsigned long lost;
|
|
|
|
int big_event_size;
|
|
|
|
int small_event_size;
|
|
|
|
|
|
|
|
ret = -1;
|
|
|
|
|
|
|
|
total_events = data->events + data->events_nested;
|
|
|
|
total_written = data->bytes_written + data->bytes_written_nested;
|
|
|
|
total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
|
|
|
|
total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
|
|
|
|
|
|
|
|
big_event_size = data->max_size + data->max_size_nested;
|
|
|
|
small_event_size = data->min_size + data->min_size_nested;
|
|
|
|
|
|
|
|
pr_info("CPU %d:\n", cpu);
|
|
|
|
pr_info(" events: %ld\n", total_events);
|
|
|
|
pr_info(" dropped bytes: %ld\n", total_dropped);
|
|
|
|
pr_info(" alloced bytes: %ld\n", total_alloc);
|
|
|
|
pr_info(" written bytes: %ld\n", total_written);
|
|
|
|
pr_info(" biggest event: %d\n", big_event_size);
|
|
|
|
pr_info(" smallest event: %d\n", small_event_size);
|
|
|
|
|
|
|
|
if (RB_WARN_ON(buffer, total_dropped))
|
|
|
|
break;
|
|
|
|
|
|
|
|
ret = 0;
|
|
|
|
|
|
|
|
while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
|
|
|
|
total_lost += lost;
|
|
|
|
item = ring_buffer_event_data(event);
|
|
|
|
total_len += ring_buffer_event_length(event);
|
|
|
|
total_size += item->size + sizeof(struct rb_item);
|
|
|
|
if (memcmp(&item->str[0], rb_string, item->size) != 0) {
|
|
|
|
pr_info("FAILED!\n");
|
|
|
|
pr_info("buffer had: %.*s\n", item->size, item->str);
|
|
|
|
pr_info("expected: %.*s\n", item->size, rb_string);
|
|
|
|
RB_WARN_ON(buffer, 1);
|
|
|
|
ret = -1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
total_read++;
|
|
|
|
}
|
|
|
|
if (ret)
|
|
|
|
break;
|
|
|
|
|
|
|
|
ret = -1;
|
|
|
|
|
|
|
|
pr_info(" read events: %ld\n", total_read);
|
|
|
|
pr_info(" lost events: %ld\n", total_lost);
|
|
|
|
pr_info(" total events: %ld\n", total_lost + total_read);
|
|
|
|
pr_info(" recorded len bytes: %ld\n", total_len);
|
|
|
|
pr_info(" recorded size bytes: %ld\n", total_size);
|
|
|
|
if (total_lost)
|
|
|
|
pr_info(" With dropped events, record len and size may not match\n"
|
|
|
|
" alloced and written from above\n");
|
|
|
|
if (!total_lost) {
|
|
|
|
if (RB_WARN_ON(buffer, total_len != total_alloc ||
|
|
|
|
total_size != total_written))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
|
|
|
|
break;
|
|
|
|
|
|
|
|
ret = 0;
|
|
|
|
}
|
|
|
|
if (!ret)
|
|
|
|
pr_info("Ring buffer PASSED!\n");
|
|
|
|
|
|
|
|
ring_buffer_free(buffer);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
late_initcall(test_ringbuffer);
|
|
|
|
#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
|